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1 Introduction

As automation becomes more advanced, one of the technologies that has become more prominent
is that of vehicle platooning. In vehicle platooning (see Figure 1), one deals with a string of N
self-driving vehicles, driving in a formation behind one another. At the front of the platoon is a
leader vehicle, serving as an autonomous system, which determines the velocity of each vehicle in the
platoon. The remaining vehicles in the platoon then follow the leader vehicle and are, consequently,
called follower vehicles. Each vehicle in the platoon can be seen as a system belonging to a network,
i.e. the platoon. Through wireless communication, these vehicles exchange information between one
another, which is then used to update their own velocities. This is done with the goal of maintaining
a desired intervehicular distance for all time between all the vehicles. As the reaction time of these
vehicles is much better than that of a human driver, one can make this intervehicular distance very
small, leading to increased traffic flow. Additional benefits from vehicle platooning include increased
traffic safety, lower fuel consumption and lower carbon emissions [7].

Things get interesting when a sudden disturbance occurs to the leader vehicle. For example, due
to a traffic jam, one could think of the leader vehicle suddenly having to brake, disrupting its own
acceleration and velocity. Since all the vehicles in the platoon have to maintain a given desired
intervehicular distance, this will result in all of the remaining vehicles braking as well. In other

Figure 1: Vehicles in a platoon [13].

words, when a sudden disturbance is introduced to the platoon, its effect will propagate through
the string of vehicles. In order to deal with this situation, what we initially want is for the effect of
this disturbance to disappear over time with each vehicle. To achieve that, we require exponential
stability of the platoon. Exponential stability is the property guaranteeing that the effect of the
disturbance on each vehicle will disappear over time which, in turn, will lead to the desired behavior
of each vehicle being restored. In this case, this would mean that each vehicle retrieves its original
velocity before the disturbance was introduced.

However, this solves only half of the problem. Exponential stability does not help us in mitigating
the rate at which the disturbance propagates through the network. As such, exponential stability
allows for the effect of the disturbance on each vehicle to grow as it propagates through the string
of vehicles. This is made clear in Figure 2 (b). Namely, notice how each trajectory tends to the
origin as time grows, but the peak deviation from the origin grows larger with each subsequent
vehicle in the platoon. In other words, each vehicle receives a larger disturbance effect than the
previous vehicle, although the effect of the disturbance vanishes over time. As a consequence, one
should be careful to make the platoon larger by adding more vehicles, as this can lead to undesired
outcomes like car crashes between the vehicles near the end of the platoon. This is unfavorable,
as there is now a limitation on how long the string of vehicles is allowed to be. Naturally, one
would like to be able to freely add and remove vehicles without having to worry too much about
the effect of a sudden disturbance propagating through the string of vehicles. This is where the
stronger notion of string stability comes into play. In addition to restoring the desired behavior of
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Figure 2: Exponentially stable platoon (left) vs string stable platoon (right) [12].

each vehicle after a disturbance has been introduced (in other words, exponential stability), one
would like to bound the effect of the disturbance over all vehicles in the platoon, no matter how
long this string of vehicles is. If this is possible, then we will have the freedom to freely add and
remove vehicles, as the effect of the disturbance will never exceed a certain bound, independently
of the size of the platoon. An example of this can be seen in Figure 2 (c). Namely, notice how
these peaks are now getting smaller per vehicle in the platoon, meaning that the effect of the dis-
turbance decreases as it propagates through the network. When it is possible to add and remove
vehicles without losing string stability, we say that the network of systems, i.e. the platoon, is scalable.

Achieving string stability of a network ultimately comes down to modeling each vehicle appropriately,
by choosing the appropriate values in the system dynamics of each vehicle. What then constitutes
“appropriate” depends on the information flow topology (IFT) of the network, i.e. how all of the
systems in a network exchange information between one another. It is important to note that there

Figure 3: Examples of IFTs for platoons. (a) PF; (b) PLF; (c) BD; (d) BLD; (e) 2PF; (f) 2PLF [10].

are many ways in which information can be exchanged between systems. In order to mathematically
represent these IFTs, one can employ the use of graph theory. Namely, a network of systems can
be viewed as a graph, where each system in the network is a vertex and the edges connecting these
vertices represent the information flows. In particular, one distinguishes between unidirectional and
bidirectional information flows. In the unidirectional case, the network graph is directed, whereas
in the bidirectional case, the network graph is undirected. Hybrid information flows, with both uni-
and bidirectional information flows, are also possible (see Figure 3 (d)). Moreover, within these two
distinctive information flows, one can choose to receive information from just one or several vehicles
in the platoon. Figure 3 gives a few examples of how this can be done. The only thing that needs
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to be fixed, however, is that the leader vehicle receives no input whatsoever, as it is an autonomous
system in the network. Since each IFT gives rise to a different network structure, the conditions for
string stability will change as well. As such, each IFT poses its own problem to be solved.

Much research on string stability and vehicle platooning has been done throughout the years, with
the original vehicle platoon control problem dating all the way back to 1966 in Levine’s and Athans’
paper “On the optimal error regulation of a string of moving vehicles” [9]. A first definition of string
stability, however, was not established until 1974 by Chu [3], after which many different definitions
have sprung forth. These various definitions depend on the IFT and the type of disturbance that
affects the platoon, of which [6] states the four most common ones, and the choice of definition greatly
impacts the analysis method used for string stability problems. For example, in unidirectional IFTs,
it is extremely common to use a frequency-domain approach and define string stability in terms of
the transfer functions of the vehicles. This gives rise to the frequency-domain based definition of
strong string stability [11] and its various modified versions, like that of eventual string stability [8].
Although convenient to work with, using a frequency domain has several limitations. For example, it
assumes linearity of the platoon network and only works for a select type of disturbances. In order
to resolve the issue of linearity, the time-domain based notions of Lp string stability and L∞ string
stability [14] can then be used instead. In an attempt to generalize the definition of string stability
to a platoon with as few limitations as possible, [6] recommends the definition of input-to-state string
stability, to be used for all purposes, as the formal definition of string stability. It is important to
note, however, that as of yet no single common definition of string stability has been established.
Instead, the definition will vary depending on the problem that is to be solved.

Each of the platoon formations in Figure 3 has been extensively studied in the literature. Since the
various definitions of string stability depend on the domain used, one can group the analysis methods
into a time-domain analysis method and a frequency-domain analysis method. In particular, the
frequency-domain analysis methods rely on the use of transfer functions, which are used for linear
platoon formations, whereas time-domain analysis methods are used for nonlinear platoons instead.
A frequently used time-domain method is that of Lyapunov techniques, where a suitable Lyapunov
function is constructed and its properties used to prove string stability of a platoon (e.g. [1]). For
results on unidirectional IFTs, we refer to [11], [4], [2] and [12]. For bidirectional IFTs we refer to
[15]. Finally, as a general starting point for string stability, we recommend [6].

In this thesis, necessary and sufficient conditions for string stability of networks consisting of scalar
linear systems will be found. In analogy with the motivation of vehicle platooning, we will be pre-
tending that each system in the network is a vehicle in a platoon. As such, several of the problems
as posed in Figure 3 will be solved. In particular, we will restrict ourselves to the unidirectional case
only, meaning that the bidirectional (leader) following (BF/BLF) formations in Figure 3 (c) and
Figure 3 (d) will not be treated in this thesis. It is important to note that this means that the goal
in this thesis is not to realistically model the network of systems as a platoon of vehicles. Rather,
the results in this thesis will hold for generalized networks of scalar linear systems, following IFTs
primarily used in vehicle platooning. To emphasize this, throughout this thesis, we will always talk
about a network of systems instead of a platoon of vehicles. However, to facilitate the interpretation
of the obtained results, several connections with vehicle platooning will be made.

The contents of this thesis are structured as follows. In Section 2, a time-domain based defini-
tion of string stability will be provided, which is the definition that we will work with throughout
this thesis. After this, we will cover networks of the predecessor following (PF) topology and the
predecessor-leader following (PLF) topology (see, respectively, Figure 3 (a) and (b)) and conditions
for string stability of these two networks will be found. In Section 3, an external disturbance will
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be added to the PF and PLF networks, giving rise to the definition of disturbance string stability.
Necessary and sufficient conditions for disturbance string stability of PF and PLF networks will then
be found. In Section 4, an additional predecessor will be considered in the input, leading to the 2PF
and 2PLF problem (see Figure 3 (e) and (f), respectively). At the end of Section 4, we will consider
arbitrary predecessors, leading to the rPF problem. For this problem, only sufficient conditions will
be found. In Section 5, the results that have been obtained will be verified by means of numerical
simulations. Finally, Section 6 summarizes everything that has been done in this thesis and provides
a brief discussion on potential future research topics.
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2 Single Predecessor Following Problems

2.1 Defining String Stability

Throughout this thesis, we will consider networks consisting of scalar linear systems of the form

Σi : ẋi(t) = −axi(t) +Biui(t), i = 1, . . . , N, (1)

with state xi(t) ∈ R, input ui(t) ∈ Rmi , a ∈ R and Bi ∈ R1×mi . Since we only consider unidirectional
information flows, the input term Biui(t) will always be some linear combination of the states of the
previous systems in the network. Namely, since the leader system Σ1 takes on the role of a leader
vehicle, which is an autonomous system and therefore cannot receive any inputs, the only types of
unidirectional information flows possible are the ones where each system receives an input from one
or more of its predecessors. As a result, the network itself will always be an autonomous system,
even if each system in the network is not an autonomous system itself (with the exception of the
leader system Σ1). Explicitly, the network of systems is given by

Σ : ẋ(t) = Ax(t), (2)

where x(t) ∈ RN satisfies x(t) =
[
x1(t) x2(t) . . . xN (t)

]⊤
and A ∈ RN×N . In order to define

string stability of the network (2), we first require (2) to be exponentially stable.

Definition 2.1. The autonomous system (2) is said to be exponentially stable if there exists real
numbers K > 0 and µ > 0 such that

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|,

for all initial conditions xi(0) = xi,0, where xi(t) are the components of the resulting state trajectories.

In other words, each state trajectory xi(t) converges to the origin in an exponential manner. In
particular, for fixed N , we can employ the same exponential bound over all systems in the network.

We recall the well-known result that an autonomous system is exponentially stable if and only
if the eigenvalues of A have negative real part. For the one-dimensional case N = 1, we obtain
A = −a. We therefore we require that a > 0 such that −a < 0, as this ensures the state trajectory
x(t) = e−atx(0) converges to the origin. For N ≥ 2, the matrix A will always be a lower triangular
matrix, whose eigenvalues are given on its diagonal entries. This is because, again, in unidirectional
information flows with an autonomous leader system, each system can only receive inputs from one
or more of its predecessors. For example, in the simplest case, one can set Biui(t) = bxi−1(t) for all
i = 2, . . . , N , where b ∈ R. For i = 1, there is no input present i.e. B1u1(t) = 0. The network will
then look like

ẋ(t) =


−a
b −a

b −a
. . .

. . .

b −a


︸ ︷︷ ︸

A

x(t).

Indeed, one can see that the matrix A is lower triangular. This particular network adheres to a
predecessor following topology and will be extensively studied in Section 2.2. As ai,i = −a for all
i = 1, . . . , N , the network (2) will always be exponentially stable whenever a > 0. Hence, throughout
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this thesis, we require a > 0 on each system no matter the network size and no matter the unidirec-
tional information flow topology considered.

In the context of vehicle platooning, we can interpret the systems (1) as the system dynamics
for each vehicle in the platoon, whereas the network (2) can be seen as the platoon of vehicles. In
order to find conditions for string stability of the network (2), we need to extend Definition 2.1.
Throughout this thesis, the following definition of string stability will be employed.

Definition 2.2. Consider the systems as in (1) and the network of systems (2). The network (2) is
said to be string stable if there exists real numbers K > 0 and µ > 0 such that

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|,

for all initial conditions xi(0) = xi,0 and for all N ∈ N.

Before continuing, it is important to note the “for all N ∈ N” part. Omitting this part means
that the above definition reduces to that of exponential stability, which is not what we are looking
for. What Definition 2.2 states is that we wish to apply the same exponential bound to all systems
in the network, no matter how large this network is. This implies scalability of the network, since
we can then make the network as large as we wish without having to change bounds. It is then also
easy to see why exponential stability is a necessary requirement for string stability. Namely, if we
have a string stable network, then we can apply the exponential bound to any network of fixed size
N of the same IFT, which implies exponential stability.

2.2 Predecessor Following Problem

As mentioned before, throughout this thesis we will pretend that each system in the network is a
vehicle in a platoon. We assign the role of leader vehicle to the leader system Σ1, which means
it receives no inputs, making it an autonomous system. Moreover, we assume that the systems
Σ2, . . . ,ΣN are follower vehicles, which means they do receive inputs from other systems in the
network. The first problem we will consider is the predecessor following (PF) problem. In this
problem, the network adheres to a PF topology, as in Figure 3 (a). Each system receives an input
from its predecessor and sends its state to its successor. What this means is that for the j’th system
Σj , we set uj(t) = xj−1(t) for all j = 2, . . . , N . Since the leader system Σ1 receives no inputs, we set
u1(t) ≡ 0. The network of systems is then given by

Σ1 : ẋ1(t) = −ax1(t),

Σj : ẋj(t) = −axj(t) + bxj−1(t), j = 2, . . . , N,
(3)

where a, b ∈ R and a > 0.

In order to find sufficient conditions for string stability, we will employ the following strategy. By
finding a closed-form solution of each system in the network, we will be able to bound this solution
by an expression which will hold for any network size N ∈ N. This then immediately implies string
stability, since this bound will also hold for the maximum over all the solutions. The strategy of
proving necessity will be slightly different. The following lemma gives us the closed-form solution of
each system in (3).

Lemma 2.3. Consider the PF network (3) for given initial conditions xi(0) = xi,0. Then, for each
N ∈ N, the solution is given by

xN (t) = e−at

(
N−1∑
i=0

bixN−i,0t
i

i!

)
. (4)
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Proof. We compute the solution xN (t) explicitly. Since for the input we have uN (t) = xN−1(t), the
solution xN (t) is given by

xN (t) = e−atxN,0 +

tˆ

0

e−a(t−τ)bxN−1(τ)dτ. (5)

The result will be shown through induction. To this end, consider the base case N = 1. The solution
is given by

x1(t) = e−atx1,0 = e−at

(
0∑

i=0

bjx1−i,0t
i

i!

)
.

Hence, the base case holds. Assume now that the result holds for arbitrary N = m. The use of (4)
and (5) gives

xm+1(t) = e−at

xm+1,0 +

tˆ

0

m−1∑
i=0

bi+1xm−i,0τ
i

i!
dτ


= e−at

(
xm+1,0 +

m−1∑
i=0

bi+1xm−i,0t
i+1

(i+ 1)!

)
.

Rearranging indices in the summation term and collecting all the terms, we obtain

xm+1(t) = e−at

(
xm+1,0 +

m∑
i=1

bixm+1−i,0t
i

i!

)

= e−at

(
m∑
i=0

bixm+1−i,0t
i

i!

)
.

Therefore, the result (4) holds for N = m+ 1 as well. The statement now follows by induction.

Setting the initial conditions equal to one, we can recognize the Taylor series of the exponential
function ebt centered at t = 0 in (4). This observation will be used several times when trying to find
conditions for string stability.

Now that we have an explicit closed-form solution of the trajectory for each system in the network,
we have enough information to provide a sufficient condition for string stability as per Definition 2.2.
In order to prove necessity, the following lemma will be used.

