
F I N E C O N T R O L O F 3 D M E S H E S I N T I LT B R U S H T H R O U G H
S C U L P T I N G

chingiz dadashov-khandan

Supervised by: Prof. Dr. Jiří Kosinka, Dr. Cara Tursun

BSc. Computing Science
Scientific Visualisation and Computer Graphics

Faculty of Science & Engineering
University of Groningen

July 2022



Chingiz Dadashov-Khandan: Fine Control of 3D Meshes in Tilt Brush
through Sculpting, © July 2022



A B S T R A C T

Tilt Brush, a Virtual Reality sketching application made in the Unity
game engine, has a type of brushes called Hull brushes. These brushes
create convex hulls that surround the path left by a user’s gestures.
According to a user evaluation by a professional graphic designer,
this set of brushes is imprecise and unintuitive, so users are forced
to repeatedly re-draw strokes until they are satisfied. This causes
interruptions and delays in the creative process, compounded with
general annoyance and discomfort.

This thesis project proposes to solve this issue by introducing an
open-source digital sculpting toolkit to Tilt Brush, which allows users
to retroactively modify these brush strokes, significantly reducing the
need to redraw them.

Following the creation of a sculpting toolkit with four different vari-
ations and a scalable design, the subsequent user evaluation demon-
strated a noticeable increase in precision and general variety of possi-
ble creations when using hull brushes, with room for improvement.
As a result, this project has created a foundation for retroactive brush
stroke editing in Tilt Brush, which can be further expanded in the
future.

iii





C O N T E N T S

1 introduction 1

2 related work 5

2.1 Tilt Brush 5

2.2 Sculpting 6

3 concept 9

3.1 Existing and proposed tools 9

3.2 Geometry data 11

3.3 Applications and impact 13

4 realization 15

4.1 Subtools 16

4.1.1 Push/Pull 16

4.1.2 Crease 17

4.1.3 Flatten 18

4.1.4 Rotate 19

4.2 Development process 20

5 evaluation and results 21

6 conclusion and future work 23

a appendix 25

bibliography 33

v





1
I N T R O D U C T I O N

Virtual Reality (VR) is a new, direct form of experiencing and interact-
ing with digital media, which has become more and more accessible
over the years. Since the mid 2010s, VR technology has been experi-
encing one of its first big leaps into the consumer market, which has
transformed its general impression from something far-fetched and
experimental, to something novel and rising in popularity.

Most contemporary designs of VR devices consist of a head-mounted
display and a controller for each hand1. With this configuration, users
are able to observe and interact with virtual environments, all with an
unprecedented level of immersion [12]. This form of interaction has
led to the conceptualization of many uses and applications, such as
entertainment, training, education [2], and media creation. This thesis
focuses primarily on the last mentioned application, specifically with
VR artistic tools.

VR’s three-dimensional interaction encouraged researchers and de-
velopers in the world of digital art to create applications where artists
can exploit the new-found third dimension in their artistic pieces. In
2016, Google LLC released Tilt Brush, one of the earliest commercial
applications that tackled this realm of digital art.

Tilt Brush is a Virtual Reality drawing/sketching application devel-
oped in the Unity Game Engine. It allows users to sketch "mid-air"
by having the application translate their hand/arm movements into
various brush strokes (Figure 1.1). With this manner of drawing, artists
can either simply paint a two dimensional image mid-air, or draw 3-
dimensional objects using multiple paint strokes per face. Aside from
the size and color of the paint brush, users can also choose between
multiple types of paint brushes, each of which has a different shape,
texture, and even animations.

In 2021, Tilt Brush’s official development was terminated and it was
re-released as open-source software [1]. This has created an interest in
expanding Tilt Brush and tackling problems that were left unsolved.

To investigate the overall user experience with Tilt Brush, I con-
ducted a short test with an expert from a professional background
in Graphic Design and with no prior VR experience. In a 45-minute
test with a commercial build of Tilt Brush, the tester was instructed
to first freely explore the application and learn its tools. Then, once
they felt ready, they were instructed to draw an object that they draw
frequently on their own and to provide feedback on their overall user

1 The controllers transmit two forms of input: button/analogue stick input (similarly
to a video game controller), and 6 degrees-of-freedom positional/rotational data to
precisely track hand/arm movements.

