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Abstract

In this thesis we consider the Boolean Satisfiability Problem for the
3-valued  Lukasiewicz logic. We reframe the problem in algebraic terms,
showing how to represent propositional formulas as polynomials and using
ring theory to determine when solutions exist for such polynomials. We
then use Gröbner bases to determine precisely whether or not a polyno-
mial, and therefore the propositional formula it represents, is satisfiable.
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1 Introduction

The Boolean Satisfiability Problem is famous for being the first problem shown
to be NP-complete. In complexity theory, P class problems are problems that
can be solved in polynomial time, which means that if an input has size n, the
total number N of operations required by an algorithm to solve the problem,
can be expressed as a polynomial in n. For example, an algorithm requiring
N = n2 + n operations would run in polynomial time. NP class problems, on
the other hand, are not necessarily solved in polynomial time, but any potential
solution can be verified in polynomial time. NP-complete means that any NP
problem can be reduced (in polynomial time) to an NP-complete problem.

These concepts are central to the famous P vs NP problem. In the past, some
NP problems have been shown to in fact be P, but this has never been shown
for an NP-complete problem. If this where to be proved for even a single NP-
complete problem, it would prove that all NP problems are in fact P, because
any NP problem could be reduced to this particular NP-complete problem and
subsequently solved in polynomial time. While most experts in the field doubt
that this could be done, proving definitively one way or the other is one of the
Millennium Prize Problems and would earn you $1,000,000.
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2 What is the Boolean satisfiability problem?

We begin with a brief introduction to propositional logic before defining the
Boolean Satisfiability Problem explicitly.

2.1 The basics of propositional logic

Definition 2.1. Let P = {pi|i ∈ N} be a countable set of propositional atoms.
A propositional formula is a well-formed formula (wff) defined as follows:

1. Every pi ∈ P is a wff.

2. If P and Q are wff, then so are ¬P , (P ∧ Q), (P ∨ Q), (P → Q), and
(P ≡ Q).

3. Nothing is a wff unless it can be constructed via repeated applications of
(1) and (2).

In general, we will refer to all elements of P as propositional variables,
given in the upper case as P,Q,R, etc. Note that, due to the recursive nature of
the above definition, propositional variables may represent propositional atoms
or other propositional formulas, but that this doesn’t affect any of the following
theory.

Definition 2.2. A logic is defined by the triple

⟨V,D, {fc : c ∈ C}⟩

where

• V is a set of truth values

• D is a set of designated values (with D ⊆ V)

• C is the set of connectives {¬,∧,∨,→,≡} used to define propositional for-

mulas. So an n-ary c ∈ C is a map wffs(n) → wffs

• for each n-ary connective c ∈ C, there is a truth function fc : V(n) → V

Definition 2.3. Let v : P → V be a function from the set of propositional vari-
ables to the set of truth values. We call v(P ) the valuation or interpretation
of P ∈ P. This function can be extended to all wffs by use of truth functions
for each n-ary connective:

v(c(A1, . . . , An)) = fc(v(A1), . . . , v(An)), (1)

the Ai denoting wffs.
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The reason for having a valuation function and a truth value function is
that propositional variables have no numerical value on their own. We must use
the valuation function to assign them truth values. By extending the valuation
function to each connective we show that every propositional variable P can be
assigned a truth value v(P ), regardless of whether P represents a propositional
atom or a propositional formula.

Example 1. (Classical Propositional Logic)

• V = {0, 1}

• D = {1}

• C = {¬,∧,∨,→,≡} where

f¬
0 1
1 0

f∧ 0 1
0 0 0
1 0 1

f∨ 0 1
0 0 1
1 1 1

f→ 0 1
0 1 1
1 0 1

f≡ 0 1
0 1 0
1 0 1

We also have v : P → V defined:

v(¬P ) = 1 − v(P ) v((P → Q)) = max{1 − v(P ), v(Q)}
v((P ∧Q)) = min{v(P ), v(Q)} v((P ≡ Q)) = 1 − |v(P ) − v(Q)|
v((P ∨Q)) = max{v(P ), v(Q)}

An example of a propositional formula in Classical Propositional Logic might
be

((P ∧Q) ∨ ¬R).

Let’s give our propositional variables the valuation

v(P ) = 1, v(Q) = 1, v(R) = 0.

We compute the valuation of the whole propositional formula using (1) as fol-
lows:

v(((P ∧Q) ∨ ¬R)) = f∨(v(P ∧Q), v(¬R))

= f∨(f∧(v(P ), v(Q)), f¬(v(R)))

= f∨(f∧(1, 1), f¬(0))

= f∨(1, 1)

= 1

Definition 2.4. We say a propositional formula P is satisfiable if v(P ) ∈ D.
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As demonstrated in example (1), ((P ∧Q)∨¬R) is an example of a satisfiable
propositional formula.

