
Master Thesis Mathematics

Random Polytopes with Vertices on the Boundary

of a Ball or a Cube

July 1, 2022

Author:

Marit Onstwedder

First supervisor:

Gilles Bonnet

Second supervisor:

Tobias Müller



Abstract

Let X1, ..., XN be independent points that are uniformly distributed on the boundary of a compact
convex set P and let PN be the convex hull of those points. This thesis gives an extensive proof of
the following two (already existing) theorems. If P = Bd, which is the d-dimensional unit ball, then

E[Vd(B
d)−Vd(PN )] = O(N− 2

d−1 ) as N → ∞. If P = C := [0, 1]3, then the expected number of facets
of the convex hull PN is Ef2(PN ) = c lnN(1+O((lnN)−1)) as N → ∞, with some c > 0 independent
of C.



Notation

∥ · ∥ Euclidean norm on Rd

1(·) indicator function
Bd unit ball of Rd

[x1, ..., xj ] convex hull of the points x1, ..., xj

∆q q-dimensional volume of a convex hull
E[·] expectation of a random variable
fk number of k-dimensional faces
Γ(·) gamma function
Hk k-dimensional Hausdorff measure
κd volume of Bd

λd Lebesgue measure on Rd

[N ] set of integers {1, 2, ..., N}
N {1, 2, 3, ...}
ωd surface area of Sd−1

R = (−∞,∞) is the real line
R+ = [0,∞) is the non-negative real half-line
Rd Euclidean space of dimension d ∈ N
Sd−1 unit sphere of Rd

Sn set of all permutations of {1, ..., n}
σ spherical Lebesgue measure of Sd−1

Vd d-dimensional volume
A(d, q) perimetrization of all q-dimensional affine subspace of Rd
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Chapter 1

Introduction

Fix a dimension d ≥ 2 and let X1, ..., XN be independent points that are uniformly distributed on the
boundary of a compact convex set P . The convex hull of these points is denoted by PN .

Much research has been done about points that are distributed in the interior of compact convex sets
and functionals of that. It started with the two papers by Rényi and Sulanke [2],[3]. They have found
the expected area, perimeter, and number of vertices of PN . This was followed by many other papers,
generalizing this and other results to higher dimensions. For example, when the boundary of P is
sufficiently smooth and the points are chosen from the interior, it follows from the papers by Bárány

[7] and Böröczky, Hoffmann and Hug [11] that E[Vd(P )−Vd(PN )] = cdΩ(P )Vd(P )
2

d+1N− 2
d+1 (1+o(1)),

where Ω(P ) is the affine surface area of P and cd is a constant only depending on d.

Results for points on the boundary of P are much less known. In this thesis we want to find the
value of E[Vd(P ) − Vd(PN )] as well, but for points that are chosen on the boundary of P . We still
assume that P has a smooth boundary. The archetype of sets with a smooth boundary is the ball.
Therefore, in the first part of this thesis, we consider the d-dimensional unit ball Bd. Let P = Bd,
meaning that the points X1, ..., XN live on the sphere Sd−1. Furthermore, let Vd be the d-dimensional
volume measure. Explicit results for fixed N cannot be expected, so we investigate the asymptotics
as N → ∞. As the number of points N goes to infinity, the volume of the convex hull PN approaches
the volume of the ball, which means that the difference in volume goes to zero. More specifically, we
want to prove that

E[Vd(B
d)− Vd(PN )] = O(N− 2

d−1 ) as N → ∞. (1.1)

This theorem has been proven in the paper by Müller [5]. However, the proof is rather brief. The
first goal of this thesis to give an extensive proof of this theorem using a different method than
Müller. Furthermore, this theorem implies the following two special cases. If the points X1, ..., XN

are distributed uniformly on S1, then

E[V2(B
2)− V2(PN )] = O(N−2) as N → ∞. (1.2)

and if the points X1, ..., XN are distributed uniformly on S2, then

E[V3(B
3)− V3(PN )] = O(N−1) as N → ∞. (1.3)

We will prove both special cases as a warm up for the proof of the general theorem in dimension d.

It is much harder to find results when assuming that P is a polytope. Another functional that has
been investigated is the expected number of ℓ-dimensional faces Efℓ(PN ) of the convex hull PN when
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CHAPTER 1. INTRODUCTION

the points are chosen in the interior of a polytope P . The work of Reitzner [10] shows that if P is
a polytope, then Efℓ(PN ) = cd,ℓflag(P )(lnN)d−1(1 + o(1)) for ℓ ∈ {0, ..., d− 1}, where flag(P ) is the
number of flags of a polytope P . A flag [12] is a sequence F0 ⊂ F1 ⊂ · · · ⊂ Fd−1 of i-dimensional
faces Fi of P . In this thesis we want to find the value of Efℓ(PN ) as well, but for points that are
chosen on the boundary of a polytope P and ℓ = d− 1. The archetype of polytopes is the unit cube
C = [0, 1]d. To make things not too complicated we take d = 3. Therefore, in the second part of
this thesis, we consider the 3-dimensional unit cube C = [0, 1]3. Now let P = C, so that the points
X1, ..., XN are uniformly distributed on the boundary of the cube and the convex hull of these points
is denoted by PN . We are interested in the expected number of facets Ef2(PN ) of the convex hull PN .
More specifically, we want to prove that

Ef2(PN ) = c lnN(1 +O((lnN)−1)) as N → ∞, (1.4)

with some c > 0 independent of C. A more general version of this theorem is proven in the pre-print
of Reitzner, Schütt and Werner [18]. They prove this theorem for simple polytopes of which the cube
C is an example. Proving this theorem for the cube is the second and last goal of this thesis.

This thesis is structured as follows. In Chapter 2, the background material that is necessary for
proving the theorems is given. In Chapter 3, we will prove first Equations (1.2) and (1.3) followed by
the prove of Equation (1.1). Lastly, Chapter 4 gives the proof of Equation (1.4).
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Chapter 2

Preliminaries

2.1 Geometry

Following the notation in Schneider and Weil [12], we write for the volume of the d-dimensional unit
ball,

κd =
π

d
2

Γ(1 + d
2 )

and the surface area of the unit sphere Sd−1,

ωd = dκd =
2π

d
2

Γ(d2 )
.

Furthermore, we will use the identity

bdq =
ωd−q+1 · · ·ωd

ω1 · · ·ωq
=⇒ b(d+1)(d−1) =

ωdωd+1

ω1ω2
=

ωdωd+1

4π
, b(d−1)(d−1) = 1.

2.1.1 Polytopes

If V is a set of vertices or points, then the line connecting two distinct points x, y ∈ V is called an
edge and it is denoted by [x, y]. From [13], a set A ∈ Rd is convex if for any two points x, y ∈ A, the
segment [x, y] ∈ A, thus if (1 − λ)x + λy ∈ A for x, y ∈ A, 0 ≤ λ ≤ 1. The convex hull of A is the
smallest convex set that contains A and it is denoted by [A]. The convex hull of finitely many points
is called a polytope. There are two examples of a convex hull in Figures 2.1 and 2.2. Note that in
Figure 2.2, due to the smoothness of the boundary, each point that is chosen on the boundary of the
set is also included in the convex hull. In these figures, the set A is a set of points {X1, ..., Xn}, so
the convex hull is denoted by [A] = [X1, ..., Xn]. If the points X1, ..., Xn are random variables, then
the convex hull of these points is a random polytope. A d-dimensional polytope, or a d-polytope, has
k-dimensional faces for k = 0, ..., d− 1. The 0-dimensional faces are the vertices, 1-dimensional faces
are the edges and the (d− 1)-dimensional faces are called the facets. An n-polytope is called simple if
each of its vertices is contained in exactly n facets. A k-simplex is a k-polytope that is the convex hull
of k + 1 points. That means that the k + 1 points must be linearly independent or else the polytope
would not be k-dimensional. For example, a 0-simplex is a point, a 1-simplex is a line, a 2-simplex is
a triangle (and it can never be a rectangle), a 3-simplex is a tetrahedron, etcetera.

3



CHAPTER 2. PRELIMINARIES

Figure 2.1: Convex hull of some points in R2. Figure 2.2: Convex hull of points on the boundary
of a smooth convex set.

2.1.2 Affine Geometry

From [4], an affine subspace W of Rd is a subset of Rd such that W = {w − y : w ∈ W} is a linear
subspace of Rd for a fixed point y ∈ Rd. If an affine subspace of Rd has dimension d− 1, it is called
an affine hyperplane. In practice, this means that we can write the equation for an affine hyperplane
as

a1x1 + a2x2 + · · ·+ adxd = ad+1, a1, ..., ad+1 ∈ R,

where not all of the a1, ..., ad can be zero. We can also say that an affine subspace is obtained by
shifting a linear subspace by a fixed vector. An affine transformation maps points to points, lines to
lines, planes to planes. As a result of this, parallelism is preserved. Actions that are allowed in an
affine transformation are translation, rotation, scaling and shearing.

2.2 Integral Geometry

There are three specific measures that we will introduce in this section. For the first two, we use
the clear explanation that is given in Last and Penrose [15]. Fix a number d ∈ N and consider
the Euclidean space Rd with norm ∥ · ∥. For any subset S ⊂ Rd, the diameter of S is defined as
diam(S) = sup{|x − y| : x, y ∈ S}. The Lebesgue measure λd is the unique measure satisfying
λd([0, 1]

d) = 1. The volume of the unit ball Bd is denoted by κd = λd(B
d).

We want to assign an m-dimensional measure to an m-dimensional subset of Rd for m < d, but that is
not straightforward. Using the previously mentioned definition, we can define a measure that can deal
with these sets. For B ⊂ Rd with m < d, we define the m-dimensional Hausdorff measure Hm(B) by
the following process. For small δ, cover B efficiently by countably many sets Bj with diam(Bj) ≤ δ,

add up all the αm(
diam(Bj)

2 )m, and take the limit as δ → 0. That is,

Hm(B) = lim
δ→0

inf
B⊂∪Bj

diam(Bj)≤δ

∞∑
j=1

αm

(
diam(Bj)

2

)m

,

where the infimum is taken over all countable collections B1, B2, ... ⊂ Rd. When m = d, the Hausdorff
measure is equal to the Lebesgue measure. When m = 0, the Hausdorff measure H0 is the counting
measure. The volume functional Vn on a compact set K is defined as the restriction of the n-
dimensional Hausdorff measure Hn to K.

Lastly, we use the book by Conway [16] to learn about the Haar measure. Let G be a locally compact
group. Then there is, up to a multiplicative constant, a unique positive Borel measure µ on G such
that
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CHAPTER 2. PRELIMINARIES

1. if U is a nonempty open subset of G, then µ(U) > 0.

2. if S is any Borel subset of G and x ∈ G, then µ(S) = µ(Sx).

The measure µ is called the left-Haar measure for G. The second condition means that this measure
is left-translation invariant. If the group G is a group under addition, then the Haar measure is both
left and right-translation invariant, because addition is commutative. When a measure is left and
right-translation invariant, we call it the Haar measure for G. For example, consider the group (R,+)
and let [a, b] = S ⊂ R. Denote c+ S = {c+ s : s ∈ S}, then

µ(S) =

∫
S

λ(dx) = b− a = (b+ c)− (a+ c) =

∫
c+S

λ(dx) = µ(c+ S) = µ(S + c).

This means that the Haar measure of (R,+) is the restriction of the Lebesgue measure to subsets of
R.

2.2.1 Blaschke-Petkantschin formula

A theorem of major importance for this thesis is a Blaschke-Petkantschin formula. This formula gives
a decomposition of d copies of the space Sd−1 into d-dimensional affine subspaces of Sd−1. We will
see that this setting fits perfectly in the problems we will be investigating. Let’s clarify the notation
beforehand. The (d − 1)-dimensional volume of the convex hull of d points x1, ..., xd is denoted by
∆d−1(x1, ..., xd). Furthermore, the space A(d, q) denotes the parameterization of all q-dimensional
affine subspaces of Rd for q ∈ {0, 1, ..., d}. It is a locally compact space with respect to the group
of Euclidean motions. This group comprises arbitrary combinations of translations and rotations.
We will see later that this is exactly what we need to do with our subspaces: we are going to shift
the elements of A(d, q) to the origin so that they become linear subspaces. The corresponding q-
dimensional Haar measure µq is normalized such that

µq({H ∈ A(d, q) : H ∩Bd ̸= ∅}) = κd−q.

We will state here the Blaschke-Petkantschin formula for points on a sphere in the same form as in
[14, Proposition 3]:

Theorem 2.1 (Blaschke-Petkantschin for points on a sphere). Let f : (Sd−1)d → R be a non-negative
measurable function. Then,∫

(Sd−1)d
f(x1, ..., xd)Hd(d−1)

(Sd−1)d
(d(x1, ..., xd))

=
wd

2
(d− 1)!

∫
A(d,d−1)

∫
(H∩Sd−1)d

f(x1, ..., xd)

×∆d−1(x1, ..., xd)(1− h2)−
d
2Hd(d−2)

(H∩Sd−1)d
(d(x1, ..., xd))µd−1(dH),

where h denotes the distance from H to the origin.

The proof of a more general theorem can be found in Zähle [6, Theorem 1]. The purpose of this
theorem is to apply a geometric transformation to the original domain of the integration, since in
many applications, the integration over the original domain cannot be executed directly.

From the Blaschke-Petkantschin formula in d dimensions, we can readily derive the formula for 2 and
3 dimensions.

5



CHAPTER 2. PRELIMINARIES

Corollary 2.2. Let f : (S1)2 → R be a non-negative measurable function. Then,∫
(S1)2

f(x1, x2)H2
(S1)2(d(x1, x2))

=
w2

2

∫
A(2,1)

∫
(H∩S1)2

f(x1, x2)∆1(x1, x2)(1− h2)−1H0
(H∩S1)2(d(x1, x2))µ1(dH),

where h denotes the distance from H to the origin.

Corollary 2.3. Let f : (Sd−1)d → R be a non-negative measurable function. Then,∫
(S2)3

f(x1, x2, x3)H6
(S2)3(d(x1, x2, x3))

= w3

∫
A(3,2)

∫
(H∩S2)3

f(x1, x2, x3)∆d−1(x1, x2, x3)(1− h2)−
3
2H3

(H∩S2)3(d(x1, x2, x3))µ2(dH),

where h denotes the distance from H to the origin.

We have found a formula that changes the integration over d point on Sd−1 to the integration over
the intersection of Sd−1 with an affine hyperplane and over all affine hyperplanes. We still can make
this domain of integration easier to deal with. It is not straightforward to integrate over the space
A(d, d− 1), so we decompose this domain into two domains. A rigorous proof of a more general result
is given by Schneider and Weil [12, Theorem 13.2.12], but we will give an intuitive explanation here.
An element H ∈ A(d, d− 1) is uniquely determined by the normal vector u ∈ Sd−1 and the distance
h ∈ (−∞,∞) from the origin to H. This gives H = u⊥ + h. This doesn’t change the value of the
measure µd−1, because it is invariant under translation. The hyperplane H is intersecting the sphere
Sd−1 which is symmetric, so instead of taking h ∈ (−∞,∞), we can take h ∈ [0,∞) and multiply the
result by 2. Furthermore, for h ∈ (1,∞), we have H ∩Sd−1 = ∅, hence we restrict to h ∈ [0, 1]. Lastly,
u ∈ Sd−1 has Hausdorff measure ωd, so we divide by the normalization constant 1

ωd
. This comes down

to the following theorem.

Theorem 2.4. The Haar measure µd−1 satisfies∫
A(d,d−1)

f(H)µd−1(dH) =
2

ωd

∫
Sd−1

∫ 1

0

f(H(u, h))dhHd−1
Sd−1(du)

for every measurable function f ≥ 0 on A(d, d− 1).

This theorem is for all dimensions d ∈ {2, 3, ...}. We will need it in later sections for 2 and 3 dimensions.
These special cases can be found readily.

Corollary 2.5. The Haar measure µ1 satisfies∫
A(2,1)

f(H)µ1(dH) =
2

ω2

∫
S1

∫ 1

0

f(H(u, h))dhH1
S1(du)

for every measurable function f ≥ 0 on A(2, 1).

Corollary 2.6. The Haar measure µ2 satisfies∫
A(3,2)

f(H)µ2(dH) =
2

ω3

∫
S2

∫ 1

0

f(H(u, h))dhH2
S2(du)

for every measurable function f ≥ 0 on A(3, 2).

6
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2.2.2 Other Theorems

As a preparation for the upcoming calculations, another theorem will be presented. This theorem is
useful when a univariate function is integrated over a (d − 1)-dimensional sphere as will be done in
Chapters 3.2 and 3.3. A similar strategy as in Theorem 2.1 is used: instead of integrating over Sd−1,
integrate over lower-dimensional spherical slices. This theorem is originally stated in Axler et al [17,
A.4], but here it is used in the same form as in [14, Proposition 4].

Theorem 2.7. Let f : Sd−1 → R be a non-negative measurable function. Then,∫
Sd−1

f(x)Hd−1
Sd−1(dx) =

∫ 1

−1

(1− t2)
d−3
2

∫
Sd−2

f(t,
√
1− t2y)Hd−2

Sd−2(dy)dt.

The variable x = x1, ..., xd ∈ Sd−1 is decomposed into the variables t and y with t = x1 and y =
x2, ..., xd.

Another important theorem for our purposes is taken from Schneider and Weil [12, Theorem 8.2.3].
The theorem contains two statements, but only the second one will be used. Furthermore, we restrict
to the case where k = 2 and q = d, since those are the relevant settings here. Up to a normalising
constant, it gives the second moment of the volume of a random simplex with vertices on a sphere. It
states the following:

Theorem 2.8. For integers d ≥ 1, 1 ≤ q ≤ d, k ≥ 0,

S(d, q, k) : =

∫
Sd−1

· · ·
∫
Sd−1

∆d(u0, ..., ud)
2σ(du0) · · ·σ(dud)

=
1

(d!)2
ωd+1
d+2

κd2+d−2

κd(d+1)

bdd
b(d+2)d

with constants that are given in the beginning of this chapter.

Lastly, Wendel [1] proved a theorem about points on the surface of a d-dimensional sphere, just like
in our problem.

Theorem 2.9. Let N points be scattered at random on the surface of the unit sphere Sd−1. The
probability that all points lie on some hemisphere is equal to N · 2−N+1.

2.2.3 Tools for the cube

We will need Theorem 1 from Zähle [6] once more, but now for an application to polytopes. We use
the version of this theorem that is stated in Reitzner, Schütt and Werner [18] and we adapt it so that
it applies to 3-dimensional polytopes:

Lemma 2.10. For a polytope P , let g(x1, x2, x3) be a continuous function. Then there is a constant
β such that∫
(∂P )3̸=

g(x1, x2, x3)dx1dx2dx3

= β−1

∫
S2

∫
R

∫
(∂P∩H)3̸=

g(x1, x2, x3)λ2([x1, x2, x3])J(Tx1
, H)−1J(Tx2

, H)−1J(Tx3
, H)−1dx1dx2dx3dhdu

with dx, du, dh denoting integration with respect to the Hausdorff measure on the respective range of
integration.