1



2 introduction

Figure 1.1: A person using Tilt Brush. Their right hand holds the brush, mean-
while their left hand holds the user interface of the application
for selecting tools and adjusting settings. Reproduced from [1].

experience. Following the test, the tester expressed dissatisfaction with
the Hull brushes, a subset of Geometry brushes2 (Figure 1.2). Hull
brushes work by creating a convex hull that envelops control points
through which a user’s hand has travelled. These brushes also happen
to be Tilt Brush’s only way of creating 3-dimensional geometry that
is not a linear brush stroke by nature. The tester found these brushes
limited and difficult to control, having to work with rough results that
frequently needed to be re-drawn since Tilt Brush offers no way of
editing strokes after their placement.

Figure 1.2: All of the Geometry brushes in Tilt Brush. The bottom row con-
tains all of the Convex Hull brushes, which the tester was dissat-
isfied with. Reproduced from [5].

The goal of this thesis project is to solve this issue by granting
users the ability to fine-tune 3D brush strokes after they were drawn.

2 Brushes that create meshes more complex than the planar meshes from other brushes,
such as cylindrical shapes.



introduction 3

Given that all of the strokes in Tilt Brush are fundamentally meshes,
Sculpting was chosen as the best method for solving the problem.

The rest of the document is organized as follows: I first describe
work related to Tilt Brush in Chapter 2, then the solution’s design
and development in Chapters 3 and 4, respectively. Finally, I provide
a reflection on the project’s results and future in Chapters 5 and 6,
respectively.





2
R E L AT E D W O R K

The creation of artistic tools like Tilt Brush has introduced a new
form of artistic work spaces: ones that require artists to work in three
dimensions instead of two, while also maintaining a direct presence in
the workspace. This change is difficult for people to grasp, evidenced
by the fact that people of both professional [3] and non-professional
[8, 10] backgrounds encounter difficulties with such applications early
on. Users report major inaccuracies with their brush strokes (e.g.
attempts at straight strokes ending up as concave ones) [3], and some
struggle to intuitively grasp the new-found third dimension [8]. As a
result, a trend can be observed where VR artistic tools often lack the
desired precision and have room for improvement with regard to user
input [3].

However, these tools also offer new forms of both creating and
perceiving art, leading to the pursuit of new avenues of research.
The direct capture of a user’s head and hand motions enables new
possibilities for tools, applications, and presentation of graphical work.

Aside from evaluating/improving the approachability and the util-
ity of artistic tools in VR, there is also interest in exploring and ex-
ploiting said possibilities. For instance, research has been conducted
on the creation of tools that make use of 3-dimensional inputs, such
as generating hairstyles on models of heads [13] or generating trees
from the ground up [14]. Both of these examples grant the user the
ability to directly trace a 3-dimensional brush stroke for their respec-
tive algorithms to interpret, which is not as convenient or intuitive
with conventional input devices such as a computer mouse or a pen
tablet, as they are only able to directly input 2-dimensional strokes.
With all this in mind, artistic applications in Virtual Reality have the
potential to improve with regards to precision and at the same time
there is a lot of potential for reinventing conventional methods of user
interaction with software.

2.1 tilt brush

Before its open-source release, Tilt Brush also experimented with new
forms of VR tools. In 2018, Tilt Brush was updated and introduced a
new type of brushes into its set of tools: Hull brushes (Figure 1.2) [5].
Hull brushes introduced a new form of control for users, allowing
them to capture a full 3-dimensional object in one cumulative brush
stroke instead of multiple brush strokes per face [5]. Unfortunately,
even though these tools introduce a new, advanced way of drawing

5



6 related work

for artists, they do not facilitate any control or fine-tuning of exist-
ing strokes. As a result, the aforementioned problem of general VR
imprecision combines with the complexity of this tool to create a prob-
lematic toolset that is difficult to control. Although Tilt Brush has some
assistive tools to mitigate issues like this, they only allow the user to
draw primitive shapes or straight lines, which can be insufficient for
complex artworks.

Less than a month after the Open-Source re-release of Tilt Brush,
a successor called Open Brush was created as a public fork. Since
then, Open Brush has been in active, open-source development. It has
introduced new features, such as better precision, bi-manual brushes1,
etc. [11]. However, it still does not facilitate retroactive editing of hull
brushes.

2.2 sculpting

This thesis seeks to resolve the imprecision of Tilt Brush’s Hull Brushes
by introducing Digital Sculpting into its selection of tools. Digital
sculpting is a well-established concept that has existed on desktop
computers for decades [7]. It is a method of reshaping/manipulating
meshes that is more natural to artists and can often result in smoother
meshes. Thus, it is frequently used for modelling organic subjects,
such as humans, animals, etc. (Figure 2.1).