Definition 2.5. If a propositional formula is satisfied by any valuation, it is
called a tautology. If it is never satisfiable, it is called a contradiction.

An example of a tautology is

(P ∨ ¬P ). (2)

This particular formula is known as the law of the excluded middle and
can be interpreted as saying, ‘either P is true, or it’s false’. An example of a
contradiction is

(P ∧ ¬P ). (3)

The negation of this formula, ¬(P∧¬P ), is known as the law of non-contradiction
and can be shown (via De Morgan’s laws) to be logically equivalent to the law
of the excluded middle.

Definition 2.6. The Boolean Satisfiability Problem (SAT) asks: Is a
given propositional formula P satisfiable?
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2.2  Lukasiewicz logic

The motivation for considering a three-valued logic is both fascinating and
vague. There are many three-valued logics but the one we consider was devel-
oped by Jan  Lukasiewicz of the Lwow-Warsaw school in the early 20th century.
The Lwow-Warsaw school was primarily a philosophical movement although
its members were also concerned with logic as well as traditional mathematics.
Among their many debates at the time was the existence of so-called ‘contradic-
tory objects’, a proposition that  Lukasiewicz supported. This led him to attack
the law of non-contradiction.
Later, while working on the theory of probability, he began to classify certain
propositions as ‘undefinite’ [sic] and use fractional logical values to represent
some propositions. For example, the proposition ‘x2 = 1’ on the set {−1, 0, 1}
would be given the truth value 2/3. Here he begins to use truth values in an
unconventional manner.
The line of inquiry that finally led to the construction of a three-valued logic
was the description of propositions concerning future events. Sentences like ‘I
shall be in Warsaw in a year’ are not immediately true or false, so are assigned
a third logical value interpreted as ‘possibly’ or ‘undetermined’. [3][4]

Definition 2.7.  Lukasiewicz logic (L) is defined

• V = {0, 1, 2}

• D = {2}

• C = {¬,∧,∨,→,≡} where

f¬ f∧ 0 1 2 f∨ 0 1 2 f→ 0 1 2 f≡ 0 1 2
0 2 0 0 0 0 0 0 1 2 0 2 2 2 0 2 1 0
1 1 1 0 1 1 1 1 1 2 1 1 2 2 1 1 2 1
2 0 2 0 1 2 2 2 2 2 2 0 1 2 2 0 1 2

v : P → V is defined:

v(¬P ) = 2 − v(P ) v((P → Q)) = min{2, 2 − v(P ) + v(Q)}
v((P ∧Q)) = min{v(P ), v(Q)} v((P ≡ Q)) = 2 − |v(P ) − v(Q)|
v((P ∨Q)) = max{v(P ), v(Q)}

In  Lukasiewcz’s original definition, the third logical value was represented
by 1/2, giving the truth value set V = {0, 1/2, 1}. We have opted to use V =
{0, 1, 2} in order to aid in future calculations, as will become more clear later
on.
We must briefly discuss an important property of L.

Definition 2.8. A logic is functionally complete if every possible truth func-
tion exists as some superposition of fc, c ∈ C. Otherwise, we say the logic is
functionally incomplete.
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Theorem 1. L is functionally incomplete.

Proof. First, we show that all truth functions in L can be defined in terms of
f¬ and f→.

• α ∨ β = (α → β) → β

α β α → β (α → β) → β α ∨ β
0 0 2 0 0
0 1 2 1 1
0 2 2 2 2
1 0 1 1 1
1 1 2 1 1
1 2 2 2 2
2 0 0 2 2
2 1 1 2 2
2 2 2 2 2

• α ∧ β = ¬(¬α ∨ ¬β)

α β ¬α ¬β ¬α ∨ ¬β ¬(¬α ∨ ¬β) α ∧ β
0 0 2 2 2 0 0
0 1 2 1 2 0 0
0 2 2 0 2 0 0
1 0 1 2 2 0 0
1 1 1 1 1 1 1
1 2 1 0 1 1 1
2 0 0 2 2 0 0
2 1 0 1 1 1 1
2 2 0 0 0 2 2

• α ≡ β = (α → β) ∧ (β → α)

α β α → β β → α (α → β) ∧ (β → α) α ≡ β
0 0 2 2 2 2
0 1 2 1 1 1
0 2 2 0 0 0
1 0 1 2 1 1
1 1 2 2 2 2
1 2 2 1 1 1
2 0 0 2 0 0
2 1 1 2 1 1
2 2 2 2 2 2
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Next, suppose for some P ∈ P, v(P ) = 1 for all valuations v ∈ L. P cannot
be an atomic sentence because then we could simply assign it the valuation
0 or 2. Therefore, either P = ¬Q or P = Q → R, for some Q,R ∈ P. If
P = ¬Q, then the valuaton v(Q) = 0 implies v(P ) = 2. If P = Q → R, then
the valuation v(Q) = 0 also implies v(P ) = 2. Having exhausted all possible
options, we conclude that there exists no P ∈ P, v(P ) = 1 for all valuations
v ∈ L. Consequently, we cannot create the truth function

f
0 1
1 1
2 1

in L. Therefore, L is functionally incomplete.