Lemma 2.4. Let m, b,K ∈ R with K > 0. Assume that

emt
N∑
i=0

biti

i!
≤ K,

for all N ∈ N and for all t ≥ 0. Then,
e(m+b)t ≤ K,

for all t ≥ 0.

Proof. Fix an arbitrary t = t∗ ≥ 0. By assumption, we have for all N ∈ N

emt∗
N∑
i=0

biti∗
i!

≤ K.
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Since emt∗ is positive, we can divide this term out to obtain

N∑
i=0

biti∗
i!

≤ Ke−mt∗ =: K̃. (6)

The goal is now to show that this implies that ebt∗ ≤ K̃. Assume for contradiction that ebt∗ > K̃
and set δ := ebt∗ − K̃ > 0. Using (6), we then have for all N ∈ N

ebt∗ −
N∑
i=0

biti∗
i!

≥ δ. (7)

Since limN→∞
∑N

i=0
biti∗
i! = ebt∗ , we have by definition that for all ϵ > 0 there exists Nϵ ∈ N such that,

whenever N ≥ Nϵ, we have ∣∣∣∣∣ebt∗ −
N∑
i=0

biti∗
i!

∣∣∣∣∣ < ϵ.

In particular, pick ϵ = δ. Then, there exists N∗ ∈ N such that, whenever N ≥ N∗, we have∣∣∣∣∣ebt∗ −
N∑
i=0

biti∗
i!

∣∣∣∣∣ < δ.

But this contradicts what we have in (7). Hence, we conclude that ebt∗ ≤ K̃. Multiplying both sides
by emt∗ , we have e(m+b)t∗ ≤ K. Since t∗ was arbitrary, this holds for all t ≥ 0. Hence, the result
follows.

We now have enough information to find necessary and sufficient conditions for string stability
of the PF network (3). The first main result is given by the following theorem.

Theorem 2.5. Consider the PF network (3) with a > 0. There exists real numbers K,µ > 0 such
that, for all initial conditions xi(0) = xi,0 and all N ∈ N,

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|,

if and only if |b| < a.

Proof. ( ⇐= ) By Lemma 2.3, we have

xN (t) = e−at

(
N−1∑
i=0

bixN−i,0t
i

i!

)
.

The goal now is to bound the above for all N ∈ N. We use the fact that each initial condition xi,0
can by bounded by the maximum in absolute value over all initial conditions. Moreover, since b can
be negative, we will apply the triangle inequality and the basic rules for absolute values to ensure
that each term in the summation stays positive for all t ≥ 0. That way, adding more terms to the
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summation will only make it larger, since we are only adding positive terms. This leads to

xN (t) ≤ e−at

∣∣∣∣∣
N−1∑
i=0

bixN−i,0t
i

i!

∣∣∣∣∣
≤ e−at

(
N−1∑
i=0

|b|i|xN−i,0|ti

i!

)

≤ max
i=1,...,N

|xi,0|e−at

(
N−1∑
i=0

|b|iti

i!

)

≤ max
i=1,...,N

|xi,0|e−at

( ∞∑
i=0

|b|iti

i!

)
,

which holds for all N ∈ N. We recognize the infinite series in the last inequality to be the Taylor

expansion of the exponential function e|b|t centered at t = 0. In other words,
∑∞

i=0
|b|iti
i! = e|b|t.

Substituting this result gives

xN (t) ≤ max
i=1,...,N

|xi,0|e−ate|b|t

= max
i=1,...,N

|xi,0|e−(a−|b|)t.

This holds for all N ∈ N, which implies

max
i=1,...,N

|xi(t)| ≤ max
i=1,...,N

|xi,0|e−(a−|b|)t,

for all N ∈ N. Since |b| < a by assumption, we have a− |b| > 0. Setting µ = a− |b| and K = 1, the
result follows.
( =⇒ ) By assumption, there exists real numbers K,µ > 0 such that

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|,

for all initial conditions xi,0. If b ≥ 0, pick xi,0 = 1 for all i = 1, . . . , N . If b < 0, pick xN−j,0 = 1
when j is even and xN−j,0 = −1 when j is odd. Then, using Lemma 2.3, the solution for all N ∈ N
and all t ≥ 0 for these particular initial conditions is given by

xN (t) = e−at
N−1∑
i=0

|b|iti

i!
≤ Ke−µt,

where the above inequality follows from the assumption of string stability. To show that |b| < a,
assume for contradiction that |b| ≥ a. Then, for all t ≥ 0, we have that e−|b|t ≤ e−at. Using this fact
and multiplying both sides of the inequality by eµt, we have

e(µ−|b|)t
N−1∑
i=0

|b|iti

i!
≤ K,

which holds for all N ∈ N. By Lemma 2.4, this implies

eµt ≤ K,

where we cancel out the |b| terms in the exponential function. However, this is a contradiction as
µ > 0 implies eµt is monotonically increasing and unbounded from above. In particular, there exists
t∗ ≥ 0 such that for all t ≥ t∗ we have eµt > K. Therefore, we must have |b| < a. This shows the
result.
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In order to interpret these results, we will consider the context of vehicle platooning again. Recall
that the goal of string stability is to bound the effect of a sudden disturbance propagating through the
platoon regardless of the platoon size. When this disturbance affects the leader vehicle, it will disrupt
the state trajectory of this vehicle. The leader vehicle then provides the effect of this disturbance
to the next vehicle by means of an input. However, since |b| < a, the succeeding vehicle in line will
receive a smaller disturbance (say, |b|) than that which the leader vehicle experiences (namely, a).
This, in turn, will mean that the state trajectory of the succeeding vehicle will not be as disrupted
as that of the leader vehicle. This same behavior will continue down the string of vehicles, where
each vehicle will experience less of a disrupted state trajectory than its predecessor. In other words,
the effect of the disturbance decreases as it propagates along the string of vehicles. In particular,
the larger µ = a − |b| is, the faster each state trajectory will converge to zero i.e. the faster each
vehicle will restore its original state trajectory, for example its desired velocity. Hence, when designing
each system in the network, one should choose |b| to be as small as possible to optimize string stability.

It is important to note that Theorem 2.5 requires that each system in the network has the same
system parameters. Namely, for each system Σi we set Bi = b with state parameter −a. When each
system has the same parameters in its system dynamics, we say that the network is homogeneous.
On the other hand, if the parameters vary per system, we say that the network is heterogeneous.
The following corollary shows that once we relax this condition of homogeneity in the input term by
allowing for different values of b per system, the necessary condition for string stability will be lost.

Corollary 2.6. Consider the heterogeneous PF-network given by

Σ1 : ẋ1(t) = −ax1(t),

Σj : ẋj(t) = −axj(t) + bj−1xj−1(t), j = 2, . . . , N,

where a > 0 and bj ∈ R for all j = 1, . . . , N − 1. If max |bj | < a, then there exists real numbers
K,µ > 0 such that, for all initial conditions xi(0) = xi,0 and all N ∈ N,

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|.

Proof. Set b := max |bj |. Analogous to the proofs in Lemma 2.3 and Theorem 2.5, we find

xN (t) = e−at

(
xN,0 + bN−1xN−1,0t+

bN−1bN−2

2
xN−2,0t

2 + · · ·+ bN−1bN−2 . . . b2b1
(N − 1)!

x1,0t
N−1

)
.

Applying the triangle inequality to the above, pulling out max |xi,0| and using that bj ≤ b for all
j = 1, . . . , N − 1, we obtain

xN (t) ≤ max
i=1,...,N

|xi,0|e−at

(
N−1∑
i=0

biti

i!

)
≤ max

i=1,...,N
|xi,0|e−(a−b)t,

for all N ∈ N. Set K = 1 and µ = a −max |bj |. Since max |bj | < a by assumption, we have µ > 0.
This shows the result.

Note that in the above corollary we only allow variations in the input parameters, while the
state parameters, −a, remain the same throughout the network. The case where the PF network
is fully heterogeneous, meaning we allow different values of both a and b, will be treated in Section 4.2.

To show why the converse does not hold, consider the following counterexample. Set a = 1 and set

11
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b1 = 2, bj = 0.1 for all j = 2, . . . , N − 1. Finally, for the initial conditions, pick xi,0 = 1 for all
i = 1, . . . , N . Plugging in these values into the solution xN (t), we obtain

xN (t) = e−t

(
1 + 0.1t+

0.01t2

2
+ · · ·+ 2 · 0.1

N−2tN−1

(N − 1)!

)
= e−t

(
1 + 0.1t+

0.01t2

2
+ · · ·+ 20 · 0.1

N−1tN−1

(N − 1)!

)
≤ e−t

(
e0.1t + 20e0.1t

)
= 21e−0.9t,

for all N ∈ N. Intuitively, this result should make sense. Even if the effect of the disturbance is
initially amplified per additional vehicle as it propagates through the string (i.e. |bi| ≥ a), eventually
there will be a vehicle in the platoon where each vehicle, from that point on, will receive a smaller
disturbance than the one coming before it. In other words, from that point on, the dynamics of those
vehicles satisfy |bi| < a. Hence, despite the initial amplification of the disturbance, eventually this
effect will start to decrease per vehicle at some point in the string and so string stability can still be
achieved.

2.3 Predecessor-Leader Following Problem

We will now focus our attention to the predecessor-leader following (PLF) problem (see Figure 3 (b)).
The system dynamics are a direct extension of that of (3). Each system still receives an input from
its predecessor, but in addition, each system receives an input from the leader system Σ1. This means
that there are now two inputs to be considered instead of one. The dynamics of each system are now
given by

Σ1 : ẋ1(t) = −ax1(t),

Σ2 : ẋ2(t) = −ax2(t) + bx1(t),

Σ3 : ẋj(t) = −axj(t) + bxj−1(t) + cx1(t), j = 3, . . . , N,

(8)

where a, b, c ∈ R and a > 0. Notice how the cx1(t)-term is absent in the second system. This is
because the second system Σ2 already receives an input from the leader system Σ1. The approach to
finding conditions for string stability is analogous to the PF problem. We will need the closed-form
solutions of (8), which will turn out to be nothing but a slight modification of Lemma 2.3.

Lemma 2.7. Consider the PLF network (8) for given initial conditions xi(0) = xi,0. Then, for all
N ≥ 3, the solution is given by

xN (t) = e−at

(
N−1∑
i=0

bixN−i,0t
i

i!
+

N−2∑
k=1

cx1,0b
k−1tk

k!

)
.

For N = 1, 2, the solution is given by

xN (t) = e−at

(
N−1∑
i=0

bixN−i,0t
i

i!

)
.

Proof. For N = 1, 2, the system dynamics reduce to those in Lemma 2.3. Hence, the result immedi-
ately follows from Lemma 2.3. We prove this statement by induction for N ≥ 3. Setting B =

[
b c

]
and uN (t) =

[
xN−1(t) x1(t)

]⊤
, each solution is given by

xN (t) = e−atxN,0 +

tˆ

0

e−a(t−τ)BuN (τ)dτ.

12
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For the base case N = 3 we have

x3(t) = e−atx3,0 +

tˆ

0

e−a(t−τ)(bx2(τ) + cx1(τ))dτ

= e−at

x3,0 +

tˆ

0

cx1,0 + bx2,0 + b2x1,0τdτ


= e−at

(
x3,0 + cx1,0t+ bx2,0t+

b2x1,0t
2

2

)
= e−at

(
2∑

i=0

bix3−i,0t
i

i!
+

1∑
k=1

cx1,0b
k−1tk

k!

)
.

So the base case holds. Assume now that the statement holds for arbitrary N = m. We note that
each solution contains two sums. In particular, the first sum is exactly that of Lemma 2.3. Hence,
we only need to show that the second sum holds. We compute

xm+1(t) = e−at

xm+1,0 +

tˆ

0

m−1∑
j=0

bj+1xm−j,0τ
j

j!
+

m−2∑
k=1

cx1,0b
kτk

k!
+ cx1,0dτ


= e−at

 m∑
j=0

bjxm+1−j,0t
j

j!
+

m−2∑
k=1

cx1,0b
ktk+1

(k + 1)!
+ cx1,0t

 .

Rearranging indices in the second sum and collecting terms, we obtain

xm+1(t) = e−at

(
m∑
i=0

bixm+1−i,0t
i

i!
+

m−1∑
k=2

cx1,0b
k−1tk

k!
+ cx1,0t

)

= e−at

(
m∑
i=0

bixm+1−i,0t
i

i!
+

m−1∑
k=1

cx1,0b
k−1tk

k!

)
.

Hence, the result holds for N = m + 1. Since m was arbitrary, the statement holds for all N ≥ 3.
This proves the statement.

Lemma 2.7 will help us in proving sufficiency in the following theorem. In order to prove
necessity, it turns out we can employ Lemma 2.4. The following theorem solves the PLF problem
for homogeneous networks.

Theorem 2.8. Consider the PLF network (8). Then, there exists real numbers K,µ > 0 such that,
for all initial conditions xi(0) = xi,0 and all N ∈ N,

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|,

if and only if |b| < a.

Proof. ( ⇐= ) The solution xN (t) of each system is given by Lemma 2.7. The idea of the proof is
analogous to that of Theorem 2.5. Applying the triangle inequality, we have for all N ∈ N

xN (t) ≤ e−at

(∣∣∣∣∣
N−1∑
i=0

bixN−i,0t
i

i!

∣∣∣∣∣+
∣∣∣∣∣
N−2∑
k=1

cx1,0b
k−1tk

k!

∣∣∣∣∣
)

≤ e−at max
i=1,...,N

|xi,0|

(
N−1∑
i=0

|b|iti

i!
+

N−2∑
k=0

|c||b|k−1tk

k!

)

= e−at max
i=1,...,N

|xi,0|

(
N−1∑
i=0

|b|iti

i!
+

|c|
|b|

N−2∑
k=0

|b|ktk

k!

)
.

13
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Letting N −→ ∞, we see that both sums converge to the Taylor series of e|b|t centered at t = 0.
Moreover, since each term is positive, the above equality can be bounded by this exponential function.
This implies

xN (t) ≤ e−at max
i=1,...,N

|xi,0|
(
e|b|t +

|c|
|b|

e|b|t
)

= e−(a−|b|)t max
i=1,...,N

|xi,0|
(
1 +

|c|
|b|

)
,

for all N ∈ N, which also means

max
i=1,...,N

|x(t)| ≤ e−(a−|b|)t max
i=1,...,N

|xi,0|
(
1 +

|c|
|b|

)
, (9)

for all N ∈ N. Set µ = a − |b|, K = 1 + |c|
|b| . Since a − |b| > 0 by assumption, we have that µ > 0.

This proves the statement.
( =⇒ ) By assumption there exists K,µ > 0 such that

xN (t) = e−at

(
N−1∑
i=0

bixN−i,0t
i

i!
+

c

b

N−2∑
k=1

x1,0b
ktk

k!

)
≤ Ke−µt max

i=1,...,N
|xi,0|,

for all initial conditions xi,0 and any N ∈ N. First, choose x1,0 = 0. Then, for any N ∈ N, the
solution becomes

xN (t) = e−at
N−2∑
i=0

bixN−i,0t
i

i!
.

Next, if b ≥ 0, pick xi,0 = 1 for all i = 2, . . . , N . If b < 0, pick xN−j,0 = 1 when j is even and
xN−j,0 = −1 when j is odd for all remaining initial conditions. Then, by assumption, we have for all
N ∈ N

e−at
N−2∑
i=0

|b|iti

i!
≤ Ke−µt.

Hence, the problem reduces to that of the proof in Theorem 2.5. Therefore, it immediately follows
that |b| < a. This shows the result.

