
The Nimbers

Bachelor’s Project Mathematics

July 2022

Student: B. B. Tielman

First supervisor: Prof.dr. J. Top

Second assessor: Prof.dr. O. Lorscheid

1

Contents

1 Introduction 2

2 The Game Nim 2

3 Combinatorial Games 3
3.1 Definition of games . 3
3.2 Addition of games . 5
3.3 Multiplication of games . 8
3.4 The Nimbers . 8
3.5 Minimum excluded value . 9
3.6 Addition of Nimbers . 9
3.7 Nimbers are/as a group . 11
3.8 Multiplication . 13
3.9 mex for impartial games . 14

4 The tower of fields 15
4.1 The Frobenius map . 15
4.2 The Artin-Schreier map . 16
4.3 Irreducible Artin-Schreier polynomials . 16
4.4 Galois groups . 20

5 Programming nimber addition and multiplication 20
5.1 The original definitions coded . 20
5.2 Faster algorithms . 22

6 Nimber codes 23

7 Transfinite Nimbers 24

8 Appendix 25

1

1 Introduction

Nim is a really old game. It was already played in ancient China using nuts [6]. It is part of a
collection of games called combinatorial games. These are games consisting of two players, where
both can observe the state of the game and both take turns to move the game from one state to
another.

There are many further restrictions to put on combinatorial games like ending in a finite number
of steps, restricting that one cannot return to a previous state, or that the moves a player can
make only depend on the state of the game itself and not on whose turn it is. Nim satisfies these
restrictions. There are also many different variations of Nim, but in this thesis we will only talk
about the game called “normal Nim.”

It turns out that the game Nim gives rise to a rich structure under the right definitions, namely a
tower of fields called On2. In this thesis we will show how the game Nim gives rise to this tower,
link the tower to more generally understood notions in algebra, and end with showing that there
are code which form vector spaces over the nimbers.

2 The Game Nim

Nim is a game played with a number of groups/heaps/piles, each consisting of some number of
objects. Examples include stacks of coins being places next to each-other, rows of matchsticks,
pockets of marbles and groups of nuts. We give some examples.

Figure 1: A game of Nim using coins.1

Figure 2: A game using matchsticks. The rows are the groups.2

1Image from https://www.pyth.eu/het-spel-nim
2Image from https://en.wikipedia.org/wiki/Nim

2

Two players each take turns to move. A move a player can make consist of removing any amount
of objects in a single pile, after which it is the other player’s turn. The game ends when the last
player takes the last object, that player is then declared the winner.

3 Combinatorial Games

3.1 Definition of games

In combinatorial game theory, the following notation is used for a two player game. This notation
is used by Conway in [2]. We have two different players, usually called player Left and Right. This
does not mean player Left plays first and Right second, it is simply a distinction between players
who can make different moves. A game x is described by the set of moves player Left can make,
and the set of moves player Right can make, which need not be the same set. It is written like

x = {l1, l2, l3, . . . | r1, r2, r3, . . .},

where {l1, l2, l3, . . .} = L and {r1, r2, r3, . . .} = R.

Notation. Sometimes we also write x = {L |R}. This is however not entirely correct since it
identifies L and R with their respective elements.

We see x as an ordered pair of L and R for which {l1, l2, l3, . . .} = L and similarly for R. The sets
describe the moves player Left and player Right can make that lead to different game states, so
formally x = {{{l1, l2, l3, . . .}}, {{l1, l2, l3, . . .}, {r1, r2, r3, . . .}}}. Each move, which is an element
of either L or R, can then be seen as different state of our original game, or as a game in its own
right. This means that the terms move and game state will be used somewhat interchangeably to
describe the same element in L or R, although a move y is most often seen as the action of going
from a game x to the element y, while a state y is seen as y itself.

A move in a game corresponds to picking an element of either L or R, depending on whose turn it
is. We will give two small examples.

Example 1. Consider the following game. We have two lime (green) coins and two red coins.
With this, we make a pile consisting of only one red coin and a different pile consisting of one red
coin at the bottom, and two lime coins on top. Player Left may remove any number of lime coins
that are on top of a pile and likewise, player Right may take any red coins that are on top. The
player who cannot make a move loses.

Figure 3: The game (r)+(rll)

We introduce some notation to deal with this game. Let us describe any pile by small sequence of
the colors of the coins form from bottom to top. Let us also denote separate piles by +. For now,
this plus is noting but a symbol to us which means the pile ‘’ and the pile ‘’ . If we introduce the
notation that (r) + (rll) denotes the game with pile consisting of a single red coin and a pile of
coins where the red is at the bottom and two limes are on top, then we can describe the game as
follows.