Figure 2.1: A piece of digital artwork depicting alien creatures which were
sculpted in ZBrush, a popular desktop sculpting application.
Reproduced from [15].

In VR, sculpting is not a new concept either. Since the commercial
release of VR, several commercial sculpting applications have been
released, which have already established a precedent in the design
of such applications. Most VR sculpting applications strive to mim-
ic/translate desktop sculpting applications, but variations exist that
instead attempt to translate traditional sculpting into VR, by creating
virtual replicas of real-life sculpting tools [9]. Overall, there is a varied

1 Brush tools that require control from both hands, instead of just the dominant hand.



2.2 sculpting 7

selection of sculpting applications and designs that artists can choose
from.

In general, digital sculpting has two variations: voxel-based sculpt-
ing and mesh-based sculpting. Voxel-based sculpting provides signif-
icantly more precise control that is not affected by the vertex layout
of the sculpture. Mesh-based sculpting is heavily dependent on the
vertex layout, but it has better performance due to its non-uniform
resolution [9]. Tilt Brush itself does not have any support for voxels,
therefore the proposed sculpting toolkit is mesh-based.

Although the solution that this thesis proposes already exists in
many other forms, it stands out in the fact that it is an Open-Source
VR Sculpting solution. There are few open-source VR sculpting appli-
cations and only one was found to have been in active development
at the time of writing [6]. This project is expected to be a noteworthy
addition to the realm of Open-Source VR Sculpting, with the poten-
tial to be merged into Open Brush and to become more accessible
to the average VR artist than previous Open-Source VR sculpting
applications.





3
C O N C E P T

As previously stated, Tilt Brush’s design philosophy does not support
significantly modifying existing brush strokes, instead expecting users
to redraw undesired strokes. Even tools that do make some retroactive
edits, such as the Recolor tool1, delete the original stroke and make a
modified recreation of the original stroke in its place.

Although this limitation is manageable for simple brush strokes,
hull brushes are fundamentally too intricate to be treated the same
way as the rest of the brush/stroke types. As a result, having no option
to edit them considerably limits their potential.

With the ability to shape strokes to their liking with a varied se-
lection of tools, users could both reduce the number of re-drawings
they would have to make and increase the general creative potential
of these brush types in their applications as well.

As previously mentioned in Chapter 2, sculpting is a well-established
3D modeling technique, familiar to many people with an interest in
3D art. Therefore, sculpting tools within Tilt Brush are expected to
be an approachable concept to artists as long as they provide similar
forms of interaction to existing sculpting tools.

3.1 existing and proposed tools

As mentioned before (Chapter 1), VR sets often consist of a head-
mounted display and two controllers, one for each hand. Within Tilt
Brush, each of the two controllers serves a different purpose. The
dominant-hand controller2 acts as the primary way of interacting with
the virtual canvas3. Meanwhile, the non-dominant hand holds the
user interface, which includes many settings such as tool selection and
brush parameters. The two controllers and their functions can once
again be seen in Figure 1.1.

Tilt Brush’s dominant-hand controller can primarily interact with
the virtual canvas in two ways: Brushes and Tools. Brushes serve the
purpose of creating strokes on the canvas. All brushes share the same
UI appearance, where a cone-shaped pointer indicates the position
and a circle indicates the size and orientation of the brush stroke
(Figure 3.1).

1 A tool that changes the color of an existing brush stroke while retaining all of its
other properties.

2 Within Tilt Brush, a user can specify which hand/controller is the dominant one.
3 The canvas is an implicit concept within the functional implementation of Tilt Brush.

From a user’s perspective, there is no explicit, visible canvas. A user can just draw
mid-air, ergo the entire virtual space around them acts as the canvas.

9



10 concept

Tools are a way of making additional modifications to the drawing
process, many of which are similar to that of desktop art applica-
tions. Examples include an eraser tool for deleting strokes and a
selection tool for grouping and repositioning strokes. Tools in general
are represented differently; instead of a pointer and a circle, they are
represented as a spherical region, where the sphere dictates the area
of influence. When the tool is activated by the user, the tool’s assigned
actions are performed with whichever strokes the sphere comes in
contact with. Examples of such tools can be seen in Figure 3.2.

Figure 3.1: Example of a brush in Tilt Brush. Note the conical pointer and
circle protruding from the controller.

