
Virtual Ray Tracer:

Distribution Ray Tracing

Bachelor's thesis

July 14, 2022

Student: J.R. van der Zwaag

Primary supervisor: Prof. Dr. J. Kosinka

Secondary supervisor: Dr. S. D. Frey

Abstract

Visualizing ray tracing helps to understand how ray tracing works. C.S. van Wezel and
W.A. Verschoore de la Houssaye made an application in their bachelor’s thesis that does
exactly that, named ‘Virtual Ray Tracer’. But simple ray tracing using just point lights
has drawbacks. It cannot render phenomena such as soft shadows and not all lights can
be approximated by point lights.

In this thesis, we discuss how distributed ray tracing, implemented with Monte Carlo
methods, and different lights can be visualized by extending the aforementioned program.
Users can see how super-sampling works, have more control over how rays are visualized
and learn about different types of lights and light attenuation. The goal is to help users
understand these concepts.

We conducted a user study to find out how useful the application is in teaching users
the newly added concepts. From the user study, we can derive that the program helps
users with some Computing Science knowledge to understand the added features and
that different ways of visualizing rays are much appreciated. Most users with little to
no background in IT found it very difficult and complex. We discuss these results and
propose solutions and research ideas to further improve Virtual Ray Tracer.

Contents

1 Introduction 2

2 Background 4
2.1 Ray Tracing . 4
2.2 Distributed Ray Tracing . 5
2.3 Ray Tracing Visualization . 5

3 Concept 7
3.1 Super-Sampling . 7
3.2 Soft Shadows . 8
3.3 New Light Types in VRT . 9
3.4 Light Attenuation . 10
3.5 Ray Visualization . 11

4 Implementation 13
4.1 Virtual Ray Tracer . 13
4.2 New Additions . 14
4.3 New Levels and Gamification . 23

5 User Study 24
5.1 Questions . 24
5.2 Results . 25

6 Conclusion 28

7 Future Work 29

Acknowledgements 31

References 32

A User Study Questions 33

1

Chapter 1

Introduction

In the field of Computer Graphics, ray tracing is a technique used to render realistic
images. However, this comes at a big computational cost. In the last few years, big steps
have been made towards real-time ray tracing and the importance of ray tracing has been
rising with it. But truly understanding ray tracing is easier said than done.

To aid with learning ray tracing, Chris van Wezel and Willard Verschoore de la Hous-
saye developed a tool [1, 2, 3] that visualizes ray tracing. This program, called ‘Vir-
tual Ray Tracer’ (VRT), shown in Figure 1.1, is aimed at Computer Graphics students
to help them understand ray tracing.

Figure 1.1: Virtual Ray Tracer [3] program developed by Chris van Wezel [1] and
Willard Verschoore de la Houssaye [2]

This tool explains ray tracing in steps, using a total of 7 levels. At the start of each
level, there is an explanation about either how to use the program or how a certain aspect
of ray tracing works. After that, the user can explore the explained features or concepts
by playing with the tool in that level. The last level is a ‘sandbox’ level, in which the user
can create their own scene and explore for themselves. When the user has gone through

2

all the levels, they should have a better understanding of what ray tracing is and how it
works.

However, the program only covers the basics. To get results that look even more
realistic, advanced ray tracing has to be used. For example, not all lights can be approx-
imated with point lights. To create the phenomenon called ‘soft shadows’ we need an
area light. This requires different ray tracing techniques.

To resolve these shortcomings, we extended the tool with ‘distributed ray tracing’
features and some additional features. Distributed ray tracing covers many different
phenomena, and not all can be (easily) visualized. Therefore, we chose to go with two
that can also be visualized: anti-aliasing by using super-sampling, and soft shadows. The
aim is to help the users to understand these concepts by visualizing them. This led to
the following research questions:

1. How can Monte Carlo / distributed ray-tracing be visualized?

2. Can the Virtual Ray Tracer program be modified to also visualize Monte Carlo /
distributed ray tracing?

Alongside this project, four other students were also working on Virtual Ray Tracer.
In particular, Roan Rosema worked on making VRT work in the browser and on mobile
devices, and Peter Jan Blok worked on a gamified VRT [4]. In my project, I also used
(part of) their work.

In this thesis, we start with information about distributed ray tracing and ray tracing
visualization in Chapter 2. In Chapter 3 we discuss the used distributed ray tracing con-
cepts and how they can be taught and represented visually. How all of that is implemented
is described in Chapter 4. Chapter 5 contains our user study and its findings followed by
a conclusion in Chapter 6. We conclude with potential future work in Chapter 7.

3

Chapter 2

Background

In this chapter we discuss concepts of (distributed) ray tracing and present ray tracing
visualization tools.

2.1 Ray Tracing
Ray tracing is a rendering technique that can result in very realistic images, as it is close
to how light works in the real world. Light sources emit light particles, called photons,
and these travel in a straight line until they hit an object. What happens at that hit-point
depends on the object’s material. If it is transparent it could go through the object, if it
is a mirror it will be reflected. Eventually, some of these photons will reach our eyes, or
a camera, where they are processed into an image.

Figure 2.1: Ray tracing example.

This process, but then in reverse, is called ray tracing [5]. A depiction of the ray
tracing process can be seen in Figure 2.1. In front of the camera (or eye) is a screen. This
screen has a certain resolution, e.g. it could be 3 pixels wide and 3 pixels high. So-called
‘rays’ are cast from the camera (or eye) through a pixel. A ray may hit an object. The
object’s material and the location where the ray hit the object determine the color of
the pixel. Depending on an object’s material, new rays may be cast, for example, due
to reflection or refraction, which further influences the pixel’s color. This process ends
when the ray does not hit anything or when it reaches a light source. It could be that a

4

ray gets reflected/refracted indefinitely, so often there is also a limit to how many times
a ray can be reflected or refracted. Repeat this for every pixel and we have an image.