L can be viewed as a rejection of the law of the excluded middle. Instead of
insisting that a proposition must be either true or false, we allow it to take a
third value. Indeed, if we let v(P ) = 1, keeping in mind that 1 now represents
the third ‘undetermined’ truth value,

v((P ∨ ¬P )) = f∨(v(P ), v(¬P ))

= f∨(v(P ), f¬(v(P )))

= f∨(1, f¬(1))

= f∨(1, 1)

= 1

we see that (P ∨ ¬P ) ceases to be a tautology.
The proposition

(P ≡ P ),

known as the law of identity remains tautological in L but interestingly, the
proposition

(P ≡ ¬P )

ceases to be a contradiction and in fact, v((P ≡ ¬P )) = 2 when v(P ) = 1. We
can construct a new contradiction for  Lukasiewicz logic however, simply taking

¬(P ≡ P ).

We can see that satisfiability is not maintained when we move into L.

Definition 2.9. The Boolean Satisfiability Problem for  Lukasiewicz
logic (SATL) asks: Is a given propositional formula P satisfiable in L?
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3 An algebraic approach

Now that we have established SATL we will begin the process of reframing the
problem in order to take a more algebraic approach. Our goal is to represent
propositional formulas as polynomials. Specifically, given our truth value set
V = {0, 1, 2}, we look at polynomials over the finite field F3.

Definition 3.1. Polynomial  Lukasiewicz logic (Lp) is defined

• V = F3

• D = {2}

• C = {¬,∧,∨,→,≡}

• for each n-ary connective c ∈ C, there is a truth function fc : F(n)
3 → F3

f¬ f∧ 0 1 2 f∨ 0 1 2 f→ 0 1 2 f≡ 0 1 2
0 2 0 0 0 0 0 0 1 2 0 2 2 2 0 2 1 0
1 1 1 0 1 1 1 1 1 2 1 1 2 2 1 1 2 1
2 0 2 0 1 2 2 2 2 2 2 0 1 2 2 0 1 2

• for each n-ary truth function fc, there is a polynomial pc ∈ F3[x1, . . . , xn]
such that pc = fc when evaluated as a function.

v : P → V is defined:

v(¬P ) = 2 − v(P ) v((P → Q)) = min{2, 2 − v(P ) + v(Q)}
v((P ∧Q)) = min{v(P ), v(Q)} v((P ≡ Q)) = 2 − |v(P ) − v(Q)|
v((P ∨Q)) = max{v(P ), v(Q)}

We will first demonstrate that all such functions exist as polynomials, and
also establish another important property in the process.

Theorem 2. Let R = F3[x1, . . . , xn] and S = {f | f : F(n)
3 → F3}. Regarding

a polynomial as a function yields a map O : R → S which is a surjective ring
homomorphism with kernel

J = ⟨x3
1 − x1, x

3
2 − x2, . . . , x

3
n − xn⟩.

(Here the ring structure of S is given by pointwise addition and multiplication
of functions.)

Proof. First, consider S. Each function f ∈ S takes elements in F(n)
3 and assigns

to them elements in F3. We therefore consider S ∼= F(N)
3 where N = #F(n)

3 = 3n.

Let n = 1. The map ω : F3[x] → F(3)
3 , given by evaluating the elements of F3[x]

at all points x ∈ F3, has as its kernel ⟨x3 − x⟩. To see this, note that the factor
theorem states:

f(α) = 0 iff (x− α) is a factor of f(x).
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Therefore if f(0) = f(1) = f(2) = 0, then x(x − 1)(x − 2) = x3 − x must be a
factor of f(x). The map ω is surjective due to the fact that

F3[x]/⟨x3 − x⟩ ∼= F3[x]/⟨x⟩ × F3[x]/⟨x− 1⟩ × F3[x]/⟨x− 2⟩ ∼= F(3)
3 . (4)

The first isomorphism follows from the Chinese remainder theorem and the
fact that the ideals ⟨x⟩, ⟨x − 1⟩ and ⟨x − 2⟩ are mutually coprime. The second
isomorphism follows from the evaluation map

evα : F3[x] → F3,

which has ⟨x− α⟩ as its kernel, and the first isomorphism theorem.
Now let R = R′[xn] where R′ = F3[x1, . . . , xn−1] and assume the map

ρ : R′ → F(N ′)
3 , N ′ = 3n−1,

given by evaluating the elements of R′ at all points (x1, . . . , xn−1) ∈ F(n−1)
3 , is

surjective with kernel ⟨x3
1 − x1, x

3
2 − x2, . . . , x

3
n−1 − xn−1⟩.