7
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Here, Txi
denotes the tangent hyperplane at xi to ∂P . The point xi is located on a facet F of ∂P ,

so Txi is the hyperplane containing the facet F . Furthermore, H = H(x1, x2, x3) is the affine hull of
the points x1, x2, x3. Then J(Txi , H) is the length of the orthogonal projection of a unit interval in
Txi

∩(Txi
∩H)⊥ onto H⊥. This equal to sin∢(T⊥

xi
, H⊥). If Txi

and H are parallel, then J(Txi
, H) = 0.

2.3 Laplace’s method

Integrals of the form I(N) =
∫ b

a
f(x)e−Ng(x)dx can be approximated using Laplace’s approximation.

Here, the functions f(x) and g(x) are real, continuous on [a, b] and g(x) is positive there. The
assumptions and statement of this approximation are given in Theorem 1 in Wong [9]. We will use
this theorem to approximate the integral I(N). We assume that

1. g(x) has one minimum in [a, b] which occurs at either x = a or x = b,

2. If the minimum occurs at x = a, then g(x) = g(a) + c1(x− a)µ +O((x− a)µ+1) as x → a+.
If the minimum occurs at x = b, then g(x) = g(b) + c1(b− x)µ +O((b− x)µ+1) as x → b−.
In both cases, µ > 0 and c1 ̸= 0.

3. If the minimum occurs at x = a, then f(x) = c2(x− a)α−1 +O((x− a)α) as x → a+.
If the minimum occurs at x = b, then f(x) = c2(b− x)α−1 +O((b− x)α) as x → b−.
In both cases, α > 0 and c2 ̸= 0.

Then the theorem states that the integral I(N) =
∫ b

a
f(x)e−Ng(x)dx can be approximated by

I(N) = e−Ng(m)

(
Γ
(α
µ

) c0
Nα/µ

+O(N−(α+1)/µ)

)
, (2.1)

as N → ∞, where m := argmin
[a,b]

g(x) so that it is equal to either a or b. The coefficient c0 is given by

c0 =
c2

µc
α/µ
1

.
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Chapter 3

Sphere

Each section of this chapter deals with the same question, but for different dimensions. First, we will
treat the problem in 2 and 3 dimensions. Later, this will be generalized to d dimensions. Actually, the
results for the 2 and 3-dimensional case both follow from the d-dimensional case. However, the first
two sections function as a warm-up for the last section. Like introduced in Chapter 1, we will proof
Equation (1.2) in Chapter 3.1, Equation (1.3) in Chapter 3.2 and Equation (1.1) in Chapter 3.3.

3.1 The 2-dimensional case

When N points are chosen on the circle S1, the convex hull of those points always consist of N points.
Therefore, as N increases, the convex hull of the points will approach the shape of the circle. See
Figure 3.1. The area enclosed by S1 is the area of the unit disk B2, which is equal to π, so the area
of the convex hull of N points on S1 goes to π as N goes to infinity.

Figure 3.1: Convex hull of points on S1 for different values of N .

Let X1, ..., XN be independent random points distributed uniformly on S1. The convex hull of these
points will be denoted by [X1, ..., XN ] =: PN . The surface between the circle and the convex hull is
called the missing surface and it will thus go to zero, but it is not evident how fast this goes. The
goal of this section is to find this rate of convergence. This can be found by calculating the expected
value of the missing surface between S1 and PN , formally written as E[V2(B

2) − V2(PN )]. We will
prove the following theorem in this section.

9
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Figure 3.2: Missing surface in red cre-
ated by the edge [x1, x2]. Here, origin
is contained in PN .

Figure 3.3: Situation when origin is
not contained in PN .

Theorem 3.1. If PN is the convex hull of N independent and uniformly distributed random points
on S1, then

E[V2(B
2)− V2(PN )] = O(N−2).

Proof. In Figure 3.2, the area A is the missing surface created by two points x1 and x2. When N
points are drawn on the circle, there are N areas like area A. However, x1 and x2 create a missing
surface between S1 and PN only if [x1, x2] is an edge of PN .

Before doing any calculations, we will define some events to ease notation. Let Fk(PN ) be the set
of k-dimensional faces of PN , hence F1(PN ) is the set of all edges of PN . We want to specify which
points form an edge of PN . This is described by the event Fij = {[Xi, Xj ] ∈ F1(PN )}. Furthermore,
if the event Fij holds, the area enclosed by the edge [Xi, Xj ] and the circle is part of the missing
surface.

Assuming that Fij holds, define Aij as the line spanned by the edge [Xi, Xj ]. Let A
+
ij be the halfplane

bounded by Aij that contains PN and let A−
ij be the other halfplane, so PN ∩A+

ij = PN and PN ∩A−
ij =

∅. This is also pictured in Figure 3.2 for x1 and x2. Then the missing surface created by the edge
[Xi, Xj ] is given by B2 ∩ A−

ij := Mij . For example, the red area in Figure 3.2 would be called M12.

The total missing surface between S1 and PN is found by adding the missing surfaces created by the
facets of PN .

E[V2(B
2)− V2(PN )] =

∑
1≤i≤j≤N

E[V2(Mij)1(Fij)].

The summation is done over all ordered pairs of distinct and increasing indices, hence there are
(
N
2

)
of them. The points X1, ..., XN are independent and identically distributed, which means that for all
1 ≤ i ≤ j ≤ N the summands are equal. Therefore, we can restrict ourselves to one such pair, e.g.
(i, j) = (1, 2), and multiply the result with the number of pairs,

(
N
2

)
:

E[V2(B
2)− V2(PN )] =

(
N

2

)
E[V2(M12)1(F12)]. (3.1)

In Figure 3.2, the polytope PN contains the origin, so the shape of each Mij is the same. It can
happen that the origin is not contained in the polytope PN , even tough it is with low probability.

10
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An example of this situation is given in Figure 3.3, where we see that M12 is given by the red area
which has a different shape than we have seen before. Hence, the area M12 cannot be described by a
universal formula. However, the situation in Figure 3.3 happens only when 0 /∈ PN , which happens
with very low probability.

The area M12 is either the smaller or larger part of the circle. Let M̂12 be the smaller area that
is created by the edge [x1, x2]. That means that if 0 ∈ PN , then M12 = M̂12 and if 0 /∈ PN , then
M12 ̸= M̂12. We want to use E[V2(M̂12)1(F12)] instead of the expected value that is in Equation
(3.1), but we have to make sure that we do not lose too much precision. Therefore, let’s see what the
difference between these expected values is.

0 ≤ E[V2(M12)1(F12)]− E[V2(M̂12)1(F12)]

= E[
(
V2(M12)− V2(M̂12)

)
1(F12)]

≤ E[V2(M12)− V2(M̂12)]

≤ E[1(M12 ̸= M̂12)κ2]

= κ2P(M12 ̸= M̂12)

≤ κ2P(0 /∈ PN )

The probability P(0 /∈ PN ) is the probability that all points are located in one hemisphere. The value
of this probability is given in Theorem 2.9. Using that result, we get

0 ≤ E[V2(M12)1(F12)]− E[V2(M̂12)1(F12)] ≤
κ2N

2N−1
= O

( N

2N−1

)
. (3.2)

Equations (3.1) and (3.2) give

E[V2(B
2)− V2(PN )] ≤

(
N

2

)
E[V2(M̂12)1(F12)] +

(
N

2

)
O
( N

2N−1

)
. (3.3)

The difference is indeed small, but in order to see if it is small enough, we have to find the remaining
expected value. That is what we will do in the rest of this section.

The points X1, ..., XN are uniformly distributed on the circle, so

E[V2(M̂12)1(F12)] =

∫
(S1)2

V2(M̂12)P(F12)
H2

(S1)2

(2π)2
d(x1, x2). (3.4)

Here, 1
(2π)2 is the normalization constant since the Hausdorff measure of the sphere S1 is equal to 2π

and we are integrating both x1 and x2 over the sphere.

We will take a closer look at V2(M̂12) and P(F12). The value of V2(M̂12) is given by the surface of the
red area in Figure 3.2. It is found by subtracting the isosceles triangle formed by the blue area from
the sector formed by the union of the red and blue areas. The distance from the edge [X1, X2] to the
origin will be denoted by h := hX1,X2

and it depends hence on the choice of X1 and X2. The blue
area is an isosceles triangle and we assume it has height h. Then the surface of the blue area is equal
to h

√
1− h2. We can also find the area of the union of the blue and red area, which is a sector of the

circle. Assuming that the angle ∠x1Ox2 = α, the area of the sector is equal to α
2ππ = α

2 . Note that
h = cos(α2 ), so in terms of h, the surface of the union of the blue and red area is equal to cos−1(h).

Hence, when the origin is contained in the polytope PN , the area of M̂12 is equal to

V2(M̂12) = cos−1(h)− h
√
1− h2.

Now for P(F12), the probability that [X1, X2] is an edge of PN is equal to the probability that
X3, ..., XN is not on the arc between X1 and X2. Since we assume that the origin is in PN , we take

11
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the smaller arc between X1 and X2. The points X3, ..., XN are all chosen independently, so this can
be generalized using a random variable X that is uniformly distributed on the circle as well:

P(F12) = P([X1, X2] ∈ F1(PN ))

= P(X3, ..., XN is not on arc(X1, X2))

= P(X is not on arc(X1, X2))
N−2

=

(
2π − 2 cos−1(h)

2π

)N−2

=

(
π − cos−1(h)

π

)N−2

.

Substitute the expressions for V2(M̂12) and P(F12) into Equation (3.4):

E[V2(M̂12)1(F12)] =
1

4π2

∫
(S1)2

(cos−1(h)− h
√
1− h2)

(
π − cos−1(h)

π

)N−2

H2
(S1)2(d(x1, x2))

and recall that h := hX1,X2 depends on the choice of X1 and X2.

Since we are investigating a volume that will go to zero, any constants in front of our equations that
do not depend on N will not make a difference for our final result, so we will denote every constant
by c. Hence, the value of c can differ from occurrence to occurrence.

The 2-dimensional Blaschke–Petkantschin formula in Corollary 2.2 can be applied to the last equation,
which gives

E[V2(M̂12)1(F12)] = c

∫
A(2,1)

∫
(H∩S1)2

(
cos−1(h)− h

√
1− h2

)(π − cos−1(h)

π

)N−2

×∆1(x1, x2)
1

1− h2
H0

(H∩S1)2(d(x1, x2))µ1(dH)

= c

∫
A(2,1)

(
cos−1(h)− h

√
1− h2

) 1

1− h2

(
π − cos−1(h)

π

)N−2

×
∫
(H∩S1)2

∆1(x1, x2)H0
(H∩S1)2(d(x1, x2))µ1(dH).

The factor ∆1(x1, x2) is the 1-dimensional surface of the convex hull of x1 and x2, which is simply
distance from x1 to x2. The points x1 and x2 are chosen from H ∩ S1. A circle intersected with a
line that goes through the circle results in just two points. So there are only four configurations of
x1, x2 in this integration: (x1, x1), (x1, x2), (x2, x1), (x2, x2). Therefore, the integral changes to a sum.
The length between two equal points is zero and the length between two different points is equal to
2
√
1− h2. Therefore the integral with respect to (x1, x2) can be written as∫

(H∩S1)2
∆1(x1, x2)H0

(H∩S1)2(d(x1, x2)) =
∑

(x1,x1),(x1,x2),
(x2,x1),(x2,x2)

∆1(x1, x2) = 4
√
1− h2.

Plugging this back in gives

E[V2(M̂12)1(F12)] = c

∫
A(2,1)

(
cos−1(h)− h

√
1− h2

) 1

1− h2

(
π − cos−1(h)

π

)N−2√
1− h2 µ1(dH).

12



CHAPTER 3. SPHERE

The domain of the integral, A(2, 1), can be decomposed into the linear hyperplane parallel to H and
the distance between H and the origin, as is done in Corollary 2.5.

E[V2(M̂12)1(F12)] = c

∫
S1

∫ 1

0

(
cos−1(h)√
1− h2

− h

)(
π − cos−1(h)

π

)N−2

dhH1
S1(du).

The h in the last expression is the same h as in Figure 3.2. The integrand is independent of u, so the
integration over S1 is equal to ω2 = 2π:

E[V2(M̂12)1(F12)] = c

∫ 1

0

(
cos−1(h)√
1− h2

− h

)(
π − cos−1(h)

π

)N−2

dh

For reasons that will become clear later, we will make the substitution h =
√
1− s2 with dh =

s√
1−s2

ds. This gives

E[V2(M̂12)1(F12)] = c

∫ 1

0

(
cos−1(

√
1− s2)

s
−
√
1− s2

)(
π − cos−1(

√
1− s2)

π

)N−2
s√

1− s2
dh

= c

∫ 1

0

(
cos−1(

√
1− s2)√

1− s2
− s

)(
π − cos−1(

√
1− s2)

π

)N−2

dh

= c

∫ 1

0

f(s)e−(N−2)g(s)ds. (3.5)

where f(s) = cos−1(
√
1−s2)√

1−s2
− s and g(s) = − ln

(
π−cos−1(

√
1−s2)

π

)
. The maximum of the function g(s)

is at s = 0. This last integral can be computed using Laplace’s method which is explained in Chapter
2.3. This method uses three assumptions which are also listed in that chapter. The minimum of the
function g(s) occurs at s = 0, so the first assumption is satisfied. We can satisfy the second and third
assumptions by finding the Taylor expansions of the functions f and g around s = 0.

f(s) = f(0) + f ′(0)s+
f ′′(0)

2
s2 +

f ′′′(0)s3

6
+O(s4)

=
4

6
s3 +O(s5)

g(s) = g(0) + g′(0)s+O(s2)

=
s

π
+O(s2)

This gives for f(h): c2 = 4
6 and α = 4 and for g(h): c1 = 1

π and µ = 1. We find the coefficient

c0 = 4/6
(1/π)4 = 4π4

6 . If we didn’t make the substitution s =
√
1− h2, then we would get for the

function g that g(h) = − ln(π−cos−1 h
π ). However, for g(h) at its minimum h = 1 it holds that,

g(1) = 0 and g′(1) = −∞, so it has no Taylor expansion around that point. Hence, the substitution
was necessary. We can approximate Equation (3.5) using Equation (2.1).

E[V2(M̂12)1(F12)] = c

(
Γ(4)

4π4

6N4
+O(N−5)

)
= c

1

N4
(1 +O(N−1)). (3.6)

Now we go back to the formula in Equation (3.3) and plug in the results of Equation (3.6). We find
that

E[V2(B
2)− V2(PN )] ≤

(
N

2

)
c
1

N4
(1 +O(N−1)) +

(
N

2

)
O
( N

2N−1

)
.
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We can write for the binomial:
(
N
2

)
= N(N−1)

2 = N2

2 − N
2 = N2

2 (1 +O(N−1)). Then

E[V2(B
2)− V2(PN )] ≤ N2

2
c
1

N4
(1 +O(N−1)) +O

( N3

2N−1

)
= c

1

N2
(1 +O(N−1)) +O

( N3

2N−1

)
= O(N−2).

which is the statement of Theorem 3.1.
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3.2 The 3-dimensional case

In this section, we will answer the same question as in previous section, but now for the sphere S2.
However, we use a different method in this 3-dimensional case compared to the previous section. In
the previous section, we added the local missing volumes of the facets of the convex hull, but in this
section we approximate the volume of the convex hull directly. Therefore, it is important to keep
track of the constants that we find along the way, so we cannot generalize it to one constant c like we
did in the previous section.

Let X1, ..., XN be independent random points distributed uniformly on S2, which is the boundary
of the ball B3. The convex hull of these points will be denoted by [X1, ..., XN ] =: PN . As N goes
to infinity, the convex hull of the points will tend to cover the whole ball. Hence the 3-dimensional
volume of the convex hull approaches the volume of the ball. The difference of the volumes of the ball
and the convex hull is called the missing volume and it will thus go to zero. The goal is to find how
fast the missing volume goes to zero. We do this by finding the volume of PN and subtract it from
the volume of the sphere. Since the volume of the sphere is known to be 4π

3 , the only expected value
that will be calculated is the volume of the convex hull: E[V3(PN )]. When this number is found, we
have found the expected missing volume

E[V3(B
3)− V3(PN )].

3.2.1 Exact formula

There are two cases that we need to be aware of. How can the volume of the convex hull be found
when 0 ∈ PN and when 0 /∈ PN? Again, let Fk(PN ) be the set of k-dimensional faces of PN , hence
F2(PN ) is the set of all facets of PN . With probability one, the facets of PN are triangles. Suppose
that 0 ∈ PN . In this case, the union of volumes int [0, F ], for F ∈ F2(PN ), form the polytope PN :

int PN = int [X1, ..., XN ] =
⋃

F∈F2(PN )

int [0, F ]. (3.7)

Recall that [0, F ] is the convex hull of 0 and the points that form the facet F . Suppose that 0 /∈ PN .
Then the convex hull PN is located in only one half of the sphere S2. Now the union in Equation 3.7
doesn’t apply, because it is strictly larger than int PN . Since the origin is not in PN , there are facets
G ∈ F2(PN ) such that int [0, G] ∩ int PN = ∅. Define the set of these kind of facets by

F− = {F ∈ F2(PN ) | int [0, F ] ∩ int (PN ) = ∅}

and its complement by
F+ = F2(PN )\F−.

If we now take the union
⋃

F∈F+

int [0, F ], this is still strictly larger than int PN , because the origin is

included in all of the volumes. This excessive volume is exactly equal to
⋃

F∈F−

int [0, F ]. Therefore,

int PN =
⋃

F∈F+

int [0, F ]\
⋃

F∈F−

int [0, F ].

Note that this formula also works when 0 ∈ PN , since then F− = ∅ and F+ = F which gives the same
result as given before. In terms of volume, we have

V3(PN ) = V3(
⋃

F∈F+

[0, F ])− V3(
⋃

F∈F−

[0, F ])

=
∑

F∈F+

V3([0, F ])−
∑

F∈F−

V3([0, F ]),
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where the last equality holds because for both sums, the [0, F ] have pairwise disjoint interiors. Now
the computation of the expected value of the convex hull PN can be started:

E[V3(PN )] = E[
∑

F∈F+

V3([0, F ])−
∑

F∈F−

V3([0, F ])]

= E[
∑

F∈F2(PN )

V3([0, F ])εF ]

where εF =


+1 if F ∈ F+,

−1 if F ∈ F−,

0 otherwise.

The facets F ∈ F2(PN ) are almost surely simplices, so they consist of three points Xi, Xj , Xk. Instead
of only summing over the facets of PN , we can sum over all triples (i, j, k) and restrict to the triples
that are a facet of PN . To that end, define the event Fijk = {[Xi, Xj , Xk] ∈ F2(PN )} as the event
that (Xi, Xj , Xk) forms a facet of PN . Then

E[V3(PN )] = E[
∑

1≤i<j<k≤N

V3([0, Xi, Xj , Xk])εijk1(Fijk)]

=
∑

1≤i<j<k≤N

E[V3([0, Xi, Xj , Xk])εijk1(Fijk)] (3.8)

where now εijk =


+1 if (Xi, Xj , Xk) ∈ F+,

−1 if (Xi, Xj , Xk) ∈ F−,

0 otherwise.
The sum can be taken out of the expectation in the last step because the points X1, ..., XN are
independent and identically distributed. Because of the same reason, the summands in Equation
(3.8) are equal for all triples (i, j, k). Therefore, we might as well fix one such triple, for example
(1, 2, 3), and multiply with the number of triples,

(
N
3

)
.

