
Adapting Virtual Ray Tracer to a
Web and Mobile Application

Bachelor Thesis

July 14, 2022

Author:
Roan Rosema

Primary supervisor:
Jǐŕı Kosinka

Secondary supervisor:
Steffen Frey

Abstract

With the quick advancements of modern technology, ray tracing in computer
graphics has become key in creating computer-generated images. To get a better
understanding of how ray tracing works, the Virtual Ray Tracer desktop application
was created. Rays are traced in scenes and the user can observe the paths these
rays take. Virtual Ray Tracer is made with the intent of educating students and
computer graphics enthusiasts about the art of ray tracing.

In this thesis, we adapt this existing application to both a functional web ap-
plication and a fully functional and redesigned mobile device application. Instead
of being required to download a desktop application, Virtual Ray Tracer can now
be downloaded or used on different platforms. The application has become more
accessible and this way a broader audience is reached.

A user study was conducted to retrieve feedback for the mobile application.
The reported bugs and the retrieved feedback were used to improve the mobile
application.

Contents

1 Introduction 4

2 Background 6
2.1 Virtual Ray Tracer . 6
2.2 Web Applications . 7
2.3 Mobile Applications . 8

3 Web Adaptation 9
3.1 Unity WebGL Build . 9
3.2 Github Pages . 10

4 Mobile Adaptation 11
4.1 User Interface . 11

4.1.1 Home Screen . 11
4.1.2 Main Menu and Help Menu . 13
4.1.3 Settings Menu . 13
4.1.4 Levels Menu . 14
4.1.5 Menu Bar (Bottom Bar) . 14
4.1.6 Top Bar . 15
4.1.7 Control Panel . 15
4.1.8 Rendered Image Window . 17
4.1.9 Gizmos . 17
4.1.10 Additional changes . 19

4.2 User Experience . 19
4.2.1 Panning . 19
4.2.2 Zooming . 19
4.2.3 Orbiting . 20
4.2.4 Rendered Image Window Movement 20

4.3 Google Play Store . 20

5 User Study 22
5.1 Questions . 22

5.1.1 User Interface Questions . 22
5.1.2 Movement Questions . 22
5.1.3 General Remarks . 23
5.1.4 General Questions . 23

5.2 Results . 23
5.2.1 General Questions . 23
5.2.2 User Interface Questions . 24
5.2.3 Movement Questions . 24
5.2.4 General Remarks . 25

6 Conclusion 26

7 Future Work 27

2

Acknowledgements 28

References 29

Appendix 30
User Study Questions . 30

User Interface Questions . 30
Movement Questions . 30
General Remarks . 30
General Questions . 30

3

1 Introduction

In the recent decades, the use of computer graphics has become essential in many areas,
ranging from the world of entertainment to the studies of scientific visualization [13].
Movies, games, but also weather depictions and the visualization of distant planets have
all improved by a huge margin thanks to computer graphics. With the quick advancements
in modern technology, graphics and visualizations have and will become more realistic
than ever. As scenes often include various light sources, have many objects that are made
of different materials and might have reflections to deal with, the use of ray tracing is a
must in contemporary technology involving computer graphics.

Rendering is the backbone of many computer graphics images. For the last 40 years,
rendering has been limited to the capabilities of hardware in computers. With recent
performance improvements thanks to more processors and new programming methods, the
interest in ray tracing technology has increased [11]. Dating back all the way to the middle
ages, ray tracing is used to simulate the physical behavior of light [11]. The technique,
although not necessarily the fastest, can create accurate and photo-realistic images [9].
Ray tracing is heavily used in real-time rendering, where scenes and objects change,
making the rendering of these computationally complex. The challenges of accuracy,
complexity and performance while also keeping the speed and quality high, is what makes
ray-tracing in real-time rendering a big feat. Ray tracing is one of the few graphics
rendering algorithms that is also easy to visualize, explain and code [9]. A small example
of ray tracing can be seen in Figure 1.

Figure 1: Ray Tracing example, By Henrik - Own work, CC BY-SA 4.0, https://

commons.wikimedia.org/w/index.php?curid=3869326

The visualization of ray tracing is the main concept of Virtual Ray Tracer [15, 6], a
desktop application made for anyone interested in computer graphics. The application
is made with the intention to educate the user about the ray tracing algorithm. The
application contains numerous scenes where the user can see the ray tracing algorithm
visualized. Rays are traced in the scene, where the user can see the new paths the rays take
after an interception with anything in the scene. Visualizing ray tracing in an application

4

https://commons.wikimedia.org/w/index.php?curid=3869326
https://commons.wikimedia.org/w/index.php?curid=3869326

will ultimately result in the user understanding the main concept of ray tracing better,
without needing to understand the possible many difficult calculations.

Virtual Ray Tracer was only deployed as a desktop application. This thesis discusses
the process in which Virtual Ray Tracer is adapted to a web application and mobile
application. This way, the accessibility of Virtual Ray Tracer becomes broader and a
wider audience is reached, resulting in more students getting to learn about the ray
tracing process.