2.2 Distributed Ray Tracing
The term ‘Distributed Ray Tracing’ was first coined by Robert L. Cook in 1984 [6].
It essentially comes down to integrating (or ‘distributing’) rays over some domain to
create certain phenomena. For example, soft shadows can be created by distributing
rays over the area of an area light source. Another example is an interval of time. By
distributing rays over time, motion blur can be rendered. But to actually render an image
with distributed ray tracing, an equation must be solved which includes integrals. These
integrals appear because the rays are distributed over an interval or range. Unfortunately,
even for computers, these integrals are difficult to compute.

2.2.1 Monte Carlo Methods

An intuitive solution is to not compute the integrals but approximate the result. A way
to efficiently approximate integrals is the Monte Carlo method [5]. It takes random values
from the interval and uses the outcomes to approximate the real value. For soft shadows,
it would take random points on the area, average the result and use that as an approxi-
mation. The downside is that many samples are needed for an accurate approximation,
but the upsides are that the method itself is quite simple and that its computational cost
can be adjusted depending on the desired quality.

2.3 Ray Tracing Visualization
Several ray tracing visualization tools already exist, but not all are aimed to educate
users about ray tracing. One of the existing tools is Rayground [7]. Rayground is an
online, web-based, interactive tool where the user can program and test their own scenes
and ray tracing implementation; see Figure 2.2. This requires the user to have experience
in coding and it, unfortunately, does not visualize the rays themselves.

Figure 2.2: The interface of Rayround [7] showing the rendered scene (left) and the
editor (right).

5

Another existing tool is the ‘Ray Tracing Visualization Toolkit’ [8]. This tool allows
you to analyze ray-based rendering algorithms, see Figure 2.3. It works as a plugin for the
user’s own ray-based rendering program, after which the recorded rays can be visualized.
This might be very useful for experienced users, but not for users relatively new to ray
tracing. Another downside is that it is not interactive.

Figure 2.3: The interface of the Ray Tracing Visualization Toolkit [8] showing part of a
scene (left) and controls (right).

Virtual Ray Tracer in Figure 2.4 is specifically aimed at users new to ray tracing. It
allows for dynamic scenes with animated visualization of the rays. Throughout several
levels with different scenes, the basics of ray tracing are both explained and every traced
ray can be visualized. It already contains one distributed ray tracing concept, super-
sampling, but this is not visualized.

Figure 2.4: VRT’s interface with a scene on the left and controls on the right.

6

Chapter 3

Concept

In this chapter, we go over the distributed ray tracing concepts that we implemented in
VRT. We also discuss why we chose these features and only these features. We also go
over additional features added to VRT.

3.1 Super-Sampling
Super-sampling is a form of anti-aliasing. Aliasing is an effect where edges are jagged.
This effect occurs when the resolution of an image is simply too low to correctly display
an object. This quickly happens when an edge is round or diagonal, as pixels of an
image are laid out horizontally and vertically. Super-sampling reduces this effect with an
intuitive approach: simply render at a higher resolution. The normal render approach in
ray tracing is to determine the pixel color by shooting a ray through the middle of the
pixel. A visual of this approach can be seen in Figure 3.1.

Figure 3.1: Rendering with no super-sampling. Left is the scene with a screen overlay
where each pixel has one ray in the middle of the pixel, right is the rendered image.

With super-sampling, we do not shoot a single ray through the middle of the pixel, but
multiple rays distributed over the pixel’s area. Every ray counts as a sample, and each
ray contributes 1

#samples to the pixel’s final color. There are many different algorithms to
determine how we distribute the rays over the pixel’s area. We chose to go with uniform
sampling. This means that all samples are spread out evenly, not only within the pixel,

7

but across the entire image, as can be seen in Figure 3.2. We chose this method because
it is simple and also great to visualize, as we can shoot a ray for each sample and all
those rays are evenly distributed.

Figure 3.2: Rendering with super-sampling using 4 samples per pixel. Left is the scene
with a screen overlay where each pixel has 4 rays distributed over the pixel, right is the

rendered image.

3.2 Soft Shadows
There are two major types of shadows: hard shadows and soft shadows. Hard shadows
have hard edges. A point can either reach the light source (no shadow), or a point cannot
reach the light (full shadow). There is nothing in between. Soft shadows do have this in-
between where it gradually goes from no shadow to full shadow. Hard shadows are often
seen as unrealistic because almost all shadows in real life are soft shadows if you look close
enough. However, there are reasons to go with hard shadows. They are realistic enough
in some scenarios, very simple to understand, and much easier to compute compared to
soft shadows.

Figure 3.3: Hard shadows (left) vs soft shadows (right)

8

This high computational cost of soft shadows has to do with how soft shadows arise.
They come from a light source that does not illuminate from a point, but from an area,
an area light. If we look from a random point in a scene, the area light might be fully
visible or not visible at all. Or, it can be partially visible. The regions in a scene from
where the light source is partially visible also get partially illuminated, and therefore are
partially in shadow. For a visualization of this concept, see Figure 3.3.

To compute soft shadows, we need to determine how much of the light’s area is visible.
That is unfortunately easier said than done. To get an exact answer, we need to solve an
integral equation over the light source’s area. As mentioned before, this is very hard. To
make this process faster, we use the previously mention Monte Carlo methods. Instead
of calculating the integral, we approximate it by taking samples on the area light.

3.3 New Light Types in VRT
As said, soft shadows are an effect of area lights. So Virtual Ray Tracer has to be extended
with this new type of light. Point and area lights have almost nothing in common, except
that they are lights. However, point lights and spot lights have in common that both
are an infinitely small point, and spot and area lights have in common that they have a
direction and also do not illuminate in all directions. Therefore, we also add spot lights
as it offers a step-wise explanation.

3.3.1 Spot Lights

With spot lights, just like point lights, the light source itself is an infinitely small point.
It differs itself from the point light with two additional properties: ‘direction’ and ‘spot
angle’. They work very much like flashlights.