Figure 3.2: Examples of tools in Tilt Brush, namely the Eraser and Selection
tools.

Considering that the sculpting tool should fundamentally resemble
other tools, there was a need to design a sculpting tool that can sup-
port non-spherical interactions/intersections, while still maintaining a
spherical shape like the other tools. This is not just due to aesthetics;
there is also a functional reason: The base implementation of all of the
stroke interaction tools uses GPU-level calculations that exploit the
spherical shape of the tool to calculate positional intersections opti-
mally. Therefore, any other base shapes would require a significant



3.2 geometry data 11

amount of additional development effort, where a lot of fundamental
modifications would need to be made.

To solve this problem, I conceptualized a design where the sculpting
tool is primarily a sphere just like the other tools, but it can contain
subtools inside the sculpting sphere to provide both a visual indication
to the user and also change the way the tool interacts with a target
mesh.

With these tools, a user would be able to manipulate groups of
vertices inside the sphere’s radius and change their positions based
on various functions built into the subtools. The base sphere would
determine if the tool is in contact with the stroke, and then the subtool
inside (or lack thereof) would perform manipulations on the vertices
within the sphere. To detect and manipulate the right vertices, the
sculpting tool must access the geometry data of the stroke.

3.2 geometry data

Tilt Brush has multiple modes of representing stroke data, however
only one is actively used, which is the “Batched Stroke” Mode. In this
mode, strokes are bundled together in batches and represented as a
hierarchy of various classes, which perform the following roles:

• BatchPool: Stores all of the batches on the canvas;

• Batch: Stores all strokes of the same type bundled in BatchSub-
sets, along with all of their geometry in a GeometryPool4;

• BatchSubset: Stores the Stroke object along with data that speci-
fies which parts of the parent batch represent the geometry of
the stroke;

• Stroke: Holds the basic properties of a brush stroke, i.e. colour,
type, control points, and Transformation data5 relative to the
canvas.

For further elaboration, see an example scenario in Figure 3.3. Since
all of the strokes’ geometry is stored in the parent batch of a Stroke, the
goal of the tools is to retrieve the right portion of geometry data based
on which stroke they are in contact with, then perform a modification
to a subset of that geometry data that is within the tool’s area of
influence.

4 This is a class that holds all of the geometry data needed to represent a stroke. It
serves as an interface between Unity’s mesh data and the rest of Tilt Brush, which
makes it the best way to access and change a stroke’s mesh.

5 Position, rotation, and scale



12 concept

Figure 3.3: Diagram of the object hierarchy in an example canvas, where
there are two hull brush strokes and a single oil brush stroke.

Figure 3.4: Meshes of arbitrary hull brush strokes. Note the non-uniform
triangle distributions.

In Tilt Brush, the geometry data of strokes is often allocated together
in the parent GeometryPool as a single, one-dimensional array of vec-
tors, which makes topology modifications dangerous to implement
due to cascading indexing errors. As this would be difficult to address
in the allotted time-span of this project, the sculpting toolkit currently



3.3 applications and impact 13

only performs vertex layout modifications, with no changes to topol-
ogy. As a consequence of this, the existing topology of a hull mesh
might not always be ideal for making sculpting modifications, as they
can have a non-uniform triangle distribution (Figure 3.4).

3.3 applications and impact

The proposed sculpting tools facilitate the ability to modify strokes
retroactively, which is expected to reduce the need to re-draw unsat-
isfactory strokes and make much more intricate Hull brush strokes
easier to create. By granting this additional possibility to users, overall
precision of Hull brushes and even other brush types is expected to
increase.

These changes could significantly expand the creative potential of
Tilt Brush and encourage new developments in retroactive edits of
brush strokes, beyond the existing tools such as Recolor and beyond
even the proposed sculpting tool.

As stated in Chapter 2, Open Source VR Sculpting is a currently
inactive realm of Open-Source software. This project has the potential
to rekindle that avenue of development, especially if it is integrated
into a larger repository such as the aforementioned Open Brush.





4
R E A L I Z AT I O N

When the user activates the sculpt tool, they are presented with a pop-
up UI panel that allows them to switch between sculpting subtools
(Figure 4.1). On the Brush controller, a button icon is displayed that
indicates to the user that they can switch between the positive and neg-
ative modes of the various tools, which switches the direction in which
vertices are manipulated (Figure 4.2). For the simpler subtools, the
positive mode implies going forward (away) from the user, while the
negative mode implies going backward (towards) the user. However,
the meanings of these modes can vary for other subtools.