In Chapter 2 the existing applications and inspirations are discussed. In Chapter 3,
the process of adapting Virtual Ray Tracer to a web application is discussed. Then in
Chapter 4, the process of adapting Virtual Ray Tracer to a mobile application is discussed.
Our user study is covered in Chapter 5. Finally, in Chapter 6 a conclusion is given and
in Chapter 7 ideas for future work are mentioned.

5

2 Background

In this chapter, we explore the existing applications, inspirations and information that
have been used to shape the results of this thesis.

2.1 Virtual Ray Tracer

The visualization of rays can be beneficial in the understanding of the way ray tracing
works. The Virtual Ray Tracer application [15, 6, 16] is made with this exact thought
in mind. With the ability to move objects, change their properties, move the virtual
camera and much more, the application uses various features to educate the user on the
ray tracing process. The application is made in C# with the Unity engine (2020.3 LTS
Release), with the initial ability to deploy for Windows, MacOS and Linux.

Figure 2: Virtual Ray Tracer desktop application [15, 6, 16]

Virtual Ray Tracer (see Figure 2) is implemented with three main classes at its core,
the first of these being the Scene Manager. All scene data, such as the camera, lights and
objects, are handled in this class. Ray tracing components may be attached to the objects
in the scene, indicating that this object is either a camera, light or mesh. At the start
of the scene, the Scene Manager will collect all instances of the ray tracing components
and store it in a ray tracing scene component, after which the scene sends this data to
the ray tracer.

The Ray Tracer class takes this scene data sent from the Scene Manager and produces
a set of rays. Here, object intersections are determined and collisions are taken into
account when producing the rays. The rays are stored as objects that store the origin,
direction and length of the ray. One ray could potentially result in many more rays as
ray tracing follows a recursive pattern, so the rays are stored in a tree. A new object is
added as a child of the caller’s tree after each recursive call. The output of the render
function is a list of every tree node of the ray, with each tree node representing a pixel.

Finally, these rays are visualized with the use of the Ray Visualization class. The class

6

takes the list made in the Ray Tracer class and draws them in the scene. It takes the
position, orientation and scales a cylinder to match the stored objects’ origin, direction
and length. As the rays are computed in recursive fashion, the length of the ray gets
updated recursively as well, resulting in an animation achieving the effect of the rays
shooting out of the camera into the scene.

2.2 Web Applications

Web applications are programs that are stored on servers and distributed through browsers
on the Internet. They do not require to be downloaded and can easily be accessed through
a network. Web applications are generally designed to increase accessibility. This is the
main reason why lots of educational programs are programmed as web applications as
opposed to desktop applications.

The use of web applications has its advantages when compared to desktop applications.
The main advantages are listed below:

• More accessible than desktop applications;

• Updates are done via deployments on a web server, so no client-sided downloads
are required;

• Most web applications can be used in any browser and are not dependant on the
machine the application is run on.

However, there are also some drawbacks. They are listed below:

• Web applications cannot be started without an internet connection;

• Web applications are not installed on a client’s device, but are distributed via the
Internet. This also means that the application is accessible to practically all of the
Internet. This, in turn, could result in a web application being less secure than a
desktop application;

• In general, desktop applications are faster than web applications.

There are a few web applications where generated images produced with the ray
tracing technique are shown, but none of these are focused on actually visualizing the
rays’ traces. A good web-based example is the application known as Rayground (see
Figure 3) [17]. In Rayground, one can run their own ray tracing implementation and can
test their own created scenes.

7

Figure 3: Rayground Web Application with a scene preview (left) and a code editor
(right) [17]

Two other web based applications that are worth mentioning are Ray Optics Simu-
lation [14] and the Light Tracer rendering tool [4]. Ray Optics Simulation simulates the
ray tracing process in a 2D scene. The Light Tracer rendering tool allows users to create
photo-real interactive 3D visuals right inside their web browser.

2.3 Mobile Applications

Mobile applications are applications that are run on mobile devices. They do not differ
much from desktop applications, besides the screen size, memory capacity and processing
power typically being smaller. As desktop applications, they are platform-dependant.
Updates of mobile applications (as well as desktop applications) are known as patches
and can be downloaded to the client’s device whenever a new update is available. Most
mobile applications do not require an internet connection to run and are usually highly
secure.

As of today, there is a very small number of mobile applications where the ray trac-
ing process is explained and there are no applications where the ray tracing process is
visualized in 3D. Bringing Virtual Ray Tracer to mobile is therefore a nice addition to ap-
plication stores, so Computer Graphics students and enthusiasts that would like a mobile
way to learn about ray tracing can do so.

8

3 Web Adaptation

The first part of the project was to adapt the Virtual Ray Tracer desktop application to
a functional Virtual Ray Tracer web application.

3.1 Unity WebGL Build

Unity supports porting an application to WebGL [7]. WebGL is a 3D graphics li-
brary/API, which allows browsers to efficiently render 3D scenes. The rendering is client-
based; the scene is usually downloaded from a server, after which the processing of the
scene is done locally using the client’s hardware [5]. WebGL is developed with JavaScript
[5, 18]. The well-known programming language for web development allows for easy com-
munication between elements as opposed to using an applet. As WebGL is programmed
in JavaScript, the applications are easily integrated with other JavaScript libraries and
other HTML5 technologies [5].