The map
σ : R → R′(3),

given by evaluating xn at all points in F3, has ⟨x3
n − xn⟩R′ as its kernel.

Via similar reasoning to (4) the map is surjective

R′[x]/⟨x3 − x⟩ ∼= R′[x]/⟨x⟩ ×R′[x]/⟨x− 1⟩ ×R′[x]/⟨x− 2⟩ ∼= R′(3).

Now consider the map

Ω : R = R′[xn] → F(N)
3

which one decomposes as

R′[xn] → R′ ×R′ ×R′ → FN ′

3 × FN ′

3 × FN ′

3 .

This shows that Ω is surjective since it is a composition of surjective maps. By
our assumption (induction hypothesis), the rightmost map has kernel

⟨x3
1 − x1, x

3
2 − x2, . . . , x

3
n−1 − xn−1⟩⊕3

Writing φ for the leftmost map φ : R′[xn] → R′ × R′ × R′, the kernel of the
composition Ω equals

Ker(φ) + φ−1
(
⟨x3

1 − x1, x
3
2 − x2, . . . , x

3
n−1 − xn−1⟩⊕3

)
=

⟨x3
1 − x1, x

3
2 − x2, . . . , x

3
n − xn⟩.

Induction finishes the proof.

As we discussed previously, L is functionally incomplete. Specifically, the
constant function fP = 1 does not appear for any propositional formula P . This
means that the set of all truth functions in L is only a subset of S. However,
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since O is surjective, any subset of S can be represented in polynomial form.
The significance of J is that, since O takes polynomials and views them as func-
tions, the kernel of O precisely describes every polynomial that is always zero.
In other words, the ideal J is the set of all contradictions in Lp.

Example 2. Consider the propositional formula P = ¬(Q ≡ Q). We discussed
previously that P is a contradiction in L. As we will see in the next section, P
can be represented in F3[x] by the polynomial

fP = 2x4 + x3 + x2 + 2x = (2x4 + x2) + (x3 + 2x),

= 2x(x3 + 2x) + (x3 + 2x),

= (2x + 1)(x3 + 2x),

= (2x + 1)(x3 − x).

where in the last equality we used the fact that 2 ∼= −1 mod 3. Therefore,
fP ∈ J as expected.

3.1 Polynomization

Now we will define explicitly the polynomial representation of each truth func-
tion in Lp.
Negation is our only unary connective and we simply take it as

p¬(x) = 2 − x.

Clearly we have p¬(x) = f¬(x) for all x ∈ F3.
Looking at the binary connectives, the first thing to note is that since t3 = t for
all t ∈ F3, tn = t if n is odd and tn = t2 if n is even. Therefore, any polynomial
representation is equivalent to one of the form

p(x, y) = ax2y2+bx2y+cxy2+dx2+exy+fy2+gx+hy+k : a, b, c, d, e, f, g, h, k ∈ F3.

So if we are looking for

p(x, y) = fc(x, y),∀x, y ∈ F3

which is equivalent to

p(x, y) − fc(x, y) = 0,∀x, y ∈ F3.

By computing p(x, y) − fc(x, y) for each (x, y) ∈ F3 × F3 we will produce a
system of linear equations that we can solve for the coefficients of p.

Taking f∧(x, y) for example, p(x, y) − f∧(x, y) : ∀(x, y) ∈ F3 × F3 gives the
following
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p(0, 0) − f∧(0, 0) = k

p(1, 0) − f∧(1, 0) = d + g + k

p(2, 0) − f∧(2, 0) = d + 2g + k

p(0, 1) − f∧(0, 1) = f + h + k

p(1, 1) − f∧(1, 1) = a + b + c + d + e + f + g + h + k − 1

p(2, 1) − f∧(2, 1) = a + b + 2c + d + 2e + f + 2g + h + k − 1

p(0, 2) − f∧(0, 2) = f + 2h + k

p(1, 2) − f∧(1, 2) = a + 2b + c + d + 2e + f + g + 2h + k − 1

p(2, 2) − f∧(2, 2) = a + 2b + 2c + d + e + f + 2g + 2h + k − 2

which gives

a = 2, b = 2, c = 2, d = 0, e = 1, f = 0, g = 0, h = 0, k = 0

and thus
p∧ = 2x2y2 + 2x2y + 2xy2 + xy.