It is interesting to note that there is no restriction on the value of c to achieve string stability.
This does not mean that the value of c has no effect on the exponential bound of the network, as the
value of K depends on c. Rather, it means that we are free to choose any value for c without losing
string stability. On the other hand, we do not have this freedom for the choice of b.

To give an interpretation as to why the presence of c does not change the conditions for string
stability, recall the interpretation of the condition |b| < a. In the context of vehicle platooning,
finding conditions for string stability can be phrased as the question: how should each vehicle send
the disturbance it is experiencing to its successor? The answer is |b| < a. Namely, each vehicle
sends a smaller disturbance to its successor than what it is experiencing. In this case, though, each
vehicle in the platoon now also receives the same disturbance |c| from the leader vehicle. As such,
the vehicles do not have any influence in how they send this disturbance |c| to their successors, as
each vehicle will experience the same disturbance |c| nonetheless.

However, this does not mean any choice c is equally effective in constructing an exponential bound.

14
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This is because in the context of vehicle platooning, K physically represents the maximum effect that
a sudden disturbance can have on each vehicle in the platoon. In order to make this clear, consider a
platoon of arbitrary length satisfying max |xi,0| = 1. If this platoon is string stable, by Definition 2.2
there exists K,µ > 0 such that

max
i=1,...,N

|xi(t)| ≤ Ke−µt,

for all t ≥ 0 and all N ∈ N. One can see that since the right hand side is an exponentially decaying
bound, it attains its maximum at t = 0, which means that the maximum value each system will
attain will never exceed K. Naturally, one would like for this K to then be as small as possible. In
this case, that would mean that we would ideally want |c| << |b| such that |c|

|b| << 1. As will be

seen in the Examples section, the presence of |c| is responsible for the initial peaks that each system
experiences before its state trajectory converges to the origin, which is absent when |c| = 0 i.e. in a
PF network with the same initial conditions.

One might observe that the bound for the PLF formation is larger than that of the PF forma-
tion. Namely, in both the PLF and PF formation we found that µ = a− |b|, but in the PF formation

we obtained K = 1 whereas for the PLF formation we found K = 1 + |c|
|b| > 1. This is because in the

PLF formation each system receives inputs from not one but two systems. As established in the PF
problem, the parameters b and c in the input represent the disturbance that each vehicle in a platoon
provides to its respective receiver. As each vehicle in the PLF formation receives two inputs instead
of one, it receives a larger total disturbance than a vehicle in the PF formation, which receives only
one input. This, naturally, negatively affects the string stability bound, resulting in a larger value
for K.

As mentioned earlier, there is no restriction on the choice of c to obtain string stability of a PLF
network. A natural question to ask is then whether we can extend the result of Theorem 2.8 to net-
works with heterogeneous inputs. In other words, we would like to extend the result of Corollary 2.6
to the PLF problem as well. In the final result of this section, we will show that allowing for different
values of b and c means we can still choose the leader input term freely without losing string stability.
On the other hand, just like in Corollary 2.6, necessity will be lost.

Corollary 2.9. Consider the heterogeneous PLF-network given by

Σ1 : ẋ1(t) = −ax1(t),

Σ2 : ẋ2(t) = −ax2(t) + b1x1(t),

Σ3 : ẋj(t) = −axj(t) + bj−1xj−1(t) + cj−2x1(t), j = 3, . . . , N,

where a > 0, bk ∈ R for all k = 1, . . . , N − 1 and cm ∈ R for all m = 1, . . . , N − 2. If max |bk| < a,
then there exists real numbers K,µ > 0 such that, for all initial conditions xi(0) = xi,0 and all N ∈ N,

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0,|.

Proof. Set b := max |bk| and c := max |cm|. Analogous to Corollary 2.6, it can be shown that

xN (t) = x̂N (t) + x̃N (t),

where

x̂N (t) = e−at

(
xN,0 + bN−1xN−1,0t+

bN−1bN−2

2
xN−2,0t

2 + · · ·+ bN−1bN−2 . . . b2b1
(N − 1)!

x1,0t
N−1

)
,

and

x̃N (t) = e−at
(
cN−2x1,0t+

bN−1cN−3

2 x1,0t
2 +

bN−1bN−2cN−4

6 x1,0t
3 + · · ·+ bN−1bN−2...b4b3c1

(N−2)! x1,0t
N−2

)
.
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By Corollary 2.6, we have

x̂N (t) ≤ max
i=1,...,N

|xi,0|e−(a−b)t.

Similarly, by applying the triangle inequality to x̃N (t) and following the approach in Corollary 2.6,
we obtain

x̃N (t) ≤ max
i=1,...,N

|xi,0|e−at
N−2∑
i=1

c
bi−1ti

i!

≤ c

b
max

i=1,...,N
|xi,0|e−(a−b)t,

which means that the solution xN (t) can be bounded as

xN (t) ≤ max
i=1,...,N

|xi,0|
(
1 +

c

b

)
e−(a−b)t.

Since this holds for all N ∈ N, this implies

max
i=1,...,N

|xi(t)| ≤ max
i=1,...,N

|xi,0|
(
1 +

c

b

)
e−(a−b)t.

Hence, setting K = 1 + max |cm|
max |bk| and µ = a−max |bk| gives the result.

To show why the converse does not hold, set a = 1, b1 = 2, bp = 0.1 for p = 2, . . . , N − 1, c1 = 2 and
cq = 1 for q = 2, . . . , N − 2. Finally, set xi,0 = 1 for all i = 1, . . . , N . It can then be shown that

xN (t) ≤ 21e−0.9t + e−t

(
N−3∑
i=1

0.1i−1ti

i!
+ 2

0.1N−3tN−2

(N − 2)

)

≤ 21e−0.9t +
1

0.1
e−0.9t +

2

0.1
e−0.9t

= 51e−0.9t,

for all N ∈ N. Hence, again, we obtain max |bk| > a while string stability is still achieved. This
concludes the counterexample.
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3 Networks with Disturbances

3.1 PF with Disturbances

In this section we will be revisiting the PF and PLF problems. The PF network (3) represents an
ideal case scenario. Namely, it assumes that there is no external unknown disturbance acting on the
network for all time. In many real life settings, however, this disturbance is in fact present. In vehicle
platooning, for example, one can think of this disturbance as a strong wind perpetually affecting
the position of each vehicle in the platoon. As a result, this disturbance will have to be taken into
account somehow. Factoring this disturbance into the PF network, the network can be modeled as

Σ1 : ẋ1(t) = −ax1(t) + d1(t),

Σj : ẋj(t) = −axj(t) + bxj−1(t) + dj(t), j = 2, . . . , N,
(10)

where a, b ∈ R with a > 0 and di(t) is an unknown, time-dependent disturbance acting on the
system Σi. The total network of systems for the PF formation is now given by

Σ : ẋ(t) = Ax(t) + d(t), (11)

where ai,i = −a, ai+1,i = b and d(t) =
[
d1(t) d2(t) . . . dN (t)

]⊤
. Now that each system in the

network contains an additional unknown term di(t), it begs the question of whether string stability
can still be achieved. Naturally, if di(t) ≡ 0, the problem reduces to that of Theorem 2.5. Otherwise,
solving this problem is not so obvious. Especially as these external disturbances are unknown, their
effect will have to be factored into achieving string stability. Definition 2.2 will turn out to be too
inflexible for this problem. However, if the disturbances are all bounded, then we can resort to the
following definition instead.

Definition 3.1. Consider the systems as in (10) and the network of systems (11). The network (11)
is said to be disturbance string stable if there exists real numbers K > 0, µ > 0 and γ > 0 such that

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|+ γ max
i=1,...,N

sup
t

|di(t)|,

for all initial conditions xi(0) = xi,0, all disturbances di(t) and all N ∈ N.

Recall that in order to obtain string stability as in Definition 2.2, it is necessary that the network
is exponentially stable. That is, the state trajectory of each system converges to the equilibrium
point x(t) = 0 in an exponential manner as time goes to infinity. Definition 3.1, on the other hand,
states that as t −→ ∞, we have |xi(t)| ≤ M := γmax sup |di(t)| for all i = 1, . . . , N and all N ∈ N.
What this means is that it is no longer necessarily true that each state trajectory converges to the
origin. Instead, the best we can wish for is input-to-state stability of each system in the network.
Each state trajectory xi(t) may not converge to zero, but at least we can still ensure that the state
trajectory of each system does not leave the strip of radius M centered around the origin, no matter
how large the network of systems is.

In order to achieve disturbance string stability, the same general technique as in Theorem 2.5
and Theorem 2.8 will be employed. Namely, the closed form solution of each system in (10) will
be used to create an exponential bound. However, in this case, the presence of the disturbances
complicates the problem. In order to deal with the disturbances, the following lemmas will be needed.

Lemma 3.2. Let x : [0,∞) −→ [0,∞) and y : [0,∞) −→ R be continuous functions. Let a, b ≥ 0 be
real numbers satisfying a ≤ b. If sup |y(t)| exists, then

bˆ

a

x(t)y(t)dt ≤ sup
t∈[a,b]

|y(t)|
bˆ

a

x(t)dt.
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Proof. Consider a partition of [a, b] given by a = t0 < t1 < · · · < tn−1 < tn = b. Define ∆t = b−a
n and

assume each subinterval [ti−1, ti] has length ∆t. Finally, let t∗i be a sampling point in the interval
[ti−1, ti]. Then, by definition of the definite integral, we have

bˆ

a

x(t)y(t)dt = lim
n→∞

n∑
i=1

x(t∗i )y(t
∗
i )∆t.

Applying the triangle inequality to the sum on the right hand side and noting that x(t) ≥ 0 for all
t ≥ 0, we obtain

lim
n→∞

n∑
i=1

x(t∗i )y(t
∗
i )∆t ≤ lim

n→∞

n∑
i=1

x(t∗i )|y(t∗i )|∆t

≤ sup
t∈[a,b]

|y(t)| lim
n→∞

n∑
i=1

x(t∗i )∆t

= sup
t∈[a,b]

|y(t)|
bˆ

a

x(t)dt.

Hence, the result follows.

In order to obtain the solution xN (t), we will need to integrate the unknown disturbances. Since
these integrals cannot be computed, due to these disturbances being unknown functions, we can still
apply Lemma 3.2 to pull out sup |dj(t)| for each disturbance. This already gives us the supremum
part of the disturbance bound in Definition 3.1. To deal with the remaining integrands, the following
lemma will be employed.

Lemma 3.3. Let a ∈ R and k ∈ N. Define

Ik(x)(t) :=

tˆ

0

tk−1ˆ

0

. . .

t1ˆ

0

x(τ) dτdt1 . . . dtk−1.

In other words, we integrate a function x k times. Then,

Ik(e
at) =

k−1∑
i=0

− ti

i!ak−i
+

1

ak
eat,

for all k ∈ N.

Proof. We will proceed by induction. Consider the base case k = 1. We have

I1(e
at) =

tˆ

0

eaτdτ

=
1

a
eat − 1

a
=

0∑
i=0

− ti

a1−i
+

1

a
eat.

Hence, the base holds. Assume now that the result holds for arbitrary k = n. We will show the result
holds for k = n+ 1. we have

In+1(e
at) =

tˆ

0

In(e
aτ )dτ.
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Plugging in the induction hypothesis, we obtain

In+1(e
at) =

tˆ

0

n−1∑
i=0

− τ i

i!an−i
+

1

an
eaτdτ

=
n−1∑
i=0

− ti+1

(i+ 1)!an−i
+

1

an+1
eat − 1

an+1
.

Rearranging indices, this is the same as

In+1(e
at) =

n∑
i=1

− ti

i!an+1−i
+

1

an+1
eat − 1

an+1

=
n∑

i=0

− ti

i!an+1−i
+

1

an+1
eat.

Hence, k = n+ 1 holds as well. The statement then follows by induction.

Using the above lemma, we can now find a closed-form expression for the solution of each system
in the disturbed PF network (10).

Lemma 3.4. Consider the network (10) for given initial conditions xi(0) = xi,0. Then, for each
N ∈ N, the solution is given by

xN (t) = e−at

N−1∑
i=0

bixN−i,0t
i

i!
+

N−1∑
j=0

bjIj+1(e
atdN−j)(t)

 .

Proof. First we note that each solution is given by

xN (t) = e−at

xN,0 +

tˆ

0

eaτ bxN−1(τ) + eaτdN (τ)dτ

 , (12)

which can be obtained by taking B =
[
b 1

]
and uN (t) =

[
xN−1(t) dN (t)

]⊤
and multiplying out

both matrices. Note that we can take the disturbance dN (t) as part of the input. We will proceed
by induction. Consider the base case N = 1. Then, the solution is given by

x1(t) = e−at

x1,0 +

tˆ

0

eaτd1(τ)dτ


= e−at

 0∑
i=0

bix1,0t
i

i!
+

0∑
j=0

bjIj+1(e
atd1−j)(t)

 .

Hence, the base case holds. Assume now that the statement holds for arbitrary N = k. We will show
it holds for N = k + 1. Plugging the induction hypothesis into (12), we get

xk+1(t) = e−at

xk+1,0 +

tˆ

0

b
k−1∑
i=0

bixk−i,0τ
i

i!
+ b

k−1∑
j=0

bjIj+1(e
aτdk−j)(τ) + eaτdk+1(τ)dτ

 .

We can split the above integral into three integrals: one integral for each term of the integrand.
Doing so, we note that we can directly apply Lemma 2.3 to the first two terms in parentheses above.
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Hence, we only need to show that the last two terms hold too. Applying the definition of Ik(x)(t),
this yields

xk+1(t) = e−at

 k∑
i=0

bixk−i,0t
i

i!
+

k−1∑
j=0

bj+1Ij+2(e
atdk−j)(t) +

tˆ

0

eaτdk+1(τ)dτ

 .

Finally, rearranging indices in the second sum and noting that

tˆ

0

eaτdk+1(τ)dτ = I1(e
atdk+1)(t),

we obtain

xk+1(t) = e−at

 k∑
i=0

bixk−i,0t
i

i!
+

k∑
j=1

bjIj+1(e
atdk+1−j)(t) + I1(e

atdk+1)(t)


= e−at

 k∑
i=0

bixk−i,0τ
i

i!
+

k∑
j=0

bjIj+1(e
atdk+1−j)(t)

 .

Hence, N = k + 1 holds as well. Since N = k was arbitrary, the result holds for all N ∈ N. This
shows the result.

Using these three lemmas, finding necessary and sufficient conditions for disturbance string
stability will turn out to be very simple. We can now state the main result.

Theorem 3.5. Consider the disturbed PF network (10). Assume that each disturbance di(t) is
bounded i.e. sup |di(t)| exists. Then, there exists real numbers K,µ, γ > 0 such that, for all initial
conditions xi(0) = xi,0, all disturbances di(t) and all N ∈ N,

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|+ γ max
i=1,...,N

sup
t

|di(t)|,

if and only if |b| < a.

Proof. ( =⇒ ) By assumption,

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|+ γ max
i=1,...,N

sup
t

|di(t)|,

for all initial conditions xi,0, all disturbances di(t) and all N ∈ N. Pick di(t) ≡ 0 for all i = 1, . . . , N .
Then, the problem reduces to that of Theorem 2.5. Hence, it immediately follows that |b| < a.
( ⇐= ) By Lemma 3.4, the solution for all N ∈ N is given by

xN (t) = e−at
N−1∑
i=0

bixN−i,0t
i

i!
+ e−at

N−1∑
j=0

bjIj+1(e
atdN−j)(t).