The only move player Right can make if they were to start first, is to take away the single red coin,
leaving the red-lime-lime pile unaltered. This means that R = {() + (rll)}. The move that Left

3

can make if they were to start first is to take away one or two coins from the pile of three. So they
can make the game move to the states (r) + (rl) and (r) + (r), hence L = {(r) + (r), (r) + (rl)}.
So we write

(r) + (rll) = {(r) + (r), (r) + (rl) | () + (rll)}.

Each of the elements of L and R are games themselves and should be analysed in the same way.
For example, the game () + (rll) is equal to {() + (rl), (r) + (r) | }.

At the end of the analysis, we always come to the game () + (), which is equal to { | }. In other
words, L = ∅ and R = ∅.

If we now remove the restriction of only making a move corresponding to one’s color, then we get
a game of Nim.

Example 2. We again have four coins, all blue. We again make two different piles, one consisting
of a single coin and one consisting of three coins. Both players are allowed to remove any number
of blue coins from a pile.

Figure 4: The game (b)+(bbb)

Since there is no difference in color anymore we only need to analyse what any player can do. A
player can either remove the single coin from the pile containing one coin, or remove one, two or
all coins from the pile containing three coins. This means that the move a player can make are
() + (bbb), (b) + (bb), (b) + (b) and (b) + (). This means that

(b) + (bbb) = {() + (bbb), (b) + (bb), (b) + (b), (b) + () | () + (bbb), (b) + (bb), (b) + (b), (b) + ()}.

Note however that {·|·} was shorthand notation for an ordered pair, so we could describe this game
equally and more formally as

(b) + (bbb) = {{{() + (bbb), (b) + (bb), (b) + (b), (b) + ()}}}.

Note that the parentheses occur trice.

We introduce some general notation for games. We denote a general element of L as xL and of R
as xR. We sometimes also need to distinguish between the the set of moves player Left can make
in the game x and the game y. These sets will be called Lx and Ly, and similarly Rx and Ry.

The game we will talk about in this thesis is the impartial game Nim. Impartial games have the
property that the set of option for both players is identical and only depends on the game itself.
This means that Left has the same set of options as Right, so L = R. This allows us to use change
the notation for a game by writing x as just the set of moves one can make, as done in Lenstra’s
paper [8].

We cannot define games to contain just anything. Unlike in our examples, we actually need
to construct games from the ground up to ensure that we do not end up with sets containing
themselves.

Definition 3. A game x is pair of sets (L,R) where every element of L and R is a previously
constructed games. The empty pair (∅,∅) is a game.

4

Definition 4. An impartial game x is a set were every element is a previously constructed impartial
games. The empty set ∅ is an impartial game.

This means that in order to make a game x, we should have already made all the previous games
that make up x. It follows that every impartial game is a set whose elements consist of only sets.
Likewise, a game is an ordered pair (L,R), whose elements are all ordered pairs.

The meaning behind this for the game Nim, is that we never see the same layout of the coins twice.
For example, when we have single pile of seven coins and a player removes a coin, then the next
player cannot place it back. (There is however a bit more nuance in how to visualize these sets as
games.)

3.2 Addition of games

Addition of games is inspired by the intuition for how addition behaves on real numbers. When
we have two real numbers x and y, we know that that for any number xL < x and yL < y that
x+ yL < x+ y and xL + y < x+ y. And we have something similar if xR > x and yR > y. This
leads to the following definition of addition of games as found in [2]

Definition 5. The sum of two games x and y is given by the recursive formula

x+ y :=
⋃

xL∈Lx

yL∈Ly

xR∈Rx

yR∈Ry

{xL + y, x+ yL |xR + y, x+ yR} notation
= {xL + y, x+ yL |xR + y, x+ yR}.

This means that the sum of x and y is the game where all the states Left can go to, are the states
they can go to by making a move on x and leaving y unchanged, or making a move on y and
leaving x unchanged, and analogously for Right.

For our impartial games, this definition gets compactified, since we do not distinguish between xL

and xR anymore. We will use the notation x′ for a general element of x. When we make these
changes, the definition becomes the following, as seen in [8].

Definition 6. The sum of two impartial games x and y is given by the recursive formula

x+ y :=
⋃
x′∈x
y′∈y

{x′ + y, x+ y′} notation
= {x′ + y, x+ y′}.

This also corresponds with our intuition of how a game of Nim with two piles should be played;
your options are to either reduce the first pile x to some smaller pile x′ and leave y unchanged or
to reduce the second pile y to some smaller pile y′ leaving x unchanged.

Note that this definition of addition is recursive. To find the sum of x and y we need to know
the sums x′ + y and x + y′ for all elements in x and y, which in turn depend on their respective
elements.