Figure 4.1: The user interface for selecting the sculpt tools. On the left, the
sculpting toolkit is inactive. On the right, the sculpting toolkit is
active and the menu with subtools is displayed, with the Push
tool selected.

Figure 4.2: The button to switch between positive and negative modes, dis-
played on the bottom left of the dominant-hand controller. For
additional clarity, the icon of the button varies in each mode.

Fundamentally, the base sculpting tool mimics existing Tilt Brush
tools in terms of its code implementation, due to the reasons previ-

15



16 realization

ously mentioned in Chapter 3. In addition, the entire toolset is de-
signed with scalability in mind, allowing future developers to quickly
include a new sculpting subtool by inheriting from a base class and
then registering it in a manager class that keeps track of all of the tools
and handles UI interaction.

4.1 subtools

Four tool variations were implemented in total, the designs of which
were inspired by tools in Blender, an open-source 3D Modeling/S-
culpting application [4]. All of these options can be seen in Figure 4.3.
Below are the descriptions of each subtool, including pseudocode
algorithms1 and images depicting their results.

Figure 4.3: The graphical representations for all of the subtools, including
both their menu icons and the tools displayed on the user’s
dominant hand.

4.1.1 Push/Pull

The Push/Pull subtool is the simplest variation of the sculpting tool,
having originally acted as the foundation for the entire toolset during
prototyping. It has no visual subtool, with the base sculpting sphere

1 NB: These are not direct representations of the actual code. Some engine-specific code
is omitted and some code is restructured.



4.1 subtools 17

doing all of the interaction. The purpose of the tool is to push spherical
dents into meshes in its positive mode, and making spherical bulges
in its negative mode. To push dents, it linearly translates vertices away
from the center of the tool sphere. In its negative mode, the vertices
are translated towards the center, but not in a linear fashion. Instead,
the distance they are translated by depends on their original distance
from the center of the tool, squared. This choice was made as a linear
translation towards the center would result in spike formations, which
is not the expected outcome if conceptualized as the opposite of a
dent shape. See Figure 4.4 for results and Listing 4.1 for pseudocode.

Figure 4.4: Results of the Push tool when applied to a spherical stroke.

if (vertex is inside sphere)

// Vector from the vertex to the center of the tool.

direction = vertex - toolCenter

if (positiveMode)

vertex += (defaultStrength * direction).normalized()

else

vertex -= ((defaultStrength * direction.magnitude^2) *
direction).normalized()

Listing 4.1: Pseudocode for the Push tool.

4.1.2 Crease

The Crease subtool serves the purpose of making a narrow crease on
a shape, in a narrow row of vertices. It contains a crescent shape that
limits the area that the crease tool can affect. Unlike the Push tool,
this subtool pushes/pulls based on the center of the geometry that
is being interacted with, instead of the center of the tool itself. See
Figure 4.5 for results and Listing 4.2 for pseudocode.



18 realization

Figure 4.5: Results of the Crease tool when applied to a spherical stroke.

if (vertex is inside sphere && vertex is inside subtool)

// Vector from the vertex to the center of the stroke.

direction = vertex - strokeGeometryCenter

if (not positiveMode)

direction = -direction

vertex += (defaultStrength * direction).normalized()

Listing 4.2: Pseudocode for the Crease tool.

4.1.3 Flatten

The Flatten subtool contains a disk shape inside the sculpting sphere.
When the user activates the tool, any vertex inside the sphere will
gravitate towards the disk and stop on its surface. Unlike the other
subtools, this subtool does not have a negative mode. Nevertheless, it
still has two philosophies of usage. When activated while the disk is
outside of a shape, all vertices within the sphere form a flat protrusion.
On the other hand, when activated while the disk is inside of a shape,
the shape compresses flat against the disk. See Figure 4.6 for results
and Listing 4.3 for pseudocode.



4.1 subtools 19

Figure 4.6: Results of the Flatten tool when applied to a spherical stroke.

if (vertex is inside sphere)

closestPoint = subTool.GetClosestPointTo(vertex)

vertex = closestPoint

Listing 4.3: Pseudocode for the Flatten tool.