JavaScript with the usage of WebGL is the logical option for porting a Unity project
to a web-based application. A relatively recent new technology known as WebAssembly
has the capability to run various programming languages, such as C/C++/C#, in the
browser [12]. With the performance tested on multiple perks, among which loading
times, handling HTTP requests and sorting a list, it can be concluded that WebAssembly
has better execution times than a JavaScript applet with the same functionality when
performing computations [10, 2].

Having done this research, the application was then built as a WebGL application.
The realization then came that Unity also uses WebAssembly in its WebGL builds and
not much else had to be done. It was, however, nice to see that it worked well. Complex
scenes also ran fairly well (see Figure 4).

Figure 4: Virtual Ray Tracer as a web application

The main thought was that deploying the tool as a web application would come with

9

various optimizations needed. Fortunately, the application ran well enough to not need
any optimizations in the original version. When any future work is added, optimization
might still be needed.

Besides WebGL and WebAssembly, another web API is in the making, known as
WebGPU. The API is currently specified as being a Working Draft, denoting that the
API is still a work in progress [1]. WebGPU behaves quite similarly like WebGL, but
enables developers to take full advantage of the capabilities of modern GPUs [3]. For
now, Virtual Ray Tracer is only built as a WebGL application.

3.2 Github Pages

Four other students have been working on the application with their own projects; Jesper
van der Zwaag on adding distributed ray tracing; Peter Jan Blok on the Gamification of
VRT; Bora Yilmaz on adding support for acceleration data structures; Anton Bredenbals
on adding support for ray marching.

With now having the knowledge that web builds can be built pretty easily, it was
a good idea to make use of this to distribute the progress of these different projects.
With the use of Github Pages, they were able to upload their WebGL builds and keep
updating them whenever changes had been made. This way, it was prevented to having
to download a new desktop application any time new changes had been made.

10

4 Mobile Adaptation

Besides deploying Virtual Ray Tracer as a web application, the application developer
wished the tool to be deployable for mobile as well. Sadly, WebGL does not work partic-
ularly well (or not at all) on mobile devices [7]. Features like keyboard input also do not
work, as a mobile device uses touches instead of mouse clicks and keyboard keys. One of
the main concerns of deploying the application as a mobile application was performance,
but although the performance is a little worse on mobile than on a computer, there are
no big problems. Lots of visual changes were needed to create a functional replica of the
existing application. Fortunately, this could be done in Unity.

4.1 User Interface

The main visual changes that had to be made in the application had to do with the
User Interface (UI). All of the components had to be adapted to make the application
readable and usable for mobile users. In the following subsections, most of the changes
are explained. Besides tooltips, all of the UI elements within Virtual Ray Tracer are held
in the Main Canvas object. Unity uses Prefabs, which are practically templates. If a
change is made to a Prefab, all the scenes that have the Prefab as an object will also
change. The Main Canvas is created as a Prefab. Most of the UI elements within the
Main Canvas Prefabs are also Prefabs themselves. Changes made to the UI elements
depended on which depth level the changes had to be made on.

4.1.1 Home Screen

The very first change that was made to the mobile version was the home screen. The
home screen of the original Virtual Ray Tracer (VRT) desktop application looks good
(see Figure 5), but was too small to nicely use on a mobile device.

Figure 5: Home screen of the Virtual Ray Tracer desktop application

11

To have a good idea on how the home screen should look, inspiration was taken from
various other mobile applications. A good example of this was Geometry Dash, a game
that is played holding the device horizontally that also has a nice home screen for mobile
users to use (see Figure 6).

Figure 6: Home screen of the mobile game Geometry Dash, used for inspiration

With the use of some inspiration, the home screen for the mobile version of Virtual
Ray Tracer was made. The design was kept as simple as possible, to have a clear and
concise home screen (see Figure 7).

Figure 7: Home screen of the Virtual Ray Tracer mobile application

12

4.1.2 Main Menu and Help Menu

The two clear changes that can be seen in the mobile version of VRT are the Main Menu
(see Figure 8) and Help Menu (see Figure 9). These menus and their texts within are
made bigger. Just as the desktop application, these menus are relative to screen size.

Figure 8: Main Menu of the Virtual Ray Tracer mobile application

Figure 9: Help Menu of the Virtual Ray Tracer mobile application

4.1.3 Settings Menu

Just as the Main Menu and Help Menu, the Settings Menu has also been made bigger
(see Figure 10). It includes the same buttons as the original desktop application.

13

Figure 10: Settings Menu of the Virtual Ray Tracer mobile application

4.1.4 Levels Menu

The Levels Menu is also changed trivially, but notable to show (see Figure 11). As the
other menus, the Levels Menu has been enlarged.