The definition is quite long to write down, which is why we introduce the shorthand notation.
Whenever we write an {x′}, it is implied that we take the union over all x′ in x of the elements
that are described by it. In the case of addition, we see in the shorthand notation {x′ + y, x+ y′}.
Note the appearance of an x′ and a y′, this means that we take a union over all elements in x and
y of the different sums. What we get is the original full definition. This is analogous to Einstein
notation where an index that appears in the top and bottom of an expression needs to be summed
over. In the upcoming chapter we will proceed with the full notation, and later switch to the
shorthand one. We will however stop with the distinction between games and impartial games,
and only consider impartial games from here on out.

5

Notation. Whenever we write game, we mean impartial game.

We might worry about the definition of addition, since it is recursive. How do we know we will not
end up with something that is not a set anymore? We propose the following lemma, which was
proven by Lenstra [8].

Lemma 7. Addition of games is well defined.

Proof. We require some set theory to deal with this. We know by the axiom of regularity that
there cannot be an infinite sequence of descending sets. In other words, we cannot have

x1 ∈ x2 ∈ x3 ∈ . . .

This means that our games do not have infinite “depth,” and that the recursion has to end at some
point, meaning that the end result of our addition is again a set.

We will first fully explore addition before we introduce multiplication. We need to look at the
properties of addition, namely that addition of games is commutative and associative.

Lemma 8. For any games x and y we have that addition is commutative. So x+ y = y + x.

Proof. The technique we use to prove this will be used a lot in this paper so it is important to go
over it in depth the first time. When we compute x+ y, we need the values of x′ + y and x+ y′,
but these calculations also depend on elements in their respective sets. Since we already showed
that we do not have a infinite “depth” for our sets to go through, we must at some point reach
the empty set for both x and y. This is clearly commutative since ∅ + ∅ = ∅ by our definition.
We can thus conclude that sums of the form {∅} + ∅ commute, which we can use to prove even
more. This whole procedure is called backwards induction. When proving a property about games
P (x, y), one may assume that the property holds for all elements that preceded it, so P (x′, y),
P (x, y′) and P (x′, y′). We do not need a base case because in the end, we get a statement about
the empty set which is vacuously true.

So with this all cleared, the proof of commutativity is quite straightforward, as done by Conway and
Knuth in [2, 7]. We want to know whether x+y = y+x, but we can already assume x′+y = y+x′

and x+ y′ = y′ + x for all x′ ∈ x and all y′ ∈ y, which leads us directly to the proof.

x+ y =
⋃
x′∈x
y′∈y

{x′ + y, x+ y′} =
⋃
x′∈x
y′∈y

{y + x′, y′ + x} = y + x.

Lemma 9. For any games x, y and z, we have that their sum is associative, so (x + y) + z =
x+ (y + z).

Proof. We may again assume that the simpler cases already hold, namely the following

(x′ + y) + z = x′ + (y + z)

(x+ y′) + z = x+ (y′ + z)

(x+ y) + z′ = x+ (y + z′)

where we may introduce even more primes into the equations if we want to, but it is not necessary
for this proof. We also need to know what (x+ y)′ means; namely an element of x+ y, note that

6

by definition this is of the form x′ + y or x+ y′. With all of this we again get a proof that consists
of just stitching together the right definitions and induction hypotheses [2, 7].

(x+ y) + z =
⋃

(x+y)′∈x+y
z′∈z

{(x+ y)′ + z, (x+ y) + z′}

=
⋃
x′∈x
y′∈y
z′∈z

{(x′ + y) + z, (x+ y′) + z, (x+ y) + z′}

=
⋃
x′∈x
y′∈y
z′∈z

{x′ + (y + z), x+ (y′ + z).x+ (y + z′)}

=
⋃
x′∈x

(y+z)′∈y+z

{x′ + (y + z), x+ (y + z)′}

= x+ (y + z).

From line one to line two, we see that we changed (x+ y)′ into two parts, namely x′+ y and x+ y′

as was justified in the above argument. Now all parts of line two are in the form where we can
apply the induction hypothesis. From there on we reverse our steps to get x+ (y + z).

We would also like to write this whole equation stitching using our shorthand notation, just to get
a feel of how the notation works. The proof then becomes

(x+ y) + z = {(x+ y)′ + z, (x+ y) + z′}
= {(x′ + y) + z, (x+ y′) + z, (x+ y) + z′}
= {x′ + (y + z), x+ (y′ + z), x+ (y + z′)}
= {x′ + (y + z), x+ (y + z)′}
= x+ (y + z).