Via this process we find that the polynomial forms of the remaining interpreta-
tions are as follows:

p∨(x, y) = x2y2 + x2y + xy2 + 2xy + x + y

p→(x, y) = 2x2y2 + 2x2y + 2xy2 + xy + 2x + 2

p≡(x, y) = x2y2 + x2y + xy2 + 2xy + 2x + 2y + 2.

Example 3. Let’s look again at the law of the excluded middle.

v((P ∨ ¬P )) = f∨(v(P ), f¬(v(P )))

= f∨(x, f¬(x))

= p∨(x, p¬(x))

= x2p¬(x)2 + x2p¬(x) + xp¬(x)2 + 2xp¬(x) + x + p¬(x)

= x2(2 − x)2 + x2(2 − x) + x(2 − x)2 + 2x(2 − x) + x + (2 − x)

= x2 + x + 2

Here we have simply allowed v(P ) to be some variable x ∈ F3. Just as before,
we can see that if x = 1

(1)2 + 1 + 2 = 4 ∼= 1

Theorem 3. Let P be a propositional formula in L. P is satisfiable if and only
if its polynomial representation in Lp equals 2 for some variable assignment.
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Proof. If P is a propositional atom then we simply let v(P ) = x. Clearly,

v(P ) = 2 ↔ x = 2.

Otherwise, P is made up of some combination of connectives. From the defini-
tion of the valuation function (1), for n-ary connective

v(c(A1, . . . , An)) = fc(v(A1), . . . , v(An)).

And by construction, we have

fc(v(A1), . . . , v(An)) = pc(v(A1), . . . , v(An)).

Therefore for any connective, we have

v(c(A1, . . . , An)) = pc(v(A1), . . . , v(An))

and so
v(c(A1, . . . , An)) = 2 ↔ pc(v(A1), . . . , v(An)) = 2.

Since any propositional formula is constituted of some combination of atoms
and connectives, this concludes the proof.

3.2 Finding zeros in F3[x1, . . . , xn]

We will now formulate a critical result which will allow us to solve SATL.

Theorem 4. Let f ∈ F3[x1, . . . , xn] and

I = ⟨f, x3
1 − x1, x

3
2 − x2, . . . , x

3
n − xn⟩, I ⊂ R = F3[x1, . . . , xn]

If 1 ∈ I, then f has no zero in F(n)
3 . Otherwise, f has a zero in F(n)

3 .

Proof. Let 1 ∈ I. We must be able to write

1 = c0f + c1(x3
1 − x1) + . . . + cn(x3

n − xn), ci ∈ R.

By construction, x3
i − xi = 0 for all x = (x1, . . . , xn) ∈ F(n)

3 . So, for all x ∈ F(n)
3

we have
1 = c0(x) · f(x)

If there existed an x such that f(x) = 0, then we would have 1 = 0. Therefore,
there exists no x such that f(x) = 0. Let I = J + Rf , where

J = ⟨x3
1 − x1, . . . , x

3
n − xn⟩

The map R/J → R/I is surjective with kernel Rf/J , via the first ring homomor-
phism theorem. If 1 is not in I, then Rf/J is a proper subset of R/J . Suppose
f has no zero. Then f2 = 1 and f2 − 1 is in J . Therefore, Rf2/J = R/J .
Since Rf2/J ⊂ Rf/J , we have R/J ⊂ Rf/J . This is a contradiction since
Rf/J ⊊ R/J . Therefore, if 1 ∈ I, then f must have a zero.
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Note that this theorem allows us to determine if f has a zero, but we want
to know if there exists an assignment such that f = 2. The fix for this is rather
straightforward. We instead consider the polynomial f ′ = f − 2. If f ′ has no
zero, then there is no assignment such that f = 2. If f ′ has a zero, then there
does exist such an assignment.
At this point, the outline for solving SATL begins to come into focus. We
take some propositional formula P ∈ L and represent it as a polynomial fP ∈
F3[x1, . . . , xn]. This defines the associated polynomial f ′

P = fP − 2. We then
construct the ideal

I = ⟨f ′
P , x

3
1 − x1, . . . , x

3
n − xn⟩.

If 1 /∈ I, then fP = 2 for some (x1, . . . , xn) ∈ F(n) and thus P is satisfiable.
Otherwise, fP = 2 for no (x1, . . . , xn) ∈ F(n) and P is unsatisfiable. We will
now discuss how we will determine if 1 ∈ I.
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4 What is a Gröbner basis?