Figure 11: Levels Menu of the Virtual Ray Tracer mobile application

4.1.5 Menu Bar (Bottom Bar)

In the mobile version of VRT, the menu bar is split up into two new Prefabs; the Menu Bar
(Bottom Bar) and the Top Bar. For nearly all levels, the Bottom Bar consists of three
buttons: the Translate/Rotate/Scale button, the Local/Global button and the Create

14

button. All of these buttons now open an upward dropdown menu. In the Sandbox level,
an additional Delete button is added. This is to delete any objects within the scene. In
the desktop application this could be done with the delete button on a keyboard, but this
is not possible on mobile devices. The Bottom Bar can be seen in Figure 12.

Figure 12: Bottom Bar of the Virtual Ray Tracer mobile application

4.1.6 Top Bar

The Top Bar consists of the Main Menu button and the Help button. They have been
made smaller than the buttons in the Bottom Bar. Their purpose is self-explanatory.
The Top Bar can be seen in Figure 13

Figure 13: Top Bar of the Virtual Ray Tracer desktop application

4.1.7 Control Panel

As mentioned before, some Prefabs have objects that come from other Prefabs. The
Control Panel consists of various of these Prefabs. In the Control Panel, there are three
tabs; Ray Tracer, Camera and Object. In reality, there are four different screens that can
be shown within the Control Panel: Ray Tracer Properties, Camera Properties, Mesh
Properties (for objects) and Light Properties. Each of these properties have settings that
can change the scene.

There are four different types of setting changes. The types have been separated as
Prefabs: BoolEdit, FloatEdit, Vector3Edit and ColorEdit.

Every setting that has been made from the BoolEdit Prefab is shown as a checkbox
within the Control Panel. As the name suggests, these settings are attached to a boolean
variable and can either be switched on or off. Visually, it looks nearly the same as the
desktop application (see Figure 14).

Figure 14: Example of a setting made from the BoolEdit Prefab

In the mobile version of VRT, the settings that have been created from the FloatEdit

15

Prefab are shown as their desired name, an input field to the right and a slider at the
bottom (see Figure 15). These settings are attached to a float variable.

Figure 15: Example of a setting made from the FloatEdit Prefab

The settings that have been created from the Vector3Edit Prefab are shown the same
as on the desktop version, except they are a little larger (see Figure 16). These settings
are attached to a Vector3 variable, such as position and scale.

Figure 16: Example of a setting made from the Vector3Edit Prefab

The biggest change of these Prefabs is the ColorEdit Prefab. In the desktop applica-
tion, the Prefab was relatively small. The color picker canvas was also shown below the
clickable Color field. In the mobile version, this is changed. The color picker canvas is
now shown to the left of the clickable Color field and is made relatively larger. Each slider
and its text/values have been manually changed so that the entire color picker canvas is
easily usable on mobile devices. After many versions and attempts to create a nice color
picker canvas, the final one can be seen in Figure 17.

Figure 17: Example of a setting made from the ColorEdit Prefab

16

4.1.8 Rendered Image Window

The Rendered Image Window has also been made a bit bigger (see Figure 18). All
functionality stayed the same. Within the Rendered Image Window it is still possible to
zoom in on the image and pan around when zoomed in. More is explained in Section 4.2.

Figure 18: Rendered Image Window within the Virtual Ray Tracer mobile application

4.1.9 Gizmos

Gizmos are used to translate, rotate and scale any objects within the scene. Visually, the
gizmos have not changed much. They have become larger and are in turn easier to use
on mobile than before. The gizmos, however, each have their own hitbox which is not
correlated to how they look visually. The hitboxes have been made a little wider and a
little higher than what is shown on screen. As seen in Figure 19, when translating there
are three planes. These had to be re-positioned when enlarged, as overlap would occur
when not done so.

17

Figure 19: Gizmos of the Virtual Ray Tracer mobile application

18

4.1.10 Additional changes

Besides everything mentioned previously, there are some changes that have not yet been
mentioned, ensuring the mobile application looks good. They are:

• Introduction panels of levels and its texts have been enlarged

• Render Preview proportions changed a little

• Changed text that did not apply to the mobile version of VRT

• Padding on mobile for devices with rounded screens

• Light hitbox was made bigger to make it easier to select

• Tooltip made bigger and to the left of touch

• FPS Counter position changed to not overlap with UI for each level

For some time, the UI was unusable as whenever a user tried to do anything within the
UI, the touch would go ’through’ the UI and select anything that was behind this UI
component. A small check had to be added to check for a touch being inside of UI.

4.2 User Experience

Besides all of the UI changes, some changes for the User Experience had to be made. Some
parts are not portable to a mobile application without change; the most obvious being,
as mentioned, input methods [8]. Mobile devices make use of touchscreens as opposed to
keyboard or mouse click inputs. The application has three ways to move within a scene:
panning, zooming and orbiting.

The way the code is written, all original functionality and usages with respect to
movement that the desktop version has, is still intact. If someone wants to use the mobile
version as a desktop application, they would be able to do so. Keeping the original
functionality intact was mainly used to find any bugs related to the mobile version.

4.2.1 Panning

In the desktop version of VRT, panning was done with the use of the middle mouse button
on a mouse or with the use of the arrow keys on a keyboard. Obviously, these methods
cannot be used on mobile devices.