We can now freely drop the parentheses around multiple additions of games, since x + y + z will
yield the same answer, regardless of which way the additions are done.

Lemma 10. With 0 representing the empty game ∅, we have for all games x that 0+x = x+0 = x.

Proof. There are no elements in the empty set, so a union over the empty set is empty itself. This
means that x+0 =

⋃
x′∈x{x′+0}. However, by the induction hypothesis, we know that x′+0 = x′.

This means
⋃

x′∈x{x′ + 0} =
⋃

x′∈x{x′} = x. We get 0 + x = x by commutativity.

I hope the reader is now used to our shorthand notation as to not be confused by it anymore, as
from now on we will no longer state the unions explicitly.

Notation. Whenever we write {x′}, it is implied that we take the union over all x′ ∈ x. That is

to say
⋃

x′∈x{x′} notation
= {x′}. We will sometimes still write the union explicitly for the sake of

clarity.

We have proven a lot about the structure of addition over games. All these results lead to the
following theorem.

Theorem 11. Games have a commutative monoid structure.

Proof. This theorem is a direct result of Lemmas 7, 8, 9 and 10.

7

A bit of caution is needed here. Note that what is written here is that games have a monoid
structure and not that they are a monoid. This is because the collection of all games form a proper
class and not a set, as noted by Conway in [2] page 50, but we can still make it a set by setting some
restrictions which we will not discuss for all impartial games, but we will discuss it for nimbers.

3.3 Multiplication of games

We will give be brief description of multiplication of games. Since multiplication on impartial
games does not give a rich structure unless modifications are made, which we will discuss after the
introduction of the nimbers. For now we will only state the definition and some lemmas.

Definition 12. Multiplication of games is defined as follows

x× y := {(x′ × y) + (x× y′) + (x′ × y′)}.

Lemma 13. For any games x and y, we have that multiplication is commutative, so x×y = y×x.

Lemma 14. With 0 denoting the empty set, we have 0× x = x× 0 = 0.

Lemma 15. For any game x, we have {0} × x = x× {0} = x.

3.4 The Nimbers

Now that we know that games are a set containing the states a player can go to, we can define the
nimbers (yes, this is a pun on numbers and the game Nim). Consider a single pile Nim game. The
moves a player can make are to reduce the pile of n object to a pile of n′ < n objects. This leads
us to define nimbers inductively as follows.

Definition 16. A nimber ∗n is the set of previous (and smaller) nimbers. So

∗n = {∗0, ∗1, ∗2, . . . , ∗(n− 1)} = ∗(n− 1) ∪ {∗(n− 1)}

where ∗0 = {}. The set of all finite nimbers is denoted by On2.

Most of the time the notation 0 and ∗ are used for the nimbers ∗0 and ∗1. We will use this
convention too.

Some keen observers might have noticed that the definition of the nimbers exactly corresponds
with the definition of Von Neumann ordinals. Indeed, in the last chapter we will explore transfinite
nimbers, but we will proceed with the finite for now. Also note that there is a (well-founded) order
on the nimbers induced by the identification between a nimber and the corresponding natural
number or the ordinal numbers. We call the set of all finite nimbers On2, although On2 is
sometimes used as the class of all ordinal numbers with Nim addition and multiplication like in
On Numbers and Games.

Since all nimbers except 0 contain 0 (the empty set), it is possible for the first player to win
immediately, and since 0 leaves no moves left for the first player, it is a win for the second player.
This is an important property to keep in mind; player two can win if we have the 0 Nim pile.
Things might change if we start adding different sizes of Nim piles to each other.

We have our nimbers and we have addition of games. What would happen if we were to add two
different nimbers?

Example 17. We will see which sets we get when we compute 0 + 0, 0 + ∗ and ∗ + ∗. First we
note that 0 = {}, hence we do not have any elements to consider when we want to compute 0′ +0.
This leads to the conclusion that 0 + 0 = {} = 0. For 0 + ∗ we get only one element in our set, we
get the set {0 + 0} = {0}. This is exactly the definition of ∗, hence 0 + ∗ = ∗. Now, the last sum
is a bit curious. We get the set {0 + ∗, ∗+ 0} = {∗, ∗} = {∗}.

8

As seen in the example, the game ∗+ ∗ is not a nimber itself. But maybe it is similar to a nimber.
How would a game like this behave? One way to visualize this is by starting with an empty board.
Then the first player can create a Nim pile of size 1, to which player two immediately responds by
taking that one coin away. Player one cannot make a move now and loses. This game looks a lot
like the zero game, in the sense that it is the second player who wins. We will show that this can
indeed be made into an equality by introducing the mex function.