4.1.4 Rotate

The Rotate subtool has a tube shape in the center that indicates a
rotational pivot. When the user activates this tool, vertices inside the
sculpting sphere will circularly rotate around the pivot, in a circular
motion around a plane, which is perpendicular to the local z-axis of
the pivot. The positive/negative modes determine whether the vertices
will rotate clockwise or counter-clockwise. See Figure 4.7 for results
and Listing 4.4 for pseudocode.

Figure 4.7: Results of the Rotate tool when applied to the tip of a cone-shaped
stroke facing the camera.



20 realization

closestPoint = subTool.GetClosestPointTo(vertex)

angle = -90

strength = 0.05

if (not positiveMode)

angle = -angle // Rotate counter-clockwise.

// rotation is a Quaternion that represents rotation around the

localZ axis of the tool.

rotation = RotateAround(angle, tool.localZ)

// Add a small incremental rotation that is dependent on the

vertex’s distance to the subtool.

vertex += ((vertex - closestPoint).magnitude * strength) *
closestPoint * rotation

Listing 4.4: Pseudocode for the Rotate tool.

4.2 development process

Although the Tilt Brush codebase is open-source, it lacked the proper
documentation to facilitate open-source development. A significant
portion of the development time was spent on learning and under-
standing how the codebase functions through direct observation of
the code and experimentation. As a result, the scope of the project
had to be narrowed. Considering how intricate and inter-connected
the codebase is, I had to frequently make sure that the sculpting tool
works well with all of the other tools. Unfortunately, integration with
Tilt Brush’s Mirror tool had to be skipped; however, I am confident
that this can be resolved in future implementations.

Tilt Brush was also not designed with any external geometry modi-
fications in mind. This resulted in a need for substantial modifications
to fundamental portions of Tilt Brush’s codebase. First, the geometry
data of every single stroke had to be set from ‘private’ to ‘public’. The
second change was much larger in scale:

Tilt Brush never had a need for saving geometry and could retain
virtually all of the necessary data by storing only the strokes’ control
points. As this would discard any sculpting changes made in the
sketch, the data that Tilt Brush serializes had to be adjusted. For every
stroke, Tilt Brush now reads an integer number which specifies how
many vertices a stroke has. If the value is zero, the geometry is created
from scratch, assuming that the stroke was never sculpted. Otherwise,
Tilt Brush deserializes vertices equal to the integer value and applies
them to the re-drawn stroke. Unfortunately, this has caused Tilt Brush
to be incompatible with save files from other/previous versions of Tilt
Brush.



5
E VA L UAT I O N A N D R E S U LT S

Throughout development, I applied the sculpting toolkit in my own
creative works to test both its quality and functionality. Even at early
stages, when only the basic Push tool was completed, the toolkit al-
ready showed major potential in solving the original issue of hull
brushes’ imprecision, by letting the user correct errors and imperfec-
tions in their hull brush strokes. Nevertheless, additional subtools
provided better control than the basic push tool in specific situations,
therefore the sculpting toolkit became more versatile with each new
subtool.

The toolkit has also created the potential for sculpting shapes that
would otherwise be impossible to draw in the original version of Tilt
Brush. For example, Figure 5.1 shows a drawing of a well, the base
of which was made by stretching a toroidal brush stroke using the
flattening tool; the original stroke is otherwise restricted to a tube
shape.

Figure 5.1: An example sketch made with the help of the sculpting toolkit.
The well itself, the bucket, and the water flowing out of the bucket
were all modified with the sculpting tools.

21



22 evaluation and results

Close to the end of development, the previously mentioned tester
(Chapter 1) was invited once again to evaluate the sculpting toolkit.
Following a completely free-form evaluation, the tester reported that
they found the sculpting toolkit to have made a noticeable improve-
ment and expressed it as a 20% improvement on a numeric scale
(Figure A.6). Also, they reported a considerable learning curve, rated
7 points out of 10. Despite that, the sculpting toolkit is “necessary for
working with Hull Brushes” according to them. Overall, they found
the Flattening and Push subtools to be the most useful of the four.

Based on both my own and the tester’s observations, some issues
remain in the sculpting toolkit, namely the following:

• The vertex movements are not always intuitive.

• When sculpting changes are made, the normal vectors of each
vertex are not updated, which can lead to confusing shading.

• The sculpting tool does not work with the built-in mirroring/sym-
metry tool.

• On rare occasions, the selection tool can cause some sculpting
changes to disappear from the Undo History and become per-
manent1.

For the questionnaire and the answers used to make the deductions
of this section, see the Appendix (Figures A.6, A.7).