4.1 Introduction

Gröbner bases were introduced by Bruno Buchberger along with the algorithm
for computing them in 1965 in his PhD thesis. Named for his doctoral advisor,
Wolfgang Gröbner, they have since become an important tool for many different
varieties of algebra. The key advantages of Gröbner bases include showing
equality between ideals, solving systems of polynomial equations, and, for our
purposes, determining if a polynomial is a member of an ideal.

4.2 Monomial ordering

Definition 4.1. Let k be a field. A monomial in k[x1, . . . , xn] is a polynomial
of the form

cxα1
1 xα2

2 . . . xαn
n

where c, xi ∈ k and αi ∈ Z≥0. We write

cxα1
1 xα2

2 . . . xαn
n = cxα

where x = (x1, . . . , xn) ∈ k(n) and α = (α1, . . . , αn) ∈ Z(n)
≥0 .

Definition 4.2. Let k be a field. A monomial ordering on k[x1, x2, ..., xn]

is any relation > on Z(n)
≥0 or equivalently, any relation on the set of monomials

xα, α ∈ Z(n)
≥0 , such that:

1. > is a total ordering on Z(n)
≥0 .

2. If xα > xβ and γ ∈ Z(n)
≥0 , then xα+γ > xβ+γ .

3. > is a well-ordering on Z(n)
≥0 .

A monomial ordering is essentially a rule that allows us to put the terms of
a multivariate polynomial in a specific and consistent order. There are many
different possible monomial orderings with their own pros and cons, typically in
computational efficiency. For our purposes however we will use the most simple
ordering, known as lexicographic ordering.

Definition 4.3. (Lexicographic ordering) Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈
Z(n)
≥0 . If the leftmost entry of α−β ∈ Z(n) is positive, then α >lex β. If α >lex β,

then xα >lex xβ.

Example 4. Some examples:

1. xy3z2 >lex y4z3 since α− β = (1,−1,−1).

2. x2y2z >lex x2yz3 since α− β = (0, 1,−2).
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3. x2y2z3 >lex 2xy2z since α− β = (1, 0, 2).

Definition 4.4. Let f =
∑

α cαx
α be a nonzero polynomial in k[x1, . . . , xn] and

let > be a monomial order.

1. The multidegree of f is

multideg(f) = max(α ∈ Zn
≥0 : cα ̸= 0)

where the maximum is taken with respect to the monomial ordering >.

2. The leading coefficient of f is

LC(f) = cmultideg(f) ∈ k.

3. The leading monomial of f is

LM(f) = xmultideg(f).

4. The leading term of f is

LT (f) = LC(f) · LM(f).

Example 5. Consider the polynomial f = 2x2y3z + 2x2z + z2 with respect to
the lexicographic ordering.

multideg(f) = (2, 3, 1)

LC(f) = 2

LM(f) = x2y3z

LT (f) = 2x2y3z

4.3 Division algorithm

We present a division algorithm that will allow us to divide a polynomial f ∈
k[x1, . . . , xn] by a set of polynomials f1, . . . ,s ∈ k[x1, . . . , xn]. It allows us to
write f =

∑s
i=1 aifi + r with a1, . . . , as, r ∈ k[x1, . . . , xn]. We consider r to be

the remainder of f on division by {f1, . . . , fs} and therefore is not divisible by
LT (fi) for any i. With respect to a monomial ordering, the division algorithm
proceeds as follows:
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Data: f1, . . . , fs, f
Result: a1, . . . , as, r such that f =

∑s
i=1 aifi + r

Initialization: a1 := 0, . . . , as := 0, r := 0, p := f ;

while p ̸= 0 do

if {i | LT (fi) divides LT (p)} ≠ ∅ then

i := min{i | LT (fi) divides LT (p)} ;

ai := ai +
LT (p)

LT (fi)
;

p := p− LT (p)

LT (fi)
fi ;

else

r := r + LT (p) ;

p := p− LT (p) ;

end

end

Theorem 5. Fix a monomial order and let F = {f1, . . . , fs} be an ordered
s-tuple of polynomials in k[x1, . . . , xn]. Then every f can be written as

f =

s∑
i=1

aifi + r

where ai, r ∈ k[x1, . . . , xn], and either r = 0 or r is a linear combination,
with coefficients in k, of monomials, none of which is divisible by any of the
LT (f1), . . . , LT (fs). Furthermore, we can show that if aifi ̸= 0, then we have
multideg(f) ≥ multideg(aifi).