E[V3(PN )] =

(
N

3

)
E[V3([0, X1, X2, X3])ε1231(F123)].

The points X1, X2, X3 are uniformly distributed on the sphere S2, so

E[V3(PN )] =

(
N

3

)∫
(S2)3

V3([0, x1, x2, x3])E[ε1231(F123)]
H6

(S2)3

(4π)3
(d(x1, x2, x3))

=
1

64π3

(
N

3

)∫
(S2)3

V3([0, x1, x2, x3])E[ε1231(F123)]H6
(S2)3(d(x1, x2, x3)).

Here, 1
(4π)3 is the normalization constant since the Hausdorff measure of the sphere S2 is equal to

4π and we are integrating x1, x2 and x3 over the sphere. The 3-dimensional Blaschke–Petkantschin
formula in Corollary 2.3 can be applied to the last equation:

E[V3(PN )] =
ω3

64π3

(
N

3

)∫
A(3,2)

∫
(H∩S2)3

V3([0, x1, x2, x3])E[ε1231(F123)]

×∆2(x1, x2, x3)
1

√
1− h2

3H
3
(H∩S2)3(d(x1, x2, x3))µ2(dH).

The domain of the outer integral is the space of affine subspaces of R3, A(3, 2). This integral will be
split into two integrals: an integral over the linear hyperplane parallel to H and then an integral over
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the distance between H and the origin, as is done in Corollary 2.6.

E[V3(PN )] =
ω3

64π3

2

ω3

(
N

3

)∫
S2

∫ 1

0

∫
(H∩S2)3

V3([0, x1, x2, x3])E[ε1231(F123)]

×∆2(x1, x2, x3)
1

√
1− h2

3H
3
(H∩S2)3(d(x1, x2, x3))dhH2

S2(du).

Thus, u is the direction of the hyperplane H and h is the distance from H to the origin. This integrand
is independent of u, so the outer integral can be calculated explicitly:

E[V3(PN )] =
ω3

32π3

(
N

3

)∫ 1

0

∫
(H∩S2)3

V3([0, x1, x2, x3])E[ε1231(F123)]

×∆2(x1, x2, x3)
1

√
1− h2

3H
3
(H∩S2)3(d(x1, x2, x3))dh. (3.9)

The integrand contains two expressions that can be evaluated further. The polytope [0, x1, x2, x3] is
a triangular pyramid with base [x1, x2, x3] and a peak at 0 of height h, so its volume is given by

V3([0, x1, x2, x3]) =
1

3
× V2([0, x1, x2, x3])× h

=
h

3
∆2(x1, x2, x3). (3.10)

Furthermore,

E[ε1231(F123)] = P(ε123 = +1, F123)− P(ε123 = −1, F123)

= P(X4, ..., XN are below hyperplane spanned by X1, X2, X3)

− P(X4, ..., XN are above hyperplane spanned by X1, X2, X3)

Again, since X4, ..., XN are independent, the probabilities of the individual points can be multiplied.
Furthermore, since X4, ..., XN are identically distributed, each of them can be replaced by a random
variable X that is uniformly distributed on S2 as well. Therefore

E[ε1231(F123)] = P(X is below hyperplane spanned by X1, X2, X3)
N−3

− P(X is above hyperplane spanned by X1, X2, X3)
N−3. (3.11)

These probabilities can be expressed in an integral form and reduced to a shorter expression with the
help of the slice integration formula (Theorem 2.7). For the first probability we find

P(X is below hyperplane spanned by X1, X2, X3)
N−3

=

(∫
S2
1(x is below hyperplane spanned by x1, x2, x3)

H2
S2

ω3
dx

)N−3

=

(
1

ω3

∫ 1

−1

∫
S1
1(t < h)H1

S1(dy)dt

)N−3

=

(
ω2

ω3

∫ 1

−1

1(t < h)dt

)N−3

=

(
ω2

ω3

∫ h

−1

dt

)N−3

=

(
1 + h

2

)N−3

. (3.12)
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Similarly, we find for the second probability

P(X is above hyperplane spanned by X1, X2, X3)
N−3

=

(∫
S2
1(x is above hyperplane spanned by x1, x2, x3)

H2
S2

ω3
dx

)N−3

=

(
1

ω3

∫ 1

−1

∫
S1
1(t > h)H1

S1(dy)dt

)N−3

=

(
ω2

ω3

∫ 1

−1

1(t > h)dt

)N−3

=

(
ω2

ω3

∫ 1

h

dt

)N−3

=

(
1− h

2

)N−3

(3.13)

Equations (3.9) to (3.13) result in

E[V3(PN )] =
ω3

96π3

(
N

3

)∫ 1

0

∫
(H∩S2)3

((
1 + h

2

)N−3

−
(
1− h

2

)N−3
)

×∆2(x1, x2, x3)
2 h
√
1− h2

3H
3
(H∩S2)3(d(x1, x2, x3))dh

=
ω3

96π3

(
N

3

)∫ 1

0

((
1 + h

2

)N−3

−
(
1− h

2

)N−3
)

h
√
1− h2

3

×
∫
(H∩S2)3

∆2(x1, x2, x3)
2H3

(H∩S2)3(d(x1, x2, x3)dh (3.14)

The inner integral in the last equation can be evaluated using Theorem 2.8, but a transformation of
variables is needed in order to do it correctly. In the current situation, the points x1, x2, x3 are located
on any circle obtained by intersecting a hyperplane H with S2. The hyperplane is at distance h from
the origin of S2, so the points x1, x2, x3 are on a circle of radius

√
1− h2. Theorem 2.8 requires that

the points lie on the unit sphere, so the following transformation is used:

x1 = hu+ w1

√
1− h2

x2 = hu+ w2

√
1− h2

x3 = hu+ w3

√
1− h2,

where the points w1, w2, w3 are points on S2 ∩ u⊥, which is the unit sphere parallel to H. The
transformation is visualized in Figure 3.4. The 2-dimensional volume changes in the following way:

∆2(x1, x2, x3) = ∆2(hu+ w1

√
1− h2, hu+ w2

√
1− h2, hu+ w3

√
1− h2).

The 2-dimensional volume is translation invariant, giving

∆2(x1, x2, x3) = ∆2(w1

√
1− h2, w2

√
1− h2, w3

√
1− h2).

This volume is also homogeneous of degree 2, so we get

∆2(x1, x2, x3) = (1− h2)∆2(w1, w2, w3).

18
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Figure 3.4: Transformation from x1 to w1.

Applying this transformation gives:∫
(H∩S2)3

∆2(x1, x2, x3)
2H3

(H∩S2)3(d(x1, x2, x3))

=

∫
(u⊥∩S2)3

(1− h2)2∆2(w1, w2, w3)
2
√

1− h2
3
H3

(u⊥∩S2)3(d(w1, w2, w3))

= (1− h2)
7
2

∫
(S1)3

∆2(w1, w2, w3)
2H3

(S1)3(d(w1, w2, w3))

= (1− h2)
7
2
ω3
4κ4b2,2
4κ6b4,2

,

where in the last line Theorem 2.8 is applied using k = q = d = 2. This expression can be inserted in
Equation (3.14):

E[V3(PN )] =
ω3

96π3

(
N

3

)∫ 1

0

((
1 + h

2

)N−3

−
(
1− h

2

)N−3
)

h
√
1− h2

3 (1− h2)
7
2
ω3
4κ4b2,2
4κ6b4,2

dh

=
ω3ω

3
4κ4b2,2

48π3κ6b4,2

(
N

3

)∫ 1

0

((
1 + h

2

)N
h(1− h2)2

(1 + h)3
−
(
1− h

2

)N
h(1− h2)2

(1− h)3

)
dh (3.15)

The integral that is left here, can be written in a more compact form.

I(N) =

∫ 1

0

((
1 + h

2

)N
h(1− h2)2

(1 + h)3
−
(
1− h

2

)N
h(1− h2)2

(1− h)3

)
dh

=

∫ 1

0

(
1 + h

2

)N
h(1− h2)2

(1 + h)3
dh−

∫ 1

0

(
1− h

2

)N
h(1− h2)2

(1− h)3
dh

Note that the two integrands are symmetric to each other in h = 0. If we mirror the first integrand
in h = 0 and change the boundaries accordingly we can combine the two integrals to one integral:

I(N) =

∫ 1

0

(
1 + h

2

)N
h(1− h2)2

(1 + h)3
dh−

∫ 0

−1

(
1 + h

2

)N −h(1− h2)2

(1 + h)3
dh

=

∫ 1

−1

(
1 + h

2

)N
h(1− h2)2

(1 + h)3
dh.
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Furthermore, the constant in Equation (3.15) can also be given explicitly using the definitions in
Chapter 2.1. We find that

ω3ω
3
4κ4b2,2

48π3κ6b4,2
=

4π · 8π6 · π2

2 · 1
48π3 · π3

6 · ω3ω4

ω1ω2

=
4π · 8π6 · π2

2 · 1
48π3 · π3

6 · 4π·2π2

2·2π
= π.

Equation (3.15) becomes

E[V3(PN )] = π

(
N

3

)∫ 1

−1

(
1 + h

2

)N
h(1− h2)2

(1 + h)3
dh. (3.16)

This is the most exact answer we can give for finding the volume of the convex hull PN . The integral
cannot be calculated directly, so we will need to approximate it in order to find an answer. That will
be done in the next section.

3.2.2 Approximation

The goal of this section is to find an approximation of the integral

I(N) =

∫ 1

−1

(
1 + h

2

)N
h(1− h2)2

(1 + h)3
dh

for N → ∞. If we take f(h) = h(1−h2)2

(1−h)3 and g(h) = − ln( 1+h
2 ), then our integral has the same

form as in the Laplace method, explained in Chapter 2.3. Hence, we will use that method here to
approximate the integral I(N). The minimum of the function g(h) is at h = 1, so the first assumption
of the Laplace method is satisfied. For the second and third assumption we need the Taylor series of
f(h) and g(h) at h = 1:

f(h) =
1

2
(1− h)2 +O((1− h)3)

g(h) =
1

2
(1− h) +O((1− h)2).

This gives for f(h): c2 = 1
2 and α = 3 and for g(h): c1 = 1

2 and µ = 1. The value of c0 is given by:

c0 =
c2

µc
α/µ
1

=
0.5

(0.5)3
= 4.

Now we have all the values we need to approximate the integral I(N) using Equation (2.1). Hence,

I(N) = Γ(3)
c0
N3

+O(N−4)

=
8

N3
+O(N−4)

=
8

N3
(1 +O(N−1)).

With this approximation of the integral I(N), we can complete Equation (3.16):

E[V3(PN )] = π

(
N

3

)
8

N3
(1 +O(N−1)).

We can write for the binomial:
(
N
3

)
= N(N−1)(N−2)

6 = N3

6 (1 + 3
N + 2

N2 ) =
N3

6 (1 +O(N−1)). Thus,

E[V3(PN )] = π
N3

6
(1 +O(N−1))

8

N3
(1 +O(N−1))

=
4

3
π
(
1 +O(N−1)

)
.
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Hence, the volume of the convex hull of the random points X1, ..., XN goes to 4
3π at rate N−1. Recall

that V3(B
3) = κ3 = 4

3π. Consequently, the missing volume between the sphere S2 and the convex hull
PN goes to zero at rate N−1 as well:

E[V3(B
3)− V3(PN )] =

4

3
π − 4

3
π ·
(
1−O(N−1)

)
= O(N−1),

Altogether, we found in the previous section that the missing surface between the sphere S1 and the
convex hull goes to zero at rate N−2 and in this section the missing surface between the sphere S2 and
the convex hull goes to zero at rate N−1. We now have a feeling of how to deal with this problem, so
we are ready to extend this problem to the d-dimensional sphere Sd−1.
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3.3 The d-dimensional case

In the previous chapters, the missing volumes were found for the spheres S1 and S2. This set up can
be generalized to d-dimensions, in which case random points live on Sd−1 for d ∈ {2, 3, 4, ...}. The
method we are going to use here is the similar to the previous section, but we will come across some
more challenges here. When this generalization is completed, the values d = 2 and d = 3 can be filled
in to make a comparison with the results of Chapters 3.1 and 3.2. The same method as in the previous
section will be used here as well. That is, we will approximate the volume of the convex hull directly.

3.3.1 Exact formula

Let N ∈ N and let X1, ..., XN be independent random points distributed uniformly on Sd−1. The
goal is to find the expected missing volume between the sphere Sd−1 and the convex hull of the points
X1, ..., XN . To ease notation, define PN = [X1, ..., XN ]. Hence, we want to find the value of

E[Vd(B
d)− Vd(PN )]. (3.17)

As the numbers of points N goes to infinity, the shape of the convex hull approaches the shape of the
sphere, so it is to be expected that the missing volume goes to zero. However, it is not evident how
fast this goes. This will be the main focus of our investigation. The volume of the ball Bd is known.
Recall from Chapter 2.1 that

κd = Vd(B
d) =

πd/2

Γ(1 + d
2 )

.

It remains to find the expected value of the d-dimensional volume of the convex hull:

E[Vd(PN )].

The boundary of the convex hull PN consists of (d−1)-dimensional facets F . With probability 1, those
facets contain d points, since otherwise an event of the form {xd+1 ∈ affine-hull(x1, ..., xd)} would be
satisfied, but such event has probability measure zero. Define Fk(PN ) to be the set of k-dimensional
faces of PN , hence Fd−1(PN ) is the set of all facets of PN .

We need to define a way to calculate the volume of PN . Depending on how the N points are distributed
on the sphere Sd−1, the convex hull PN either or not contains the origin. Distinguish between these
cases of PN . First, suppose that 0 ∈ PN . In this case, the union of the volumes int [0, F ], for
F ∈ Fd−1(PN ), form the convex hull PN . Therefore,

int PN =
⋃

F∈Fd−1(PN )

int [0, F ]. (3.18)

Recall that [0, F ] is the convex hull of 0 and the points that form the facet F .

Secondly, suppose that 0 /∈ PN . Then the union in Equation (3.18) is strictly larger than int PN . In
this case, there are facets G such that int [0, G] ∩ int (PN ) = ∅, so the contribution of those facets to
the union need to be left out and subtracted from the union in Equation (3.18). These facets will be
collected in a set. Define

F− = {F ∈ Fd−1(PN ) | int [0, F ] ∩ int PN = ∅}

and
F+ = Fd−1(PN )\F−.
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Therefore,

int PN =
⋃

F∈F+

int [0, F ]\
⋃

F∈F−

int [0, F ].

Note that this formula also works when 0 ∈ PN , since then F− = ∅ and F+ = Fd−1(PN ) which gives
again Equation (3.18). In terms of volume, it implies that

Vd(PN ) = Vd(
⋃

F∈F+

[0, F ])− Vd(
⋃

F∈F−

[0, F ])

=
∑

F∈F+

Vd([0, F ])−
∑

F∈F−

Vd([0, F ]),

where the last equality holds because for both sums, the simplices involved have pairwise disjoint
interiors. Now the computation of the expected value of the convex hull PN can be started:

E[Vd(PN )] = E[
∑

F∈F+

Vd([0, F ])−
∑

F∈F−

Vd([0, F ])]

= E[
∑

F∈F+

Vd([0, F ])εF ]

where εF =


+1 if F ∈ F+,

−1 if F ∈ F−,

0 otherwise.

Define the event Fi1,...,id = {[Xi1 , ..., Xid ] ∈ Fd−1(PN )}. Instead of only summing over the facets of
PN , we can sum over all d-tuples (i1, ..., id) with distinct and increasing indices and restrict to the
event Fi1,...,id . This results in the following equation:

E[Vd(PN )] = E[
∑

1≤i1<···<id≤N

Vd([0, Xi1 , ..., Xid ])εi1,...,id1(Fi1,...,id)]

=
∑

1≤i1<···<id≤N

E[Vd([0, Xi1 , ..., Xid ])εi1,...,id1(Fi1,...,id)], (3.19)

where the last equation holds because the points X1, ..., XN are independent and identically dis-
tributed. The summation is done over all d-tuples of d distinct and increasing indices i1, ..., id ∈ [N ],
hence there are

(
N
d

)
of them. Since the points are drawn independently, the expected value in Equation

(3.19) is the same for each d-tuple (i1, ..., id). Therefore, we can restrict ourselves to one such d-tuple,
e.g. (1, ..., d), and multiply the result with the number of d-tuples

(
N
d

)
. That gives the following

equation:

E[Vd(PN )] =

(
N

d

)
E[Vd([0, X1, ..., Xd])ε1,...,d1(F1,...,d)].

Recall that the points are uniformly distributed on the sphere. Therefore

E[Vd(PN )] =

(
N

d

)∫
(Sd−1)d

Vd([0, x1, ..., xd])E[ε1,...,d1(F1,...,d)]
H(d−1)d

(Sd−1)d

ωd
d

(d(x1, ..., xd)).

The Blaschke–Petkantschin formula for points on the sphere (Theorem 2.1) can be applied to the
latter equation:

E[Vd(PN )] =
ωd(d− 1)!

2ωd
d

(
N

d

)∫
A(d,d−1)

∫
(H∩Sd−1)d

Vd([0, x1, ..., xd])E[ε1,...,d1(F1,...,d)]

×∆d−1(x1, ..., xd)(1− h2)−
d
2Hd(d−2)

(H∩Sd−1)d
(d(x1, ..., xd))µd−1(dH).
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To make further computations easier, the hyperplanes H ∈ A(d, d − 1) will be split into two com-
ponents: the linear hyperplane parallel to H and the distance from the origin to H, as is done in
Theorem 2.4.

E[Vd(PN )] =
(d− 1)!

2ωd−1
d

2

ωd

(
N

d

)∫
Sd−1

∫ 1

0

∫
(H∩Sd−1)d

Vd([0, x1, ..., xd])E[ε1,...,d1(F1,...,d)]

×∆d−1(x1, ..., xd)(1− h2)−
d
2H(d−2)d

(H∩Sd−1)d
(d(x1, ..., xd))dhHd−1

Sd−1(du).

The integrand is independent of u, so the value of the outer integral is simply ωd:

E[Vd(PN )] =
(d− 1)!