We can use the proof of Theorem 2.5 to bound the first term on the right hand side. Hence, we
only need to concern ourselves with the second term. Using Lemma 3.2 and applying the triangle
inequality, we can then say

xN (t) ≤ max
i=1,...,N

|xi,0|e−(a−|b|)t + e−at
N−1∑
j=0

|b|jIj+1(|eat||dN−j |)(t)

≤ max
i=1,...,N

|xi,0|e−(a−|b|)t + e−at
N−1∑
j=0

|b|j sup
t

|dN−j(t)|Ij+1(e
at).
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Next, we apply Lemma 3.3, which yields

xN (t) ≤ max
i=1,...,N

|xi,0|e−(a−|b|)t + e−at
N−1∑
j=0

|b|j sup
t

|dN−j(t)|

(
j∑

k=0

− tk

k!aj+1−k
+

1

aj+1
eat

)
.

We note that all the terms above, except for the minus term in the sum in parentheses, are positive
for all t ≥ 0. Since this minus term is negative, it immediately follows that

xN (t) ≤ max
i=1,...,N

|xi,0|e−(a−|b|)t + e−at
N−1∑
j=0

|b|j sup
t

|dN−j(t)|
1

aj+1
eat

= max
i=1,...,N

|xi,0|e−(a−|b|)t +
1

a

N−1∑
j=0

sup
t

|dN−j(t)|
|b|j

aj

≤ max
i=1,...,N

|xi,0|e−(a−|b|)t +
1

a
max

i=1,...,N
sup
t

|di(t)|
N−1∑
j=0

(
|b|
a

)j

.

We recognize the geometric series. Since |b| < a, we know that the series converges as N −→ ∞. It
follows that

xN (t) ≤ max
i=1,...,N

|xi,0|e−(a−|b|)t +
1

a
max

i=1,...,N
sup
t

|di(t)|
∞∑
j=0

(
|b|
a

)j

= max
i=1,...,N

|xi,0|e−(a−|b|)t +
1

a
max

i=1,...,N
sup
t

|di(t)|
1

1− |b|
a

= max
i=1,...,N

|xi,0|e−(a−|b|)t +
1

a− |b|
max

i=1,...,N
sup
t

|di(t)|,

where, in the second equality, we used the convergence formula for the geometric series
∑∞

j=0 r
j = 1

1−r
for |r| < 1. Since the above inequality holds for any N ∈ N, it follows that

max
i=1,...,N

|xi(t)| ≤ max
i=1,...,N

|xi,0|e−(a−|b|)t +
1

a− |b|
max

i=1,...,N
sup
t

|di(t)|,

for all N ∈ N. Set K = 1, µ = a− |b| and γ = 1
a−|b| . Since |b| < a by assumption, we have µ, γ > 0.

This shows the result.

It is interesting to note that Theorem 3.5 tells us that the presence of a disturbance does not
complicate matters when it comes to designing each system in the network to achieve disturbance
string stability. Moreover, it is interesting to note that the the optimal choice for |b| in the design
process does not change either. Whereas in Theorem 2.5 one would like to pick |b| to be as small as
possible to maximize µ = a− |b|, in this case the choice of |b| will also affect the extent to which the
external disturbance is present. Namely, γ = 1

a−|b| depends on b. One can see, however, that γ = 1
µ

and so maximizing µ means minimizing γ. Since we want to make the disturbance string stability
bound as small as possible, we want γ to be as small as possible as well. Hence, choosing |b| to be
as small as possible will optimize convergence speed of the bound and minimize the effect of the
disturbance on the network.

3.2 PLF with Disturbances

We would now like to extend the result given by Theorem 3.5 to networks adhering to the PLF
topology. Recall that the dynamics of a PLF network are given by (8). In this case, we will consider a
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PLF formation with an unknown, bounded disturbance di(t) added to each system. The network (8)
then becomes

Σ1 : ẋ1(t) = −ax1(t) + d1(t),

Σ2 : ẋ2(t) = −ax2(t) + bx1(t) + d2(t),

Σj : ẋj(t) = −axj(t) + bxj−1(t) + cx1(t) + dj(t), j = 3, . . . , N.

(13)

where a, b, c ∈ R and a > 0 and di(t) an unknown time dependent disturbance. As with the disturbed
PF network, it is no longer feasible to make this disturbed PLF network string stable. The best we
can opt for is disturbance string stability. The approach to solving this issue is very similar to that in
Theorem 3.5. Again, we are trying to find a closed-form solution of each system and use the triangle
inequality to appropriately bound each solution. This time, though, we will have to factor in the
presence of an additional leader term cx1(t) as well. This does complicate things to some extent, but
the general idea of solving this problem remains the same as in Theorem 3.5. This means that we
first need to know the solution of each system in the network (13). The following lemma provides us
with those closed-form solutions.

Lemma 3.6. Consider the network (13) for given initial conditions xi(0) = xi,0. For N = 1, 2, the
solution to each system is given by

xN (t) = e−at

N−1∑
i=0

bixN−i,0t
i

i!
+

N−1∑
j=0

bjIj+1(e
atdN−j)(t)

 .

For N ≥ 3 the solution to each system is given by

xN (t) = e−at

N−1∑
i=0

bixN−i,0t
i

i!
+

N−2∑
k=1

cx1,0b
k−1tk

k!
+

N−1∑
j=0

bjIj+1(e
atdN−j)(t)

+

n−2∑
m=1

bm−1cIm+1(e
atd1)(t)

)
.

Proof. The proof is similar to that of Lemma 3.4. We proceed by induction. For the cases N = 1, 2,
the system dynamics reduce to those in (10). The result then immediately follows from Lemma 3.4.
The result will be shown forN ≥ 3. To this end, consider the base case N = 3. By direct computation,
we obtain

x3(t) = e−at

(
x3,0 + bx2,0t+

b2

2
x1,0t

2 + b2I3(e
atd1)(t) + bI2(e

atd2)(t) + cx1,0t+ cI2(e
atd1)(t)

+ I1(e
atd3)(t)

)

= e−at

 2∑
i=0

bix3−i,0t
i

i!
+

1∑
k=1

cx1,0b
k−1tk

k!
+

2∑
j=0

bjIj+1(e
atd3−j)(t) +

1∑
m=1

bm−1cIm+1(e
atd1)(t)

 .

Hence, the base case holds. Assume now that the result holds for arbitrary N = p. We will show
that the result holds for N = p+ 1. Omitting time arguments, the solution is given by

xp+1 = e−at

xp+1,0 +

tˆ

0

eaτ (bxp + cx1 + dp+1) dτ

 .
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Noting that x1(t) = e−atx1,0 + e−atI1(e
atd1)(t) and plugging in the induction hypothesis, the above

becomes

xp+1 = e−at

xp+1,0 +

tˆ

0

p−1∑
i=0

bi+1xp−i,0τ
i

i!
+

p−2∑
k=1

cx1,0b
kτk

k!
+

p−1∑
j=0

bj+1Ij+1(e
aτdp−j)

+

p−2∑
m=1

cbmIm+1(e
aτd1) + cx1,0 + cI1(e

aτd1) + eaτdp+1 dτ

)
.

Collecting all the terms into their relevant summation, the above can be shortened to

xp+1 = e−at

xp+1,0 +

tˆ

0

p−1∑
i=0

bi+1xp−i,0τ
i

i!
+

p−2∑
k=0

cx1,0b
kτk

k!
+

p∑
j=0

bjIj(e
aτdp−j+1)

+

p−2∑
m=0

cbmIm+1(e
aτd1) dτ

)
,

which, after integrating, becomes

xp+1 = e−at

xp+1,0 +

p−1∑
i=0

bi+1xp−i,0t
i+1

(i+ 1)!
+

p−2∑
k=0

cx1,0b
ktk+1

(k + 1)!
+

p∑
j=0

bjIj+1(e
atdp−j+1)

+

p−2∑
m=0

cbmIm+2(e
atd1)

)
.

Finally, collecting all the remaining terms into their relevant summation and rearranging indices
yields the final result

xp+1 = e−at

 p∑
i=0

bixp+1−i,0t
i

i!
+

p−1∑
k=1

cx1,0b
k−1tk

k!
+

p∑
j=0

bjIj+1(e
atdp−j+1) +

p−1∑
m=1

cbm−1Im+1(e
atd1)

 .

Hence, the result holds for N = p + 1 as well. Since N = p was arbitrary, the result holds for all
N ≥ 3. This shows the result.

At first glance, the result in Lemma 3.6 looks quite daunting due to the presence of four different
sums. Upon closer inspection, however, one can recognize that the solution can be split up into two
parts, where one part is precisely the expression given in Lemma 3.4. This also means that when
trying to find conditions for disturbance string stability of the disturbed PLF network (13), half the
work will be done, since we can immediately employ Theorem 3.5 to this half of the solution. This
leads us to the final result of this section.

Theorem 3.7. Consider the disturbed PLF network (13). Assume that each disturbance di(t) is
bounded i.e. sup |di(t)| exists. Then, there exists real numbers K,µ, γ > 0 such that, for all initial
conditions xi(0) = xi,0, all disturbances di(t) and all N ∈ N,

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|+ γ max
i=1,...,N

sup
t

|di(t)|,

if and only if |b| < a.
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Proof. ( =⇒ ) Set di(t) ≡ 0 for all i = 1, . . . , N . The problem then reduces to that of Theorem 2.8.
It immediately follows that |b| < a.
( ⇐= ) Assume |b| < a. Omitting time arguments, by Lemma 3.6 the solution is given by

xN = e−at

N−1∑
i=0

bixN−i,0t
i

i!
+

N−1∑
j=0

bjIj+1(e
atdN−j)(t) +

N−2∑
k=1

cx1,0b
k−1tk

k!
+

N−2∑
m=1

bm−1cIm+1(e
atd1)

 ,

which holds for all N ≥ 3. Note that the above solution can be split into two parts. In particular,
one can see that the first two summations are precisely those as in Lemma 3.4. After applying the
triangle equality to the solution above, half the work will be done already by Theorem 3.5. After
applying Theorem 2.8 as well, for all N ∈ N, the solution then satisfies

xN ≤
(
1 +

|c|
|b|

)
max

i=1,...,N
|xi,0|e−(a−|b|)t + max

i=1,...,N
sup
t

|di(t)|
1

a− |b|
+ e−at

(
N−2∑
m=1

|b|m−1|c|Im+1(e
atd1)

)
.

We only need to deal with the summation term in the above inequality. Applying Lemma 3.3 and
following the proof of Theorem 3.5, this term satisfies

e−at

(
N−2∑
m=1

|b|m−1|c|Im+1(e
atd1)(t)

)
≤ |c|e−at

(
N−2∑
m=1

|b|m−1 sup
t

|d1(t)|Im+1(e
at)

)

≤ |c|

(
N−2∑
m=1

|b|m−1 sup
t

|d1(t)|
1

am+1

)

=
|c|
a2

(
N−3∑
m=0

sup
t

|d1(t)|
|b|m

am

)
,

where in the last equality we pulled out the term a2 to obtain the geometric series inside the
parentheses. Since |b| < a by assumption, the geometric series converges. Letting N −→ ∞, the
above inequality still holds, which gives us

e−at

(
N−2∑
m=1

|b|m−1|c|Im+1(e
atd1)(t)

)
≤ max

i=1,...,N
sup
t

|di(t)|
|c|
a2

1

1− |b|
a

= max
i=1,...,N

sup
t

|di(t)|
|c|

a(a− |b|)
.

Plugging this inequality into the solution inequality, we obtain the final result

xN (t) ≤
(
1 +

|c|
|b|

)
max

i=1,...,N
|xi,0|e−(a−|b|)t + max

i=1,...,N
sup
t

|di(t)|
a+ |c|

a(a− |b|)
,

which holds for all N ∈ N, hence also

max
i=1,...,N

|xi(t)| ≤
(
1 +

|c|
|b|

)
max

i=1,...,N
|xi,0|e−(a−|b|)t + max

i=1,...,N
sup
t

|di(t)|
a+ |c|

a(a− |b|)
,

for all N ∈ N. Set K = 1 + |c|
|b| , µ = a− |b| and γ = a+|c|

a(a−|b|) . Since |b| < a by assumption, γ > 0 and
µ > 0 holds. This proves the theorem.

Note that setting c = 0 yields precisely the result of Theorem 3.5. Similar to the interpretation
of the result in Theorem 3.5, the optimal choice for |b| and |c| does not change now that there is a
disturbance present in the system dynamics. Theorem 2.8 told us to choose |b| and |c| to be as small
as possible, in order to minimize K and maximize µ. In this case, just like in Theorem 3.5, this will
also minimize γ. Hence, the optimal choice for |b| and |c| remains unchanged.
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4 Two Predecessor Following Problems

In the previous sections, necessary and sufficient conditions for string stability and disturbance string
stability of networks adhering to the PF and PLF topologies were found. Focusing on the PF topology,
recall that each system receives an input from strictly its predecessor. A natural extension of the
PF problem is to generalize the predecessor following problem to an r predecessor following (rPF)
problem. In this generalization, each system receives inputs from its r predecessors. In this case, the
i’th system can be modeled by

Σi : ẋi(t) = −axi(t) +Bui(t),

where a > 0, B ∈ R1×r and ui =
[
xi−1(t) xi−2(t) . . . xi−r(t)

]⊤
. Note that if r = 1, then the rPF

problem reduces to that of the PF problem, which has been solved in Theorem 2.5. In this section,
necessary and sufficient conditions will be found for string stability of rPF networks for the case r = 2
(see Figure 3 (f)). Explicitly, this means we will initially be focusing on networks of systems of the
form

Σ1 : ẋ1(t) = −ax1(t),

Σ2 : ẋ2(t) = −ax2(t) + bx1(t),

Σj : ẋj(t) = −axj(t) + bxj−1(t) + cxj−2(t), j = 3, . . . , N,

(14)

where a, b, c ∈ R with a > 0. Finding conditions for string stability of this network will prove to be
increasingly more complicated than the case r = 1. After solving the 2PF problem, the result will
be extended to the 2PLF problem, in analogy with extending the PF problem to the PLF problem.
At the end of this section, sufficient conditions for string stability of rPF networks will be found for
arbitrary r.

4.1 Positive Systems

When finding conditions for string stability of an rPF network for the case r = 1, we made use of
the solution of each system as given by Lemma 2.3. Unfortunately, for rPF networks with r ≥ 2
predecessors, this approach becomes considerably more complex, making the approach unfeasible.
Therefore, a different method will have to be employed. In this new method, we can bypass having
to use the solution of each system in the first place and skip straight to the exponential bound, as
long as certain conditions are satisfied. The most important condition is that we require that the
network of systems (14) is a positive system. In order to define positivity, we first need to define
nonnegativity of a vector.

Definition 4.1. A vector x =
[
x1 x2 . . . xn

]⊤ ∈ Rn is said to be nonnegative if xi ≥ 0
for all i = 1, . . . , n. If, in addition, x is time-dependent function, i.e. x = x(t) with x(t) =[
x1(t) x2(t) . . . xn(t)

]⊤
, then x is nonnegative if xi(t) ≥ 0 for any t ≥ 0 and all i = 1, . . . , n.

We can now define positivity of a system. The following definition is a slight modification of the
one given in [5].