Panning on the mobile version of VRT is done using one touch and dragging this
touch across the screen. Equal to the method of the middle mouse button dragging, it
keeps track of the starting position of the touch and determines its delta position when
the touch has moved. It then pans the camera accordingly. When the user drags across
the screen, any selected objects are deselected.

4.2.2 Zooming

Zooming within the desktop application could be done in two ways. A user can use the
mouse’s scroll wheel, or hold the Ctrl button on their keyboard, hold the right mouse

19

button and drag forwards or backwards. Again, both of these methods are unusable on
mobile devices.

Zooming within the mobile version of VRT is done with the use of two touches. When-
ever two touches are detected, it prevents the user from panning. This could otherwise
result in some unwanted movement within the scene. The application keeps track of the
two touches’ starting positions and whenever they get closer or further away from their
starting positions, they zoom in or out.

4.2.3 Orbiting

In the original desktop application, orbiting was done by either holding the Ctrl button,
holding the left mouse button and dragging, or by holding the Ctrl button and using the
arrow keys. These are also not possible on mobile.

As the panning uses one touch and zooming uses two touches, some experimenting
had to be done on how to make the orbiting functional for mobile devices. At first, the
use of two touches was tried but it was hard to differentiate between wanting to zoom
and to orbit. Secondly, orbiting was implemented with the use of three touches. This,
however, did not feel intuitive and was not nice to use.

Per a suggestion by my supervisor, it was best to try double tapping the screen to
enable the orbiting. Currently, users are able to orbit by double tapping the screen and
holding their second tap, and then dragging that touch in the desired direction.

4.2.4 Rendered Image Window Movement

Panning and zooming is not only used within scenes, but can also be used to zoom into
rendered images. Fortunately, with some small changes, the method used to zoom within
the scene could also be used as a method to zoom into rendered images. When zoomed
in, the user can pan around the image. This was already built in. Unfortunately, the
zooming in/out is sometimes a bit buggy, but a fix could not be found.

4.3 Google Play Store

The idea behind the creation of the mobile application was to reach a broader audience.
The best way to do this was by uploading the application to the Google Play Store.

To be able to upload the application to the Google Play Store, various steps had to
be taken. First, a Developer account had to be made for Google Play Console. Necessary
information had to be filled in and after that, it was required to pay a one-time registration
fee. After the registration had been processed, the app was created in the console.

First, all info about the application had to be filled in, such as the title and descriptions
of various lengths. After that, screenshots of the application and nicely made thumbnails
to get users hooked were added.

After all of the information was filled in, the app bundle including the .apk file was
added to the release. Then some more mandatory info, like pricing and content rating,
had to be filled in.

The final step was to review everything and check if all of the information was correct.
The application was then rolled out to production. The application was ’In review’ for
about five days, after which the application became available for everyone in the selected
target countries.

20

As most logos, the Virtual Ray Tracer application logo and feature graphic have been
kept very simple, as can be seen in Figure 20. This was done to make the application
recognizable.

Figure 20: Virtual Ray Tracer application as seen in the Google Play Store

21

5 User Study

In this chapter the user study is explained. In this user study, the focus is fully on the
mobile version of Virtual Ray Tracer. The questions that were asked in the study are
mentioned and the notable results are discussed. The full list of questions can be found
in the Appendix.

5.1 Questions

The participants of the user study were asked to answer a series of questions about
the mobile version of Virtual Ray Tracer. The goal of this study was to get feedback
from participants, such that changes can be made to ensure a pleasurable experience for
participants of all backgrounds. The usage of the mobile version of Virtual Ray Tracer
has to be as intuitive as possible. Unfortunately, this user study was only taken on
participants that use an Android device, as the iOS build had not yet been compiled and
distributed. The user study had a total of 15 participants; some with a background in
Computing Science/Computer Graphics and others with other backgrounds.

5.1.1 User Interface Questions

In this section of the user study, participants are asked about the various User Interface
changes that were made compared to the original version. These questions had to do
with the functionality of the UI components, as well as the participant’s opinion about
the styling of these components. Questions about the components that contain text also
ask about readability. The UI components that are mentioned:

• Introduction panel

• The Main Menu button and Help button

• Main Menu

• Help Menu

• Ray Tracer Settings

• Camera/Object/Light Settings

Another question is asked about the usage of the gizmos within the application. These
gizmos are used to translate/rotate/scale objects.

The responses to these questions were used to alter the components whenever a great
amount of people did not like a component, the component was buggy/not working or
had good feedback.

5.1.2 Movement Questions

In this section, participants are asked two questions about the movement within the
application. As users are now required to use their fingers/touches to navigate around
the scene instead of using a mouse or keyboard input, it is required for it to work as
expected.

22

The movement within the application should be as intuitive as possible, so whenever
a participant had any difficulties with any of the movement features, I would look at the
possibilities to change these features.

5.1.3 General Remarks

In this section, participants are offered the option to leave any general remarks or feed-
back. These remarks could then be used to tweak any functionality in the application to
further improve the user experience.