Point lights do not have a direction, they illuminate a scene in all directions. Spot
lights shine light in a cone form in a certain direction. In this direction, it may illuminate
a wide region or a very narrow region. This is dependent on its spot angle. A wide spot
angle means it illuminates a wide region, a small spot angle results in a small illuminated
region. An example can be seen in Figure 3.4.

Spot lights are simple to visualize as the user can see the difference in the illuminated
region. As the light source itself is an infinitely small point, just like the point light, the
rays work exactly the same as with point lights.

Figure 3.4: Point light (left) vs 90◦ spot light (middle) vs 120◦ spot light (right)

9

3.3.2 Area Lights

Area lights have some things in common with spot lights. They also have a direction and
an ‘angle’. This angle is however fixed at 180◦. Unlike the other lights, the area light
is no longer an infinitely small point, but an area. As this is a better approximation of
most real-world lights, it really adds to the realism of scenes. The biggest downside of
area lights is the high computational cost due to sampling.

An area light can be visualized by a simple rectangle with the front side colored as
the light’s color and the back side colored black. An example can be seen in the right
side of Figure 3.3. As for the rays, we consider two options. We can either show every
ray as a ray from the point to the sample location or one big cone from a point to the
area light source. The latter can reduce the number of rays dramatically and therefore
improve performance. The first can visualize the sampling process. We chose to go with
a combination of the two. How this is implemented is discussed in Chapter 4.

3.4 Light Attenuation
To further increase realism, we add light attenuation. Light attenuation means that the
light’s intensity gradually drops down according to some formula. We use two types of
light attenuation: distance attenuation and angle attenuation.

3.4.1 Distance Attenuation

Distance attenuation is a simple way of attenuating light that is realistic because it
happens in real life too. It has to do with the ‘inverse square law’. The intensity of the
light decreases in line with the square distance from the light source. This can be seen
in the formula of the area of a sphere: 4πr2 where r is the radius. As the light travels
further, i.e. the radius increases, the area covered by the exact same amount of light
particles (photons) increases quadratically. An illustration of this principle can be seen
in Figure 3.5

Figure 3.5: Visualization of the inverse square law.
Source: https://en.wikipedia.org/wiki/Inverse-square_law#/media/File:Inverse_square_law.svg

10

https://en.wikipedia.org/wiki/Inverse-square_law#/media/File:Inverse_square_law.svg

3.4.2 Angle Attenuation

Angle attenuation is a type of attenuation that only applies to light sources that have a
direction, so spot and area lights in our case. This effect can also be linked to the flashlight
analogy. If you shine a flashlight at a point (point A), that point will be brighter than
a point (point B) to the side of point A (assuming the same material properties, no
additional light sources). This is because the angle between the line from the flashlight
to point A and the light’s direction is much smaller than the angle between the line from
the flashlight to point B and the light’s direction. Similarly, we can lower the spot light’s
intensity in proportion to the angle between the spot light’s direction and the direction
to the point from the spot light. A visualization of this concept can be seen in Figure 3.6.

Figure 3.6: Example of no angle attenuation (left) vs angle attenuation (right).

3.5 Ray Visualization
One of the consequences of showing individual rays for area lights and visualizing super-
sampling is that at some point there may be too many rays to clearly see what is going
on. To better show what is going on, we add the ability to change how rays are visualized.

Currently, rays have a color corresponding to their type. All rays have the same
radius, controllable by the user, and only rays that do not hit anything can be hidden.
We add several additional options to change the rays’ appearance to help the user figure
out what is happening in the scene.

3.5.1 Hide Negligible Rays

Some rays are really important, as they greatly impact the pixel’s color, and some are
nearly negligible, as they contribute almost nothing to the pixel’s color. There may be a
lot of these rays that have barely any impact. To declutter the scene of too many rays,
the user may want to hide these rays. To do this, we add an option to hide negligible
rays which hides rays that contribute less than a set threshold.

11

3.5.2 Ray Transparency

By making rays transparent, we can show lots of rays whilst still being able to see the
scene. How transparent a ray should be is subjective to how visible the user wants to
scene to be and how visible they want the rays to be. The user may not want the rays
to be transparent at all. So we add the option to make rays transparent and make the
level of transparency controllable by the user.

3.5.3 Dynamic Ray Radius

As said before, some rays are more important than others. Another option to distinguish
between these rays is to simply make their size, which is in this case their radius, depend
on their contribution. We add the option to make the ray’s radius depend on its contri-
bution, which maps every ray’s contribution to a radius between a certain minimum and
maximum radius set by the user.

3.5.4 Contribution-Based Ray Color

Lastly, we can also visualize where the pixel’s color comes from. We add the possibility
to change the ray’s color to the color it contributes to the pixel’s color. This way, the
user can visually see how the pixel gets its color.

12

Chapter 4

Implementation

In this chapter we start with a short explanation of how relevant existing features from
VRT are implemented, followed by how we implemented the distributed ray tracing fea-
tures and extras in the original Virtual Ray Tracer [1, 2, 3].

4.1 Virtual Ray Tracer
Virtual Ray Tracer is an open-source program made with Unity. Unity is a popular, free-
to-use game engine that also allows additional script/code written in C#. Any additional
features added to VRT are also made using Unity and the C# language. The application
is not ray-traced but uses rasterization to render all objects. The ray tracing is done
separately using a custom script. This means we have two pipelines: A ray tracer pipeline
that renders only objects in a scene (at a lower resolution) using ray tracing, and a
rasterization pipeline from Unity that visualizes the scene, the ray tracer’s rays, and the
User Interface (UI).

4.1.1 The Design

One of the problems is that Unity uses its own approach of representing a scene that
can be used for the rasterization part, but that is not usable for the ray tracer. The ray
tracer should, for example, ignore UI elements. So the ray tracer should get a filtered
and translated version of the Unity scene data. On top of that, the scene is also dynamic,
elements can change. So we should also make sure that Unity sends updated scene data
if changes are made.