1 This happens due of the fact that the selection tool is not guaranteed to preserve the
batch hierarchy of strokes when used.



6
C O N C L U S I O N A N D F U T U R E W O R K

In conclusion, the sculpting toolkit has proven to be an ample solution
by successfully enhancing the precision of Tilt Brush, especially with
Hull Brushes. Users are now able to make retroactive edits to any
brush stroke’s mesh, where they can both make small corrections to
match their strokes with their initial desired shapes, or completely
reshape the stroke into something new, which cannot be achieved any
other way.

With all of that in mind, the sculpting toolkit still has room for
expansion and improvement. The scalable design encourages future
development and the creation of many more tools that modify vertex
layouts in new ways. The fundamental design of the sculpting toolkit
also leaves room for sculpting tools which modify topology, therefore
the biggest limitation of the sculpting toolkit is solvable given more
time.

Aside from expanding variety, the sculpting toolkit can benefit
significantly from the solution of issues outlined in Chapter 5 and
the Appendix (Figures A.6, A.7). In addition, improvements can be
made to visual feedback, by highlighting all vertices that are within
reach (suggested by the tester), or by displaying wireframe shaders
on meshes while the sculpting tool is active.

Following discussions with an Open Brush developer, I believe that
the future of this project lies as a part of Open Brush. Therefore, I aim
to integrate all of this project’s work into the Open Brush codebase
in the near future, where developers and artists alike will have much
easier access for both usage and improvement.

23





A
A P P E N D I X

Figure A.1: First sketch made with the prototype sculpting tool, where a
sphere was dented to create a witch’s cauldron

Figure A.2: Sketch of an ice cream cone, where the sculpting tool was used
to shape the portions of ice cream.

25



26 appendix

Figure A.3: Sketch of an artist’s canvas, where the sculpting tool was used to
shape the paintbrush and the paint containers.

Figure A.4: Sketch of a bird, where the sculpting tool was used to shape the
tail and the beak.



appendix 27

Figure A.5: Sketch of a strawberry cake, where the sculpting tool was used
to flatten the cake and the candles.



28 appendix

Figure A.6: Questionnaire filled in at the final user evaluation (page 1).



appendix 29

Figure A.7: Questionnaire filled in at the final user evaluation (page 2).





A C K N O W L E D G M E N T S

I would like to thank my supervisors, Prof. Dr. Jiří Kosinka and Dr.
Cara Tursun for being very responsive and helpful, always providing
great feedback that steered my project in the right direction. I would
also like to thank Miguel Bartelsman for participating in the evaluation
of my work and ultimately shaping my research goal into what it is
now.

31





B I B L I O G R A P H Y

[1] T. Aidley and J. Corralejo. The Future of Tilt Brush. https://
opensource.googleblog.com/2021/01/the-future-of-tilt-

brush.html. 2021.

[2] V. Aleksić and D. Politis. “The Characteristics of Virtual Reality
Usage in Educational Systems.” In: 2020 International Conference
on INnovations in Intelligent SysTems and Applications (INISTA).
2020, pp. 1–5. doi: https://doi.org/10.1109/INISTA49547.
2020.9194682.

[3] R. Arora, R. Habib Kazi, F. Andedrson, T. Grossman, K. Singh,
and G. Fitzmaurice. “Experimental Evaluation of Sketching on
Surfaces in VR.” In: CHI ’17: Proceedings of the 2017 CHI Confer-
ence on Human Factors in Computing Systems. 2017, pp. 5643–5654.
doi: https://doi.org/10.1145/3025453.3025474.

[4] Blender. Home of the Blender project - Free and Open 3D creation
software. https://blender.org. 2022.

[5] S. Cornelis. Seven new things you can do with Tilt Brush. https:
//blog.google/products/google-ar-vr/seven-new-things-

you-can-do-tilt-brush/. 2018.

[6] CrispyPin. VR-Sculpter: A WIP VR Sculpting App. https : / /

github.com/CrispyPin/vr-sculpter. 2022.

[7] T. A. Galyean and J. F. Hughes. “Sculpting: An Interactive Volu-
metric Modeling Technique.” In: Proceedings of the 18th Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH 1991. Vol. 25. 1991, pp. 267–274. doi: http://dx.doi.
org/10.1145/122718.122747.