Definition 4.2. Consider the linear system

ẋ(t) = Ax(t) +Bu(t), (15)

where A ∈ Rn×n and B ∈ Rn×r. The linear system (15) is said to be positive if, for any nonnegative
initial state x0 and any nonnegative input u(t), its state trajectory x(t) is nonnegative for all t ≥ 0.
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In other words, once the state trajectory x(t) is nonnegative at some t = t∗ it will stay nonnegative
for all t ≥ t∗. Now that we have defined positivity of a network of systems, we need to be able to
check whether our network is positive. After all, the approach that we will be using will not work
when the network is not positive. In order to do that, the following theorem will be necessary.

Theorem 4.3. Consider the linear system

ẋ(t) = Ax(t) +Bu(t), (16)

where A ∈ Rn×n and B ∈ Rn×r. Then, (16) is positive if and only if

1. bi,j ≥ 0 for all i = 1, . . . , n and for all j = 1, . . . , r.

2. ai,j ≥ 0 for all i ̸= j.

Proof. The proof can be found in [5, pages 14-15].

4.2 2PF Problem

Now that we have some preliminary knowledge on positive systems, we can focus our attention on
the main method of solving the 2PF problem. Recall that this means we will find conditions for
string stability of the network of systems (14), which can be written in terms of a single, autonomous
system as

Σ : ẋ(t) =



−a
b −a
c b −a

. . .
. . .

. . .

c b −a
c b −a


x(t), (17)

where a > 0 and b, c ≥ 0 are real numbers and x(t) =
[
x1(t) x2(t) . . . xN (t)

]
∈ RN . Note that

we now require that b, c ≥ 0. As the network (17) is an autonomous system, meaning that the
input term in Definition 4.2 is absent, we require that ai,j ≥ 0 for all i ̸= j as per Theorem 4.3.
This amounts to picking b and c to be nonnegative. Note that this places a large restriction on the
allowable values for b and c. For rPF networks of the case r = 1, Theorem 2.5 states that b is allowed
to be negative, as long as |b| < a. Similarly, Theorem 3.5 allows for negative values of b as well.
In this case, however, we are forced to restrict ourselves to the case where b and c are nonnegative
instead. In exchange for this trade-off, we can make use of the following lemma, which will be crucial
for the remainder of this section.

Lemma 4.4. Consider the nonnegative functions vi : [0,∞) −→ [0,∞). Let µ > 0 and σ ∈ (0, 1) be
real numbers. Define recursively V1(t) = v1(t), Vn+1(t) = vn+1(t) + σVn(t) for all n ≥ 1. If

V̇k(t) ≤ −µVk(t),

for any k ∈ N, then
max

i=1,...,k
|vi(t)| ≤

1

1− σ
e−µt max

i=1...,k
|vi,0|,

for all initial conditions vi(0) = vi,0 and any k ∈ N.
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Proof. Denote Vk(0) = Vk,0. By assumption, we have for all k ∈ N,

V̇k(t) ≤ −µVk(t) =⇒ Vk(t) ≤ e−µtVk,0.

Expanding both sides of the inequality, this yields

Vk(t) ≤ e−µtVk,0

⇐⇒ vk(t) + σVk−1(t) ≤ e−µt (vk,0 + σVk−1,0) .

Since Vk(t) is nonnegative for any k ∈ N and all t ≥ 0, due to the nonnegativity of each vi(t), the
above inequality implies

vk(t) ≤ e−µt (vk,0 + σVk−1,0)

⇐⇒ vk(t) ≤ e−µt

(
k−1∑
i=0

σivk−i,0

)

=⇒ vk(t) ≤ max
i=1,...,k

|vi,0|e−µt

(
k−1∑
i=0

σi

)
,

where the summation term is the direct result of expanding Vk−1(t) and collecting the vk,0 term
inside the summation. Note that the above series is the geometric series. Since σ ∈ (0, 1), the series
converges. Moreover, since σ is positive, adding more terms will only make the right hand side larger.
This implies

vk(t) ≤ max
i=1,...,k

|vi,0|e−µt

( ∞∑
i=0

σi

)

⇐⇒ vk(t) ≤
1

1− σ
e−µt max

i=1,...,k
|vi,0|,

for all k ∈ N, which means that also

max
i=1,...,k

|vi(t)| ≤
1

1− σ
e−µt max

i=1,...,k
|vi,0|.

This proves the statement.

If we are able to apply Lemma 4.4 to the functions vi(t) = xi(t), then we will immediately have
bounded each solution as per Definition 2.2. In other words, Lemma 4.4 allows us to find conditions
for string stability without having to explicitly compute each solution. However, Lemma 4.4 does
place an additional restriction on us. Not only do we require the network (14) to be positive, but we
also require that xi,0 ≥ 0 for all i = 1, . . . , N . This is an additional restriction that Definition 4.2
does not require.

In order to apply Lemma 4.4, we need to be able to show the inequality V̇k(t) ≤ −µVk(t) holds
for our functions vk(t) = xk(t). The following lemma gives us a closed-form expression of V̇k(t) for
this choice of vk(t), which will be of great use in finding sufficient conditions for string stability.

Lemma 4.5. Consider the positive 2PF network (14) and the functions Vk(t) and vk(t) as defined
in Lemma 4.4. Set vi(t) = xi(t). Let qn(z) be the n−th degree polynomial defined by qn(z) =
−azn + bzn−1 + czn−2. If n − i < 0, for i = 1, 2, set zn−i(t) ≡ 0. Finally, let σ ∈ (0, 1) be a real
number. Then,

V̇k(t) = q0(σ)xk(t) + q1(σ)xk−1(t) +
k−3∑
i=0

σiq2(σ)xk−2−i(t). (18)
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Proof. We proceed by induction. Consider the base case k = 1. We have

V̇1(t) = v̇1(t) = −ax1(t) = q0(σ)x1(t).

Hence, the base case holds. Assume the statement holds for arbitrary k = n. Applying the expression
for Vk(t) and plugging in the induction hypothesis, we compute (omitting time arguments)

V̇n+1 = v̇n+1 + σV̇n+1

= −axn+1 + bxn + cxn−1 + σ
(
q0(σ)xn + q1(σ)xn−1

)
+

n−3∑
i=0

σi+1q2(σ)xn−2−i.

Note that σq0(σ) = q1(σ) − b and σq1(σ) = q2(σ) − c. Substituting this result and cancelling out
terms yields

V̇n+1 = −axn+1 + bxn + cxn−1 + (q1(σ)− b)xn + (q2(σ)− c)xn−1 +
n−3∑
i=0

σi+1q2(σ)xn−2−i

= q0(σ)xn+1 + q1(σ)xn + q2(σ)xn−1 +
n−3∑
i=0

σi+1q2(σ)xn−2−i

= q0(σ)xn+1 + q1(σ)xn +
n−2∑
i=0

σiq2(σ)xn−1−i.

Hence, the result holds for k = n+ 1. The statement now follows by induction.

We now have enough information to find sufficient conditions for string stability of the 2PF
network. This leads us to the following theorem.

Theorem 4.6 (Sufficiency of the 2PF problem). Consider the positive 2PF network (14). Let µ > 0
be a real number. Define the second-degree polynomial p(z) by

p(z) = (µ− a)z2 + bz + c.

If there exists a real number σ ∈ (0, 1) such that p(σ) ≤ 0, then there exists a real number K > 0
such that, for all initial conditions xi(0) = xi,0 and all N ∈ N,

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|.

Proof. By assumption, there exists σ ∈ (0, 1) such that p(σ) ≤ 0. In order to prove the statement,
we first need the following three inequalities. Firstly, by assumption we have

(µ− a)σ2 + bσ + c ≤ 0

⇐⇒ c+ σb− σ2a ≤ −σ2µ.
(19)

Secondly, since c ≥ 0, it also holds that

(µ− a)σ2 + bσ ≤ 0 ⇐⇒ b− σa ≤ −σµ, (20)

which can be obtained by dividing both sides by σ and moving terms around. Finally, since b ≥ 0,
this also means that

− σa ≤ −σµ ⇐⇒ −a ≤ −µ. (21)
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Next, define VN (t) and vN (t) as in Lemma 4.4, where N ∈ N. Setting vN (t) = xN (t), it follows by
Lemma 4.5 that

V̇N (t) = −axN (t) + (b− σa)xN−1(t) +
N−3∑
i=0

σi(c+ σb− σ2a)xN−2−i(t),

for all N ∈ N. Using the inequalities (19), (20) and (21) and recalling that xN (t) ≥ 0 for all t ≥ 0
and all N ∈ N, this implies

V̇N (t) ≤ −µxN (t)− µσxN−1(t)− µ
N−3∑
i=0

σi+2xN−2−i(t).

Collecting all the terms into one sum, the above inequality can be expressed as

V̇N (t) ≤ −µ
N−1∑
i=0

σixN−i(t)

= −µVN (t),

which holds for all N ∈ N. By Lemma 4.4, it then immediately follows that

max
i=1,...,N

|xi(t)| ≤
1

1− σ
e−µt max

i=1,...,N
|xi,0|,

for all N ∈ N. Setting K = 1
1−σ gives the result.

Now that sufficient conditions for string stability of the homogeneous 2PF network (14) have been
found, a natural question to ask is whether this same method can be extended to the heterogeneous
case. Fortunately, varying the parameters in each system does not complicate matters much. This
result is given by the following corollary.

Corollary 4.7. Consider the positive, heterogeneous 2PF network given by

Σ1 : ẋ1(t) = −a1x1(t),

Σ2 : ẋ2(t) = −a2x2(t) + b1x1(t),

Σj : ẋj(t) = −ajxj(t) + bj−1xj−1(t) + cj−2xj−2(t), j = 3, . . . , N,

where ai > 0 for all i = 1, . . . , N , bk ≥ 0 for all k = 1, . . . , N − 1 and cm ≥ 0 for all m = 1, . . . , N − 2
are real numbers. Let p(z) be the second-degree polynomial defined by

p(z) =

(
µ−min

i
|ai|
)
z2 +max

k
|bk|z +max

m
|cm|,

where µ > 0 is a real number. If there exists a real number σ ∈ (0, 1) such that p(σ) ≤ 0, then there
exists a real number K > 0 such that, for all initial conditions xi(0) = xi,0 and all N ∈ N,

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|.

Proof. Analogous to Lemma 4.5, it can be shown that

V̇N (t) = −aNxN (t) + (bN−1 − σaN−1)xN−1(t) +

N−3∑
l=0

σl(cN−2−l + σbN−2−l + σ2aN−2−l)xN−2−l(t),
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for all N ∈ N, which implies

V̇N (t) ≤ −min
i

|ai|xN (t) +

(
max
k

|bk| − σmin
i

|ai|
)
xN−1(t)

+
N−3∑
l=0

σl

(
max
m

|cm|+ σmax
k

|bk| − σ2min
i

|ai|
)
xN−2−l(t),

which, by assumption, then means that

V̇N (t) ≤ −µxN (t)− σµxN−1(t)− µ
N−3∑
l=0

σl+2xN−2−l(t)

= −µ

N−1∑
l=0

σlxN−l(t)

= −µVN (t).

By Lemma 4.4, the result immediately follows, with K = 1
1−σ .

In order to find necessary conditions for string stability of homogeneous 2PF networks, we will
be taking inspiration from Theorem 2.5. Recall the interpretation of the condition |b| < a as
per Theorem 2.5. Namely, when a sudden disturbance affects the leader vehicle, the effect of this
disturbance propagates through the string of vehicles. Then, |b| < a tells us that each vehicle provides
a smaller disturbance (i.e. |b|) to its successor than what the vehicle itself is experiencing (which is
a). However, in this case there are not one, but two inputs, namely b ≥ 0 and c ≥ 0. Analogous to
the PF problem, one could then conjecture that a 2PF platoon is string stable if and only if b+ c < a.
This can similarly be interpreted as each vehicle receiving a smaller total sum of disturbances, b+ c,
than what the previous vehicle is experiencing, namely a. The following lemma will tell us how the
polynomial defined in Theorem 4.6 partially confirms that this conjecture might be right.

Lemma 4.8. Let µ > 0 be a real number. Define the second-degree polynomial p(z) by

p(z) = (µ− a)z2 + bz + c,

where a > 0 and b, c ≥ 0 are real numbers. Then, b+ c < a if and only if there exists a real number
σ ∈ (0, 1) such that p(σ) ≤ 0.

Proof. ( =⇒ ) Assume b + c < a. Then, there exists σ ∈ (0, 1) such that b + c = σ2a. Moreover,
σ ∈ (0, 1) also implies that σb + c < b + c = σ2a. Moving all terms to the left hand side, this is
equivalent to saying that −σ2a+ σb+ c < 0. Since the inequality is strict, there exists some µ > 0
such that (µ− a)σ2 + bσ + c ≤ 0 i.e. p(σ) ≤ 0.
( ⇐= ) Assume there exists σ ∈ (0, 1) such that p(z) ≤ 0. Then,

(µ− a)σ2 + bσ + c ≤ 0

=⇒ −aσ2 + bσ + c < 0

⇐⇒ c+ σ(b− aσ) < 0.

Note that since c ≥ 0, we must have that σ(b − aσ) < 0. Otherwise, the above inequality cannot
hold. Since σ ∈ (0, 1), this must also mean that c + b − aσ < 0 i.e. c + b < σa. But since σa < a,
then we also have c+ b < a.
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It is now easy to see that c+b < a implies string stability of 2PF platoons. Namely, by Lemma 4.8,
there exists σ ∈ (0, 1) such that that

p(σ) = (µ− a)σ2 + bz + c ≤ 0.

The result then immediately follows from Theorem 4.6.

Before we continue with the 2PF problem, a quick remark needs to be made about Corollary 4.7. In
the PF problem we were able to find sufficient conditions for heterogeneous networks with identical
state parameters −a, which were given by Corollary 2.6. Note that this obstacle can now be over-
come by Corollary 4.7. By setting c1 = c2 = . . . = cN−2 = 0, Corollary 4.7 also gives us sufficient
conditions for fully heterogeneous PF networks i.e. for networks where we allow a and b to vary per
system. Namely, by Lemma 4.8 and Corollary 4.7, a fully heterogeneous PF network is string stable
if max |bk| ≤ min |aj |. If each state parameter −aj were the same, i.e. −aj = −a, then we would
indeed obtain Corollary 2.6 again. Note, however, that in this case we are dealing with a positive
PF network. Hence, this only proves the case where the heterogeneous PF network has nonnegative
input parameters, whereas the heterogeneous PF network in Corollary 2.6 does allow for negative
input parameters as well.

Returning to the homogeneous 2PF problem, the inconvenience that comes with using the method
employed so far is that it does not tell us how to pick an explicit value for µ and σ. Instead, assuming
b + c < a merely guarantees the existence of a µ > 0 and σ ∈ (0, 1) such that p(σ) ≤ 0. This is
unfortunate, as we cannot determine an explicit bound and, hence, cannot say anything about the
stability behavior of the solutions. Naturally, it would be nice if K was small and µ was big, such
that the exponential bound converges to the origin fast, but this method does not tell us how to
design each system in the network such that the choice for K and µ is optimized for string stability.
In particular, if σ is close to one, then the term K = 1

1−σ blows up, which is unfavorable as the
entire bound then blows up. Similarly, if µ is small, then the bound converges to the origin in a very
slow manner, which is something we want to avoid as well. This was a problem that did not occur in
Theorem 2.5 and Theorem 2.8, as the methods used there allowed us to find an explicit expression
for the exponential bound.