Unity interacts with two parts of the ray tracer: it handles the ray tracer’s input,
but also its output. In VRT, this is separated. The input is handled through the Scene
Manager, which contains the scene data for the ray tracer, and the output is handled
through the RayManager, which manages the rays that Unity can visualize. Consequently,
when it comes to adding new lights, we had to change the Scene Manager and its compo-
nents, and with respect to changing how rays are drawn, we had to change the RayManager
and its components.

W.A. Verschoore de la Houssaye made an illustration of the general structure of VRT
in his thesis [2], shown in Figure 4.1.

13

Figure 4.1: A design for the general structure of the application.
Source: W.A. Verschoore de la Houssaye’s thesis [2].

4.1.2 Ray Tracer

VRT’s ray tracer script contains two (similar) ray tracers. One simply renders an image,
the other one returns a tree structure containing all rays created by the ray tracer. The
latter is used for the visualization of rays and usually calculates only a few pixels. These
rays are stored in Ray Objects. Such an object contains the ray’s data, originally its
origin, direction, type, and color. The color in the ray’s data is the color it contributes
to the pixel, so we can use that for turning the rays to the color they contribute. How
much a ray contributes to the final color is not yet stored, so we had to modify the ray
tracer and the Ray Object to handle that as well since we need that for transparency
and dynamic ray radius.

Currently, each pixel gets its own tree of rays. In order to visualize super-sampling,
each pixel needs multiple trees. So we also have to change how the trees are used in the
program in order to visualize super-sampling.

4.1.3 Ray Visualization

To visualize rays, the aforementioned Ray Objects are used. But because the scene
can change, and we do not want to destroy and create new Ray Objects every time, a
Ray Object Pool is used. It handles all the Unity objects in the scene that represent
rays. Instead of destroying and creating those Unity objects every time, this object
pool (de)activates Unity ray objects in the scene. Every one of these Unity ray objects
can be assigned data from an actual Ray Object from the ray tracer. Activating and
deactivating Unity objects is much faster than destroying and creating objects. Therefore,
this approach allows hundreds of rays to be changed without losing much performance.

4.2 New Additions
We added several new features to Virtual Ray Tracer. We start by explaining how
we implemented all the new lighting-related features, followed by the ray visualization
changes.

4.2.1 Lighting

We added two new types of lights. The first step was to generalize lights. At some points
in the code where it accesses lights, it does not matter which type of light it accesses,

14

as some properties are shared, i.e. position and color. However, some properties are not
shared. You can rotate an area light, but not a point light. Therefore, we first made
an abstract base class RTLight from the RTPointLight class, made the RTPointLight
class extend the RTLight class and moved all properties to the base class and left only
point light specific properties in the RTPointLight class. We also introduced a new
enum field RTLightType so when lights are accessed, the type can always be determined.
After that, we made sure the rest of the code used the base class when appropriate and
RTPointLight only when necessary. With these changes, it is easier to add the area and
the spot light. As distributed ray tracing was the priority, we opted to first implement
the area light and then the spot light.

Area Light

A problem with Unity’s rendering pipeline used for VRT is that it does not support
real-time area lights. So we have to make our own area light approximation with Unity’s
point or spot lights. This is not necessarily bad, because we can somewhat show the ray
tracer’s area light approximation as it does not integrate over the area but takes samples.
As said in Chapter 3, spot and area lights have in common that they have a direction
(and therefore a rotation) and an ‘angle’, although for the area light it is static at 180◦.
Hence, we use a number of Unity’s spot lights to approximate an area light.

We first made an RTAreaLight object in Unity, a so-called ‘prefab’ (a template object
with default settings) that has an image of a rectangle. The area light has a back and
front. If the user is in front of the area light source, we make the image the same color
as the light source’s color. This way, the area light itself is visualized.

Next, we introduced a lightSamples variable and make the script distribute Unity’s
spot lights over the area light’s area. The RTAreaLight object itself has a position, ro-
tation, and scale. If we add sub-objects, so-called children, they are also impacted by
these properties. So if the RTAreaLight prefab is a 1 by 1 rectangle with the front-facing
along the positive z-axis, we can simply place spot lights accordingly in this rectangle
and they will automatically be positioned and rotated correctly in the scene. This makes
it quite easy. We uniformly distribute a total number of lightSamples ∗ lightSamples
Unity spot lights over the area, make them face along the positive z-axis and they will
illuminate the scene correctly.

The next step is to also make sure it works in the ray tracer. We use jittered sampling
to approximate the area light’s illumination. With jittered sampling, we divide the area
light’s area in lightSamples∗lightSamples equally sized rectangles and take a random
point within each rectangle. So when we want to ray trace an area light, we take a total of
lightSamples∗lightSamples samples from the area light and treat each sample exactly
like we would treat a spot light, except this time we divide their color by the number of
samples.

Lastly, in the case it does not render an image but traces rays for the visualization
and we use 25 or more samples, we check if all rays are of the same type (light or shadow)
and if so, combine them to a single ‘area-ray’, see Figure 4.2. This reduces the number
of rays significantly and improves performance. This also means that we had to change
the RayObjectPool to support two different types of ray objects. As this area-ray is a
big object, it is always transparent.

15

Figure 4.2: An area light sampled using 16 samples visualizes every ray (left) and an
area light with 25 or more samples shows only a single ‘area-ray’ (right).

One thing to note is that the area light does not actually have a spot angle of 180◦
in VRT, but 175◦. This is because Unity’s default rendering pipeline cannot correctly
render shadows at the edges of Unity’s spot lights that have the spot angle at 180◦(see
Figure 4.3). There is a setting that allows the shadows to appear, but this creates other
visually distracting artifacts, so we opted to set the area light’s ‘spot angle’ to 175◦.

Figure 4.3: Unity not showing a shadow at the edge of an area light’s reach when
Unity’s spot lights have an angle of 180◦

Note: This image is taken in a development stage and this effect does not occur in VRT as the spot angle is set to 175◦.