5.1.4 General Questions

In the last section of the form, participants are asked for general information about
themselves. Participants were allowed to skip any of these questions if they preferred
to do so, as some questions may be too personal. The questions that are asked are
mainly about age, education and how skillful they would consider themselves to be with
computers. This way we can differentiate among the participants and figure out what
group of participants had more difficulties and where they had these difficulties. The
user study was not that extensive, so great assumptions about a certain group cannot be
concluded for certain, but a good indication is given.

5.2 Results

As previously mentioned, a number of 15 participants have partaken in the user study.
Most of these were friends and family, some of these were other students that have taken
the Computer Graphics course at the University of Groningen. The general questions are
discussed first, as they are useful to determine what groups of people had difficulties and
where they had these difficulties. Unfortunately, most of the questions are not in multiple
choice form, so individual results had to be looked at explicitly. A nice overview of the
answers can therefore not be made.

5.2.1 General Questions

The participants of the user study can be split up into two parts considering their age.
Eleven of the participants were between 19–22 years old, whereas the other four partici-
pants were older than 45. Notably, most of the participants older than 45 were also the
participants with less experience with computers or mobile devices, with three of them
filling in a 6 or lower out of 10.

Education of the participant was also asked about, but this had no notable effect on
the participant’s experience within the application compared to participants with different
educations. Most of the differences were seen between groups split by age or computer
experience.

The two groups will now be referred to as Group 1 and Group 2, where Group 1 is the
group of the 19–22 year participants and Group 2 is the group of the participants older
than 45.

23

5.2.2 User Interface Questions

A difference in the answers of the two groups can already be seen in the first question.
100% of the participants in Group 1 found the text in the introduction panel to be clearly
readable, whereas only 50% of Group 2 found that to be the case. This difference in
groups was useful to adapt the application to be as useful and intuitive for all future
users.

Questions about the Main Menu, Help Menu and its corresponding buttons were
positively answered by all of the participants. Overall, they are sized well, clear and easy
to navigate. Some mentioned the buttons in the top left of the application to be a bit on
the smaller side, but it did not bother them too much.

The next question was about the translating, rotating and scaling of an object. No
particular differences were found between Group 1 and Group 2. 60% of the total par-
ticipants found it to be doable and had no further remarks on the matter. The other
40% mentioned they had minor difficulties with either selecting the object, or selecting
any of the gizmos. One participant mentioned that they sometimes found it difficult to
see objects whenever they tried to make adjustments to it. This, however, can hardly be
changed. Making the gizmos smaller would result in the users having a hard time being
able to click the gizmos and making the gizmos bigger would only result in the object
being hidden even more. No changes had been made as the overall feedback was positive.

The last two questions of the section were about the different Settings screens within
the Control Panel. All of the sliders, checkboxes and input fields were received well and
none of the participants mentioned any difficulties with these. There were, however, some
mentions about the scrolling within the Control Panel. When using the scrollbar on the
right, scrolling seems to work well but when dragging within the Control Panel it is a bit
more difficult. Weirdly enough, this scrolling problem mainly occurs within the Camera
Settings tab. A fix for it has not been implemented/found as of yet.

5.2.3 Movement Questions

The first movement question mentioned the panning, zooming and orbiting within a scene.
All of the participants said that this works as expected, although there was some feedback
from some of the participants. One of the participants mentioned that the orbiting was
not properly explained and the help text was outdated. Furthermore, an object stays
selected whenever the user starts panning across the scene. Both of these issues were
quickly fixed and some of the other participants tested a version where this had already
been fixed.

Four participants mentioned that the orbiting was a bit tricky sometimes. Two of
these participants were from Group 1 and the other two from Group 2; 18% of Group 1
and 50% of Group 2. It is to be expected that the group with less experience with mobile
devices had a harder time using the application. The orbiting method, however, has not
been changed as there is no apparent better intuitive way of handling this.

The second/last question of this section was about the zooming and panning of a
rendered image. 27% of the participants said that it does not work well. The other 73%
said that it did work well on their devices. Elaborations were not asked in this question,
but the zooming problem is known and is unfortunately still present. This small bug is
luckily only visual and has no other consequences for the user’s experience.

24

5.2.4 General Remarks

The users were asked to give any other feedback or remarks about the application if they
had them. Whereas 73% of the participants either had no feedback or wished good luck
for the thesis, the other 27% had found some bugs or had suggestions for the application.

Two of the participants mentioned that they found it difficult to understand most of
the text, as all of it is in English and they are only able to speak Dutch well. Both of these
participants were of the older generation and although this is not the target audience, it
is still a good suggestion.

Another user mentioned that most of the application is very bland and would rather
have it a bit more colorful. This feedback is reasonable, but as the Virtual Ray Tracer
application is mainly for educational purposes the colorfulness of the application should
not have to be changed much and could potentially even be distracting.

Lastly, another user found a bug that had to do with the color picker. When using
the color picker to select a color, it could sometimes occur that a gizmo behind the UI
would be selected. Users would have been able to accidentally drag this gizmo when they
did not intend on doing so. This has now been fixed.