Proof. [2] Theorem 3.2

Example 6. Let’s try dividing f = x3y2+xy+x by f1 = y2+1 and f2 = xy+1,
f, f1, f2 ∈ F3[x1, . . . , xn]. First, let a1 = a2 = r = 0 and p = x3y2 + xy + x.
We look to see if any LT (fi) divides LT (p) and it turns out both LT (f1) and
LT (f2) both do. So we begin

i = 1,

a1 = 0 +
LT (p)

LT (f1)
=

x3y2

y2
= x3,

p = x3y2 + xy + x− x3(y2 + 1),

= x3y2 + xy + x− x3y2 − x3,

= −x3 + xy + x.
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Returning to the top of the if statement, we see that no LT (fi) divides LT (p).
So we proceed,

r = 0 + (−x3) = −x3,

p = −x3 + xy + x− (−x3) = xy + x.

Returning to the top again we see that LT (f2) divides LT (p).

i = 2,

a2 = 0 + 1 = 1,

p = xy + x− (xy + 1),

= xy + x− xy − 1,

= x− 1.

Now, no LT (fi) divides LT (p), so

r = −x3 + x,

p = −1.

And once again, no LT (fi) divides LT (p), so

r = −x3 + x− 1 ∼= 2x3 + x + 2,

p = 0.

Now we have p = 0 so the algorithm terminates. We can see that our output
has the desired form

a1f1 + a2f2 + r = x3(y2 + 1) + (xy + 1) + (2x3 + x + 2),

= x3y2 + 3x3 + xy + x + 3,

∼= x3y2 + xy + x = f.

4.4 Gröbner basis

Definition 4.5. Let I ∈ k[x1, . . . , xn] be a nonzero ideal.

1. Let LT (I) be the set of leading tearms of elements of I.

LT (I) = {cxa| there exists f ∈ I with LT (f) = cxa}

2. We denote by ⟨LT (I)⟩ the ideal generated by the elements of LT (I).

We are now finally ready to give the definition of a Gröbner basis.

Definition 4.6. Fix a monomial ordering on k[x1, . . . , xn]. A finite set of non-
zero polynomials G = {g1, . . . , gt} contained in an ideal I is a Gröbner basis
for I if

⟨LT (g1), . . . , LT (gt)⟩ = ⟨LT (I)⟩.
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Theorem 6. Let I be a non-zero ideal of k[x1, . . . , xn] and G = {g1, . . . , gt} ⊆ I
be a Gröbner basis for I. Then for some f ∈ k[x1, . . . , xn], f ∈ I if and only if
the remainder of f on division by G is zero.

Proof. [1] Theorem 1.6.2

Let’s summarise our position now with respect to solving SATL. We have
shown that a propositional formula P ∈ L is satisfiable if and only its polynomial
representation fP ∈ F3[x1, . . . , xn] achieves the value 2 for some (x1, . . . , xn) ∈
F(n)
3 . Furthermore, we showed that fP achieves such a value if and only if the

ideal I = ⟨f ′
P , x

3
1 − x1, . . . , x

3
n − xn⟩ ⊂ F3[x1, . . . , xn] does not contain 1. We

have just seen that 1 ∈ I if and only if the remainder of 1 on division by G, a
Gröbner basis for I, is zero. We will now see that a Gröbner basis can always
be constructed in a finite number of steps.

Definition 4.7. Let f, g ∈ k[x1, . . . , xn] be nonzero polynomials.

1. If multideg(f) = α and multideg(g) = β, then let γ = (γ1, . . . , γn), where
γi = max(αi, βi) for each i. We call xγ the least common multiple of
LT (f) and LT (g).

2. The S-polynomial of f and g is given by:

S(f, g) =
xγ

LT (f)
· f − xγ

LT (g)
· g.

Theorem 7. (Buchberger’s Criterion) Let I be a polynomial ideal. Then a
basis G = {g1, . . . , gt} for I is a Gröbner basis if and only if the remainder on

division of S(gi, gj) by G, denoted S(gi, gj)
G

, is zero for all i ̸= j.

Proof. [1] Theorem 1.7.4

Theorem 8. (Buchberger’s Algorithm) Let I be a polynomial ideal. Then a
Gröbner basis for I can be constructed in a finite number of steps. Let

F = {fi|⟨f1, . . . , fs⟩ = I}.

1. Let G = {g1, . . . , gs}, where each gi = fi. If any gi divides some gj, i ̸= j,
then remove gj from G. Let Γ = {{fi, fj} | fi ̸= fj ∈ G}.

2. While Γ ̸= ∅:

2.1 Choose any {f, g} ∈ Γ.

2.2 Remove {f, g} from Γ.

2.3 Let h = S(f, g)
G

.