Spot Light

For the spot light we simply combined features from the point and area light. The image
that depicts the spotlight could be rotated around one axis, as it is a point and not an
area. For this, we used a similar approach as the existing point light. As Unity has a
real-time spot light, like we used for the area light, everything worked on the side of Unity

16

automatically. As for the rest of the code, the area light already contained a direction
and angle, so this also worked directly after only a few tweaks. To make it work with
the ray tracer, we simply had to combine the point and area light’s approach again. We
trace it just like a point light, except we also check if the point is within the spotlight’s
reach.

For the same reason the area light’s spot angle is set to 175◦, we limited the range of
the spot angle from 1◦ to 170◦.

Light-Distance Attenuation

Light decreases quadratically in intensity as it travels further. We can easily implement
this by dividing the color of a ray by the light-point distance squared. However, as this
effect is quite dramatic and to prevent dividing by zero, often a formula like a+ bd+ cd2

is used, where a, b and c are constants and d is the distance. In this program we opted to
use 0.04+ 0.1d+0.06d2. Light objects have their own properties panel that the user can
access by selecting the light, and in order to better visualize the difference this makes,
we added a toggle to this panel to enable/disable light-distance attenuation per light.

Angle Attenuation

Angle attenuation only applies to the spot and area light. It means that if these lights do
not look directly at a point, but under an angle, the intensity also drops off. A common
way of using angle attenuation is to multiply the color by cos(α)p, where α is the angle
between the light’s direction and the direction to the point from the light and p is a
non-negative number. We used this approach and gave the user an extra slider for spot
and area lights to modify p.

Light Intensity

The two attenuation methods decrease a light’s intensity, but there was no option to
increase it. Increasing the intensity would mean simply multiplying the final color. We
added an additional slider in the light object properties panel with which the user can
adjust the light’s intensity.

A complete overview of all the light properties can be found in Figure 4.4

4.2.2 Visualizing super-sampling

Super-sampling was already implemented in the ray tracer for when the user wanted to
render an image. We only had to copy that to the ray tracer’s function that also returns
the traced rays. Visualizing was not trivial as the code expected a single tree of rays per
pixel. To fix that, we changed the code to expect a single ‘base-ray’ first that should only
be used for the pixel’s color. We could then intentionally skip this ray for visualizing.
Then we can give it multiple children, one for each sample, that will then simultaneously
be visualized as they all come from the same parent. This approach also makes sure
that when the user selects a single pixel, which makes the program only show the ray(s)
associated with this pixel, all rays used for super-sampling in that pixel are shown.

The program already contained a ray tracer properties panel with settings related
to the ray tracer and the visualization, see Figure 4.5. We added a toggle to these

17

Figure 4.4: A screenshot of all possible light properties in VRT. Some properties are not
visible or available for certain light types.

properties so the user can decide for themselves whether or not they want to visualize
super-sampling.

4.2.3 Ray visualization

In the program, if the user decides to visualize super-sampling and the scene also contains
(an) area light(s), there may be too many rays. As previously mentioned, to make this
better visible for the user and to enhance the visualization in general, we added a few
extra options.

Ray Contribution

One of the new RayObject properties needed for the new visualization options is the
contribution the ray has to the final pixel color. This cannot be fully determined while
tracing the rays as each ray’s relative contribution to the parent depends on the rest of
the parent’s child rays. The parent’s color depends on the material interaction at the
hit-point plus any color returned by child rays. So once a parent ray is done tracing all
child rays, we can set the contribution for all child rays with respect to the parent. This
is important because if each ray knows its contribution with respect to its direct parent,
we can recursively determine its contribution to the final pixel color. For example, if a
ray contributes 25% to the pixel’s color and it has two child rays that contribute 40%
and 20% to this ray (assuming 40% of the color is from the material interaction at the

18

Figure 4.5: A screenshot of all preexisting ray tracer properties in VRT.

hit-point), then their contribution to the pixel’s color is 10% and 5% respectively. This
means that after we traced the rays, we recursively multiply each ray’s contribution with
that of its parent and then all rays have a contribution value that we can use for the
visualization.

Hiding Negligible Rays

An intuitive step to declutter the scene of many rays is to not show negligible rays. We
give the user two extra controls: a toggle to hide negligible rays and a slider to set the
threshold that determines when a ray is negligible. Any ray with a contribution less or
equal to this threshold will not be drawn.

Ray Transparency

In order to make rays transparent, they need new materials that are transparent instead
of opaque. This is more computationally expensive than opaque rays. As transparent
rays are harder to see, we remove all components except the ambient component of the
transparent materials, as diffuse and specular reflections are not that noticeable. This
makes them actually easier to render for Unity compared to opaque rays. We add two op-
tions to the ray tracer properties panel with which the user can control ray transparency:
a toggle to enable ray transparency and a slider to set the level of transparency. If ray
transparency is enabled, the RayManager will assign transparent materials to the rays in-
stead of opaque materials. Every ray gets a unique material as the level of transparency
depends on both the ray’s contribution to the pixel’s color and how transparent the user

19

wishes the rays to be.

Dynamic Ray Radius

Currently, each ray’s radius is set to the rayRadius variable in the RayManager. We
can instead make a function that returns the desired radius for the ray and make it
depend on the ray’s contribution. We give the user three extra controls: a toggle to
enable dynamic ray radius and two sliders for the minimal and maximal ray radius. If
the user wishes the ray’s radius to be dynamic, the aforementioned function returns a
radius between the minimal and maximal radius based on the ray’s contribution. Else it
returns the rayRadius. The way this is implemented gives the user another unique way
of visualizing the rays, as the minimal ray radius does not have to be smaller than the
maximal radius. If this is not the case, negligible rays are simply bigger than important
rays, which gives the user the ability to easily find rays that almost contribute nothing.

Contribution-Based Ray Color

The ray tracer already stores the color that each ray contributes to the pixel in each
RayObject. Just like the RayManager can return a unique transparent material for each
ray, it can also give a uniquely colored material for each ray, optionally also transparent.
We add yet another toggle to the ray tracer properties panel to enable contribution-based
ray colors. If this toggle is enabled, the RayManager will not return a material based on
the RayObject’s type, but on the color it contributes to the pixel.