25

6 Conclusion

The purpose of this thesis was to broaden the accessibility of the educational tool Virtual
Ray Tracer by adapting the existing desktop application to a web and mobile application.
Fortunately, porting the web application was very simple. With the use of the WebGL
build functionality within Unity, a folder of data could be generated which then can be
used to add to any website that makes use of HTML. With the use of GitHub pages,
the other students working on their projects related to Virtual Ray Tracer were able to
distribute their projects more easily as well.

To achieve a functional version of Virtual Ray Tracer for mobile devices, various
changes had to be made. These changes include both the User Interface and the User
Experience. Currently, all functionality that was available in the original desktop appli-
cation has been adapted to work on mobile devices. This mobile version with its changes
has been evaluated through a user study.

Looking at the overall results of the conducted user study, most of the participants
were positive about the mobile adaption of Virtual Ray Tracer. Most of the User Interface
was received well and was said to be clear and easy to navigate. Most of the constructive
feedback in this section of the user study was given by the older participants of the user
study and it was helpful to know what (smaller) problems they had with the application.

The responses of the questions about the movement within the application had some
more mentions of difficulties than the User Interface question’s responses had. Most of
the users giving feedback had mentioned the orbiting to be a bit difficult. It was, however,
good to see that most of the users had no particular problems with the application when
they had gotten used to it.

The final remarks of the user study also had some great feedback of which most have
been fixed or implemented into the Virtual Ray Tracer mobile application.

26

7 Future Work

In this chapter, some additions/improvements to the Web/Mobile Virtual Ray Tracer
versions are discussed:

• Full integration of projects
As previously mentioned, four other students have been working on Virtual Ray
Tracer. These other projects include many new subjects that were not present
in the original application and having these in the mobile version of Virtual Ray
Tracer would be a very good addition. One of the projects has made the Virtual
Ray Tracer application more interactive. It would be great to have their changes
merged as one and then adapted to be usable on mobile devices. Suggested by the
other students, this may be possible with the use of Prefab variants, a functionality
within Unity that lets developers differentiate between Prefabs depending on which
platform the application is used on. Unfortunately, this does take some time and
the time for it has not yet been found.

• Image saving
A nice addition to the application would be the ability to download the rendered
images to the mobile device.

• Rendered Image Window
The zooming within the Rendered Image Window is sometimes a bit buggy. It does
work, but it is not as smooth as it should be at times. A fix for this would definitely
be nice to have.

• Scrolling issue
As previously mentioned, scrolling within the Camera Settings of the Control Panel
is a bit difficult as opposed to the other settings. A fix for it has not yet been found
and implemented, but this would be very good to have. This issue also occurs on
the desktop and web version, but this is not as critical to fix for those versions as
most screens are big enough to have the entire Camera Settings on screen without
having to scroll.

• Translated Versions
As mentioned in the user study, a nice addition to the application would be the
ability to switch languages. Although the main aim of the application is to educate
students about ray tracing who are experienced in English, some other users might
want to learn the concepts in their own language.

• Larger user study
Due to the in-progress application builds that were used for the current user study,
there were some differences in answers. It was also hard for ’random’ people to trust
someone sending an unknown file, so most participants have been asked in person.
In the current user study, the focus was mainly on feedback of the application itself.
In further research it would be interesting to set up a larger user study with more
questions and a larger group of participants and finding out whether users enjoy
the mobile application as opposed to the desktop/web version.

27

Acknowledgements

I would like to thank my supervisors Jǐŕı Kosinka and Steffen Frey for helping me by
answering questions and providing feedback during the project. They responded very
quickly which resulted in me being able to work continuously without getting stuck on
something that needed feedback. I would like to thank Chris van Wezel for providing the
resources and source code of the original Virtual Ray Tracer application. Finally, I want
to thank friends, family and the other participants that took part in the user study.

28

References

[1] WebGPU (Working Draft). https://www.w3.org/TR/webgpu/.

[2] Rick Battagline. The Art of WebAssembly: Build Secure, Portable, High-Performance Applications.
No Starch Press, New York, USA, 2021.

[3] Francois Beaufort and Corentin Wallez. Access modern GPU features with WebGPU. https://web.
dev/gpu/.

[4] Denis Bogolepov and Danila Ulyanov. Light Tracer Render. https://lighttracer.org/app.html,

[5] Diego Cantor and Brandon Jones. WebGL Beginner’s Guide. Packt Publishing, Birmingham, UK,
2012.

[6] W.A. Verschoore de la Houssaije. A Virtual Ray Tracer, BSc Thesis, University of Groningen, 2021.
http://fse.studenttheses.ub.rug.nl/24859.

[7] Unity Documentation. Building and distributing a WebGL project. https://docs.unity3d.com/

Manual/webgl-building-distribution.html.

[8] Unity Documentation. Porting a project between platforms. https://docs.unity3d.com/520/

Documentation/Manual/HOWTO-PortingBetweenPlatforms.html.