2.4 If h ̸= 0:

2.4.1 Add {{u, h} | ∀u ∈ G} to Γ.

2.4.2 Add h to G.
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Proof. [1] Theorem 1.7.6

We thereby conclude our method for solving SATL. For any propositional
formula P ∈ L we compute its polynomial representation fP ∈ F3[x1, . . . , xn]
and produce the ideal I = ⟨f ′

P , x
3
1 − x1, . . . , x

3
n − xn⟩ ⊂ F3[x1, . . . , xn]. We

construct a Gröbner basis G for I and calculate the remainder r of 1 on division
by G. P is satisfiable if and only if r = 0.

Example 7. Consider once again the law of the excluded middle, (P ∨ ¬P ).
We showed previously in example (3) that it has the polynomial representation

f(P∨¬P ) = x2 + x + 2,

so we let

f ′
(P∨¬P ) = x2 + x,

I = ⟨x2 + x, x3 − x⟩.

We will now compute a Gröbner basis for I. To start, we let

F = {f1, f2}, where f1 = x2 + x, f2 = x3 − x,

G = {g1, g2}, where g1 = f1, g2 = f2,

We notice that g1 = x2 + x = x(x+ 1) divides g2 = x3 − x = x(x+ 1)(x− 1) so
G becomes

G = {g1}.

Since Γ = ∅, we conclude that G = {g1} is a Gröbner basis for I. Therefore,
since no gi ∈ G divides 1, (P ∨ ¬P ) is satisfiable.

Example 8. Consider the propositional formula (P ∧ ¬P ).

f(P∧¬P ) = f∧(v(P ), f¬(v(P ))),

= 2x2(2 − x)2 + 2x2(2 − x) + 2x(2 − x)2 + x(2 − x),

= 2x4 + 4x3 + 2x2 + 4x2 − 2x3 + 2x3 + 4x2 + 2x + 2x− x2,

= 2x2 + 2x,

so we let

f ′
(P∧¬P ) = 2x2 + 2x− 2 = 2x2 + 2x + 1,

I = ⟨2x2 + 2x + 1, x3 − x⟩.
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Now to compute a Gröbner basis.

F = {f1, f2}, where f1 = 2x2 + 2x + 1, f2 = x3 − x,

G = {g1, g2}, where g1 = f1, g2 = f2,

Γ = {{g1, g2}, {g2, g1}}.

Choose {g1, g2} and remove it from Γ so

Γ = {{g2, g1}}.

To calculate S(g1, g2), first observe that xγ = 2x3.

S(g1, g2) =
xγ

LT (g1)
· g1 −

xγ

LT (g2)
· g2,

=
2x3

2x2
· (2x2 + 2x + 1) − 2x3

x3
· (x3 − x),

= x(2x2 + 2x + 1) − 2(x3 − x),

= 2x3 + 2x2 + x− 2x3 + 2x,

= 2x2.

S(g1, g2) = g1 + x + 2 and so h = S(g1, g2)
G

= x + 2. Letting h = g3,

Γ = {{g2, g1}, {g1, g3}, {g2, g3}},
G = {g1, g2, g3}.

Choose {g1, g3},
Γ = {{g2, g1}, {g2, g3}}.

To calculate S(g1, g3), first observe that xγ = 2x2.

S(g1, g2) =
xγ

LT (g1)
· g1 −

xγ

LT (g3)
· g3,

=
2x3

2x2
· (2x2 + 2x + 1) − 2x3

x
· (x + 2),

= x(2x2 + 2x + 1) − 2x(x + 2),

= 2x2 + 2x + 1 − 2x2 − 4x,

= −2x + 1,

= x + 1.

S(g1, g3) = g3 + 2 and so h = S(f1, f2)
G

= 2. Letting h = g4,

Γ = {{g2, g1}, {g2, g3}, {g1, g4}, {g2, g4}, {g3, g4}}
G = {g1, g2, g3, g4}.

At this point we may terminate the algorithm. We have shown that g4 = 2 ∈ G,
so 2(2) = 1 ∈ I. (P ∧ ¬P ) is therefore unsatisfiable.
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5 Conclusion

In this thesis, we have presented a method for solving the Boolean Satisfiability
Problem for  Lukasiewicz logic. The focus wasn’t to show that this method is
optimal, merely to show that it exists. Further work could be done to streamline
the process, perhaps by finding an easier way to determine if 1 ∈ I. Again, the
computational complexity of SATL wasn’t the focus of this thesis, but it would
be interesting to investigate this method’s impact on the complexity of SATL.
Furthermore, the method of translating propositional formulas into polynomials
allows for a huge number of possibilities. Considering the wealth of algebraic
theory available to us, it would be very interesting to see what other, completely
different methods are available for solving this problem.
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