3.5 Minimum excluded value

Before we define the mex function, we have to know a bit more about the nimbers. Note that the
nimbers have a correspondence to the natural numbers by identifying ∗n with n. This also induces
an order on the nimbers (hence the use of smaller in the definition of nimbers). It is this order
that we use to define the minimum excluded value.

Definition 18. The minimum excluded value mex is defined as follows. Let S be a proper subset
of On2; the nimbers. Then

mex : P(On2) \On2 → On2

S 7→ the smallest nimber value not in S.

This map is sometimes also called Grundy’s function or Sprague-Grundy’s function and is then
denoted with a capital G like in [8] and [4], but I chose to use mex because when the game consists
of just nimbers, then the mex function will literally be the minimum excluded value. This notation
was also used by Conway in [1] and by Mark Jeeninga in his master thesis [5]. We restricted the
inputs of the mex function to proper subsets of the nimbers, but more generally, the mex can be
defined for all proper subset of impartial games and all proper subsets of all ordinal nimbers, but
more on that in Chapter 7.

We will show some properties of the mex function. Firstly, it maps a nimber to the nimber itself.
This is because ∗n is the set of all nimbers that came before it. Thus, the smallest element that is
not in the set {0, ∗, ∗2, . . . , ∗(n− 1)} is the element ∗n. The function also maps sets which contain
nimbers that are not nimbers themselves to the smallest element not in that set. This is what was
meant with really being the minimum excluded value.

3.6 Addition of Nimbers

Which the mex, we can make a better addition operation on the nimbers. Instead of taking just
the game sum +, we take the mex of the Nim sum. This ensures that the result will again be
another nimber.

Definition 19. The Nim sum ⊕ is recursively defined as follows

∗n⊕ ∗m := mex(
⋃

∗n′∈∗n
∗m′∈∗m

{∗n′ ⊕ ∗m, ∗n⊕ ∗m′}) notation
= mex({∗n′ ⊕ ∗m, ∗n⊕ ∗m′}).

There are many interesting properties that this addition operation has. First of all, it is commu-
tative. It is also associative, we can use backwards induction to prove both claims. Most proofs
are taken directly from Conway’s On Numbers and Games [2] or Knuth’s Surreal Numbers [7]. It
will be stated when the proofs deviate from theirs.

Throughout this chapter we will simplify notation by not writing the outer most parenthesis for
the mex function.

Lemma 20. Nim addition is commutative.

9

Proof. This proof is quite similar to the proof of commutativity of game addition. We again have
the induction hypotheses that x′ ⊕ y and x ⊕ y′ commute. From that we can make the following
equalities

x⊕ y = mex{x′ ⊕ y, x⊕ y′} = mex{x⊕ y′, x′ ⊕ y} = y ⊕ x.

Lemma 21. For all nimbers ∗n and ∗m, the Nim sum ∗n⊕∗m is less than or equal to the nimber
∗(n+m).

Proof. By the induction hypothesis, we can assume that ∗n′ ⊕ ∗m ≤ ∗(n′ +m) and ∗n ⊕ ∗m′ ≤
∗(n + m′), where n′ and m′ are used to denote the natural numbers that correspond to ∗n′ and
∗m′. We know that ∗n ⊕ ∗m = mex{∗n′ ⊕ ∗m, ∗n ⊕ ∗m′}. Since both values inside the set take
on values less than or equal to ∗(n′ +m) or ∗(n+m′), so we can be sure that ∗(n+m) is not an
element of the set, and hence it is an upper bound for our minimum excluded value, which implies
∗n⊕ ∗m ≤ ∗(n+m).

Corollary 22. 0⊕ 0 = 0.

Proof. This is a direct consequence of the previous lemma, as 0⊕ 0 has to be less than or equal to
0, and there is only one nimber that can satisfy that, namely 0 itself.

For upcoming proofs we need to deal with the object of the form mex{(x⊕y)′}, which can become
quite annoying when not dealt with.

Lemma 23. For any nimber x, y z and w, we have

mex{w, z ⊕
(
mex{x′ ⊕ y, x⊕ y′}

)′} = mex{w, z ⊕ (x′ ⊕ y), z ⊕ (x⊕ y′)}.

Proof. We know that {x′ ⊕ y, x⊕ y} contains at least all values less than x⊕ y. This means that

mex{w, z ⊕ (x′ ⊕ y), z ⊕ (x⊕ y′)} ≥ mex{w, z ⊕
(
mex{x′ ⊕ y, x⊕ y′}

)′}
At the same time we know that all values for x′ ⊕ y and x ⊕ y bigger than x ⊕ y yield different
values when added to z, so that means that we must have equality.

Lemma 24. Nim addition is associative.