[8] M. Donaji Barrera Machuca, W. Steurzlinger, and P. Asente.
“The Effect of Spatial Ability on Immersive 3D Drawing.” In:
C&C ’19: Proceedings of the 2019 on Creativity and Cognition. 2019,
pp. 173–186. doi: https://doi.org/10.1145/3325480.3325489.

[9] J.K. Moo-Young, A. Hogue, and V. Szkudlarek. “Virtual Materi-
ality: Realistic Clay Sculpting in VR.” In: CHI PLAY ’21: Extended
Abstracts of the 2021 Annual Symposium on Computer-Human In-
teraction in Play. 2021, pp. 105–110. doi: https://doi.org/10.
1145/3450337.3483475.

[10] A. Oti and N. Crilly. “Immersive 3D sketching tools: Implica-
tions for visual thinking and communication.” In: Computers &
Graphics 94 (2021), pp. 111–123. doi: https://doi.org/10.1016/
j.cag.2020.10.007.

33

https://opensource.googleblog.com/2021/01/the-future-of-tilt-brush.html
https://opensource.googleblog.com/2021/01/the-future-of-tilt-brush.html
https://opensource.googleblog.com/2021/01/the-future-of-tilt-brush.html
https://doi.org/https://doi.org/10.1109/INISTA49547.2020.9194682
https://doi.org/https://doi.org/10.1109/INISTA49547.2020.9194682
https://doi.org/https://doi.org/10.1145/3025453.3025474
https://blender.org
https://blog.google/products/google-ar-vr/seven-new-things-you-can-do-tilt-brush/
https://blog.google/products/google-ar-vr/seven-new-things-you-can-do-tilt-brush/
https://blog.google/products/google-ar-vr/seven-new-things-you-can-do-tilt-brush/
https://github.com/CrispyPin/vr-sculpter
https://github.com/CrispyPin/vr-sculpter
https://doi.org/http://dx.doi.org/10.1145/122718.122747
https://doi.org/http://dx.doi.org/10.1145/122718.122747
https://doi.org/https://doi.org/10.1145/3325480.3325489
https://doi.org/https://doi.org/10.1145/3450337.3483475
https://doi.org/https://doi.org/10.1145/3450337.3483475
https://doi.org/https://doi.org/10.1016/j.cag.2020.10.007
https://doi.org/https://doi.org/10.1016/j.cag.2020.10.007


34 bibliography

[11] Icosa Team. Open Brush homepage. https://openbrush.app/.
2022.

[12] J. Tham, A. Hill Duin, L. Gee, N. Ernst, B. Abdelqader, and
M. McGrath. “Understanding Virtual Reality: Presence, Em-
bodiment, and Professional Practice.” In: IEEE Transactions on
Professional Communication 61 (2 2018), pp. 178–195. doi: https:
//doi.org/10.1109/TPC.2018.2804238.

[13] J. Xing, K. Nagano, W. Chen, H. Xu, L. Wei, Y. Zhao, J. Lu, B.
Kim, and H. Li. “HairBrush for Immersive Data-Driven Hair
Modeling.” In: UIST ’19: Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology. 2019, pp. 263–
279. doi: https://doi.org/10.1145/3332165.3347876.

[14] Q. Yuan and Y. Huai. “Immersive sketch-based tree modeling in
virtual reality.” In: Computers & Graphics 94 (2020), pp. 132–143.
doi: https://doi.org/10.1016/j.cag.2020.12.001.

[15] emonimo. polvorón y anisete. https://www.flickr.com/photos/
23633963@N07/3898673230/. 2009.

https://openbrush.app/
https://doi.org/https://doi.org/10.1109/TPC.2018.2804238
https://doi.org/https://doi.org/10.1109/TPC.2018.2804238
https://doi.org/https://doi.org/10.1145/3332165.3347876
https://doi.org/https://doi.org/10.1016/j.cag.2020.12.001
https://www.flickr.com/photos/23633963@N07/3898673230/
https://www.flickr.com/photos/23633963@N07/3898673230/

	Abstract
	Contents
	1 Introduction
	2 Related work
	2.1 Tilt Brush
	2.2 Sculpting

	3 Concept
	3.1 Existing and proposed tools
	3.2 Geometry data
	3.3 Applications and impact

	4 Realization
	4.1 Subtools
	4.1.1 Push/Pull
	4.1.2 Crease
	4.1.3 Flatten
	4.1.4 Rotate

	4.2 Development process

	5 Evaluation and results
	6 Conclusion and Future Work
	A Appendix
	Acknowledgments

	 Bibliography