All different visualization options are shown in Figure 4.6.

20

Figure 4.6: All ray visualizations options in VRT. From left to right, top to bottom, each time an
extra option is enabled: all disabled, hide negligible rays, ray transparency, dynamic ray radius,

contribution-based ray color.

21

4.2.4 Extra Controls

Lastly, we also added some extra controls. We added toggles for each type of light that
disables those types of lights completely. This allows the user to experiment, for example,
with different light types at the same positions. We also added a button that ‘flies’ the
user to the virtual camera that the ray tracer uses. This allows the user to compare the
rasterized scene with the ray traced scene. All the extra controls added to the ray tracer
properties panel are shown in Figure 4.7.

Figure 4.7: A screenshot of all new ray tracer properties in VRT.

And as rendering a scene with an area light and super-sampling can take long, we also
added a progress bar to the render screen so the user can estimate how long they have
to wait before the render is done, shown in Figure 4.8. We only did the implementation
of the progress bar for the ray tracer. The progress bar itself was made and designed by
P.J.T. Blok for his thesis about Gamification in VRT [4].

22

Figure 4.8: The loading screen in the render windows of VRT with a progress bar.

4.3 New Levels and Gamification
The existing ray tracer used a big pop-up message at the start of each level to explain
concepts. This is not the most fun way of learning ray tracing. For that reason, alongside
this project, a gamified version of VRT was made by P.J.T. Blok [4]. As my version
included more features and concepts that needed to be explained, we added more levels
to explain everything. This meant that the user had to go through even more long texts
which has downsides [4]. For that reason, besides adding new levels, I merged my project
with the gamified version to enhance the learning experience for the user.

23

Chapter 5

User Study

In this chapter, we go over how we tested if users actually learned the newly added and
visualized concepts with a user study. The user study itself can be found in Appendix A.

5.1 Questions
The goal of the user study is to find out if users also understand the new concepts added
and explained in VRT and to see if the extra ray visualization features offer any help. We
were hoping to get at least around 20 participants. Luckily, the VRT program no longer
needs to be installed but also works in the browser on a desktop computer. This made it
easier to spread the survey around. We asked participants to spend around 20 minutes
with the program, as they first need to learn about the already implemented basic ray
tracing aspects before they move on to the new concepts and features.

Context Questions

First, we wanted to know a little about the participant so we can put the answers in
context. For example, we would expect a participant with a master’s degree in Computing
Science to understand ray tracing and the program itself better than someone who is in
high school that has little interest in computer technology. Therefore, we asked the
user what their highest level of education is (including current studies), how skillful they
consider themselves to be with computers on a scale of 1 to 10, how familiar they already
are with ray tracing on a scale of 1 to 5, how many minutes they actually spend with the
program, and optionally, their age.

Educative Questions

We wanted to know if the user learned the new ray tracing concepts explained in the tool
and whether the extra visualization possibilities offered any help. As the user already had
to spend quite some time with the program, we wanted to keep the user study concise
and we chose to go with eight questions. Six questions asked the user to indicate on a
scale of 1 to 5 how much the tool helped with understanding a certain concept, with two
open questions where the participant was asked to explain how the tool did (not) help.

24

Additional feedback

Lastly, we asked the participant what they thought of the complexity of the program and
if they had any other additional feedback or general or technical remarks. It is good to
know if the participant could not successfully complete the (mandatory) tasks1 in each
level of the program due to technical issues, or if they had ideas to further improve the
program.

5.2 Results
The user study was conducted in three groups. The first group, gathered from friends,
consisted of 6 participants. The second group of participants was gathered from Sur-
veySwap2. Unfortunately, not all of the responses could be used as some did not follow
the instructions appropriately, some did not fill out the survey correctly or gave made-up
answers, and lastly, some said they did not learn anything as they already knew every-
thing. After validating the responses, we were still left with a total of 55 responses. We
discuss these two groups as one as they do not differ much, both demographically and in
responses. The last group consisted of 31 high school students that have IT as a subject
in their programme. We chose to also test if they could understand these concepts as they
may be a little complex, but do not actually require any knowledge of Computer Science
courses taught ahead of the Computer Graphics course, which the main target demo-
graphic, Computer Graphics students, do have. We again needed to filter the responses,
for the same reasons as mentioned before.

The results of the multiple-choice questions can be found in Figure 5.1.

Friends and SurveySwap participants

Almost all participants had little to no preexisting knowledge about ray tracing, which
is good because it means that we can test if the program successfully teaches them ray
tracing from the ground up. On average, they spent around 22 minutes with the program.
The tool helped participants understand ray tracing quite well, with some exceptions. The
difference between the types of light sources was understood pretty well, whilst the light
attenuation was harder to understand. Soft shadows were understood quite well as well
and nearly all users found the new ray visualization options nice to have, especially the
ray transparency and contribution-based ray color.

Looking into individual answers, there does not seem to be much difference in un-
derstanding a certain concept compared to another concept. Either the participant un-
derstood all aspects of the program, or they did not understand any of them, with the
exception being the ray visualization options, which were generally liked.

The main complaints were that it was ‘too complex/complicated’ and ‘laggy’. The
latter can occur on some lower-end systems which are likely to obstruct the learning
process. The complexity, however, was not only about the explanations but also about the
program itself. Some participants did not seem to understand what was expected when

1In the gamified VRT [4], users cannot directly go through the levels, they first have to complete
tasks. Some of these tasks are mandatory, some are optional. Once the mandatory tasks have been
completed, they can proceed to the next level.

2https://surveyswap.io/ is an online service where users can fill out surveys and in turn, the user
will also get responses on their own survey(s)

25

https://surveyswap.io/

the program prompts them to perform some task, some found it simply too difficult to
understand. None of the users that had problems understanding ray tracing had followed
Computing Science-related studies. From the results, we can also see that if the user
spends more time with the program, they are more likely to understand everything.
Younger users (<25 years old) also had fewer complaints than older users.