Proof. By our induction hypothesis, we may assume x′ ⊕ (y⊕ z) = (x′ ⊕ y)⊕ z, and two other but
similar equations. We also need to know what (y⊕ z)′ means. This is a bit different to the regular
case of (y+ z)′ since there now is a mex function we need to consider, but we can use the previous
lemma to deal with it.

x⊕ (y ⊕ z) = mex{x′ ⊕ (y ⊕ z), x⊕ (y ⊕ z)′}

= mex{x′ ⊕ (y ⊕ z), x⊕
(
mex{y′ ⊕ z, y ⊕ z′}

)′}
= mex{x′ ⊕ (y ⊕ z), x⊕ (y′ ⊕ z), x⊕ (y ⊕ z′)}
= mex{(x′ ⊕ y)⊕ z, (x⊕ y′)⊕ z, (x⊕ y)⊕ z′}
= mex{(x⊕ y)⊕ z′, (x⊕ y)′ ⊕ z}
= (x⊕ y)⊕ z.

10

3.7 Nimbers are/as a group

With addition of nimbers, we might ask if there is more structure behind it, and there is. The set
of all (finite) nimbers form an Abelian group. We know that nimber addition is a closed operation
and that it is commutative and associative. We only need to show that there is some unit element
and that every nimber has a additive inverse.

Lemma 25. The nimber zero is the unit element of the group. That is to say

x⊕ 0 = 0⊕ x = x, ∀x ∈ On2.

Proof. Our induction hypothesis is that x′ ⊕ 0 = x′. We also need to use the fact that x⊕ 0′ is an
empty set, since there are no elements to consider in 0′. This leads to

x⊕ 0 = mex{x′ ⊕ 0, x⊕ 0′} = mex{x′} = x.

By commutativity we also get 0⊕ x = x.

Something remarkable happens for the inverse of a nimber. When we play a game of Nim which
consists of two equal stacks of coins, then the second player has a really easy strategy to win,
namely to always mirror what the first player does. This indicates that the Nim sum x ⊕ x is 0,
and it is. But before we can prove that we need the following lemma;

Lemma 26. x⊕ y = x⊕ z if and only if y = z.

Proof. From right to left is easy to see, but from left to right requires a proof.

Suppose y < z (or y ∈ z), then x⊕ y is an element of x⊕ z. This contradicts that x⊕ y = x⊕ z,
so y ≥ z. Via an analogous argument we get z ≥ y. This can only happen when y = z.

Lemma 27. For all nimbers we have
x⊕ x = 0.

Proof. This is again a proof by backwards induction. This proof differs from the one in On Numbers
and Games and Surreal Numbers [2] [7]:

x⊕ x = mex({x′ ⊕ x, x⊕ x′}) = mex{x′ ⊕ x}.

By Lemma 26 which says that x ⊕ y = x ⊕ z if and only if y = z, and our induction hypothesis,
which says x′ ⊕ x′ = 0, we have that 0 cannot be an element of {x′ ⊕ x}, since otherwise we
have some specific y ∈ x for which we have y ⊕ x = 0 = y ⊕ y which implies x = y which is a
contradiction as y is an element of x.

Therefore 0 is the minimum excluded value of the set {x′ ⊕ x}, so x⊕ x = 0.

With this proof completed, we’ve shown that the set of all finite nimbers under Nim addition is a
group. Since we already had commutativity of addition, we know (On2,⊕, 0) is an Abelian group.

Binary exclusive OR

There is a really easy way to compute the Nim sum of two nimbers, because it turns out that this
form of summation is exactly the same as using exclusive or on binary numbers. We set out to
prove this in this section.

Lemma 28. If ∗n = {0, ∗, ∗2, . . . , ∗(n − 1)} is not a group and not empty, then there are some
∗k, ∗m ∈ {0, ∗, . . . ∗ (n− 1)} such that ∗k ⊕ ∗m = ∗n.

11

Proof. We know that 0 is in the set, which is the identity element. The inverse of any element
is also in the set, because the inverse is the element itself. We also know that Nim addition is
associative, so the only way the set could not be a group is by not being closed. This means that
there exist some ∗k, ∗m in the set such that ∗k ⊕ ∗m ≥ ∗n. If we have equality, then we are done,
so suppose ∗k⊕∗m = ∗l > ∗n. By the definition of addition, ∗l = mex{∗k′ ⊕∗m, ∗k⊕∗m′}. This
means that there was an element of the form ∗k′ ⊕∗m or ∗k⊕∗m′ equal to ∗n. Both ∗k′ and ∗m′

are part of the set, so we showed existence.