Going back to the reasoning from Theorem 2.5, the PF problem made use of the closed-form solution
given by Lemma 2.4. In particular, if we set xi,0 = 1 for all i = 1, . . . , N , then by Lemma 2.3 the
solution xN (t) in (4) converges to e−(a−b)t as N −→ ∞. The requirement |b| < a is then necessary to
ensure that the exponent in e−(a−|b|)t is negative. Combining this idea with Lemma 4.8, we may be
able to say something about the solutions of the systems in (14) after all, which we will see is required
to find necessary conditions for string stability of 2PF networks. This will also help us overcome
the obstacle that Theorem 4.6 poses. Namely, having some explicit knowledge about the solution
will allow us to determine how to pick the exponential bound efficiently, which is something that
Theorem 4.6 could not do. However, before we can do that, we need to state an important property
of the systems in (14).

Lemma 4.9. Consider the positive 2PF network (14) with initial conditions xi(0) = xi,0. Set xi,0 = 1
for all i = 1, . . . , N . Then, xk+1(t) ≥ xk(t) for all t ≥ 0 and all k = 1, . . . , N − 1.

Proof. Define the difference function ϵk(t) = xk+1(t) − xk(t). We claim that ϵk(t) ≥ 0 for all
k = 1, . . . , N − 1 and all t ≥ 0. This is then equivalent to showing that xk+1(t) ≥ xk(t) for all t ≥ 0.
The claim will be proven through induction. First, consider the base case. As each solution xj(t)
depends on xj−1(t) and xj−2(t), the base case will consider the cases k = 1 and k = 2. Manually
computing the solutions x1(t), x2(t) and x3(t), it can be shown that

ϵ1(t) = be−att,
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and

ϵ2(t) = e−at

(
ct+

b2

2
t2
)
,

which are both nonnegative for all t ≥ 0. Hence, the base case holds. Assume now that the statement
holds for arbitrary k = n, such that it also holds for k = n− 1. To show now is that the statement
holds for k = n+ 1. We compute:

ϵn+1(t) = xn+2(t)− xn+1(t)

= e−at

 tˆ

0

eaτ (bxn+1(τ) + cxn(τ)− bxn(τ)− cxn−1(τ))dτ

 .

Grouping together the b terms and c terms, we recognize the difference functions ϵn(t) and ϵn−1(t).
Substituting this result yields

ϵn+1(t) = e−at

 tˆ

0

eaτ (bϵn(τ) + cϵn−1(τ))dτ

 .

Since ϵn(t) ≥ 0 and ϵn−1(t) ≥ 0 for all t ≥ 0 by the induction hypothesis, each term in the integrand
is nonnegative. This means the above integral will be nonnegative and therefore ϵn+1(t) ≥ 0 for all
t ≥ 0. This shows the result.

Since, for all xi,0 = 1, the PF solution xN (t) in (4) converges to ebt as N −→ ∞, we would like
to show a similar result for the solutions of the systems in (14). As mentioned before, finding a
closed-form expression of each solution is no longer viable. However, we are still able to do the next
best thing, which is determining the limit the solutions of the systems convergence to. After all, the
only reason we needed the closed-form expression (4) of the solutions in the PF problem was so that
we could turn it into a Taylor series and find its limit as N −→ ∞. The following lemma will be an
important tool in determining this as of yet unknown limit.

Lemma 4.10. Consider the positive 2PF network (14) with initial conditions xi(0) = xi,0. Assume
xi,0 = 1 and consider the transformation zN (t) = eatxN (t) for all N ∈ N. Let k ≥ 0 be even i.e.
k = 2m for some m ∈ N. Then,

m−1∑
i=0

(b+ c)iti

i!
≤zk−1(t) ≤

k−1∑
i=0

(b+ c)iti

i!
,

m−1∑
i=0

(b+ c)iti

i!
≤zk(t) ≤

k−1∑
i=0

(b+ c)iti

i!
,

for all m ∈ N. In other words, each pair of solutions zk−1(t) and zk(t) can be bounded below and
above by the same bound.

Proof. The statement will be proven by induction. Consider the base case m = 1. Then k = 2, so we
compute z1(t) and z2(t). The two solutions are given by z1(t) = 1 and z2(t) = 1 + bt. Since b, c ≥ 0
these two solutions satisfy

1 ≤ zj(t) ≤ 1 + (b+ c)t,
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for j = 1, 2. Hence, the base case holds. Assume now that the statement holds for arbitrary m = n.
To show is that the statement holds for m = n+ 1. This means we have to show

n∑
i=0

(b+ c)iti

i!
≤ zk+1(t) ≤

k+1∑
i=0

(b+ c)iti

i!
,

n∑
i=0

(b+ c)iti

i!
≤ zk+2(t) ≤

k+1∑
i=0

(b+ c)iti

i!
.

We first show that the lower bound holds for both solutions. The solution zk+1(t) is given by

zk+1(t) = 1 +

tˆ

0

bzk(τ) + czk−1(τ)dτ.

Next, we can apply Lemma 4.9. Namely, since xk(t) ≥ xk−1(t), then also zk(t) ≥ zk−1(t). Plugging
this into the above yields

zk+1(t) ≥ 1 +

tˆ

0

(b+ c)zk−1(τ)dτ.

The next step is to plug in the induction hypothesis zk−1(t) ≥
∑n−1

i=0
(b+c)iti

i! which gives us

zk+1(t) ≥ 1 +

tˆ

0

n−1∑
i=0

(b+ c)i+1τ i

i!
dτ.

After integrating, collecting all terms into the summation and rearranging indices, this becomes

zk+1(t) ≥ 1 +

n−1∑
i=0

(b+ c)i+1ti+1

(i+ 1)!

=

n∑
i=0

(b+ c)iti

i!
.

Finally, applying Lemma 4.9 again, we have zk+2(t) ≥ zk+1(t) ≥
∑n

i=0
(b+c)iti

i! . This shows that the
lower bound holds for both solutions zk+1(t) and zk+2(t). To show that the upper bound holds, we
proceed analogously. The solution zk+2(t) is given by

zk+2(t) = 1 +

tˆ

0

bzk+1(τ) + czk(τ)dτ.

By applying Lemma 4.9, we have zk(t) ≤ zk+1(t). Applying this inequality to the expression above
and writing out the solution zk+1(t) explicitly, we can bound zk+2(t) as

zk+2(t) ≤ 1 +

tˆ

0

(b+ c)zk+1(τ)dτ

= 1 +

tˆ

0

(b+ c)

1 +

τˆ

0

bzk(τ̂) + czk−1(τ̂)dτ̂

 dτ

≤ 1 +

tˆ

0

(b+ c)

1 +

τˆ

0

(b+ c)zk−1(τ̂)dτ̂

 dτ,
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where in the last inequality we applied Lemma 4.9 again in the second integrand. Next, we can use

the induction hypothesis zk−1(t) ≤
∑k−1

i=0
(b+c)iti

i! . Plugging in the hypothesis into the above and
computing the first integral yields

zk+2(t) ≤ 1 +

tˆ

0

(b+ c) +

k−1∑
i=0

(b+ c)i+2τ i+1

(i+ 1)!
dτ,

which, after integrating again, gives us

zk+2(t) ≤ 1 + (b+ c)t+
k−1∑
i=0

(b+ c)i+2ti+2

(i+ 2)!
.

Finally, collecting all terms into one summation and rearranging index gives us the final result

zk+2(t) ≤
k+1∑
i=0

(b+ c)iti

i!
.

Moreover, since by Lemma 4.9 we have zk+1(t) ≤ zk+2(t), the result holds for both solutions. This
shows the result holds for m = n + 1. Since m = n was arbitrary, the result holds for all m ∈ N.
This proves the statement.

Note that the upper and lower bound in Lemma 4.10 are both the truncated Taylor series of the
exponential function e(b+c)t centered at t = 0. By applying the squeeze theorem to Lemma 4.10, it
can immediately be determined what zk(t) converges to as k −→ ∞. Namely, as k −→ ∞ then so
too does m −→ ∞ which means

∞∑
i=0

(b+ c)iti

i!
≤ lim

k→∞
zk(t) ≤

∞∑
i=0

(b+ c)iti

i!
.

Hence, by the squeeze theorem,

lim
k→∞

zk(t) = e(b+c)t,

and since xk(t) = e−atzk(t), the solution xk(t) converges to e(−a+b+c)t as k −→ ∞. It is important
to note that this only holds for the case where all initial conditions are set equal to one. Fortunately,
this is all we require to know to find necessary and sufficient conditions for string stability of 2PF
networks. Recall that Theorem 4.6 already provides us with sufficient conditions for string stability.
Unfortunately, as mentioned earlier, this theorem is lackluster in the sense that it merely guarantees
the existence of an exponential bound. It does not provide us with enough knowledge to design each
system in the network optimally to optimize the exponential bound and consequently string stability.
In the following theorem, this sufficiency condition will be proven again with the use of Lemma 4.10.
This time, analogous to Theorem 2.5, we will be able to explicitly determine how to pick K,µ > 0.
In turn, this will allow us to optimally design each system in the 2PF network to optimize string
stability. In addition to sufficiency, necessity will now also be proven.

Theorem 4.11. Consider the positive 2PF network (14). Let x̂n(t) be the solution xn(t) with all
initial conditions set equal to one. Define the transformation zN (t) = eatx̂N (t) for all N ∈ N. Then,
there exists real numbers K,µ > 0 such that, for all initial conditions xi(0) = xi,0 and all N ∈ N,

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|,

if and only if b+ c < a.
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Proof. ( ⇐= ) Let N ∈ N be arbitrary. Then, the solution xN (t) is given by

xN (t) = e−at

xN,0 +

tˆ

0

eaτ (bxN−1(τ) + cxN−2(τ))dτ

 .

Since each solution depends on one or more initial condition, we can replace these initial conditions
with the maximum in absolute value over all initial conditions and pull this maximum term outside
the solution. In turn, all the initial conditions inside the parentheses will now be set equal to one.
This means the above can be bounded by

xN (t) ≤ max
i=1,...,N

|xi,0|e−at

1 +

tˆ

0

eaτ (bx̂N−1(τ) + cx̂N−2(τ))dτ


= max

i=1,...,N
|xi,0|x̂N (t).

Note that x̂N (t) = e−atzN (t) since zN (t) = eatx̂N (t) by definition. Moreover, since N is arbitrary,
N is either even or odd. In particular, there exists m ∈ N such that N = 2m or N = 2m − 1.
Substituting x̂N (t) = e−atzN (t) and applying Lemma 4.10, the solution xN (t) can be bounded by

xN (t) ≤ max
i=1,...,N

|xi,0|e−atzN (t)

≤ max
i=1,...,N

|xi,0|e−at

(
2m−1∑
i=0

(b+ c)iti

i!

)
.

Note that since b, c ≥ 0, each term in the series is positive. This means adding more terms to this
series will only make it larger. In particular, the above inequality also holds when m −→ ∞, but
then the series converges to e(b+c)t. Substituting this result gives us

xN (t) ≤ max
i=1,...,N

|xi,0|e−ate(b+c)t

= max
i=1,...,N

|xi,0|e−(a−b−c)t,

which holds for all N ∈ N and any initial condition xi,0. Hence, we also have

max
i=1,...,N

|xi(t)| ≤ max
i=1,...,N

|xi,0|e−(a−b−c)t,

for all N ∈ N. Set K = 1 and µ = a − b − c. Since b + c < a by assumption, we have that µ > 0.
Hence, the network is string stable.

( =⇒ ) Assume that there exists K,µ > 0 such that

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|,

for all N ∈ N and all initial conditions xi,0. Set xi,0 = 1 for all i = 1, . . . , N . Then, by assumption,
the solution satisfies

xN (t) ≤ Ke−µt,

for all N ∈ N. By applying the squeeze theorem to Lemma 4.10, xN (t) converges to e(−a+b+c)t as
N −→ ∞. Analogous to Lemma 2.4, this then implies

e(−a+b+c)t ≤ Ke−µt.
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Assume now that b+ c ≥ a for contradiction. Then, e−(b+c)t ≤ e−at, which implies

1 ≤ Ke−µt,

which holds for all t ≥ 0. Since µ > 0, the right hand side decays to the origin. This means that
there exists t∗ ≥ 0 such that 1 > Ke−µt∗ , which is a contradiction as 1 ≤ Ke−µt for all t ≥ 0 by
assumption. Hence, we have b+ c < a. This shows the result.

Note that Theorem 4.11 gives us several advantages that Theorem 4.6 does not provide us. Aside
from the obvious necessary condition, we can now explicitly determine how to design each system in
the network to optimize string stability. In addition, Theorem 4.11 gives us a better K value than
Theorem 4.6. Namely, according to Theorem 4.6, K = 1

1−σ for some σ ∈ (0, 1). However, this means
that no matter the value of σ, we would always have K > 1. On the other hand, Theorem 4.11 tells
us that by choosing µ = a− b− c, we can set K = 1. Analogous to Theorem 2.5, we wish to make
µ = a − b − c as large as possible to optimize string stability. This can be achieved by choosing
both b and c to be as close to zero as possible, such that µ is close to a > 0. Having solved the 2PF
problem in its entirety now, we wish to focus our attention on the 2PLF problem.

4.3 2PLF Problem

The 2PLF problem is an extension of the PLF problem, whose results can be found in Theorem 2.8.
We wish to study the network given by the systems

Σ1 : ẋ1(t) = −ax1(t),

Σ2 : ẋ2(t) = −ax2(t) + bx1(t),

Σ3 : ẋ3(t) = −ax3(t) + bx2(t) + cx1(t),

Σi : ẋi(t) = −axi(t) + bxi−1(t) + cxi−2(t) + px1(t), i = 4, . . . , N,

(22)

where a > 0 and b, c, p ∈ R. Just like in the 2PF problem, it is no longer viable to find a closed-form
expression of the solution of each system in the above network. Fortunately, analogous to the 2PF
problem, restricting ourselves to the case where the 2PLF network (22) is a positive system will make
things considerably easier. The network (22) can be written as a single autonomous system as

Σ : ẋ(t) =



−a
b −a
c b −a
p c b −a
p c b −a
...

. . .
. . .

. . .

p c b −a


x(t), (23)

where x(t) =
[
x1(t) x2(t) . . . xN (t)

]
∈ RN . To ensure that (23) is a positive system, we require

b, c, p ≥ 0 by Theorem 4.3. Hence, when solving the 2PLF problem in this section, we will restrict
ourselves to the case where b, c, p ≥ 0.

The key difference in solving the 2PLF problem, is that in the 2PF problem positivity of the
2PF network was used so Lemma 4.4 could be applied. In this particular problem, it seems that
Lemma 4.4 cannot be of much help. Fortunately, we can still employ similar methods to those in
Theorem 4.11 to find necessary and sufficient conditions for string stability. As we will see, we will
only need to bound the transformed solution zk(t) = eatxk(t) from above to find necessary and
sufficient conditions for string stability of the 2PLF network (22). This is in contrast to the 2PF
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problem, where we explicitly had to find the limit for zk(t) as k −→ ∞ through employing the squeeze
theorem. As we will see, we can use Lemma 4.10 for this problem as well. This simplifies the problem
significantly. Moreover, we will also see that extending the 2PF problem to the 2PLF problem will
be very similar to extending the PF problem to the PLF problem. As a first step to solving the 2PLF
problem, the following lemma tells us how to bound the transformed solution zk(t) from above.