In general, from this group, we can conclude that this program is not usable to teach
(distributed) ray tracing to the average person but expects the user to have some affinity
with Computing Science. But if the user is able to work with the program, they are likely
to quickly understand advanced ray tracing. Users that had a background in Computing
Science had no problems using the program and understanding the concepts.

High School Participants

The high school participants from the Ubbo Emmius high school in Stadskanaal, Nether-
lands, got the same survey, except the questions were translated into Dutch. The tool and
the mentioned concepts in the survey remained in English. All of the students have the
IT subject in their programme. Important to note is that not all of these students have
an affinity for computers, some choose this subject to get more familiar with computers.
Hence we do expect some users to have trouble understanding these concepts.

Overall, the results are almost on par with the ‘Friends and SurveySwap’ partici-
pants. On average, they spent around 17 minutes with the program. The tool helped
the students understand ray tracing quite well, although some admitted they had a bit
of a struggle understanding both the language and the terminology. Nevertheless, none
of the participants thought the program did not help at all in certain aspects, it at the
very least taught them something in the limited time that they used the tool.

Once again, the individual answers revealed that all concepts were always understood
quite evenly. For example, if a student did not understand a certain aspect, they did
not understand other concepts well either, and the ray visualization options were again
appreciated very much. The complaints were also similar to that of the previous group,
mostly that it is sometimes a bit complex and that the program does not run smoothly
on all computers.

The age of this group is significantly lower but the responses are quite similar com-
pared to the previous group. This goes to show that if the user has some interest and
intuition on how a program like this would work, they can learn it very well. It also
shows that if users would like to learn about ray tracing, but do not have any experience
with programs that have similar features as VRT (i.e. 3D software and games), they find
it more difficult to learn as they struggle with using the program itself.

26

Figure 5.1: A summary displaying the responses for the multiple-choice questions of the user study.

27

Chapter 6

Conclusion

This thesis had the objective to improve on the original Virtual Ray Tracer application
by extending it with distributed ray tracing features. We implemented and visualized two
distributed ray tracing concepts, super-sampling and soft shadows, and also extended the
program with additional features to aid the user with the learning experience and to make
the program more complete. These extra features include a spot light, light-distance and
angle attenuation, new ways of visualizing rays, and some miscellaneous features.

From the user study, we can conclude that this extended version of the gamified [4]
Virtual Ray Tracer generally helps users to understand the new features. It also shows
that more than just Computer Graphics students can learn ray tracing from this appli-
cation, but that definitely some basic knowledge and interest are required.

For users with a Computing Science background, the program was very usable and
the concepts were easy to understand. For other users, it fluctuated. Some users were
able to use the tool and were surprised by how much they learned about ray tracing in
just around 20 minutes. Others were not so lucky. The two main obstacles were the
information and how it was explained, and how to interact with the program. For some
people, working in a 3D environment like VRT is nothing special, others already struggled
there. However, the program and its controls may be an obstacle for some users, most
of them are not the target demographic (Computer Graphics students). So it could be
argued that this is to be expected and not worthwhile to improve on, as the program
does work for the intended audience.

28

Chapter 7

Future Work

In this chapter, we discuss potential improvements to the gamified VRT with distributed
ray tracing features.

Program Interaction

One of the main complaints from people that struggled to learn ray tracing using VRT was
the program itself and how to interact with it. By making the program more accessible
for users that never worked with other programs that have similar features, the tool might
help even more people. Whether this is worth the work would depend on if those users
benefit from learning ray tracing.

Extra Explanations

Most concepts are explained in a simple and easy way to make them straightforward to
learn. However, sometimes this is not enough for certain users, and others find it too
simple and like to have a more in-depth explanation. Adding the ability to quickly access
either a more extensive or more in-depth explanation could benefit some users.

Performance

VRT is not optimized well. Especially with area lights, the performance on a mid-tier
laptop might be so poor that the user is limited in learning from VRT because they cannot
run it. This could be improved on by further optimizing the code and by changing the
quality settings in Unity, which is currently static on ‘Ultra’. The performance can also
be enhanced by changing the way rays are rendered in Unity, as is discussed in the next
point.

Ray visualization

The transparent rays in VRT currently have only an ambient component, meaning they
do not interact with any light sources. This is the reason that enabling ray transparency
may significantly improve the performance of VRT. This does, however, have the downside
that it is harder to see how far away rays are, as they have no shadow or illumination.
Finding a balance between having the rays look as nice as possible and the rays not
costing any computational power to render, could improve both.

29

Visual Guidance

Some users mentioned that some visual guidance might be helpful when explaining certain
concepts. Part of understanding the concepts is being able to play with them and if they
do not understand how to navigate through the program, it is quite hard. An example
would be a flashing circle around a button the user has to click.

Controls

The controls could be simplified to make it easier for the user to interact with the program.
Some mice (Mac-mouse and laptop track-pads) do not have a (clickable) scroll wheel for
example, and some users are not used to controlling a 3D application.

Non-rectangular area light

Not all area lights are rectangular. Adding circular and potentially other types of area
lights might be nice for the user to play around with.

Color Banding

One of the phenomena currently in VRT that does not look real is color banding. Color
banding is the effect caused by colors rounded to the nearest integers RGB-values. Es-
pecially when the colors are darker, these jumps can be noticeable, as can be seen in
Figure 7.1. A possible fix to this is dithering. Dithering is intentionally applying noise
to the image in order to randomize the ‘quantization error’, which is the round-off error.
I.e. when we round 2.8 to the value 3, the quantization error is 0.2. Without dithering,
the colors would, for example, first be rounded down first (quantization error of −0.5)
and the further we move it would be rounded up (quantization error of 0.5). So the
quantization error is linearly proportional to the color change. By applying noise and
therefore randomizing this quantization error, the color change will not be linear and the
color banding effect will decrease, albeit at the cost of some noise.