Lemma 29. Let ∗n = {0, ∗, . . . , ∗(n−1)} be a group. Then for all m, k < n, the sum ∗(n·m)⊕∗k =
∗(n ·m+ k).

Proof. This proof is from [2]. For our induction hypothesis we may assume that ∗(n ·m′)⊕ ∗k =
∗(n ·m′ + k) and that ∗(n ·m)⊕ ∗k′ = ∗(n ·m+ k′) where a prime before a integer means that it
can take any integer value less than it.

∗(n ·m)⊕∗k = mex{∗(n ·m)′⊕∗k, ∗(n ·m)⊕∗k′}. The elements that are excluded are ∗(nm)⊕∗k′
and ∗(nm)′ ⊕ ∗k.

We can use our induction hypothesis on the elements in the first form to see that we excluded
∗(nm+ k′).

The second can be written as ∗(n ·m′ + n′)⊕ ∗k. Since ∗n is a group, we have that ∗n′ ⊕ ∗k = ∗i
ranges over all values in the group. We can now apply our induction hypothesis twice to get

∗(nm′ + n′)⊕ ∗k = ∗(nm′)⊕ ∗n′ ⊕ ∗k = ∗(nm′)⊕ ∗i = ∗(nm′ + i),

where we remember that ∗i ranges over all values in the group.

We see that we excluded exactly all values less than ∗(nm+k), hence the minimum excluded value
is ∗(nm+ k) itself.

This lemma implies that if a group has 2i many element, that it behaves like binary exclusive
or.

Theorem 30. The Nimbers less than 2i are groups

Proof. Suppose we already know that ∗2i is a group. By Lemma 28, we need to find the first nimber
after ∗2i that is closed under addition. We know by Lemma 29 that we can always make the next
nimber using the previous nimbers by ∗(2i + k) for k ∈ {0, . . . 2i − 1}. We can do this until we hit
∗(2i · 2). This cannot be created using previous nimbers. Any two nimbers smaller than ∗2i add
to something still smaller than ∗2i. If we have one that is smaller and one that is bigger or equal
to ∗2i will still be smaller than 2i+1 by Lemma 29. Any two nimbers that are both bigger than or
equal to ∗2i must be smaller than 2i since ∗(2i+k1)⊕∗(2i+k2) = ∗2i⊕∗2i⊕∗k1⊕∗k2 = ∗k1⊕∗k2.

Therefore ∗2i+1 is the next nimber that is closed under addition and thus a group.

Theorem 31. Nim addition is binary exclusive or. That is to say that every nimber can be written
as a sum of powers of 2 using nim addition

Proof. This theorem is a consequence of Lemma 29. We know that each number has a unique
binary representation. So for any nimber ∗k = ∗(2k0 + 2k1 + . . . + 2km) where k0 > k1 > . . . km.
By normal induction with Lemma 29, we get that this is equal to ∗2k0 ⊕ ∗2k1 ⊕ . . .⊕ 2km .

This theorem also has Lemma 21 as a corollary.

12

3.8 Multiplication

Multiplication of nimbers is inspired by the idea of trying to avoid zero divisors.

To avoid zero divisors, we will look at what a product needs to satisfy. If we have any two
nonzero nimbers x and y then of course their product also must be nonzero. This also means that
(x − x′)(y − y′) ̸= 0. This relation can be written differently as xy ̸= x′y′ + x′y − x′y′. So any
multiplication operation has to satisfy this relation. We look at all the values we cannot obtain
and pick the smallest possible value that is left, and since in our case, addition is the same as
subtraction, we get the following definition.

Definition 32. Let x and y be nimbers, then the product x ◦ y is defined as

x ◦ y := mex({(x′ ◦ y)⊕ (x ◦ y′)⊕ (x′ ◦ y′)}).

This sometimes gets written in more insightful notation, using the fact that + is the same as −
which is the same as ⊕, to mex({x′y + xy′ − x′y′}), to emphasise that it came from the above
inequality. We will sometimes also drop the ◦ and instead mark multiplication by juxtaposition.

There are many properties that this multiplication has, and we will later show that this turns the
nimbers less than ∗22i into a field. To do this, we first need to show that it is a commutative ring
without zero divisors. So let us start with commutativity. All

Lemma 33. Multiplication is commutative.

Proof. This is once again a one line proof taken from [2]

x ◦ y = mex{x′y ⊕ xy′ ⊕ x′y′}
= mex{yx′ ⊕ y′x⊕ y′x′}
= mex{y′x⊕ yx′ ⊕ y′x′}
= y ◦ x.

Lemma 34. The nimber 0 behaves like the zero element under multiplication. That is to say,
0 ◦ x = 0.