ωd−1
d

(
N

d

)∫ 1

0

∫
(H∩Sd−1)d

Vd([0, x1, ..., xd])E[ε1,...,d1(F1,...,d)]

×∆d−1(x1, ..., xd)(1− h2)−
d
2H(d−2)d

(H∩Sd−1)d
(d(x1, ..., xd))dh. (3.20)

The convex hull [0, x1, ..., xd] is a d-dimensional hyperpyramid with [x1, ..., xd] as a base and 0 as a
peak of height h. As described in Mathai [8] the volume of [0, x1, ..., xd] can be given in terms of the
volume of the base and the height:

Vd([0, x1, ..., xd]) =
1

d
× Vd−1([x1, ..., xd])× h

=
h

d
∆d−1(x1, ..., xd). (3.21)

The expected value in the integrand can also be evaluated further:

E[ε1,...,d1(F1,...,d)] = P(ε1,...,d = +1, F1,...,d)− P(ε1,...,d = −1, F1,...,d)

= P(Xd+1, ..., XN are below hyperplane spanned by x1, ..., xd)

− P(Xd+1, ..., XN are above hyperplane spanned by x1, ..., xd)

Again, since Xd+1, ..., XN are independent, the probabilities of the individual points can be multiplied.
Furthermore, since the points Xd+1, ..., XN are identically distributed, each of them can be replaced
by one particular point X that is uniformly distributed on Sd−1 as well. Therefore

E[ε1,...,d1(F1,...,d)] = P(X is below hyperplane spanned by x1, ..., xd)
N−d

− P(X is above hyperplane spanned by x1, ..., xd)
N−d.

These probabilities can be expressed in an integral form and reduced to a shorter expression with the
help of the slice integration formula (Theorem 2.7). For the first probability we find

P(X is below hyperplane spanned by x1, ..., xd)
N−d

=

(∫
Sd−1

1(x is below hyperplane spanned by x1, ..., xd)
Hd−1

Sd−1

ωd
dx

)N−d

=

(
1

ωd

∫ 1

−1

(1− t2)
d−3
2

∫
Sd−2

1(t < h)Hd−2
Sd−2(dy)dt

)N−d

=

(
ωd−1

ωd

∫ 1

−1

(1− t2)
d−3
2 1(t < h)dt

)N−d

=

(
ωd−1

ωd

∫ h

−1

(1− t2)
d−3
2 dt

)N−d

=: S(h)N−d.
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Similarly, we find for the second probability

P(X is above hyperplane spanned by x1, ..., xd)
N−d

=

(∫
Sd−1

1(x is above hyperplane spanned by x1, ..., xd)
Hd−1

Sd−1

ωd
dx

)N−d

=

(
1

ωd

∫ 1

−1

(1− t2)
d−3
2

∫
Sd−2

1(t > h)Hd−2
Sd−2(dy)dt

)N−d

=

(
ωd−1

ωd

∫ 1

−1

(1− t2)
d−3
2 1(t > h)dt

)N−d

=

(
ωd−1

ωd

∫ 1

h

(1− t2)
d−3
2 dt

)N−d

=: T (h)N−d.

Note that T (h) + S(h) = 1. Putting this together gives

E[ε1,...,d1(F1,...,d)] = S(h)N−d − T (h)N−d. (3.22)

Postponing the treatment of S(h)N−d −T (h)N−d, Equation (3.20) can be completed using Equations
(3.21) and (3.22):

E[Vd(PN )] =
(d− 1)!

ωd−1
d

(
N

d

)∫ 1

0

∫
(H∩Sd−1)d

h

d
∆d−1(x1, ..., xd)

(
S(h)N−d − T (h)N−d

)
×∆d−1(x1, ..., xd)(1− h2)−

d
2H(d−2)d

(H∩Sd−1)d
(d(x1, ..., xd))dh.

We pull out all the terms of the inner integral that only depend on h:

E[Vd(PN )] =
(d− 1)!

dωd−1
d

(
N

d

)∫ 1

0

h(1− h2)−
d
2

(
S(h)N−d − T (h)N−d

)
∫
(H∩Sd−1)d

∆d−1(x1, ..., xd)
2H(d−2)d

(H∩Sd−1)d
(d(x1, ..., xd))dh. (3.23)

The inner integral in the latter equation can be evaluated using Theorem 2.8, but a transformation of
variables is needed in order to do it correctly. In the current situation, the points x1, ..., xd are located
on a circle obtained by intersecting a hyperplane H with Sd−1. The hyperplane is at distance h from
the origin, so the points x1, ..., xd are on a (d− 2)-dimensional sphere of radius

√
1− h2. Theorem 2.8

requires that the points lie on the unit sphere, so the following transformations are used:

x1 = hu+ w1

√
1− h2,

...

xd = hu+ wd

√
1− h2,

where u ∈ Sd−1 is the unit vector orthogonal to H and the points w1, ..., wd are points on Sd−1 ∩ u⊥.
Note that the intersection of Sd−1 with a linear hyperplane results in a sphere of one dimension lower:
Sd−1∩u⊥ = Sd−2. The transformation is visualized in 3 dimensions in Figure 3.4. The transformation
should also be applied to the (d− 1)-dimensional volume:

∆d−1(x1, ..., xd) = ∆d−1(hu+ w1

√
1− h2, ..., hu+ wd

√
1− h2).
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This volume is translation invariant, so

∆d−1(x1, ..., xd) = ∆d−1(w1

√
1− h2, ..., wd

√
1− h2).

Furthermore, it is homogeneous, giving

∆d−1(x1, ..., xd) = (1− h2)
d−1
2 ∆d−1(w1, ..., wd).

Applying this transformation to the inner integral in Equation (3.23) gives:∫
(H∩Sd−1)d

∆d−1(x1, ..., xd)
2H(d−2)d

(H∩Sd−1)d
(d(x1, ..., xd))

=

∫
(u⊥∩Sd−1)d

(1− h2)d−1∆d−1(w1, ..., wd)
2
√

1− h2
d(d−2)

Hd(d−2)

(u⊥∩Sd−1)d
(d(w1, ..., wd))

= (1− h2)
d2−2

2

∫
(Sd−2)d

∆d−1(w1, ..., wd)
2Hd(d−2)

(Sd−2)d
(d(w1, ..., wd))

= (1− h2)
d2−2

2
ωd
d+1

((d− 1)!)2
κd2−d−2

κd(d−1)

b(d−1)(d−1)

b(d+1)(d−1)
, (3.24)

where in the last line Theorem 2.8 is applied. Equation (3.24) can be written into Equation (3.23):

E[Vd(PN )] =
(d− 1)!

dωd−1
d

(
N

d

)∫ 1

0

h(1− h2)−
d
2

(
S(h)N−d − T (h)N−d

)
× (1− h2)

d2−2
2

ωd
d+1κd2−d−2b(d−1)(d−1)

((d− 1)!)2κd(d−1)b(d+1)(d−1)
dh

=
ωd
d+1κd2−d−2b(d−1)(d−1)

dωd−1
d (d− 1)!κd(d−1)b(d+1)(d−1)

(
N

d

)∫ 1

0

h(1− h2)
d2−d−2

2

(
S(h)N−d − T (h)N−d

)
dh.

The constant in the last equation is very elaborate, but can be given explicitly. The definitions of

ωd, κd and bdq are given in Chapter 2.1. Using these definitions, we get
b(d−1)(d−1)

b(d+1)(d−1)
= 4π

ωdωd+1
and

κd2−d−2

κd(d−1)
=

Γ( d2−d+2
2 )

πΓ( d2−d
2 )

=
( d2−d

2 )!

π( d2−d−2
2 )!

. Since d2−d
2 and d2−d−2

2 are always integers with unit difference, it

follows that
κd2−d−2

κd(d−1)
= d(d−1)

2π . This gives

ωd
d+1κd2−d−2b(d−1)(d−1)

dωd−1
d (d− 1)!κd(d−1)b(d+1)(d−1)

=
2ωd−1

d+1

ωd
d(d− 2)!

.

Writing out the definitions of ωd and ωd+1 doesn’t give a nicer fraction, so we leave them like this for
now. This gives the following, simpler expression:

E[Vd(PN )] =
2ωd−1

d+1

ωd
d(d− 2)!

(
N

d

)∫ 1

0

h(1− h2)
d2−d−2

2

(
S(h)N−d − T (h)N−d

)
dh (3.25)

The functions S(h) and T (h) are related in the following way, using the symmetry of their integrands:

S(−h) = ωd−1

ωd

∫ −h

−1
(1 − t2)

d−3
2 dt = ωd−1

ωd

∫ 1

h
(1 − t2)

d−3
2 dt = T (h). This relation will be used to write
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the integral more efficiently:∫ 1

0

h(1− h2)
d2−d−2

2

(
S(h)N−d − T (h)N−d

)
dh

=

∫ 1

0

h(1− h2)
d2−d−2

2 S(h)N−ddh−
∫ 1

0

h(1− h2)
d2−d−2

2 S(−h)N−ddh

=

∫ 1

0

h(1− h2)
d2−d−2

2 S(h)N−ddh+

∫ 0

−1

h(1− h2)
d2−d−2

2 S(h)N−ddh

=

∫ 1

−1

h(1− h2)
d2−d−2

2 S(h)N−ddh.

Equation (3.25) becomes a bit shorter using this trick:

E[Vd(PN )] =
2ωd−1

d+1

ωd
d(d− 2)!

(
N

d

)∫ 1

−1

h(1− h2)
d2−d−2

2 S(h)N−ddh. (3.26)

This is the most exact formula we can find for the volume of the convex hull PN . The integral cannot
be calculated directly, so we will approximate it in the next section.

3.3.2 Approximation

Only one integral is left to be calculated in Equation (3.26), namely

I(N) =

∫ 1

−1

h(1− h2)
d2−d−2

2 S(h)N−ddh.

This integral is of the same form as described in Laplace’s method (Chapter 2.3). Indeed, we can
rewrite the integrand as follows:

h(1− h2)
d2−d−2

2 S(h)N−d =
h(1− h2)

d2−d−2
2

S(h)d
e−N ·(− ln(S(h)))

= f(h)e−Ng(h),

where f(h) = h(1−h2)
d2−d−2

2 S(h)−d and g(h) = − ln(S(h)). Now we can check the three assumptions
of Laplace’s method in Chapter 2.3. The minimum of the function g(h) is at h0 = 1, so the first
assumption is satisfied. It may seem that we can just find the Taylor expansion of the functions f and
g around h0 in order to satisfy the second and third assumptions. However, the Taylor expansions of
these functions do not exist because of the fixed but unknown value of d in the exponents in f and g.
Therefore, we have to take a different route. First, the integral in the function S(h) will be evaluated
using the substitution u = 1− t2:

S(h) = S(1)−
∫ 1

h

ωd−1

ωd
(1− t2)

d−3
2 dt

= S(1)−
∫ 1−h2

0

ωd−1

ωd
u

d−3
2

du

2
√
1− u

= S(1)−
∫ 1−h2

0

ωd−1

2ωd
u

d−3
2 du×∆(h),

with 1 ≤ ∆(h) = 1√
1−u

≤ 1
h . It will turn out to be useful to define ∆(h) like this, since the value of h

will get close to one, hence ∆(h) will also be close to one. Now the integration is straightforward:

S(h) = S(1)− ωd−1

ωd(d− 1)
(1− h2)

d−1
2 ∆(h).
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Note that S(1) =
∫ 1

−1
ωd−1

ωd
(1− t2)

d−3
2 dt = 1. Then the function g becomes

g(h) = − ln

(
1− ωd−1

ωd(d− 1)
(1− h2)

d−1
2 ∆(h)

)
=

ωd−1

ωd(d− 1)
(1− h2)

d−1
2 ∆(h)(1 + o(1))

The function g(h) should be expressed in terms of 1 − h in order to satisfy the second condition,

so the following Taylor expansion around h0 = 1 is used: (1 − h2)
d−1
2 = (2(1− h) + o(1))

d−1
2 =

2
d−1
2 (1− h)

d−1
2 (1 + o(1))

d−1
2 . Substitute this into the function g:

g(h) =
ωd−1

ωd(d− 1)
2

d−1
2 (1− h)

d−1
2 (1 + o(1)),

giving c1 = ωd−1

ωd(d−1)2
d−1
2 and µ = d−1

2 . As the value of h gets close to 1, the value of S(h) gets close

to 1 as well, hence the function f can be dealt with as follows:

f(h) =
h(1− h2)

d2−d−2
2

S(h)d

= (1− h2)
d2−d−2

2 (1 + o(1))

=
(
2(1− h) + o(1)

) d2−d−2
2 (1 + o(1))

= 2
d2−d−2

2 (1− h)
d2−d−2

2 (1 + o(1))

Then the constants are c2 = 2
d2−d−2

2 and α = d2−d
2 = d(d−1)

2 . Using Equation (2.1), the value of the
integral is approximated by:∫ 1

−1

h(1− h2)
d2−d−2

2

S(h)d
S(h)Ndh = Γ

(α
µ

) c0
Nα/µ

+O(N−(1+α)/µ)

= Γ(d)
c0
Nd

+O(N−(2/(d−1)+d)), (3.27)

where c0 = c2
µc

α/µ
1

= 2
d2−d−2

2

d−1
2 (

ωd−1
ωd(d−1)

2
d−1
2 )d

=
ωd

d(d−1)d−1

ωd
d−1

. Substitute Equation (3.27) into Equation (3.25):

E[Vd(PN )] =
2ωd−1

d+1

ωd
d(d− 2)!

(
N

d

)(
Γ(d)

c0
Nd

+O(N−(d+ 2
d−1 ))

)
=

2ωd−1
d+1

ωd
d(d− 2)!

Nd

d!
(1 +O(N−1))

(
Γ(d)

c0
Nd

+O(N−(d+ 2
d−1 ))

)
=

2ωd−1
d+1Γ(d)c0

ωd
d(d− 2)!d!

(1 +O(N− 2
d−1 )).

The value of the constant will be found in steps. First, the values of Γ(d) and c0 will be filled in:

E[Vd(PN )] =
2ωd−1

d+1(d− 1)!ωd
d(d− 1)d−1

ωd
d(d− 2)!d!ωd

d−1

(1 +O(N− 2
d−1 ))

=
2ωd

d+1(d− 1)d

ωd
d−1ωd+1d!

(1 +O(N− 2
d−1 )).
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We can simplify the factor ωd+1

ωd−1
by

ωd+1

ωd−1
=

2π
d+1
2 Γ(d−1

2 )

2π
d−1
2 Γ(d+1

2 )
=

πΓ(d−1
2 )

d−1
2 Γ(d−1

2 )
=

2π

d− 1
.

Use this simplification and fill in the value of ωd+1:

E[Vd(PN )] =
2(2π)dΓ(d+1

2 )(d− 1)d

(d− 1)d2π
d+1
2 d!

(1 +O(N− 2
d−1 ))

=
2dπ

d−1
2 Γ(d+1

2 )

d!
(1 +O(N− 2

d−1 )).

Furthermore, we prove in Appendix A that Γ(d2 + 1
2 ) =

d!
2dΓ( d

2+1)

√
π for d ∈ N. This can be plugged

in:

E[Vd(PN )] =
2dπ

d−1
2 d!π

1
2

2dΓ(d2 + 1)d!
(1 +O(N− 2

d−1 ))

=
π

d
2

Γ(d2 + 1)
(1 +O(N− 2

d−1 ))

= κd(1 +O(N− 2
d−1 )).

The goal of this chapter was to find the expected missing volume between the surface of the sphere
Sd−1 and the convex hull of the points X1, ..., XN as given in Equation (3.17). The volume of the
former is given by definition, namely Vd(B

d) = κd and the latter was also found, namely E[Vd(PN )] =

κd(1 +O(N− 2
d−1 )). As a result:

E[Vd(B
d)− Vd(PN )] = κd − κd(1 +O(N− 2

d−1 ))

= O(N− 2
d−1 ).

Hence, the missing volume between the sphere Sd−1 and the convex hull of the points X1, ..., XN goes

to zero at rate N− 2
d−1 . As a final check, this result can be compared to the findings of Chapters 3.1

and 3.2. Filling in d = 2 gives N−2 and filling in d = 3 gives N−1 which indeed agrees with the
findings of the respective chapters.
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Chapter 4

Cube

The calculations involving spheres are completed and our focus will shift to the 3-dimensional cube.
In the pre-print of Reitzner, Schütt and Werner [18], the following theorem is proved:

Theorem 4.1. Let n ≥ 2 and choose N uniform random points on the boundary of a simple polytope
P in Rn. Let PN be the convex hull of these points. For the expected number of facets of the random
polytope PN , we have

Efn−1(PN ) = cnf0(P )(lnN)n−2(1 +O((lnN)−1)),

with some cn > 0 independent of P .

The theorem assumes that P is a simple polytope. The 3-dimensional unit cube C = [0, 1]3 is a simple
polytope. Therefore, we should be able to prove this theorem for C in this chapter. Hence, we will
prove the following theorem which is adapted from Theorem 4.2:

Theorem 4.2. Choose N uniform random points on the boundary of the simple polytope C = [0, 1]3.
Let CN be the convex hull of these points. For the expected number of facets of the random polytope
CN , we have

Ef2(CN ) = c lnN(1 +O((lnN)−1)),

with some c > 0 independent of C.

Throughout this chapter, c is a generic constant whose precise value may differ from occurrence to
occurrence. The goal of this chapter is to prove Theorem 4.2. The prove is rather long and involved,
so we divide the proof into several sections. Section 4.1 contains the body of the proof of this theorem.
Tools that are needed to prove this theorem are given in Sections 4.2, 4.3 and 4.7 with additional
proofs in Sections 4.4, 4.5 and 4.6.

4.1 The number of facets

To begin, let X1, ..., XN be uniformly distributed points on the boundary ∂C of the cube. The convex
hull of these points is denoted by CN = [X1, ..., XN ]. Figure 4.1 shows an example of how these
points are distributed and what the convex hull looks like, focusing only on three sides of the cube.
The expression Ef2(CN ) gives the expected number of facets of the convex hull CN and that is the
quantity that we want to find in this chapter. Similar to the definitions given before, let Fk(CN ) be
the set of k-dimensional faces of CN and let its cardinality be denoted by |Fk(CN )| = fk(CN ). Since
we are interested in Ef2(CN ), the focus of this chapter is on the set of the facets of CN , F2(CN ), and
its cardinality, f2(CN ).
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Figure 4.1: Convex hull of points distributed uniformly on three sides of the boundary of the cube.

Let F = [X1, ..., Xk] ∈ F2(CN ). The set F2(CN ) consists of two kinds of facets.

1. F ∈ ∂C. These are facets that are contained in ∂C. This occurs when X1, ..., Xk live on the
same facet of ∂C. There are only 6 facets in ∂C, so the number of facets that are contained in
∂C is bounded by 6. See Figure 4.1.

2. F /∈ ∂C. These are facets that are not contained in ∂C. This occurs when X1, ..., Xk live on
different facets of ∂C and almost surely they are simplices. Hence, k = 3. See Figure 4.1.