(a) Dark color banding. (b) Bright color banding.

Figure 7.1: Color banding in VRT.

30

Acknowledgements

I would like to thank my supervisors prof. dr. Jiří Kosinka and dr. Steffen Frey for making
time to help with this project by answering questions and giving valuable feedback. I
would also like to thank Chris van Wezel for introducing Virtual Ray Tracer and giving
extra information and support. I also want to thank Peter Jan Blok for making the
gamified VRT, which I used in my project. At last, I would like to thank my friends, the
users of SurveySwap and Frank van het Hof from the Ubbo Emmius high school and his
students for distributing and taking part in the user study, respectively.

31

Bibliography

[1] C. van Wezel, “A virtual ray tracer,” Bachelor’s Thesis, University of Groningen,
2022. [Online]. Available: http://fse.studenttheses.ub.rug.nl/id/eprint/
26455.

[2] W. Verschoore de la Houssaije, “A virtual ray tracer,” Bachelor’s Thesis, University
of Groningen, 2022. [Online]. Available: http://fse.studenttheses.ub.rug.nl/
id/eprint/24859.

[3] W. A. Verschoore de la Houssaije, C. S. v. Wezel, S. Frey, and J. Kosinka, “Vir-
tual Ray Tracer,” in Eurographics 2022 - Education Papers, J.-J. Bourdin and E.
Paquette, Eds., The Eurographics Association, 2022, isbn: 978-3-03868-170-0. doi:
10.2312/eged.20221045.

[4] P. Blok, “Gamification of virtual ray tracer,” Bachelor’s Thesis, University of Gronin-
gen, 2022. [Online]. Available: http : / / fse . studenttheses . ub . rug . nl / id /
eprint/27596.

[5] P. Shirley and S. Marschner, Fundamentals of Computer Graphics, 3rd. USA: A. K.
Peters, Ltd., 2009, isbn: 1568814690.

[6] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,” SIGGRAPH
Comput. Graph., vol. 18, no. 3, pp. 137–145, Jan. 1984, issn: 0097-8930. doi: 10.
1145/964965.808590.

[7] N. Vitsas, A. Gkaravelis, A.-A. Vasilakis, K. Vardis, and G. Papaioannou, “Ray-
ground: An Online Educational Tool for Ray Tracing,” in Eurographics 2020 - Edu-
cation Papers, M. Romero and B. Sousa Santos, Eds., The Eurographics Association,
2020, isbn: 978-3-03868-102-1. doi: 10.2312/eged.20201027.

[8] C. Gribble, J. Fisher, D. Eby, E. Quigley, and G. Ludwig, “Ray tracing visualiza-
tion toolkit,” in Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, ser. I3D ’12, Costa Mesa, California: Association for Com-
puting Machinery, 2012, pp. 71–78, isbn: 9781450311946. doi: 10.1145/2159616.
2159628.

32

http://fse.studenttheses.ub.rug.nl/id/eprint/26455
http://fse.studenttheses.ub.rug.nl/id/eprint/26455
http://fse.studenttheses.ub.rug.nl/id/eprint/24859
http://fse.studenttheses.ub.rug.nl/id/eprint/24859
https://doi.org/10.2312/eged.20221045
http://fse.studenttheses.ub.rug.nl/id/eprint/27596
http://fse.studenttheses.ub.rug.nl/id/eprint/27596
https://doi.org/10.1145/964965.808590
https://doi.org/10.1145/964965.808590
https://doi.org/10.2312/eged.20201027
https://doi.org/10.1145/2159616.2159628
https://doi.org/10.1145/2159616.2159628

Appendix A

User Study Questions

Q1: What is your highest level of education? (Including current studies)

Q2: How skillful would you consider yourself to be with computers?
R: 1–10, with 1 1 ‘Not skilled’ and 10 ‘Very skilled’.

Q3: How familiar were you with ray tracing before this survey?
R: 1–5, with 1 ‘Not familiar’ and 5 ‘Very familiar’.

Q4: How many minutes did you spend with the program?

Q5: How well did the tool help you with understanding ray tracing (better)?
R: 1–5, with 1 ‘Did not help’ and 5 ‘Helped a lot’.

Q6: How well did the tool help you with understanding the different types of light-
sources?

R: 1–5, with 1 ‘Did not help’ and 5 ‘Helped a lot’.

Q7: How well did the tool help you with understanding how ’Angle Attenuation’ and
’Light-Distance Attenuation’ works?

R: 1–5, with 1 ‘Did not help’ and 5 ‘Helped a lot’.

Q8: How well did the tool help you with understanding how soft shadows are created?
R: 1–5, with 1 ‘Did not help’ and 5 ‘Helped a lot’.

Q9: How well did the tool help you with understanding how super-sampling works?
R: 1–5, with 1 ‘Did not help’ and 5 ‘Helped a lot’.

Q10: Please explain why you did (not) understand the ray tracing aspects explained in
the tool.

Q11: Do you think the different possibilities of visualizing rays helps?
R: 1–5, with 1 ‘Not at all’ and 5 ‘Very much’.

33

Q12: You can leave feedback on the ray visualization here.

Q13: Did you find the application easy to use?
R: ‘The application is too simple. More controls and settings would be an improve-

ment’, ‘The complexity is good’, ‘The application is too complex. There are too
many unnecessary settings and controls’.

Q14: If you have any other feedback, general or technical remarks, you may leave them
here (optional)

Q15: What is your age? (optional)

34

	Introduction
	Background
	Ray Tracing
	Distributed Ray Tracing
	Ray Tracing Visualization

	Concept
	Super-Sampling
	Soft Shadows
	New Light Types in VRT
	Light Attenuation
	Ray Visualization

	Implementation
	Virtual Ray Tracer
	New Additions
	New Levels and Gamification

	User Study
	Questions
	Results

	Conclusion
	Future Work
	Acknowledgements
	References
	User Study Questions