Lemma 4.12. Consider the positive 2PLF network (22) with initial conditions xi(0) = xi,0. Assume
xi,0 = 1 and consider the transformation zN (t) = eatxN (t) for all N ∈ N. Let k ≥ 0 be even i.e.
k = 2m where m ∈ N. Then,

zk−1(t) ≤
k−1∑
i=0

(b+ c)iti

i!
,

zk(t) ≤
k−1∑
i=0

(b+ c)iti

i!
,

for m = 1. For m ≥ 2, each pair of solutions satisfies

zk−1(t) ≤
k−1∑
i=0

(b+ c)iti

i!
+

k−3∑
j=1

p
(b+ c)j−1tj

j!
,

zk(t) ≤
k−1∑
i=0

(b+ c)iti

i!
+

k−3∑
j=1

p
(b+ c)j−1tj

j!
.

Proof. For the case m = 1 the problem reduces to that of Lemma 4.10. Hence, the result will be
shown for m ≥ 2. The proof is analogous to Lemma 4.10. We proceed by induction. First, consider
the base case m = 2. Then, this means k = 4. Explicitly computing the solutions z3(t) and z4(t), we

find z3(t) = 1 + (b+ c)t+ b2

2 t
2 and z4(t) = 1 + (b+ c)t+

(
b2

2 + bc
)
t2 + b3

6 t
3 + pt. This means that

zl(t) ≤
3∑

i=0

(b+ c)iti

i!
+

1∑
j=1

p
(b+ c)j−1tj

j!
,

for l = 3, 4. Hence, the base case holds. Assume that the statement holds for arbitrary m = n ≥ 2.
Analogous to Lemma 4.9, it can be shown that zk+1(t) ≥ zk(t) for all k ∈ N and for all t ≥ 0.
Computing the solution zk+2(t) and plugging in this observation, we obtain

zk+2(t) = 1 +

tˆ

0

bxk+1(τ) + czk(τ) + pz1(τ)dτ

≤ 1 + pt+

tˆ

0

(b+ c)zk+1(τ)dτ.

Next, we can plug in the formula for zk+1(t) and use the fact that zk−1(t) ≤ zk(t). After some
computations, this gives us

zk+2(t) ≤ 1 + pt+

tˆ

0

(b+ c)

1 +

τˆ

0

(b+ c)xk(τ̂)dτ̂ + pτ

 dτ

= 1 + pt+

tˆ

0

(b+ c) +

τˆ

0

(b+ c)2xk(τ̂)dτ̂ + p(b+ c)τ

 dτ.
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Plugging in the induction hypothesis and integrating, the above can also be written as

zk+2(t) ≤ 1 + pt+

tˆ

0

(b+ c) +
k−1∑
i=0

(b+ c)i+2τ i+1

(i+ 1)!
+

k−3∑
j=1

p
(b+ c)j+1τ j+1

(j + 1)!
+ p(b+ c)τ

 dτ

= 1 + pt+ (b+ c)t+
k−1∑
i=0

(b+ c)i+2ti+2

(i+ 2)!
+

k−3∑
j=1

p
(b+ c)j+1tj+2

(j + 2)!
+ p

(b+ c)t2

2
.

Rearranging indices and collecting all the terms into their respective summation, the above can be
more compactly stated as

zk+2(t) ≤
k+1∑
i=0

(b+ c)iti

i!
+

k−1∑
j=1

p
(b+ c)j−1tj

j!
.

Since zk+1(t) ≤ zk+2(t), the result holds for both solutions zk+1(t) and zk+2(t). Hence, the result
holds for m = n+ 1. The statement now follows by induction.

Note that if we let k −→ ∞, then the upper bound converges. Namely, by multiplying the second
series by b+c

b+c , both series in the bound now have the shape of the Taylor series of e(b+c)t. However,
the second series starts at j = 1. Since we want to let this series start at j = 0, we can subtract one
such that we are adding zero. This ensures that the second series is now an appropriate Taylor series
as well which converges to an existing limit. Explicitly writing this out, we obtain

∞∑
i=0

(b+ c)iti

i!
+

p

b+ c

 ∞∑
j=0

(b+ c)jtj

j!
− 1

 =

(
1 +

p

b+ c

)
e(b+c)t − p

b+ c
.

We can now find necessary and sufficient conditions for string stability of 2PLF networks. The proof
will be analogous to that of Theorem 2.8 and Theorem 4.11.

Theorem 4.13. Consider the positive 2PLF network (22). Let x̂n(t) be the solution xn(t) with all
initial conditions set equal to one. Define the transformation zN (t) = eatx̂N (t) for all N ∈ N. Then,
there exists real numbers K,µ > 0 such that, for all initial conditions xi(0) = xi,0 and all N ∈ N,

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|,

if and only if b+ c < a.

Proof. ( ⇐= ) Let N ∈ N be arbitrary. Then,

xN (t) = e−at

xN,0 +

tˆ

0

eaτ (bxN−1(τ) + cxN−2(τ) + px1(τ))dτ

 .

Since each solution depends on one or more initial condition, we can replace these initial conditions
by the maximum in absolute value over all initial condition and pull this maximum term outside the
solution. In turn, all the initial conditions inside the parentheses will now be set equal to one. This
means the above can be bounded by

xN (t) ≤ max
i=1,...,N

|xi,0|e−at

1 +

tˆ

0

eaτ (bx̂N−1(τ) + cx̂N−2(τ) + px̂1(τ))dτ


= max

i=1,...,N
|xi,0|e−atx̂N (t).
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Note that x̂N (t) = e−atzN (t) since zN (t) = eatx̂N (t) by definition. Moreover, note that since N is
arbitrary, N is either even or odd. In particular, there exists m ∈ N such that N = 2m or N = 2m−1.
Substituting zN (t) and applying Lemma 4.12, the solution xN (t) satisfies

xN (t) ≤ max
i=1,...,N

|xi,0|e−atzN (t)

≤ max
i=1,...,N

|xi,0|e−at

2m−1∑
i=0

(b+ c)iti

i!
+

2m−3∑
j=1

p
(b+ c)j−1tj

j!

 .

Since b, c ≥ 0, each term in the series is positive, so adding more terms to this series will only make
the right hand side larger. In particular, the above inequality also holds when m −→ ∞, but then

the series converges to
(
1 + p

b+c

)
e(b+c)t − p

b+c . Substituting this result gives us

xN (t) ≤ max
i=1,...,N

|xi,0|e−at

((
1 +

p

b+ c

)
e(b+c)t − p

b+ c

)
≤ max

i=1,...,N
|xi,0|e−at

(
1 +

p

b+ c

)
e(b+c)t

=

(
1 +

p

b+ c

)
e−(a−b−c)t max

i=1,...,N
|xi,0|,

which holds for all N ∈ N and all initial conditions. In the second line we used the fact that p
b+c ≥ 0.

Since the above inequality holds for all N ∈ N, we also have

max
i=1,...,N

|xi(t)| ≤
(
1 +

p

b+ c

)
e−(a−b−c)t max

i=1,...,N
|xi,0|,

for all N ∈ N. Set K = 1 + p
b+c and µ = a − b − c. Since b + c < a by assumption, we have that

µ > 0. Hence, the network is string stable.
( =⇒ ) Assume that there exists real numbers K,µ > 0 such that

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|,

for all N ∈ N and all initial conditions xi,0. Set x1,0 = 0 and set xi,0 = 1 for all i = 2, . . . , N . Then,
by assumption, each solution satisfies

xn(t) ≤ Ke−µt,

for all n = 1, . . . , N and all N ∈ N. Note that since x1,0 = 0, we have x1(t) = e−atx1,0 = 0 which
means

xn(t) = e−at

1 +

tˆ

0

eaτ (bxn−1(τ) + cxn−1(τ))dτ

 ,

and

ẋn(t) = −axn(t) + bxn−1(t) + cxn−2(t).

In other the words, the dependency on px1(t) is fully removed in the system dynamics. Without
loss of generality, we can then relabel the indices of the solutions by setting xn(t) = xn−1(t) for all
n = 2, . . . , N to obtain an N − 1 dimensional network with a 2PF formation. The problem then
immediately reduces to Theorem 4.11. Hence, it follows that b+ c < a.
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4.4 rPF Problem

In this final subsection we aim to generalize the 2PF problem to the rPF problem where r ∈ N. In
other words, we would like to find conditions for string stability of positive networks of the form

Σ1 : ẋ1(t) = −ax1(t),

Σi : ẋi(t) = −axi(t) + b1xi−1(t) + b2xi−2(t) + · · ·+ brxi−r(t)

= −axi(t) +
r∑

m=1

bmxi−m(t), i = 2, . . . , N,

(24)

where a > 0 and bj ≥ 0 for all j = 1, . . . , r are real numbers. If k ≤ 0, set xk(t) ≡ 0. Fortunately, this
problem follows the exact same method as in the first part of the previous section. We would like to
apply Lemma 4.4 to the network (24), which means that we will need to generalize Lemma 4.5 for
arbitrary r, after which a generalization of Theorem 4.6 almost immediately follows. To this end, we
will first generalize Lemma 4.5. This means sufficient conditions for the rPF problem can be found
with relative ease. Due to the complexity of this problem, however, necessity will not be covered.

Lemma 4.14. Consider the positive rPF network (24) with r ≥ 1 and bj ≥ 0 for all j = 1, . . . , r.
Define the functions vk(t) and Vk(t) as in Lemma 4.4. Set vk(t) = xk(t) for all k ∈ N and let
σ ∈ (0, 1) be a real number. Let qn(z) be the n-th degree polynomial defined by

qn(z) = −azn + b1z
n−1 + b2z

n−2 + · · ·+ br−1z
n−r+1 + brz

n−r.

If n− i < 0 for i = 1, . . . , r, set zn−i ≡ 0. Then,

V̇k(t) =
r∑

j=0

qj(σ)xk−j(t) +
k−1−r∑
i=1

σiqr(σ)xk−r−i(t).

Proof. The proof is a generalization of that of Lemma 4.5. We proceed by induction. Consider the
base case k = 1. Then, V̇k(t) = −ax1(t) = q0(σ)x1(t). Hence, the base case holds. Assume now that
the statement holds for arbitrary k = n. We will show that the statement holds for k = n+1 as well.
Analogous to Lemma 4.5 and omitting time arguments, we proceed. We obtain

V̇n+1 = v̇n+1 + σV̇n

= −axn+1 +

r∑
m=1

bmxn−m+1 + σ

r∑
j=0

qj(σ)xn−j +

n−1−r∑
i=1

σi+1qr(σ)xn−r−i.

Note that for j = 0, . . . , r we have σqj(σ) = qj+1(σ) − bj+1. Rewriting the above, substituting the
result and collecting terms, the above can be written as

V̇n+1 = −axn+1 +
r−1∑
j=0

(
bj+1xn−j + σqj(σ)xn−j

)
+ σqr(σ)xn−r +

n−1−r∑
i=1

σi+1qr(σ)xn−r−i

= −axn+1 +

r−1∑
j=0

qj+1(σ)xn−j +

n−1−r∑
i=0

σi+1qr(σ)xn−r−i

=

r∑
j=0

qj(σ)xn+1−j +

n−r∑
i=1

σiqr(σ)xn+1−r−i.

Hence, the statement holds for k = n+ 1 as well. Since k = n was arbitrary, the statement holds for
all k ∈ N.
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Now that we have found a generalization of Lemma 4.5 for arbitrary r, we can state the main
result. The following theorem will provide us with sufficient conditions for string stability of the rPF
formation for any r ∈ N. In essence, the following theorem is just a generalization of Theorem 4.6.

Theorem 4.15. Consider the positive rPF network (24). Let pr(z) be the r-th degree polynomial
defined by

pr(z) = (µ− a)zr + b1z
r−1 + b2z

r−2 + · · ·+ br−1z + br, (25)

where µ > 0 is a real number. If there exists a real number σ ∈ (0, 1) such that pr(σ) ≤ 0, then there
exists a real number K > 0 such that, for all initial conditions xi(0) = xi,0 and all N ∈ N,

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|.

Proof. We proceed in the same way as in Theorem 4.6. Note that since pr(σ) ≤ 0 by assumption,
this also means pj(σ) ≤ 0 for all j = 0, . . . , r. This can be easily verified by using the assumption
pr(σ) ≤ 0, subtracting the constant coefficient (which is allowed as each coefficient in the polynomial
is nonnegative) and dividing by r. Repeatedly applying this procedure will then show pj(σ) ≤ 0 for
all j = 0, . . . , r. Next, we apply Lemma 4.14, which states

V̇N (t) =

r∑
j=0

qj(σ)xN−j(t) +

N−1−r∑
i=1

σiqr(σ)xN−r−i(t). (26)

In order to bound this expression and use Lemma 4.4, we need

qj(σ) ≤ −µσj

⇐⇒ qj(σ) + µσj ≤ 0

⇐⇒ pj(σ) ≤ 0,

for all j = 0, . . . , r. Since pj(σ) ≤ 0 for all j = 0, . . . , r by assumption, the above inequality holds.
Hence, we have qj(σ) ≤ −µσj for all j = 0, . . . , r. Substituting this result in (26), it follows that

V̇N (t) ≤
r∑

j=0

−µσjxN−j(t) +

N−1−r∑
i=1

−µσr+ixN−r−i(t)

=
N−1∑
j=0

−µσjxN−j(t)

≤ −µVN (t),

which holds for all N ∈ N. By Lemma 4.4, the result directly follows, yielding K = 1
1−σ .

As this theorem is a generalization of Theorem 4.6, the same issues arise as in the 2PF problem.
Namely, this theorem does not give us an explicit bound i.e. it does not tell us how to find σ ∈ (0, 1)
and how to find µ > 0. As mentioned before, this is bad, because if σ is close to one, then K = 1

1−σ
blows up. It also does not tell us how to choose each bj in the input term to optimize string stability
or even guarantee the existence of σ ∈ (0, 1) and µ > 0 to begin with. In the 2PF problem, Lemma 4.8
gave us conditions to ensure the existence of σ and µ, namely the requirement that b+ c < a. This
result can be generalized in the rPF problem, leaving us with at least the tools to know how to design
each system appropriately to obtain string stability of rPF networks.
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Lemma 4.16. Consider the positive rPF network (24). Let pr(z) be the r-th degree polynomial
defined by

pr(z) = (µ− a)zr + b1z
r−1 + b2z

r−2 + · · ·+ br−1z + br, (27)

where µ > 0 is a real number. Then, there exists a real number σ ∈ (0, 1) such that pr(σ) ≤ 0 if and
only if

∑r
i=1 bi < a.

Proof. The proof is a generalization of Lemma 4.8.
( ⇐= ) Assume

∑r
i=1 bi < a. There exists σ ∈ (0, 1) such that

∑r
i=1 bi = σra, which means

r∑
i=1

σr−ibi < σra,

i.e.
r∑

i=1

σr−ibi − σra < 0.

Since the inequality is strict, there exists µ > 0 such that

(µ− a)σr +

r∑
i=1

σr−ibi ≤ 0,

or equivalently, pr(σ) ≤ 0.
( =⇒ ) Assume there exists σ ∈ (0, 1) such that p(σ) ≤ 0. Then, since µ > 0 by assumption, this
implies

−aσn +
r∑

i=1

σr−ibi < 0,

which is equivalent to

br + σ

(
−aσr−1 +

r−1∑
i=1

σr−1−ibi

)
< 0.

Since br ≥ 0, the term in parentheses in the above inequality is negative. Moreover, since σ ∈ (0, 1),
the above implies

br − aσr−1 +
r−1∑
i=1

σr−1−ibi < 0.

Repeatedly applying the same procedure, inductively one obtains that
∑r

i=1 bi − aσ < 0, which
implies

∑r
i=1 bi < a. This shows the result.

We now have enough knowledge to optimally design each system in the rPF network (24) such
that string stability is achieved and optimized. It can easily be seen now that

∑r
i=1 bi < a implies

string stability. For good measure, we will explicitly state the result. This will be the final result of
this thesis.