[9] Eric Haines and Tomas Akenine-Möller. Ray Tracing Gems. Apress, Berkeley, CA, USA, 2019.

[10] Harvey Ray, Hanspeter Pfister, Deborah Silver and Todd A. Cook. WebAssembly as an alternative
solution for JavaScript in developing modern web applications. JCSI 13 (2019), pages 322–328, 2019.

[11] Jon Peddie. Ray Tracing: A Tool for All. Springer, Cham, Switzerland, 2019.

[12] Mike Rourke. Learn WebAssembly: build web applications with native performance using Wasm and
C/C++. Packt Publishing, Birmingham, UK, 2018.

[13] Somnath Sinha and Aditi Paul. Computer Graphics. Alpha Science International Ltd, Oxford, UK,
2018.

[14] Yi-Ting Tu. Ray Optics Simulation. https://ricktu288.github.io/ray-optics/,

[15] C. van Wezel. A Virtual Ray Tracer, BSc Thesis, University of Groningen, 2021. http://fse.

studenttheses.ub.rug.nl/26455.

[16] Willard A. Verschoore de la Houssaije, Chris S. van Wezel, Steffen Frey, and Jiri Kosinka. Virtual Ray
Tracer. In Jean-Jacques Bourdin and Eric Paquette, editors, Eurographics 2022 - Education Papers.
The Eurographics Association, 2022.

[17] Nick Vitsas, Anastasios Gkaravelis, Andreas-Alexandros Vasilakis, Konstantinos Vardis, and Georgios
Papaioannou. Rayground: An Online Educational Tool for Ray Tracing. In Mario Romero and Beatrice
Sousa Santos, editors, Eurographics 2020 - Education Papers. The Eurographics Association, 2020.

[18] Mitch Williams. WebGL Hotshot: Create Interactive 3d Content for Web Pages and Mobile Devices.
Packt Publishing, Birmingham, UK, 2014.

29

https://www.w3.org/TR/webgpu/
https://web.dev/gpu/
https://web.dev/gpu/
https://lighttracer.org/app.html
http://fse.studenttheses.ub.rug.nl/24859
https://docs.unity3d.com/Manual/webgl-building-distribution.html
https://docs.unity3d.com/Manual/webgl-building-distribution.html
https://docs.unity3d.com/520/Documentation/Manual/HOWTO-PortingBetweenPlatforms.html
https://docs.unity3d.com/520/Documentation/Manual/HOWTO-PortingBetweenPlatforms.html
https://ricktu288.github.io/ray-optics/
http://fse.studenttheses.ub.rug.nl/26455
http://fse.studenttheses.ub.rug.nl/26455

Appendix

User Study Questions

User Interface Questions

Q1: After clicking ’Start’ on the Home page, you will encounter an introduction panel. Is the text readable
and clear?
R1: Yes, No.

Q2: After closing the introduction panel, you will see the first level of the app. Try making use of the
’Main Menu’ and ’Help’ buttons. Are these buttons too small/big or are they sized well? Please explain
your answer

Q3: Are the buttons within the Main Menu clear and easy to navigate? If no, why?

Q4: Is everything readable within the Help Menu and is it easy to use? If no, why?

Q5: Go back to the scene and try to translate/rotate/scale the ball within the level. Was this doable?
Please explain any difficulties you encountered.

Q6: Please navigate to the next level. Play around with the Ray Tracer Settings. Is everything clear? Does
everything work well on your phone or do you have difficulties with any of the sliders/checkboxes/input fields.

Q7: Play around with the Camera/Object/Light Settings. Please let me know any difficulties you have
encountered or any suggestions you might have.

Movement Questions

Q8: Try moving around within the scene (moving/panning/zooming). Does everything work as expected?
If no, why?

Q9: After rendering an image, you can also zoom in and move around. Does this work well on your
phone?
R9: Yes, No.

General Remarks

Q10: If you have any other feedback/general remarks, you can leave them here!

General Questions

Q11: What is your age?

Q12: How skillful would you consider yourself to be with computers/phones?
R12: 1–10, 1 being not skillful at all, 10 being very skilled

Q13: What are you currently studying or what did you study in school?

Q14: What platform are you testing the application on?
R14: iOS, Android

30

	Introduction
	Background
	Virtual Ray Tracer
	Web Applications
	Mobile Applications

	Web Adaptation
	Unity WebGL Build
	Github Pages

	Mobile Adaptation
	User Interface
	Home Screen
	Main Menu and Help Menu
	Settings Menu
	Levels Menu
	Menu Bar (Bottom Bar)
	Top Bar
	Control Panel
	Rendered Image Window
	Gizmos
	Additional changes

	User Experience
	Panning
	Zooming
	Orbiting
	Rendered Image Window Movement

	Google Play Store

	User Study
	Questions
	User Interface Questions
	Movement Questions
	General Remarks
	General Questions

	Results
	General Questions
	User Interface Questions
	Movement Questions
	General Remarks

	Conclusion
	Future Work
	Acknowledgements
	References
	Appendix
	User Study Questions
	User Interface Questions
	Movement Questions
	General Remarks
	General Questions