It is useful to have a set that describes the facets of the second kind, that is, facets in F2(CN ) that are
not contained in ∂C. These facets are formed by points X1, X2, X3 ∈ ∂C that are not all chosen from
the same facet of ∂C. To this end, write (∂C)3̸= for the set of all triples (X1, X2, X3) ∈ ∂C such that
not all Xi live on the same facet of ∂C. Since the number of facets of the first kind mentioned above
is bounded, we restrict ourselves to the facets of the second kind. Hence from now on we assume that
all facets of F2(CN ) that we are dealing with are in the set (∂C)3̸=. The goal is to find the number of

facets of CN , so we need to find a way to identify the points in (∂C)3̸= that form a facet of CN . To
do this, the convexity of CN will be exploited. Let I = {i1, i2, i3} ⊂ [N ] be an indexing set of distinct
points i1, i2, i3 and take (Xi1 , Xi2 , Xi3) ∈ (∂C)3̸=. The convex hull [Xi1 , Xi2 , Xi3 ] forms a facet of CN

if its affine hull does not intersect the convex hull of the remaining points [{Xj}j /∈I ]. This is described
by the intersection of the following events:

EI = {aff[{Xi}i∈I ] ∩ [{Xj}j /∈I ] = ∅} and FI = {(Xi)i∈I ∈ (∂C)3̸=}

These two events identify all simplicial facets in F2(CN ), which corresponds to the facets of the second
kind. We can write

Ef2(CN ) = E
∑

I⊂[N ],|I|=3

1(EI ∩ FI) +O(1)

=
∑

I⊂[N ],|I|=3

E1(EI ∩ FI) +O(1),
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where the O(1)-term comes from the facets of the first kind, i.e., the facets of CN that are in ∂C which
is bounded by 6. The points X1, ..., XN are independent and identically distributed, so the summands
in the last equation are the same for each indexing set I. Therefore, we can fix one indexing set I,
e.g. I = {1, 2, 3}, and multiply by the number of indexing sets,

(
N
3

)
:

Ef2(CN ) =

(
N

3

)
E1(E123 ∩ F123) +O(1),

with E123 = {aff[X1, X2, X3] ∩ [X4, ..., XN ] = ∅} and F123 = {(X1, X2, X3) ∈ (∂C)3̸=}. The affine hull
aff[X1, X2, X3] is a recurring object, so we simplify notation by setting

H := aff[X1, X2, X3].

We will first look at the probability of the event E123. If the event E123 holds, i.e., if the points
X1, X2, X3 form a facet of CN , then their affine hull H is a supporting hyperplane of the random
polytope CN . This hyperplane can be represented by H = H(h, u) = {x : ⟨x, u⟩ = h}, where
uX1,X2,X3

=: u is the unit outer normal vector of the facet [X1, X2, X3] and hX1,X2,X3
=: h is chosen

such that H(h, u) coincides with aff([X1, X2, X3]). Consequently, the halfspace H− = H−(h, u) =
{x : ⟨x, u⟩ ≤ h}, which is bounded by H, contains the random polytope CN . The probability that
E123 occurs is equal to the probability that X4, ..., XN are contained in H−. For one point Xi with
i = 4, ..., N , this is given by the proportion of space that H− takes in ∂C. Hence for N − 3 points this
is given by (

λ2(∂C ∩H−)

λ2(∂C)

)N−3

=
(
1− 1

6
λ2(∂C ∩H+)

)N−3

,

whereH+ = H+(h, u) = {x : ⟨x, u⟩ ≥ h} is the complement ofH−. This gives the following expression:

Ef2(CN ) =

(
N

3

)
E
((

1− 1

6
λ2(∂C ∩H+)

)N−3

1(F123)

)
+O(1).

The unit outer normal vector u that appears in H+(h, u) can have any direction. All vectors u have
length 1, so they live on the sphere S2. Using the 8 vertices of the cube C, we will separate the sphere
S2 into 8 parts. Denote by H(C, u) a supporting hyperplane with normal u, supporting C in a vertex
of C. The normal cone of vertex v in C is defined as

N (v, C) = {u ∈ R3\{0} : v ∈ H(C, u) ∪ {0}}.

Each vertex has a normal cone that corresponds to exactly one octant of R3. For example, the normal
cone of the vertex (0, 1, 1) equals the octant of R3 with (−,+,+) coordinates and the normal cone
of the vertex (1, 0, 1) equals the octant of R3 with (+,−,+) coordinates. All normal cones together
cover R3. The boundaries of the cones are covered twice, but they have measure zero. Therefore, with
probability one, the unit normal vector u of a random facet is contained in the interior of exactly one
of the normal cones N (v, C) of the vertices v ∈ F0(C). Hence

Ef2(CN ) =
∑

v∈F0(C)

(
N

3

)
E
((

1− 1

6
λ2(∂C ∩H+)

)N−3

1(u ∈ N (v, C), F123)

)
+O(1).

By symmetry of the cube, all summands are equal, so we might as well fix one vertex, e.g. v = 0, and
multiply the result with the number of vertices:

Ef2(CN ) = f0(C)

(
N

3

)
E
((

1− 1

6
λ2(∂C ∩H+)

)N−3

1(u ∈ N (0, C), F123)

)
+O(1).
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The points X1, X2, X3 appear in the event F123 and they are uniformly distributed on ∂C restricted
to (∂C)3̸=, so

Ef2(CN ) = f0(C)

(
N

3

)∫∫∫
(∂C)3̸=

(
1− 1

6
λ2(∂C ∩H+)

)N−3

1(u ∈ N (0, C))dx1dx2dx3 +O(1),

where dx1,dx2,dx3 denote integration with respect to the Hausdorff measure on (∂C)3̸=. The vector
u and distance h depend on the choice of x1, x2, x3, so the integration is only taken over x1, x2, x3.
The last equation allows for an application of Lemma 2.10. This gives

Ef2(CN ) =cf0(C)

(
N

3

)∫
S2

∫
R

∫∫∫
(∂C∩H)3̸=

(
1− 1

6
λ2(∂C ∩H+)

)N−3

1(u ∈ N (0, C))

λ2([x1, x2, x3])
(
J(Tx1

, H)J(Tx2
, H)J(Tx3

, H)
)−1

dx1dx2dx3dhdu+O(1).

Now, the vector u and distance h no longer depend on the choice of x1, x2, x3. Instead, the direction
u and distance h are chosen first and then the points x1, x2, x3 are chosen from (∂C ∩H(h, u))3̸=. For
the moment, we keep the factors J(Txi , H) in this form. We will make it more explicit in further
sections.

Moving on, we can make the expression for N (0, C) more precise. The normal cone of C at the origin
is equal to the octant of R3 where all coordinates have negative value, so N (0, C) = −R3

+. The range
of integration of u is S2, so the condition 1(u ∈ N (0, C)) = 1(u ∈ −R3

+) can be taken into account
by changing the range of integration of u to S2 ∩ −R3

+ = −S2+ = {u ∈ S2 : u1, u2, u3 ≤ 0}:

Ef2(CN ) =c

(
N

3

) ∫
−S2+

∫
R

∫∫∫
(∂C∩H)3̸=

(
1− 1

6
λ2(∂C ∩H+)

)N−3

λ2([x1, x2, x3])
(
J(Tx1

, H)J(Tx2
, H)J(Tx3

, H)
)−1

dx1dx2dx3dhdu+O(1).

Fix a vector u ∈ −S2+. If h is close enough to zero, the hyperplane H− contains all unit vectors
e1, e2, e3. This happens when

max
i=1,2,3

ui ≤ h ≤ 0.

Figure 4.2a shows an example of this case and Figure 4.2b shows what happens when this is not
satisfied. The blue lines indicate the intersection ∂C ∩ H(h, u). Note that h ≤ 0, since u ∈ −S2+.
The integral over R will be split into two parts: maxui ≤ h ≤ 0 and −∞ ≤ h ≤ maxui. The values
0 ≤ h ≤ ∞ will not be considered, because H does not intersect the cube C in that case and the
integral will be zero. The expected number of facets is

Ef2(CN ) =c

(
N

3

) ∫
−S2+

0∫
maxui

(
1− 1

6
λ2(∂C ∩H+)

)N−3

∫∫∫
(∂C∩H)3̸=

λ2([x1, x2, x3])
(
J(Tx1

, H)J(Tx2
, H)J(Tx3

, H)
)−1

dx1dx2dx3dhdu

+ c

(
N

3

) ∫
−S2+

maxui∫
−∞

(
1− 1

6
λ2(∂C ∩H+)

)N−3

∫∫∫
(∂C∩H)3̸=

λ2([x1, x2, x3])
(
J(Tx1 , H)J(Tx2 , H)J(Tx3 , H)

)−1
dx1dx2dx3dhdu+O(1).
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(a) H(h, u) with u = (−0.4,−0.5,−0.77) and
h = −0.3. With these settings, the halfspace H−
contains the unit vectors e1, e2 and e3.

(b) H(h, u) with u = (−0.4,−0.5,−0.77) and
h = −0.6. With these settings, the halfspace
H− only contains the unit vector e3.

Figure 4.2: Hyperplane H(h, u) intersected with the cube C for different values of h. The blue lines
indicate the intersection ∂C ∩H(h, u).

The values for u1, u2, u3 and h are negative, so we can substitute u 7→ −u and h 7→ −h. The
hyperplane H(h, u) remains unchanged, but due to the multiplication with a negative number, the
inequality sign flips, hence the halfspaces H+ and H− switch places. Furthermore, as can be seen in
Figure 4.2a, for 0 ≤ h ≤ minui, the hyperplane H(h, u) intersects ∂C only in the facets that are in
R3

+, so ∂C ∩H = ∂R3
+ ∩H. We will use the more convenient formula

Ef2(CN ) =c

(
N

3

)
(I1 + I2) +O(1), (4.1)

where

I1 :=

∫
S2+

minui∫
0

(
1− 1

6
λ2(∂R3

+ ∩H−)
)N−3

∫∫∫
(∂R3

+∩H)3̸=

λ2([x1, x2, x3])
(
J(Tx1

, H)J(Tx2
, H)J(Tx3

, H)
)−1

dx1dx2dx3dhdu (4.2)

and

I2 :=

∫
S2+

∞∫
minui

(
1− 1

6
λ2(∂C ∩H−)

)N−3

∫∫∫
(∂C∩H)3̸=

λ2([x1, x2, x3])
(
J(Tx1

, H)J(Tx2
, H)J(Tx3

, H)
)−1

dx1dx2dx3dhdu. (4.3)

The integrals I1 and I2 will be investigated in the rest of this chapter. In Lemma 4.3 of Section 4.2,
we will see that for 0 ≤ h ≤ minui, we can write the inner triple integral of I1 as∫∫∫
(∂C∩H)3̸=

λ2([x1, x2, x3])
(
J(Tx1

, H)J(Tx2
, H)J(Tx3

, H)
)−1

dx1dx2dx3 =
h5

2
√
6

∑
f∈{1,2,3}3

̸=

uf1uf2uf3

(u1u2u3)4
Ef ,
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where Ef are positive constants independent of u. Then the integral I1 becomes

I1 =
1

2
√
6

∑
f∈{1,2,3}3

̸=

Ef
∫
S2+

minui∫
0

(
1− 1

6
λ2(∂C ∩H−)

)N−3

h5 uf1uf2uf3

(u1u2u3)4
dhdu.

In Section 4.3, we investigate what happens with this last expression for I1 when N → ∞, namely in
Lemma 4.4 we show that the asymptotics of I1 are

I1 = cN−3 lnN(1 +O((lnN)−1)), (4.4)

with some constant c > 0 as N → ∞.

In Lemma 4.9 in Section 4.7 we show that I2 = O(N−3), which means that I1 is dominating over I2.
Substituting these asymptotics of I1 and I2 into the expression for the expected number of facets in
Equation (4.1) gives

Ef2(CN ) = c

(
N

3

)(
cN−3 lnN(1 +O((lnN)−1)) +O(N−3)

)
+O(1)

= c lnN(1 +O((lnN)−1)),

with some c > 0 which is Theorem 4.2 for the cube C = [0, 1]3.

4.2 Expected volume of a facet

In the remaining of this chapter, the integral I1 in Equation (4.2) will be investigated. In Section 4.3,
the asymptotics of I1 will be established. In the current section, we will look at only a part of I1,
namely the triple integral

E(h, u) =
∫∫∫

(∂R3
+∩H)3̸=

λ2([x1, x2, x3])
(
J(Tx1 , H)J(Tx2 , H)J(Tx3 , H)

)−1
dx1dx2dx3,

which is the first moment of the volume of random simplex in ∂Rn
+∩H(h, u). The points xi are chosen

according to the weight functions J(Txi , H)−1. We will prove the following lemma in this section:

Lemma 4.3. There are constants Ef > 0 independent of u, such that

E(h, u) = h5

2
√
6

∑
f∈{1,2,3}3

̸=

uf1uf2uf3

(u1u2u3)4
Ef .

Proof. It will be useful to distinguish between the different facets of ∂C, so we will introduce some
new notation. Since we are taking points from ∂R3

+ ∩H, there are only three facets that we have to
consider here. Let Fk̂ be the facet of C that is spanned by the vectors ei and ej for distinct i, j, k. It
follows that ek is normal vector of Fk̂. For example, in Figure 4.2, the facet F3̂ would be the “bottom”
of the cube and e3 is the vector normal to F3̂.

We will make the factors J(Txℓ
, H) explicit now. As explained in Chapter 2.2.3, for a point xℓ on a

facet F , the hyperplane Txℓ
contains the facet F . Since the points x1, x2, x3 are not all in the same

facet of ∂C, the hyperplanes Txℓ
and H are not parallel. Then, for a point xℓ on the facet Fk̂, the

weight function J(Txℓ
, H) is equal to sin∢(ek, u). This is equal to the norm of the vector v = u|Fk̂

created by the orthogonal projection of the vector u onto the facet Fk̂. The coordinates of this vector

are vi = ui, vj = uj and vk = 0. Hence ∥v∥ =
√
u2
i + u2

j =
√
1− u2

k, since we know that ∥u∥ = 1.
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Figure 4.3: R3
+ ∩H(h, u) with

h = 0.3, u = (0.3, 0.6, 0.74)
Figure 4.4: R3

+ ∩H(1, u) with
u = (0.3, 0.6, 0.74)

Figure 4.5: R3
+ ∩H(1,1)

hallo

Putting this together gives

J(Txℓ
, H) =

√
1− u2

k, (4.5)

which is independent of h.

The points x1, x2, x3 are taken from (∂R3
+ ∩H)3̸=, where H = H(h, u). Now we make the substitution

xℓ = hyℓ with yℓ ∈ H(1, u). The 2-dimensional volume is homogeneous, so

λ2([x1, x2, x3]) = h2λ2([y1, y2, y3])

and since xℓ are in the 1-dimensional planes (∂R3
+ ∩H)3̸=, we have dxℓ = hdyℓ. The transformation

we made here is pictured in Figures 4.3 and 4.4. This results in the following integral:

E(h, u) = h5

∫∫∫
(∂R3

+∩H(1,u))3̸=

λ2([y1, y2, y3])
(
J(Tx1

, H)J(Tx2
, H)J(Tx3

, H)
)−1

dy1dy2dy3

= h5E(1, u). (4.6)

We want to evaluate E(1, u). The points y1, y2, y3 are chosen from (∂R3
+ ∩H(1, u))3̸= where the facets

F1̂, F2̂, F3̂ are located in. There are multiple ways to pick three points from these three facets such
that the points are not all chosen from the same facet. We will make a distinction of these cases.
Define {1, 2, 3}3̸= as the set of triples where not all entries are the same, e.g. {1, 2, 2}, but not {3, 3, 3}.
For an element f ∈ {1, 2, 3}3̸= we condition on the events yi ∈ Ff̂i

for i = 1, 2, 3. We can do this for
every element and sum over the results. Recalling 4.5, we obtain

E(1, u) =
∑

f∈{1,2,3}3
̸=

√
(1− u2

f1
)(1− u2

f2
)(1− u2

f3
)
−1

×
∫∫∫

(∂R3
+∩H(1,u))3̸=

λ2([y1, y2, y3])1(y1 ∈ Ff̂1
)1(y2 ∈ Ff̂2

)1(y3 ∈ Ff̂3
)dy1dy2dy3. (4.7)

The hyperplane H(1, u) is given by the equation u1x + u2y + u3z = 1 for x, y, z ∈ R, restricted to
u2
1 + u2

2 + u2
3 = 1. It meets the x-axis when y = z = 0, in which case u1x = 1, so x = 1

u1
. In general,

the hyperplane H(1, u) meets the coordinate axis in the points 1
ui
ei. The intersection R3

+ ∩H(1, u)

forms a triangle between the points ( 1
u1
, 0, 0), (0, 1

u2
, 0), (0, 0, 1

u3
). See Figure 4.4 for an example. The

area of this triangle is calculated in Appendix B and it is equal to 1
2u1u2u3

. We have assumed that

36



CHAPTER 4. CUBE

H(1, u) is the hyperplane with normal vector u. However, we can also obtain the vector u from a
transformation of the vector 1 = (1, 1, 1) using the affine map

A =

u1 0 0
0 u2 0
0 0 u3

 .

This map transforms H(1,1) into H(1, u), so it is natural to make the substitution y = A−1z, where
z ∈ H(1,1). This transformation is pictured in Figures 4.4 and 4.5. The intersection R3

+ ∩ H(1,1)
forms a triangle between the unit vectors e1, e2, e3. The area of this triangle is calculated in Appendix

B and it is equal to
√
3
2 .

The map A−1 scales triangles R3
+ ∩ H(1, u) and R3

+ ∩ H(1,1) with a factor 1
u1u2u3

√
3
. By setting

zi = Ayi, the factor λ2([y1, y2, y3]) in the integrand in Equation (4.7) can be rewritten as

λ2([y1, y2, y3]) = λ2([A
−1z1, A

−1z2, A
−1z3]) =

1

u1u2u3

√
3
λ2([z1, z2, z3]). (4.8)

It remains to find the Jacobian of the map A. The points y1, y2, y3 are chosen from ∂R3
+ ∩H(1, u).

Each edge of this simplex lies in one facet Fî. We know that the coordinates of the simplex are
( 1
u1
, 0, 0), (0, 1

u2
, 0), (0, 0, 1

u3
), so the length of the edge of ∂R3

+ ∩H(1, u) in Fî is equal to

λ2(∂R3
+ ∩H(1, u) ∩ Fî) =

√
1

u2
j

+
1

u2
k

=
1

ujuk

√
u2
k + u2

j =
1

ujuk

√
1− u2

i .

The points z1, z2, z3 are chosen from ∂R3
+ ∩H(1,1). The length of an edge of ∂R3

+ ∩H(1,1) in Fî is
equal to the distance from ej to ek, which is

λ2(∂R3
+ ∩H(1,1) ∩ Fî) =

√
2.

Comparing the length of an edge before and after the transformation shows that the Jacobian in Ff̂i
of the map A is equal to

λ2(∂R3
+ ∩H(1, u) ∩ Ff̂i

)

λ2(∂R3
+ ∩H(1,1) ∩ Ff̂i

)
=

√
1− u2

fi

2

∏
ℓ ̸=fi

1

uℓ
1(zi ∈ Ff̂i

)

=

√
1− u2

fi

2

ufi

u1u2u3
1(zi ∈ Ff̂i

).

Combining these Jacobians with Equations (4.7) and (4.8) gives

E(1, u) =
∑

f∈{1,2,3}3
̸=

√
(1− u2

f1
)(1− u2

f2
)(1− u2

f3
)
−1

×
∫∫∫

(∂R3
+∩H(1,1))3̸=

1

u1u2u3

√
3
λ2([z1, z2, z3])

√
1− u2

f1

2

√
1− u2

f2

2

√
1− u2

f3

2

× uf1

u1u2u3

uf2

u1u2u3

uf3

u1u2u3
1(z1 ∈ Ff̂1

)1(z2 ∈ Ff̂2
)1(z3 ∈ Ff̂3

)dz1dz2dz3.
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We can simplify this expression further.