Corollary 4.17. Consider the positive rPF network (24). Then, if
∑r

i=1 bi < a, there exists real
numbers K,µ > 0 such that, for all initial conditions xi(0) = xi,0 and all N ∈ N,

max
i=1,...,N

|xi(t)| ≤ Ke−µt max
i=1,...,N

|xi,0|.
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Proof. By Lemma 4.16, there exists σ ∈ (0, 1) such that

pr(σ) = (µ− a)σr + b1σ
r−1 + b2σ

r−2 + · · ·+ br−1σ + br ≤ 0.

By Theorem 4.15, the result immediately follows with K = 1
1−σ .

Note that the same interpretation applies as in the 2PF and PF problems. Namely, each vehicle
in a platoon receives a smaller total amount of disturbances,

∑r
i=1 bi, than what the previous vehicle

experiences, a.
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5 Examples

This section serves to show the validity of the results obtained in this thesis by running simulations
for various values of the system parameters and various network sizes. In particular, these examples
aim to show two things. First of all, they aim to show that the string stability bounds are in fact valid.
That is, given N systems in a network, the state trajectory of each system can be bounded by this
exponential bound. Secondly, these examples aim to show the scalability property of the networks for
the same bound. In other words, by considering increasingly large values of N , the same bound can
always be applied. This would in turn then show that the string stability bound does not depend on N .

In the following examples, the thick red dashed lines represent the string stability bound, whereas
all other lines represent the state trajectories of each system in the given network. For simplicity, we
will set xi,0 = 1 for all i = 1, . . . , N unless otherwise specified. All the solutions have been computed
using the forward Euler method. As the results for heterogeneous networks were weaker versions of
their homogeneous counterparts, only homogeneous networks will be considered here.

5.1 Predecessor Following

We start off with the simplest case. By Theorem 2.5, string stability is achieved whenever |b| < a.
Choose a = 4 and b = 3. By Theorem 2.5, we must have

xi(t) ≤ e−t,

for all i = 1, . . . , N . Figure 4 shows the result for N = 10 and N = 1000.

(a) N = 10 (b) N = 1000

Figure 4: PF string stability for a = 4 and b = 3.

One can clearly see that none of the state trajectories exceed the bound given by the red dashed
line at any point. We can therefore conclude that the network of systems is string stable for a = 4
and b = 3. What if we changed the initial conditions? Again set a = 4 and b = 3, but this time set
x1,0 = 5 and xj,0 = 2 for all j = 2, . . . , N . Then, xi(t) ≤ 5e−t for all i = 1, . . . , N . The results can
be seen in Figure 5.
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(a) N = 10 (b) N = 1000

Figure 5: PF string stability for a = 4, b = 3 and max |xi,0| = 5.

Despite the shapes of the solutions changing now that we vary the initial conditions, none of
these state trajectories ever cross the exponential bound. Hence again, we achieve string stability.
Similarly, the requirement |b| < a means that negative values for b are allowed as well. This will no
longer make the network a positive system and so each state trajectory can attain negative values as
well. Setting a = 4 and b = −3, the state trajectories can be bounded by

−e−t ≤ xi(t) ≤ e−t,

for all i = 1, . . . , N . Figure 6 shows the result for N = 10 and N = 1000.

(a) N = 10 (b) N = 1000

Figure 6: PF string stability for a = 4 and b = −3.

Again, it can be seen that string stability is achieved. Hence, we can indeed choose the input
parameters to be negative as well. On the other hand, Theorem 2.5 tells us that if |b| ≥ a, then we
no longer have string stability. Setting a = 4 and b = 5, Figure 7 shows the solutions and the bounds
for N = 10 and N = 20.
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(a) N = 10 (b) N = 20

Figure 7: PF string unstability for a = 4 and b = 5.

Notice how each solution converges to the origin over time. This shows that the network is
exponentially stable. However, it can be seen that there is no exponentially decaying bound possible.
Namely, as N −→ ∞, so too does the largest peak over all solutions shoot off to infinity. Hence, in
this case, string stability is not possible, which is exactly in accordance with Theorem 2.5.

5.2 Predecessor-Leader Following

According to Theorem 2.8, string stability can be achieved as long as |b| < a. The value of c does

not influence string stability, but it does influence the bound since K = 1 + |c|
|b| . Pick a = 5, b = 4,

c = 10. By Theorem 2.8, the solutions satisfy

xi(t) ≤
7

2
e−t,

for all i = 1, . . . , N . Figure 8 shows the result for N = 10 and N = 1000.

(a) N = 10 (b) N = 1000

Figure 8: PLF string stability for a = 5, b = 4 and c = 10.

46



Scalable Stability Properties of Networks of Linear Systems David Offringa

Note the peaks of each state trajectory. These arise due to the presence of c, causing the K term
in the exponential bound to blow up to compensate for these peaks. In a string unstable network,
these peaks would grow with each additional increase in network size. However, in this case, due to
string stability, these peaks will remain bounded no matter the network size.

5.3 Predecessor Following with Disturbances

Recall that due to the presence of disturbances, we can no longer achieve string stability of the system.
Instead, we will have to resort to disturbance string stability as in Definition 3.1. Per Theorem 3.5,
we require that |b| < a. Moreover, we require that each disturbance di(t) is bounded. Choose a = 4,
b = 1 and dj(t) = sin (jt) for all j = 1, . . . , N . By Theorem 3.5, each solution xi(t) satisfies

−1

3
− e−3t ≤ xi(t) ≤ e−3t +

1

3
,

for all t ≥ 0 and all i = 1, . . . , N . Figure 9 shows the result for N = 10 and N = 1000.

(a) N = 10 (b) N = 1000

Figure 9: PF disturbance string stability for a = 4, b = 1 and dj(t) = sin(jt).

As can be seen, the state trajectories do not converge to the origin. Rather, each solution seems
to oscillate in some small interval around the origin for all time. This reinforces the idea that while
exponential stability is not possible, it is still possible to trap each state trajectory in the strip
of radius γmax sup |di(t)| = 1

3 (for sufficiently large t ≥ 0). Hence, disturbance string stability is
achieved, whereas string stability itself is not feasible.

5.4 Predecessor-Leader Following with Disturbances

Similar to the PF problem with disturbances, we need to settle for disturbance string stability.
According to Theorem 3.7, this is achieved whenever |b| < a. The value of c does not matter to

obtain string stability, but the choice for c does affect the shape of the bound, as K = 1+ |c|
|b| . In this

example, pick a = 10, b = 5, c = 6 and set dj(t) = sin (jt) for all j = 1, . . . , N . Then, each solution
xi(t) satisfies

−11

5
e−5t +

8

25
≤ xi(t) ≤

11

5
e−5t +

8

25
,
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for all i = 1, . . . N . Figure 10 shows the result for N = 10 and N = 1000.

(a) N = 10 (b) N = 1000

Figure 10: PLF disturbance string stability for a = 10, b = 5, c = 6 and dj(t) = sin(jt).

As can be seen, each state trajectory xi(t) stays trapped in the strip given by the dashed lines.
Hence, in this case too, disturbance string stability is indeed achieved.

5.5 Two Predecessor Following

We solved the 2PF problem for the case where the 2PF networks were positive systems. Hence, we
can only pick b, c ≥ 0. By Theorem 4.11, we require b+ c < a. Pick a = 7, b = 3, c = 1. Then,

xi(t) ≤ e−3t,

for all i = 1, . . . , N . Figure 11 shows the result.

(a) N = 10 (b) N = 1000

Figure 11: 2PF string stability for a = 7, b = 3 and c = 1.
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We can see that string stability is indeed achieved. Comparing the graphs in Figure 11 to the PF
graphs in Figure 4, one can see that the general shapes of the state trajectories do not change once
a second predecessor is considered.

5.6 Two Predecessor-Leader Following

The 2PLF problem was solved with the assumption that the 2PLF network was a positive system.
This means that we can only pick b, c, p ≥ 0. Per Theorem 4.13, we require that b+c < a. The choice
of p does not matter to ensure string stability, but since K = 1 + p

b+c , the shape of the exponential
bound will change depending on the choice of p. Pick a = 5, b = 2, c = 1 and p = 8. Moreover, for
the initial conditions, set x1,0 =

1
2 and xj,0 = 1 for all j = 2, . . . , N . Then we should have

xi(t) ≤
11

3
e−2t,

for all i = 1, . . . , N . Figure 12 shows the result.

(a) N = 10 (b) N = 1000

Figure 12: 2PLF string stability for a = 5, b = 2, c = 1, p = 8 and x1,0 =
1
2 .

As one can see, the network is indeed string stable. Analogous to the PLF example in Figure 8,
we notice the bounded peaks in the beginning. However, in Figure 12 these peaks are much smaller
than those in Figure 8. This is not due to the addition of a second predecessor in the 2PLF formation,
but rather due to the initial condition x1,0 = 0.5 causing a dampening in the peaks.
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6 Conclusion

In this thesis, necessary and sufficient conditions for string stability of networks consisting of scalar
linear systems were found. We started off by defining string stability of a network. This definition is
nothing more than a stronger version of exponential stability, where the exponential bound of the
network is independent of the network size. As the conditions for string stability change based on the
structure of the network, each information flow topology poses its own separate problem in trying to
find conditions for string stability. Studying string stability is worthwhile as it has applications in
vehicle platooning. Namely, having a string stable platoon means that we can add as many vehicles to
the platoon as we want, while ensuring that the effect of a disturbance stays bounded as it propagates
through the string.

We first looked at the predecessor following (PF) and predecessor-leader following (PLF) problems.
By recognizing that the solutions to the systems in both networks contained the structure of a Taylor
series, necessary and sufficient conditions for both problems could be found with relative ease. In
particular, the conditions found for the PLF problem turned out to be the exact same as that in the
PF problem, although the exponential bound was structured slightly differently. However, necessary
and sufficient conditions were only guaranteed under the premise that the network was homogeneous.
Once we started to consider heterogeneous networks instead, necessity was lost.

After solving these two problems, we considered the PF and PLF problems with an additional
unknown disturbance factored into each system of the network. Due to the presence of this unknown
disturbance, string stability was no longer viable, which motivated the use of the notion of disturbance
string stability. As it turned out, the conditions for string stability in both the PF and PLF problem
remained the same, meaning that the presence of a disturbance did not change how to optimally
model each system in the network to achieve string stability.

In the third and final section, we looked at the 2PF and 2PLF problems, which were direct ex-
tensions of the PF and PLF problems. Due to the complexity of a second predecessor in the system
input, we restricted ourselves to the case where the networks were positive. This allowed us to fully
bypass having to use the solution to each system and to immediately find sufficient conditions for
string stability of the 2PF problem. Unfortunately, this result was lackluster, as it did not explicitly
give us an exponential bound, but merely guaranteed its existence. Fortunately, this result did allow
us to find necessary and sufficient conditions for the 2PF and 2PLF problems, where the initial
issue was now resolved. In an attempt to generalize the 2PF problem to arbitrary predecessors, we
finally turned ourselves to the rPF problem. Due to the complexity of that problem, only sufficient
conditions were found. To verify all the results in this thesis, simulations were shown.

The contents in this thesis are far from complete. As only sufficient conditions for the rPF problem
were found, a natural extension would be to find necessary conditions for string stability, such that
the rPF problem is solved in its entirety. In particular, it would be interesting to see if the methods
used in the 2PF and 2PLF problems could be generalized to prove necessity and sufficiency in the
rPF and rPLF problems. Moreover, as the conditions for string stability in the PF and PLF problems
did not change with the presence of an external disturbance, a future topic of research would be to
find out if these conditions remain unchanged when an external disturbance is added to the 2PF and
2PLF problems. If that were indeed the case, then one could conjecture that disturbances do not
influence the conditions for string stability in the rPF and rPLF problems. Once all these problems
have been solved, the final step would be to generalize these results to higher dimensional linear
systems. Otherwise, one could choose to continue to work with scalar linear systems and look at
bidirectional information flow topologies instead.

50



Scalable Stability Properties of Networks of Linear Systems David Offringa

References

[1] B. Besselink and K. H. Johansson. String stability and a delay-based spacing policy for vehicle
platoons subject to disturbances. IEEE Transactions on Automatic Control, 62(9):4376–4391,
2017.

[2] B. Besselink and S. Knorn. Scalable input-to-state stability for performance analysis of large-
scale networks. IEEE Control Systems Letters, 2(3):507–512, 2018.

[3] K. Chu. Decentralized control of high-speed vehicular strings. Transportation Science, 8(4):361–
384, 1974.

[4] W. B. Dunbar and D. S. Caveney. Distributed receding horizon control of vehicle platoons:
Stability and string stability. IEEE Transactions on Automatic Control, 57(3):620–633, 2012.

[5] L. Farina and S. Rinaldi. Positive Linear Systems. John Wiley & Sons, 2000.

[6] S. Feng, Y. Zhang, S. E. Li, Z. Cao, H. X. Liu, and L. Li. String stability for vehicular platoon
control: Definitions and analysis methods. Annual Reviews in Control, 47:81–97, 2019.

[7] R. Janssen, H. Zwijnenberg, I. Blankers, and J. de Kruijff. Truck platooning driving the future
of transportation. Technical report, TNO, February 2015.

[8] M. Khatir and E. Davidson. Bounded stability and eventual string stability of a large platoon of
vehicles using non-identical controllers. In 2004 43rd IEEE Conference on Decision and Control
(CDC), pages 1111–1116 Vol.1, 2004.

[9] W. Levine and M. Athans. On the optimal error regulation of a string of moving vehicles. IEEE
Transactions on Automatic Control, 11(3):355–361, 1966.

[10] S. E. Li, Y. Zheng, K. Li, and J. Wang. An overview of vehicular platoon control under the
four-component framework. In 2015 IEEE Intelligent Vehicles Symposium (IV), pages 286–291,
2015.

[11] G. Naus, R. Vugts, J. Ploeg, M. Molengraft, van de, and M. Steinbuch. String-stable cacc design
and experimental validation, a frequency-domain approach. IEEE Transactions on Vehicular
Technology, 59(9):4268–4279, 2010.

[12] L. E. Peppard. String stability of relative-motion pid vehicle control systems. IEEE Transactions
on Automatic Control, 19(5):579–581, 1974.

[13] J. Ploeg, N. van de Wouw, and H. Nijmeijer. String stability of vehicle platoons. In Book of
Abstracts 30th Benelux meeting on Systems and Control. Universiteit Gent, 2011.

[14] J. Ploeg, N. van de Wouw, and H. Nijmeijer. Lp string stability of cascaded systems: Application
to vehicle platooning. IEEE Transactions on Control Systems Technology, 22(2):786–793, 2014.

[15] D. Yanakiev and I. Kanellakopoulos. A simplified framework for string stability analysis in AHS.
IFAC Proceedings Volumes, 29(1):7873–7878, 1996. 13th World Congress of IFAC, 1996, San
Francisco USA, 30 June - 5 July.

51


	Introduction
	Single Predecessor Following Problems
	Defining String Stability
	Predecessor Following Problem
	Predecessor-Leader Following Problem

	Networks with Disturbances
	PF with Disturbances
	PLF with Disturbances

	Two Predecessor Following Problems
	Positive Systems
	2PF Problem
	2PLF Problem
	rPF Problem

	Examples
	Predecessor Following
	Predecessor-Leader Following
	Predecessor Following with Disturbances
	Predecessor-Leader Following with Disturbances
	Two Predecessor Following
	Two Predecessor-Leader Following

	Conclusion