E(1, u) =
∑

f∈{1,2,3}3
̸=

1

2
√
6

uf1uf2uf3

(u1u2u3)4

×
∫∫∫

(∂R3
+∩H(1,1))3̸=

λ2([z1, z2, z3])1(z1 ∈ Ff̂1
)1(z2 ∈ Ff̂2

)1(z3 ∈ Ff̂3
)dz1dz2dz3

=:
∑

f∈{1,2,3}3
̸=

1

2
√
6

uf1uf2uf3

(u1u2u3)4
Ef ,

where Ef is a constant independent of u. Together with Equation (4.6) we find that

E(h, u) = h5E(1, u)

=
h5

2
√
6

∑
f∈{1,2,3}3

̸=

uf1uf2uf3

(u1u2u3)4
Ef ,

which is Lemma 4.3.

4.3 Asymptotics of I1

The purpose of this section is to show that the asymptotics of I1 in Equation (4.4) hold. The first
mention of I1 is in Equation (4.2), which can be updated using Lemma 4.3. This gives

I1 = c
∑

f∈{1,2,3}3
̸=

Ef
∫
S2+

minui∫
0

(
1− 1

6
λ2(∂R3

+ ∩H−)
)N−3

h5 uf1uf2uf3

(u1u2u3)4
dhdu. (4.9)

We want to find the asymptotics of I1 in this section. This is stated in the following lemma:

Lemma 4.4. Consider I1 as in Equation (4.9). The asymptotics are given by

I1 = cN−3 lnN(1 +O((lnN)−1)).

This lemma will be proven in this section.

First, we will find the value of the area λ2(∂R3
+ ∩ H−). The hyperplane H(h, u) is given by the

equation u1x + u2y + u3z = h for x, y, z ∈ R. It meets the x-axis when y = z = 0 in which case
x = h

u1
and similarly for the y-axis and z-axis. Consequently, H(h, u) meets the coordinate axis in

the points tiei = h
ui
ei for i = 1, 2, 3. The intersection ∂R3

+ ∩ H− consists of three right triangles,
each formed by the origin and two of the intersection points with the coordinate axis. Therefore,

λ2(∂R3
+ ∩H−) =

1
2

h
u1

h
u2

+ 1
2

h
u1

h
u3

+ 1
2

h
u2

h
u3

= h2(u1+u2+u3)
2u1u2u3

. Plugging this in gives

I1 = c
∑

f∈{1,2,3}3
̸=

Ef
∫
S2+

minui∫
0

(
1− h2(u1 + u2 + u3)

12u1u2u3

)N−3

h5 uf1uf2uf3

(u1u2u3)4
dhdu. (4.10)

We saw before that the hyperplane H meets the coordinate axis in the points tiei =
h
ui
ei for i = 1, 2, 3.

The value of h is in the interval [0, min
i=1,2,3

ui], so ti ∈ [0, 1] for all i = 1, 2, 3. Therefore, instead of

integrating over the set of hyperplanes defined by h and u, we can integrate with respect to t1, t2, t3
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which are the intersections of the hyperplane H(h, u) with the coordinate axis. The goal is to make
the substitution ti =

h
ui
. Before we can do that, we have to rewrite the integrand in Equation (4.10).

Set mi =
∑

j 1(fj = i). The numbers mi count how many of the points y1, y2, y3 are taken from facet
Fî in the set f . Note that m1 +m2 +m3 = 3, because we will always choose 3 points in total. As a
result, uf1uf2uf3 = um1

1 um2
2 um3

3 , so it holds that

uf1uf2uf3

(u1u2u3)4
=

1

u4−m1
1

1

u4−m2
2

1

u4−m3
3

.

We also want to incorporate the h5 in the fraction with ui. Using that
∑

i mi = 3, we can write

h5 uf1uf2uf3

(u1u2u3)4
= h5 1

u4−m1
1

1

u4−m2
2

1

u4−m3
3

= h−4

(
h

u1

)4−m1
(

h

u2

)4−m2
(

h

u3

)4−m3

.

Plug this back in to Equation (4.10):

I1 = c
∑

f∈{1,2,3}3
̸=

Ef
∫
S2+

minui∫
0

(
1− h2

12u1u2
− h2

12u1u3
− h2

12u2u3

)N−3

× h−4

(
h

u1

)4−m1
(

h

u2

)4−m2
(

h

u3

)4−m3

dhdu. (4.11)

We will make some steps towards the substitution ti = h
ui
. First, substitute r = h−1 to get dh =

−r−2dr. This gives h−4dhdu = −r4r−2drdu = −r2drdu. The variables r, u define a system of polar
coordinates (r, u). Pass this to the Cartesian coordinate system, which is achieved by r2drdu =
dx1dx2dx3. The final substitution we will make is xi =

1
ti

with dxi = −t−2
i dti. Finally, we have

h−4dhdu = −dx1dx2dx3 = (t1t2t3)
−2dt1dt2dt3

with h−1ui = rui = xi = t−1
i . We started with two variables h and u, where h determines the distance

from the origin to the hyperplane H and u determines the direction of H. The resulting hyperplane
H intersects the axes in the points h

u1
e1,

h
u2
e2,

h
u3
e3. This gives rise to the new coordinate system

( h
u1
, h
u2
, h
u3
) = (t1, t2, t3) where the ti indicate where H intersects the i-th axis. Since h

ui
∈ [0, 1], it

holds that ti ∈ [0, 1]. Applying this substitution to Equation (4.11) gives

I1 = c
∑

f∈{1,2,3}3
̸=

Ef

1∫
0

1∫
0

1∫
0

(
1− 1

12
(t1t2 + t1t3 + t2t3)

)N−3

t2−m1
1 t2−m2

2 t2−m3
3 dt1dt2dt3.

= c
∑

f∈{1,2,3}3
̸=

EfJ(m − 1) (4.12)

and here we define

J(l) :=

1∫
0

1∫
0

1∫
0

(
1− 1

12
(t1t2 + t1t3 + t2t3)

)N−3

t1−l1
1 t1−l2

2 t1−l3
3 dt1dt2dt3, (4.13)

where l1, l2, l3 ∈ {−1, 0, 1}. We will spend the rest of this chapter on computing this last integral.
We denote l = (l1, l2, l3). The integrand of the integral J(l) is symmetric in the variables t1, t2, t3, so
choosing l = (−1, 0, 1) or permutations of that will all result in the same value for J(l). Intuitively
this makes sense, because these choices of l all come down to taking one point from one facet and two
points from another facet, which is symmetric in the facets. Hence we can say that

J(−1, 0, 1) = J(−1, 1, 0) = J(0,−1, 1) = J(0, 1,−1) = J(1, 0,−1) = J(1,−1, 0).
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The final possible choice is l = (0, 0, 0), which is its own category. There are no more ways of choosing
l. We can split the summation in Equation (4.12) according to these categories. Then

I1 = cJ(−1, 0, 1) + cJ(0, 0, 0). (4.14)

We only have to find J(l) for l = (−1, 0, 1) and l = (0, 0, 0).

Lemmas 4.5, 4.6 and 4.7 deal with the integral J(l) in Equation (4.13), to make it useful for our
purposes. The proofs of these lemmas are rather technical, so in order to keep the contents of this
section easy-to-follow, they are postponed to separate sections. After that, Lemma 4.8 proves the
crucial asymptotics.

Lemma 4.5. Let S3 be the set of all permutations of {1, 2, 3} and let f : (0,∞)3 → (0,∞)3 be defined
by

fj(x) =
∏
i ̸=j

xi j = 1, 2, 3.

1. The inverse function to f is g : (0,∞)3 → (0,∞)3 given by

gi(x) =

√
x1x2x3

xi

2. f maps the open set (0, 1)3 bijectively onto S = {y ∈ (0, 1)3 : y1y2y3 < y2i ∀i}.

3. A := {x ∈ (0, β)3 : x1x2x3 < βx2
i } =

⋃
π∈S3

{(xπ(1), xπ(2), xπ(3)) : x ∈ M} =: B for β > 0 and

where the set M is defined as M = {x ∈ (0,∞)3 : x3 ≤ x2 ≤ x1, βx3 > x1x2}.

Proof. Section 4.4.

Using this lemma, we can prove the following lemma regarding the function J(l).

Lemma 4.6. Let l ∈ {(−1, 0, 1), (0, 0, 0)}. Then we have

J(l) =
864

(N − 3)3

N−3
12∫
0

N−3
12∫
0

N−3
12∫
0︸ ︷︷ ︸

√
s1s2s3≤si

√
12

N−3 ∀i

(
1− s1 + s2 + s3

N − 3

)N−3

sl11 s
l2
2 s

l3
3 ds3ds2ds1.

Proof. Section 4.5.

We have almost reached the optimal form of J(l). Until now, the number of points N appears in the
range of integration of all si. However, using Lemmas 4.5 and 4.6 as tools, we change this to smaller
intervals. Recall that S3 is the set of all permutations of {1, 2, 3}.

Lemma 4.7. Let l ∈ {(−1, 0, 1), (0, 0, 0)}. Then we have

J(l) =
864

(N − 3)3

∑
π∈S3

N−3
12∫
0

s1∫
0

s2∫
0︸ ︷︷ ︸

12s1s2
N−3 ≤s3

(
1− s1 + s2 + s3

N − 3

)N−3

s
lπ(1)

1 s
lπ(2)

2 s
lπ(3)

3 ds3ds2ds1.

Proof. Section 4.6.
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In light of Lemma 4.7, we introduce integrals of the type

S(q) =

N−3
12∫
0

s1∫
0

s2∫
0︸ ︷︷ ︸

12s1s2
N−3 ≤s3

(
1− s1 + s2 + s3

N − 3

)N−3

sq11 sq22 sq33 ds3ds2ds1, (4.15)

where q := (q1, q2, q3) = (lπ(1), lπ(2), lπ(3)). The role of q is the same as the role of l in Lemmas 4.6
and 4.7. Namely, q + 1 represents how many points are taken from each facet. However, the integral
in Equation (4.15) is not symmetric in the variables s1, s2, s3, so the order of q1, q2, q3 does matter, in
contrary to l1, l2, l3. We can find the asymptotics of S(q) for different values of q. This will be done
in the lemma below. It has a lengthy proof, but since its results are crucial in finding the asymptotics
of I1, the proof is given here.

Lemma 4.8. Assume that q ∈ {(−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 1,−1), (1, 0,−1), (1,−1, 0), (0, 0, 0)}.
Then there is a constant cq ≥ 0 such that

S(q) = cq lnN +O(1)

as N → ∞. More precisely:

1. If q3 = −1, then

S(q1, q2,−1) + S(q2, q1,−1) = lnN +O(1) (4.16)

2. If q3 > −1, then cq = 0, so

S(q) = O(1).

We start with proving item 1 of this lemma. The proof of item 2 follows immediately after.

Proof of item 1 in Lemma 4.8. We assume that q3 = −1. It follows that one of q1 and q2 is 0 and
the other one is 1 and for now it does not matter which one is which. Recall the formula of S(q) in
(4.15). The formula of S(q1, q2,−1) reduces to

S(q1, q2,−1) =

N−3
12∫
0

s1∫
0

s2∫
0︸ ︷︷ ︸

12s1s2
N−3 ≤s3

(
1− s1 + s2 + s3

N − 3

)N−3
sq11 sq22
s3

ds3ds2ds1. (4.17)

This integration will be done by dissecting the current range of integration along the sets J1 = {s3 ≤ 1}
and J2 = {s3 ≥ 1}. Then the expression for S(q1, q2,−1) can be written as

S(q1, q2,−1) =

N−3
12∫
0

s1∫
0

s2∫
0︸ ︷︷ ︸

{ 12s1s2
N−3 ≤s3}∩J1

(
1− s1 + s2 + s3

N − 3

)N−3
sq11 sq22
s3

ds3ds2ds1

+

N−3
12∫
0

s1∫
0

s2∫
0︸ ︷︷ ︸

{ 12s1s2
N−3 ≤s3}∩J2

(
1− s1 + s2 + s3

N − 3

)N−3
sq11 sq22
s3

ds3ds2ds1

=: S1(q1, q2,−1) + S2(q1, q2,−1). (4.18)
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We will first deal with the computation of S1(q1, q2,−1). This is done by bounding the term 1 −
s1+s2+s3

N−3 from above and below. For the upper bound, we use the trivial inequality 1 − s1+s2+s3
N−3 ≤

1 − s1+s2
N−3 . Now we can also found an upper bound for the integrand of S1(q1, q2,−1). For this, we

focus on the inner integral of S1(q1, q2,−1). This is the integral with respect to ds3 and its upper
bound is found as follows.

S1,q3 =

∫
[

12s1s2
N−3 ,s2

]
∩J1

(
1− s1 + s2 + s3

N − 3

)N−3
1

s3
ds3

≤
(
1− s1 + s2

N − 3

)N−3 ∫
[

12s1s2
N−3 ,s2

]
∩J1

1

s3
ds3

=

(
1− s1 + s2

N − 3

)N−3 [
ln(s3)

]s2
12s1s2
N−3

=

(
1− s1 + s2

N − 3

)N−3

(− ln(s1) + ln(N − 3)− ln(12))

which is an upper bound for S1,q3 . For the lower bound of 1 − s1+s2+s3
N−3 we use that s2 ≤ s1 ≤

N−3
12 =⇒ s1+s2

N−3 ≤ 2s1
N−3 ≤ 1

2 . Keeping this in mind, we find:

(1− s1 + s2
N − 3

)(1− 2s3
N − 3

) = 1− s1 + s2
N − 3

− 2s3
N − 3

+
2s3(s1 + s2)

(N − 3)2

= 1− s1 + s2
N − 3

− s3
N − 3

(
2− 2(s1 + s2)

N − 3

)
≤ 1− s1 + s2 + s3

N − 3
.

We will use the elementary inequality (1− y)k ≥ 1− ky when y ≤ 1 and that [ 12s1s2N−3 , s2] ∈ [0, 1]. Now
we can also find a lower bound for S1,q3 .

S1,q3 ≥
(
1− s1 + s2

N − 3

)N−3 ∫
[

12s1s2
N−3 ,s2

]
∩J1

(1− 2s3
N − 3

)N−3 1

s3
ds3

≥
(
1− s1 + s2

N − 3

)N−3 ∫
[

12s1s2
N−3 ,s2

]
∩J1

(1− 2s3)
1

s3
ds3

=

(
1− s1 + s2

N − 3

)N−3 [
ln(s3)− 2s3

]s2
12s1s2
N−3

=

(
1− s1 + s2

N − 3

)N−3

(− ln(s1) + ln(N − 3)− ln(12)− 2(s2 −
12s1s2
N − 3

))

≥
(
1− s1 + s2

N − 3

)N−3

(− ln(s1) + ln(N − 3)− ln(12)− 2).

These bounds can be summarized in one expression using an error term:

S1,q3 =

(
1− s1 + s2

N − 3

)N−3

(− ln(s1) + ln(N − 3) + E),

where − ln(12)− 2 ≤ E ≤ − ln(12).
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Plugging this back into the equation for S1(q1, q2,−1) gives

S1(q1, q2,−1) =

N−3
12∫
0

s1∫
0

(
1− s1 + s2

N − 3

)N−3

(− ln(s1) + ln(N − 3) + E)sq11 sq22 ds2ds1 (4.19)

The integrand in the last expression contains a summation of three terms, hence these terms can be
separated to three double integrals. The integral with the ln(N−3)-term is the dominating one, which
we will handle after bounding the two other integrals. First, using the identity (1+ x

N )N ≤ ex, we get

∣∣∣∣∣
N−3
12∫
0

s1∫
0

(
1− s1 + s2

N − 3

)N−3

(− ln(s1))s
q1
1 sq22 ds2ds1

∣∣∣∣∣ ≤
∞∫
0

∞∫
0

e−s1−s2 | ln(s1)|sq11 sq22 ds2ds1

=

∞∫
0

e−s1 | ln(s1)|sq11 ds1

∞∫
0

e−s2sq22 ds2

= k1Γ(q2 + 1) = O(1),

where k1 is a finite constant since integrals of the form
∫∞
0

e−xxk| ln(x)|dx are convergent. Second,

∣∣∣∣∣
N−3
12∫
0

s1∫
0

(
1− s1 + s2

N − 3

)N−3

Esq11 sq22 ds2ds1

∣∣∣∣∣ ≤
N−3
12∫
0

s1∫
0

(
1− s1 + s2

N − 3

)N−3

(ln(12) + 2)sq11 sq22 ds2ds1

≤ (ln(12) + 2)

∞∫
0

∞∫
0

e−s1−s2sq11 sq22 ds1ds2

= (ln(12) + 2)Γ(q1 + 1)Γ(q2 + 1) = O(1).

The integrands containing the terms− ln(s1) and E are of order O(1) and the term containing ln(N−3)
remains to be bounded. Equation (4.19) becomes

S1(q1, q2,−1) = ln(N − 3)

N−3
12∫
0

s1∫
0

(
1− s1 + s2

N − 3

)N−3

sq11 sq22 ds2ds1 +O(1), (4.20)

We have used before that s1+s2
N−3 < 1. Note that for |t| < 1 it holds that et(1−t) ≥ (1+t)(1−t) = 1−t2

and (1− t2)m ≥ 1−mt2. With this given, we find the following inequalities:

0 ≤ e−(s1+s2) −
(
1− s1 + s2

N − 3

)N−3

≤ e−(s1+s2) − e−(s1+s2)

(
1− (s1 + s2)

2

(N − 3)2

)N−3

≤ e−(s1+s2) − e−(s1+s2)

(
1− (s1 + s2)

2

N − 3

)
= e−(s1+s2)

(s1 + s2)
2

N − 3
,
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which implies that
(
1− s1+s2

N−3

)N−3

= e−(s1+s2)(1 +O( (s1+s2)
2

N )). Using this in Equation (4.20) gives

S1(q1, q2,−1) = ln(N − 3)

N−3
12∫
0

s1∫
0

e−(s1+s2)(1 +O(N−1(s1 + s2)
2))sq11 sq22 ds2ds1 +O(1)

= ln(N − 3)

N−3
12∫
0

s1∫
0

e−(s1+s2)sq11 sq22 ds2ds1 +O(N−1) +O(1)

= ln(N − 3)

∞∫
0

∞∫
0

1(s2 ≤ s1)e
−s1−s2sq11 sq22 ds2ds1

− ln(N − 3)

∞∫
N−3
12

s1∫
0

e−s1−s2sq11 sq22 ds2ds1 +O(1).

The integral in the last line is of order O(Nq1e−
N−3
12 ) which is shown by the following computations:

∞∫
N−3
12

s1∫
0

e−s1−s2sq11 sq22 ds2ds1 =

∞∫
N−3
12

e−s1sq11

s1∫
0

e−s2sq22 ds2ds1 ≤
∞∫

N−3
12

e−s1sq11

∞∫
0

e−s2sq22 ds2ds1

= Γ(q2 + 1)

∞∫
N−3
12

e−s1sq11 ds1 =

{
Γ(q2 + 1)

[
− e−s1(s1 + 1)

]∞
N−3
12

if q1 = 1

Γ(q2 + 1)
[
− e−s1

]∞
N−3
12

if q1 = 0

=

{
Γ(q2 + 1)e−

N−3
12 (N−3

12 + 1) if q1 = 1

Γ(q2 + 1)e−
N−3
12 if q1 = 0

= O(Nq1e−
N−3
12 ).

Hence,

S1(q1, q2,−1) = ln(N − 3)

∞∫
0

∞∫
0

1(s2 ≤ s1)e
−s1−s2sq11 sq22 ds2ds1 +O(1) (4.21)

which we recall is the integral S(q1, q2, q3) given in Equation (4.17) with the additional restriction
that s3 ≤ 1.

We will do the same for the integral S(q1, q2, q3) given in Equation (4.17), but with the additional
restriction that s3 ≥ 1. The goal is to show that S2(q1, q2,−1) = O(1). This is more straightforward
then the previous case. Since we assume that s3 ≥ 1, it holds that 1

s3
≤ 1. Hence,

|S2(q1, q2,−1)| ≤

∣∣∣∣∣
N−3
12∫
0

s1∫
0

s2∫
0︸ ︷︷ ︸

{ 12s1s2
N−3 ≤s3}∩J2

(
1− s1 + s2 + s3

N − 3

)N−3

sq11 sq22 ds3ds2ds1

∣∣∣∣∣

≤
∞∫
0

∞∫
0

∞∫
0

e−(s1+s2+s3)sq11 sq22 ds3ds2ds1 =

∞∫
0

e−s1sq11 ds1

∞∫
0

e−s2sq22 ds2

∞∫
0

e−s3ds3

= Γ(q1 + 1) · Γ(q2 + 1) · 1 = O(1).
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We established an expression for S1(q1, q2,−1) in Equation (4.21) and we found that S2(q1, q2,−1) is
of order O(1). Now we go back to Equation (4.18) and put these results together. Finally,

S(q1, q2,−1) = ln(N − 3)

∞∫
0

∞∫
0

1(s2 ≤ s1)e
−s1−s2sq11 sq22 ds2ds1 +O(1).

Recall that our goal was to prove Equation (4.16). To that end:

S(q1, q2,−1) + S(q2, q1,−1) = ln(N − 3)

∞∫
0

∞∫
0

1(s2 ≤ s1)e
−s1−s2sq11 sq22 ds2ds1

+ ln(N − 3)

∞∫
0

∞∫
0

1(s2 ≤ s1)e
−s1−s2sq21 sq12 ds2ds1 +O(1)

= ln(N − 3)

∞∫
0

∞∫
0

e−s1−s2sq11 sq22 ds2ds1 +O(1)

= ln(N − 3)Γ(q1 + 1)Γ(q2 + 1) +O(1).

There are two more details here. First, recall that one of q1 and q2 is equal to 0 and the other one is
equal to 1. In either case, Γ(q1 + 1)Γ(q2 + 1) = Γ(2)Γ(1) = 1. Secondly,

ln(N − 3) = ln(N × N − 3

N
) = ln(N) + ln(

N − 3

N
) = ln(N) + ln(1− 3

N
) = ln(N) +O(N−1).

These two details give the desired result:

S(q1, q2,−1) + S(q2, q1,−1) = ln(N) +O(1)

as Equation (4.16) states.

Proof of item 2 in Lemma 4.8. Assume that q3 > −1. In that case, the possible options of q are
q ∈ {(−1, 0, 1), (−1, 1, 0), (0,−1, 1), (1,−1, 0), (0, 0, 0)}. Note that q1 + q2 + q3 = 0. We will use that
e−x ≤ 1 for x ≥ 0 in the upcoming calculations. The goal is to prove that S(q) = O(1).

|S(q)| =

∣∣∣∣∣
N−3
12∫
0

s1∫
0

s2∫
0︸ ︷︷ ︸

12s1s2
N−3 ≤s3

(
1− s1 + s2 + s3

N − 3

)N−3

sq11 sq22 sq33 ds3ds2ds1

∣∣∣∣∣

≤

N−3
12∫
0

s1∫
0

s2∫
0

e−s1−s2−s3sq11 sq22 sq33 ds3ds2ds1

=

N−3
12∫
0

e−s1sq11

s1∫
0

e−s2sq22

s2∫
0

e−s3sq33 ds3ds2ds1

≤

N−3
12∫
0

e−s1sq11

s1∫
0

sq22

s2∫
0

sq33 ds3ds2ds1.
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Since q3 > −1, the function sq33 is a polynomial. This gives

|S(q)| =

N−3
12∫
0

e−s1sq11

s1∫
0

1

q3 + 1
sq2+q3+1
2 ds2ds1.

Like before, q2 + q3 + 1 > −1, so sq2+q3+1
2 is a polynomial.

|S(q)| =

N−3
12∫
0

1

(q3 + 1)(q2 + q3 + 2)
e−s1sq1+q2+q3+2

1 ds1

=
1

(q3 + 1)(q2 + q3 + 2)

N−3
12∫
0

e−s1s21ds1

≤ 1

(q3 + 1)(q2 + q3 + 2)

∞∫
0

e−s1s21ds1

=
2

(q3 + 1)(q2 + q3 + 2)
= O(1).

This concludes the proof of the two items in Lemma 4.8. It shows that the only asymptotically
contributing terms are q ∈ {(0, 1,−1), (1, 0,−1)}. Translating this to m tells us that choosing each
point from a different facet results in a negligible number of facets compared to choosing two points
from one facet and one from another. Recall that we are only considering the three facets that are
adjacent to the origin of the cube C. If each point is chosen from a different facet of ∂C, then the
corresponding facet of CN is located in a corner of the cube C. In each corner there can only be one
such facet. There are only 8 corners in the cube C, so it is not very surprising that we find that those
facets give a very small contribution to the total number of facets. The facets of CN that have two
points in one facet of ∂C and the third point in another facet of ∂C are the only ones that contribute
to the total number of facets. With these results, we can make our argument complete. The purpose
of Lemmas 4.5, 4.6, 4.7 and 4.8 was to find the asymptotics of J(l) in Equation (4.13). Using Lemma
4.7 we can write J(l) as

J(l) =
c

(N − 3)3

∑
π∈S3

N−3
12∫
0

s1∫
0

s2∫
0︸ ︷︷ ︸

12s1s2
N−3 ≤s3

(
1− s1 + s2 + s3

N − 3

)N−3

s
lπ(1)

1 s
lπ(2)

2 s
lπ(3)

3 ds3ds2ds1

=
c

(N − 3)3

∑
π∈S3

S(lπ)

=
c

(N − 3)3
(S(l1, l2, l3) + S(l2, l1, l3) + S(l1, l3, l2) + S(l3, l1, l2) + S(l2, l3, l1) + S(l3, l2, l1)) .

(4.22)

Recall that we were investigating J(l) to find the asymptotics of I1 in Equation (4.14). Hence, we
only have to evaluate Equation (4.22) for l = (−1, 0, 1) and l = (0, 0, 0).
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• l = (−1, 0, 1). Filling this in gives

J(−1, 0, 1) =
c

(N − 3)3
(
S(−1, 0, 1) + S(0,−1, 1) + S(−1, 1, 0)

+ S(1,−1, 0) + S(0, 1,−1) + S(1, 0,−1)
)
.

The terms S(−1, 0, 1), S(0,−1, 1), S(−1, 1, 0), S(1,−1, 0) allow for an application of item 2 in
Lemma 4.8. The term S(0, 1,−1) + S(1, 0,−1) allows for an application of item 1 in Lemma
4.8. Adding these terms gives

J(l) =
c

(N − 3)3
(lnN+O(1)) =

c

(N − 3)3
lnN(1+O((ln(N))−1)) = cN−3 lnN(1+O((ln(N))−1).

• l = (0, 0, 0). Filling this in gives

J(0, 0, 0) =
c

(N − 3)3
· 6 · S(0, 0, 0).

We can apply item 2 of Lemma 4.8 to S(0, 0, 0):

J(0, 0, 0) =
c

(N − 3)3
O(1) = O(N−3).

We have found the value of J(l) for the different choices of l. We needed this value of J(l) to compute
the value of the integral I1 that was first stated in Equation (4.2). Later we found that I1 could be
written as in Equation (4.14), which is where the J(l) came in. Now the final estimates of I1 can be
given. In the first line, Equation (4.14) is repeated.

I1 = cJ(−1, 0, 1) + cJ(0, 0, 0)

= cN−3 lnN(1 +O((ln(N))−1) +O(N−3)

= cN−3 lnN(1 +O((ln(N))−1)

which concludes the proof of Lemma 4.4.

4.4 Proof of Lemma 4.5

Recall the statement of Lemma 4.5. Let f : (0,∞)3 → (0,∞)3 be defined by

fj(x) =
∏
i̸=j

xi j = 1, 2, 3.

1. The inverse function to f is g : (0,∞)3 → (0,∞)3 given by

gi(y) =

√
y1y2y3

yi

2. f maps the open set (0, 1)3 bijectively onto S = {y ∈ (0, 1)3 : y1y2y3 < y2i ∀i}.

3. A := {x ∈ (0, β)3 : x1x2x3 < βx2
i } =

⋃
π∈S3

{(xπ(1), xπ(2), xπ(3)) : x ∈ M} =: B for β > 0 and

where the set M is defined as M = {x ∈ (0,∞)3 : x3 ≤ x2 ≤ x1, βx3 > x1x2}.

Proof. 1. For j = 1, 2, 3, fj(g(y)) =
∏
i ̸=j

gi(y) =
∏
i ̸=j

√
y1y2y3

yi
=

√
y1y2y3

yi

√
y1y2y3

yk
= y1y2y3

yiyk
= yj , where

i and k are distinct and not equal to j. For i = 1, 2, 3, gi(f(x)) = gi(x2x3, x1x3, x1x2) =√
x2x3x1x3x1x2

xjxk
= x1x2x3

xjxk
= xi where j and k are distinct and not equal to i.
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2. In order to prove the bijection, we will show that f(x) ∈ S for x ∈ (0, 1)3 and f−1(y) = g(y) ∈
(0, 1)3 for y ∈ S. In order to show that f(x) ∈ S for all x ∈ (0, 1)3, we need to show that
f(x) = y ∈ (0, 1)3 and that y1y2y3 < y2i for all i = 1, 2, 3. Indeed, fi(x) = xjxk ∈ (0, 1)3 for
all i, where j and k are distinct and not equal to i. Moreover, y1y2y3 = f1(x)f2(x)f3(x) =
x2x3x1x3x1x3 = x2

1x
2
2x

2
3 < x2

jx
2
k = y2i for all i. Therefore, f(x) ∈ S for x ∈ (0, 1)3. For

y ∈ S we want to show that g(y) ∈ (0, 1)3. As a property of the set S, y1y2y3 < y2i , so

gi(y) =
y1y2y3

yi
<

y2
i

yi
= yi < 1 for all i. Thus gi(y) ∈ (0, 1) for all i, hence g(y) ∈ (0, 1)3.

3. We will show that A ⊂ B and A ⊃ B in order to show that A = B. First, let x ∈ A and show
that x ∈ B. There is a permutation π ∈ S3 such that xπ(3) ≤ xπ(2) ≤ xπ(1) and it holds that
xπ(3)xπ(2)xπ(1) = x1x2x3 < βxi = βxπ(j) for some j such that π(j) = i. Using the condition of
the set A, we know that x1x2x3 < βx2

3, hence x1x2 < βx3. This shows that all conditions of
the set M hold, hence x ∈ B. Now, let x ∈ B and show that x ∈ A. If (xπ(1), xπ(2), xπ(3)) ∈ B,
then x′ = (x′

1, x
′
2, x

′
3) := (xπ−1(1), xπ−1(2), xπ−1(3)) ∈ M . It suffices to show that M ⊂ A. For

x′ ∈ M it holds that x′
3 ≤ x′

2 ≤ x′
1 and βx′

3 > x′
1x

′
2. In order to show that x′ ∈ A, we

need to show that x′
i < β and x′

1x
′
2x

′
3 < β(x′

i)
2 for all i = 1, 2, 3. Indeed, x′

1x
′
2 < βx′

3 implies
x′
1x

′
2x

′
3 < β(x′

3)
2 < β(x′

2)
2 < β(x′

1)
2 which implies x′

1x
′
2x

′
3 < β(x′

i)
2 for all i. This last inequality

also shows that x′
i < β for all i. Hence, x′ ∈ A.

4.5 Proof of Lemma 4.6

Recall the statement of Lemma 4.6. Let l ∈ {(−1, 0, 1), (0, 0, 0)}. Then we have

J(l) =
864

(N − 3)3

N−3
12∫
0

N−3
12∫
0

N−3
12∫
0︸ ︷︷ ︸

√
s1s2s3≤si

√
12

N−3 ∀i

(
1− s1 + s2 + s3

N − 3

)N−3

sl11 s
l2
2 s

l3
3 ds3ds2ds1.

Proof. We defined

J(l) =

1∫
0

1∫
0

1∫
0

(
1− 1

12
(t1t2 + t1t3 + t2t3)

)N−3

t1−l1
1 t1−l2

2 t1−l3
3 dt1dt2dt3.

We use the transformation of Lemma 4.5:

v1 = t2t3, v2 = t1t3, v3 = t1t2 and ti =

√
v1v2v3
vi

for i = 1, 2, 3.

Since t1, t2, t3 ∈ [0, 1], it also holds that v1, v2, v3 ∈ [0, 1]. However, the reverse is not always true; if
v1, v2, v3 ∈ [0, 1], it does not always hold that t1, t2, t3 ∈ [0, 1]. Therefore, we have to condition the

range of integration on ti =
√
v1v2v3
vi

≤ 1 =⇒ √
v1v2v3 ≤ vi for all i.

If i ̸= j, then dti
dvj

= d
dvj

√
v1v2v3
vi

=
√
v1v2v3
2vjvi

and if i = j, then dti
dvj

= −
√
v1v2v3

2v2
i

. Using these derivatives,

we can construct the Jacobian and compute its determinant:

J = det


−

√
v1v2v3
2v2

1

√
v1v2v3
2v1v2

√
v1v2v3
2v1v3√

v1v2v3
2v1v2

−
√
v1v2v3
2v2

2

√
v1v2v3
2v2v3√

v1v2v3
2v1v3

√
v1v2v3
2v2v3

−
√
v1v2v3

2v2
3

 =
(v1v2v3)

3
2

8
det

−
1
v2
1

1
v1v2

1
v1v3

1
v1v2

− 1
v2
2

1
v2v3

1
v1v3

1
v2v3

− 1
v2
3


=

(v1v2v3)
3
2

8

4

v21v
2
2v

2
3

=
1

2
√
v1v2v3

.
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Applying this transformation to J(l) gives

J(l) =
1

2

1∫
0

1∫
0

1∫
0︸ ︷︷ ︸√

v1v2v3≤vi ∀i

(
1− 1

12
(v1 + v2 + v3)

)N−3

vl11 vl22 vl33 dv3dv2dv1

The last substitution will be vi =
12si
N−3 with dvi

dsi
= 12

N−3 , which gives

J(l) =
864

(N − 3)3

N−3
12∫
0

N−3
12∫
0

N−3
12∫
0︸ ︷︷ ︸

√
s1s2s3≤si

√
12

N−3 ∀i

(
1− s1 + s2 + s3

N − 3

)N−3

sl11 s
l2
2 s

l3
3 ds3ds2ds1.

4.6 Proof of Lemma 4.7

Recall the statement of Lemma 4.7. Let l ∈ {(−1, 0, 1), (0, 0, 0)}. Then we have

J(l) =
864

(N − 3)3

∑
π∈S3

N−3
12∫
0

s1∫
0

s2∫
0︸ ︷︷ ︸

12s1s2
N−3 ≤s3

(
1− s1 + s2 + s3

N − 3

)N−3

s
lπ(1)

1 s
lπ(2)

2 s
lπ(3)

3 ds3ds2ds1.

Proof. In Lemma 4.6, we found that we can write

J(l) =
864

(N − 3)3

N−3
12∫
0

N−3
12∫
0

N−3
12∫
0︸ ︷︷ ︸

√
s1s2s3≤si

√
12

N−3 ∀i

(
1− s1 + s2 + s3

N − 3

)N−3

sl11 s
l2
2 s

l3
3 ds3ds2ds1.

The variables s1, s2, s3 are taken from [0, N−3
12 ] conditioned on

√
s1s2s3 ≤ si

√
12

N−3 ∀i. This can be

described by the set R = {s ∈ (0, N−3
12 )3 :

√
s1s2s3 ≤ si

√
12

N−3 ∀i} defining s = (s1, s2, s3). Note

that this set is the same as the set A in Lemma 4.5. This lemma shows that A = B, so we obtain
R =

⋃
π∈S3

{(sπ(1), sπ(2), sπ(3)) : s ∈ M}, with M = {s ∈ (0,∞)3 : s3 ≤ s2 ≤ s1,
12

N−3s3 > s1s2}. Then

the expression for J(l) becomes

J(l) =
864

(N − 3)3

∑
π∈S3

N−3
12∫
0

s1∫
0

s2∫
0︸ ︷︷ ︸

12s1s2
N−3 ≤s3

(
1−

sπ(1) + sπ(2) + sπ(3)

N − 3

)N−3

sl1π(1)s
l2
π(2)s

l3
π(3)ds3ds2ds1.

It is obvious that sπ(1)+sπ(2)+sπ(3) = s1+s2+s3. Furthermore, sl1π(1)s
l2
π(2)s

l3
π(3) = s

lπ−1(1)

1 s
lπ−1(2)

2 s
lπ−1(3)

3 .
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Since we sum over all π ∈ S3, we may replace π−1 by π in the last expression. Then,

J(l) =
864

(N − 3)3

∑
π∈S3

N−3
12∫
0

s1∫
0

s2∫
0︸ ︷︷ ︸

12s1s2
N−3 ≤s3

(
1− s1 + s2 + s3

N − 3

)N−3

s
lπ(1)

1 s
lπ(2)

2 s
lπ(3)

3 ds3ds2ds1

as the lemma states.

4.7 Asymptotics of I2

In this section, we will prove that the asymptotics of I2 as defined in Equation (4.3) are O(N−3).
This is stated in the lemma below. We recall the formula for I2 here.

I2 :=

∫
S2+

∞∫
minui

(
1− 1

6
λ2(∂C ∩H−)

)N−3

∫∫∫
(∂C∩H)3̸=

λ2([x1, x2, x3])
(
J(Tx1

, H)J(Tx2
, H)J(Tx3

, H)
)−1

dx1dx2dx3dhdu.

Lemma 4.9. Consider I2 as in Equation (4.3). The asymptotics are given by

I2 = O(N−3).

Proof. The diameter of the cube C is
√
3, so as soon as h ≥

√
3, we have (∂C ∩H) = ∅ for all u ∈ S2+.

Therefore, we can restrict the integration with respect to h to the interval [minui,
√
3].

I2 =

∫
S2+

√
3∫

minui

(
1− 1

6
λ2(∂C ∩H−)

)N−3

∫∫∫
(∂C∩H)3̸=

λ2([x1, x2, x3])
(
J(Tx1

, H)J(Tx2
, H)J(Tx3

, H)
)−1

dx1dx2dx3dhdu.

Furthermore, we can upper bound λ2([x1, x2, x3]). The points x1, x2, x3 are chosen from (∂C ∩H)3̸=,
so the convex hull [x1, x2, x3] is always contained in C ∩H. Hence,

I2 ≤
∫
S2+

√
3∫

minui

(
1− 1

6
λ2(∂C ∩H−)

)N−3

λ2(C ∩H)

∫∫∫
(∂C∩H)3̸=

(
J(Tx1

, H)J(Tx2
, H)J(Tx3

, H)
)−1

dx1dx2dx3dhdu. (4.23)

Recall that the hyperplane H = H(h, u) meets the coordinate axes in the points h
ui
ei. We assume

that h ≥ minui, so at least one of h
u1
, h
u2
, h
u3

is larger than or equal to 1. Hence, the halfspace H−
contains at least one unit vector. This gives 3 possible situations:
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1. When H− contains one unit vector, it holds that

either
h

u1
,
h

u2
≤ 1,

h

u3
≥ 1

or
h

u1
,
h

u3
≤ 1,

h

u2
≥ 1

or
h

u2
,
h

u3
≤ 1,

h

u1
≥ 1,

so there are
(
3
2

)
= 3 options.

2. When H− contains two unit vectors, it holds that

either
h

u1
≤ 1,

h

u2
,
h

u3
≥ 1

or
h

u2
≤ 1,

h

u1
,
h

u3
≥ 1

or
h

u3
≤ 1,

h

u1
,
h

u2
≥ 1,

so there are
(
3
1

)
= 3 options.

3. When H− contains three unit vectors, it holds that

h

u1
,
h

u2
,
h

u3
≥ 1,

so there is only
(
3
0

)
= 1 option.

In general, we can multiply by
(
3
k

)
and assume that H− contains ek+1, ..., e3, thus the points of

intersection satisfy

h

u1
, ...,

h

uk
≤ 1 and

h

uk+1
, ...,

h

un
≥ 1,

with some 0 ≤ k ≤ 2. We can split the integral in Equation (4.23) into three parts using k = 0, 1, 2.

I2 ≤
2∑

k=0

(
3

k

)∫
S2+

∫
h≤u1,...,uk

h≥uk+1,...,u3

(
1− 1

6
λ2(∂C ∩H−)

)N−3

λ2(C ∩H)

∫∫∫
(∂C∩H)3̸=

(
J(Tx1

, H)J(Tx2
, H)J(Tx3

, H)
)−1

dx1dx2dx3dhdu.

The points h
u1
e1, ...,

h
uk

ek, ek+1, ..., e3 are all in ∂C ∩H−, hence

λ2(∂C ∩H−) ≥ λ2

([ h
u1

e1, ...,
h

uk
ek, ek+1, ..., e3

])
=

1

2
min

(
1,

h

u1

)
min

(
1,

h

u2

)
+

1

2
min

(
1,

h

u1

)
min

(
1,

h

u3

)
+

1

2
min

(
1,

h

u2

)
min

(
1,

h

u3

)
For each value of k, we can make the lower bound of λ2(∂C ∩H−) more precise.

1. For k = 0, it holds that h
u1
, h
u2
, h
u3

≥ 1, so λ2(∂C ∩H−) ≥ 1
2 · 3 ≥ 1

2 .
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2. For k = 1, it holds that h
u1

≤ 1, h
u2
, h
u3

≥ 1, so λ2(∂C ∩H−) ≥ 1
2

h
u1

+ 1
2

h
u1

+ 1
2 ≥ 1

2 .

3. For k = 2, it holds that h
u1
, h
u2

≤ 1, h
u3

≥ 1, so λ2(∂C ∩H−) ≥ 1
2

h
u1

h
u2

+ 1
2

h
u1

+ 1
2

h
u2

≥ 1
2

h
u1

+ 1
2

h
u2
.

When k = 0, 1, we find that λ2(∂C ∩H−) ≥ 1
2 , so (1− 1

6λ2(∂C ∩H−))
N−3 ≤ (1− 1

12 )
N−3 ≤ e−

N−3
12 .

This exponential can be pulled out of the integral for k = 0, 1, so the remaining integral does not
depend on N , which means it can be seen as a constant. This gives the asymptotics for k = 0, 1. Only
the integral for k = 2 remains to be bounded.

I2 ≤
(
3

2

)∫
S2+

∫
h≤u1,u2
h≥u3

(
1− 1

12

( h
u1

+
h

u2

))N−3

λ2(C ∩H)

∫∫∫
(∂C∩H)3̸=

(
J(Tx1 , H)J(Tx2 , H)J(Tx3 , H)

)−1
dx1dx2dx3dhdu+O(e−

N−3
12 ).

The intersection C ∩H forms a quadrilateral that is located in the cube as represented in Figure 4.6.
It is a triangle with the top cut off. When this top is not cut off, this triangle is formed by the points
h
u1
e1,

h
u2
e2,

h
u3
e3. In Appendix B, the area of such a triangle is calculated and it is equal to h

2u1u2u3
.

The area of C ∩H is bounded by the area of this triangle. Therefore, λ2(C ∩H) ≤ h2

2u1u2u3
.

I2 ≤ 3

∫
S2+

∫
h≤u1,u2
h≥u3

(
1− 1

12

( h
u1

+
h

u2

))N−3 h2

2u1u2u3

∫∫∫
(∂C∩H)3̸=

(
J(Tx1

, H)J(Tx2
, H)J(Tx3

, H)
)−1

dx1dx2dx3dhdu+O(e−
N−3
12 ). (4.24)

Figure 4.6: u = (0.7, 0.6, 0.39), h = 0.5

We will deal with the inner triple integral over x1, x2, x3. The only case that we have to consider
now is k = 2. An example of this situation is given in Figure 4.6, where it indeed holds that
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h
u1
, h
u2

≤ 1, h
u3

≥ 1. Recall the notation of the facets of the cube that we introduced on page 35. In
Figure 4.6, F1̂ denotes the “back” of the cube, F2̂ denotes the “left” side of the cube and F3̂ denotes
the “bottom”. The top of the cube is described by shifting the bottom of the cube with the vector
e3, so F3̂ + e3 denotes the “top” of the cube.

Since we assume that h
u1
, h
u2

≤ 1, h
u3

≥ 1, it is always the case that H intersects ∂C in the facets
F1̂, F2̂, F3̂, F3̂ + e3 and that it does not intersect the remaining two facets (the front and right side),
see Figure 4.6. Therefore, the intersection ∂C ∩H is the boundary of a quadrilateral with one edge
on each of the facets F1̂, F2̂, F3̂, F3̂ + e3. Let’s determine the length of each edge.

• ∂C ∩H ∩ F1̂ is a line between the points e3 +
h−u3

u2
e2 and h

u2
e2 which has length

√
1−u2

1

u2
.

Indicated by a in Figure 4.6

• ∂C ∩H ∩ F2̂ is a line between the points e3 +
h−u3

u1
e1 and h

u1
e1 which has length

√
1−u2

2

u1
.

Indicated by b in Figure 4.6

• ∂C ∩H ∩ F3̂ is a line between the points h
u1
e1 and h

u2
e2 which has length

h
√

1−u2
2

u1u2
.

Indicated by c in Figure 4.6

• ∂C ∩H ∩ (F3̂ + e3) is a line between the points e3 +
h−u3

u1
e1 and e3 +

h−u3

u2
e2 which has length

(h−u3)
√

1−u2
2

u1u2
≤ h

√
1−u2

2

u1u2
. Indicated by d in Figure 4.6

Recall Equation (4.5). There we found that J(Tx, H) =
√

1− u2
k for x ∈ Fk̂. Then for f = 1, 2,∫

∂C∩H∩Ff̂

J(Tx, H)−1dx =
(
1− u2

f

)− 1
2

∫
∂C∩H∩Ff̂

dx =
1

h
·
∏
i≤2
i̸=f

h

ui

and for f = 3, ∫
∂C∩H∩F3̂

J(Tx, H)−1dx =
(
1− u2

f

)− 1
2

∫
∂C∩H∩F3̂

dx =
1

h
·
∏
i≤2

h

ui∫
∂C∩H∩F3̂+e3

J(Tx, H)−1dx ≤ 1

h
·
∏
i≤2

h

ui

Define a vector f ∈ {1, 2, 3}3, where fi = 1, 2 denote that xi is in Ff̂i
and fi = 3 denotes that xi

is either in F3̂ or in F3̂ + e3. We require here that mf =
∑3

j=1 1(fj = f) ≤ 2 for f = 1, 2 and
m1 +m2 ≤ 3, since we cannot choose more than 3 points on the cube. This yields∫∫∫

(∂C∩H)3̸=

(
J(Tx1

, H)J(Tx2
, H)J(Tx3

, H)
)−1

dx1dx2dx3

=
∑

f∈{1,2,3}3

∏
j:fj≤2

(∫
∂C∩H∩Ff̂j

J(Txj , H)−1dxj

)

×
∏

j:fj=3

(∫
∂C∩H∩(F3̂∪(F3̂+e3))

J(Txj , H)−1dxj

)

≤ h3

u3
1u

3
2

∑
f∈{1,2,3}3

(u1

h

)m1
(u2

h

)m2

.
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This upper bound for the inner triple can be filled in in Equation (4.24).

I2 ≤ 3

2

∫
S2+

∫
h≤u1,u2
h≥u3

(
1− 1

12

( h
u1

+
h

u2

))N−3

h−4 h9

u4
1u

4
2u3

∑
f∈{1,2,3}3

(u1

h

)m1
(u2

h

)m2

dhdu+O(e−
N−3
12 ).

On page 39 we made the substitution ti =
h
ui

with h−4dhdu = (t1t2t3)
−2dt1dt2dt3 and we will apply

it here as well.

I2 ≤ 3

2

∫∫∫
t1,t2≤1,t3≥1

(
1− 1

12

(
t1 + t2

))N−3

t21t
2
2t

−1
3

∑
f∈{1,2,3}3

t−m1
1 t−m2

2 dt1dt2dt3 +O(e−
N−3
12 )

=
3

2

∑
f∈{1,2,3}3

∫∫∫
t1,t2≤1,t3≥1

(
1− 1

12

(
t1 + t2

))N−3

t2−m1
1 t2−m2

2 t−1
3 dt1dt2dt3 +O(e−

N−3
12 ).

The integration with respect to t3 is immediate since t3 = h
u3

≤ 1 implies that t−1
3 ≥ 1.

I2 ≤ 3

2

∑
f∈{1,2,3}3

∫ 1

0

∫ 1

0

(
1− 1

12

(
t1 + t2

))N−3

t2−m1
1 t2−m2

2 dt1dt2 +O(e−
N−3
12 ).

Finally, we will evaluate the value of this double integral. We start with substituting ti =
12si
N−3

I :=

∫ 1

0

∫ 1

0

(
1− 1

12

(
t1 + t2

))N−3

t2−m1
1 t2−m2

2 dt1dt2

=
( 12

N − 3

)6−m1−m2

∫ N−3
12

0

∫ N−3
12

0

(
1− s1 + s2

N − 3

)N−3

s2−m1
1 s2−m2

2 ds1ds2.

Recall that mi ∈ {0, 1, 2}, so that 2−mi ∈ {0, 1, 2}. Furthermore, we have assumed that m1+m2 ≤ 3,
so 6−m1 −m2 ≥ 3. That means that for large enough N ,

I ≤
( 12

N − 3

)3 ∫ N−3
12

0

∫ N−3
12

0

(
1− s1 + s2

N − 3

)N−3

s2−m1
1 s2−m2

2 ds1ds2

≤
( 12

N − 3

)3 ∫ ∞

0

∫ ∞

0

e−s1−s2s2−m1
1 s2−m2

2 ds1ds2

=
( 12

N − 3

)3 ∫ ∞

0

e−s1s2−m1
1 ds1

∫ ∞

0

e−s2s2−m2
2 ds2

=
c · 123

(N − 3)3
= O(N−3).

We conclude that

I2 ≤ 3c

2
·O(N−3) +O(e−

N−3
12 ) = O(N−3)

as was stated in Lemma 4.9.
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Appendix A

We prove that Γ(d2 + 1
2 ) =

d!
2dΓ( d

2+1)

√
π for d ∈ N.

We first prove another statement. Namely,

Γ(k +
1

2
) =

(2k)!

22kΓ(k + 1)

√
π for k ∈ N. (A.1)

This is done as follows:

Γ
(
k +

1

2

)
=
(
k − 1 +

1

2

)
Γ
(
k − 1 +

1

2

)
=
(
k − 1 +

1

2

)(
k − 2 +

1

2

)
Γ
(
k − 2 +

1

2

)
= ... =

(
k − 1 +

1

2

)(
k − 2 +

1

2

)
· · · 1

2
Γ
(1
2

)
=
(
k − 1

2

)(
k − 3

2

)
· · · 1

2

√
π

=
2k(k − 1

2 )(k − 3
2 ) · · ·

1
2

2k
√
π

=
(2k − 1)(2k − 3) · · · 1

2k
√
π

=
(2k − 1)(2k − 2)(2k − 3)(2k − 4) · · · 2 · 1

2k(2k − 2)(2k − 4) · · · 2
√
π

=
(2k − 1)(2k − 2)(2k − 3)(2k − 4) · · · 2 · 1

2k2k−1(k − 1)(k − 2) · · · 1
√
π

=
(2k − 1)!

22k−1(k − 1)!

√
π

=
2k(2k − 1)!

2k22k−1(k − 1)!

√
π

=
(2k)!

22kk!

√
π

=
(2k)!

22kΓ(k + 1)

√
π.
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First, we assume that d is even, so d = 2k for k ∈ N. Then using Equation (A.1), we find

Γ
(d
2
+

1

2

)
= Γ

(2k
2

+
1

2

)
= Γ

(
k +

1

2

)
=

(2k)!

22kΓ(k + 1)

√
π

=
d!

2dΓ(d2 + 1)

√
π.

This proves the statement for even d. Now we want to prove it for odd d. To that end, let d = 2k+1
for k ∈ N. Then

Γ
(d
2
+

1

2

)
= Γ

(2k + 1

2
+

1

2

)
= Γ(k + 1)

= k!.

Furthermore, again using d = 2k + 1 for k ∈ N, we get

d!

2dΓ(d2 + 1)

√
π =

(2k + 1)!

22k+1Γ( 2k+2
2 + 1

2 )

√
π

=
(2k + 1)!

22k+1Γ((k + 1) + 1
2 )

√
π

We can apply Equation (A.1) using k + 1 to the last line. Then

d!

2dΓ(d2 + 1)

√
π =

(2k + 1)!22k+2Γ(k + 2)

22k+1(2k + 2)!
√
π

√
π

=
2 · Γ(k + 2)

(2k + 2)

=
(k + 1)!

k + 1

= k!.

This proves the statement for odd d. Therefore,

Γ
(d
2
+

1

2

)
=

d!

2dΓ(d2 + 1)

√
π

for d ∈ N.
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The hyperplane H(1, u) is given by the equation u1x + u2y + u3z = 1 for x, y, z ∈ R, restricted to
u2
1 + u2

2 + u2
3 = 1. It meets the x-axis when y = z = 0, in which case u1x = 1, so x = 1

u1
. In general,

the hyperplane H(1, u) meets the coordinate axis in the points 1
ui
ei. The intersection R3

+∩H(1, u) is a

triangle formed by the points ( 1
u1
, 0, 0), (0, 1

u2
, 0), (0, 0, 1

u3
). Define P := ( 1

u1
, 0, 0), Q := (0, 1

u2
, 0) and

R := (0, 0, 1
u3
). The triangle that we are considering has edges defined by the vectors PQ := P −Q,

PR := P − R and QR := Q − R. The point S := Q − P + R creates a parallelogram PQRS. The
point S is also in the hyperplane H(1, u). See Figure B.1 for a picture of this situation. The area of

Figure B.1: Hyperplane H(1, u) with vector u given by u1 = 0.4, u2 = 0.5, u3 = 0.77 resulting in the
points P = (2.5, 0, 0), Q = (0, 2, 0), R = (0, 0, 1.3), S = (−2.5, 2, 1.3).
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the parallelogram PQRS is given by

∥PQ× PR∥ = ∥

∣∣∣∣∣∣
i j k

− 1
u1

1
u2

0

− 1
u1

0 1
u3

∣∣∣∣∣∣ ∥
= ∥ 1

u2u3
i+

1

u1u3
j +

1

u1u2
k∥

= ∥( 1

u2u3
,

1

u1u3
,

1

u1u2
)∥

=

√
1

u2
2u

2
3

+
1

u2
1u

2
3

+
1

u2
1u

2
2

=

√
u2
1 + u2

2 + u2
3

u2
1u

2
2u

2
3

=
1

u1u2u3
.

The area of the parallelogram PQRS is twice as big as the area of the triangle PQR, which is hence
equal to 1

2u1u2u3
.

The hyperplane H(h, u) is given by the equation u1x + u2y + u3z = h for x, y, z ∈ R, restricted to
u2
1+u2

2+u2
3 = 1. It meets the x-axis when y = z = 0, in which case u1x = h, so x = h

u1
. In general, the

hyperplane H(h, u) meets the coordinate axis in the points h
ui
ei. The intersection R3

+ ∩H(h, u) is a

triangle formed by the points ( h
u1
, 0, 0), (0, h

u2
, 0), (0, 0, h

u3
). Define P := ( h

u1
, 0, 0), Q := (0, h

u2
, 0) and

R := (0, 0, h
u3
). The triangle that we are considering has edges defined by the vectors PQ := P −Q,

PR := P − R and QR := Q − R. The point S := Q − P + R creates a parallelogram PQRS. The
point S is also in the hyperplane H(h, u). The area of the parallelogram PQRS is given by

∥PQ× PR∥ = ∥

∣∣∣∣∣∣
i j k

− h
u1

h
u2

0

− h
u1

0 h
u3

∣∣∣∣∣∣ ∥
= ∥ h2

u2u3
i+

h2

u1u3
j +

h2

u1u2
k∥

= ∥( h2

u2u3
,

h2

u1u3
,

h2

u1u2
)∥

=

√
h2

u2
2u

2
3

+
h2

u2
1u

2
3

+
h2

u2
1u

2
2

= h2

√
u2
1 + u2

2 + u2
3

u2
1u

2
2u

2
3

=
h2

u1u2u3
.

The area of the parallelogram PQRS is twice as big as the area of the triangle PQR, which is hence

equal to h2

2u1u2u3
.

The intersection R3
+ ∩H(1,1) forms an equilateral triangle between the unit vectors e1, e2, e3. Define

P = e1, Q = e2, R = e3. The point S = (0.5, 0.5, 0) creates two rectangular triangles PSR and QSR.
See Figure B.2. The distances between the vectors P , Q and R are all equal to

√
1 + 1 + 0 =

√
2.

Therefore, the distance between P and S is equal to
√
2
2 . Using Pythagoras, the length of RS is equal

to
√
3√
2
. Then the area of the triangle PQR is equal to 1

2 ·
√
2 ·

√
3√
2
=

√
3
2 .
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Figure B.2: Caption
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