Proof. Remember that in order to use multiplication, we need elements of both the first and the
second term. But 0 is the empty set, so when we try to write 0′ ◦x, we see that we do not have any
elements. Therefore, any multiplication with 0 results in the mex of the empty set, which equals
0. Written out we get

0 ◦ x = mex(∅) = 0.

Lemma 35. The nimber ∗ is a multiplicative identity.

Proof. We can use the fact that 0 ◦ x = 0 to get

x ◦ ∗ = mex{∗ ◦ x′ ⊕ 0x⊕ 0x′} = mex{x′} = x.

Lemma 36. Multiplication is associative.

13

Proof. Proof by Conway.

For this proof we need to remember our induction hypothesis, namely that if we introduce a prime
in any element, that we can use associativity, i.e. x′ ◦ (y ◦ z) = (x′ ◦ y) ◦ z. Also we need to
remember once again what an element of y ◦ z entails

(x ◦ y) ◦ z = mex{(x ◦ y)′ ◦ z ⊕ (x ◦ y) ◦ z′ ⊕ (x ◦ y)′ ◦ z′}

= mex{
(
mex{x′y ⊕ xy′ ⊕ x′y′}

)′ ◦ z ⊕ (x ◦ y) ◦ z′ ⊕
(
mex{x′y ⊕ xy′ ⊕ x′y′}

)′ ◦ z}
= mex{(x′y)z ⊕ (xy′)z ⊕ (xy)z′ ⊕ (x′y′)z ⊕ (x′y)z′ ⊕ (xy)′z′ ⊕ (x′y′)z′} ⋆

= mex{x′(yz)⊕ x(y′z)⊕ x(yz′)⊕ x′(y′z)⊕ x′(yz′)⊕ x(y′z′)⊕ x′(y′z′)}
= “ ”

= x ◦ (y ◦ z).

The equality at ⋆ needs some justification. The main argument is that if we have any set of nimbers
α with mex{α} = x and any set β with mex{β} = y that we can still talk about α◦β and similarly
for α ⊕ β, and that with this we have mex{α′β ⊕ αβ′ ⊕ α′β′} = xy. One can make this more
rigorous when using theorem 39 and 40.

Lemma 37. Multiplication is distributive over addition.

Proof. Proof by Conway.

(x⊕ y) ◦ z = mex{(x⊕ y)′ ◦ z ⊕ (x⊕ y) ◦ z′ ⊕ (x⊕ y)′ ◦ z′}
= mex{(x′ ⊕ y)z ⊕ (x⊕ y)z′ ⊕ (x′ ⊕ y)z′, (x⊕ y′)z ⊕ (x⊕ y)z′ ⊕ (x⊕ y′)z′}
= mex{x′z ⊕ xz′ ⊕ x′z′ ⊕ yz, xz ⊕ y′z ⊕ yz′ ⊕ y′z′}

= mex{
(
mex{x′z ⊕ xz′ ⊕ x′z′}

)′ ⊕ yz, xz ⊕
(
mex{y′z ⊕ yz′ ⊕ y′z′}

)′}
= mex{(xz)′ ⊕ yz, xz ⊕ (yz)′}
= xz + yz.

We again have used some variation of Lemma 23 and a similar argument that we had to use for ⋆.

Theorem 38. There exist a multiplicative inverse and a inductive formula to find it.

This is a really annoying theorem which we shall not prove. All it goes to show is that the nimbers
form a field, something we will show in the next chapter without the use of a formula for the
inverse.

3.9 mex for impartial games

We have addition of games and addition of nimbers, and they look similar apart from one using
the mex function. Is there a relation between the two?

Theorem 39. For two games x and y, we have mex(x+ y) = mex(x)⊕mex(y).

This allows us to speed up our calculations of addition of games. Similarly we have the following
theorem.

Theorem 40. For two games x and y, we have mex(x× y) = mex(x) ◦mex(y).

14

4 The tower of fields

The main idea of this chapter is to show that there exists a tower of fields, namely F2 ⊂ F4 ⊂
F16 ⊂ . . . that can be made by using adjoining a zero of an irreducible Artin-Schreier polynomial,
which is a polynomial of the form x2−x−α (for some suitable α). Afterwards we show that there
are isomorphisms from these fields to our nimber fields, and that On2 =

⋃∞
i=0 F22i . We end by

showing that there are no different fields in our nimbers.

As we have that 0 ⊕ 0 = ∗ ⊕ ∗ = 0 and 0 ⊕ ∗ = ∗ ⊕ 0 = ∗ together with 0 ◦ ∗ = ∗ ◦ 0 = 0 ◦ 0 = 0
and ∗ ◦ ∗ = ∗, we can see that this is isomorphic to the field F2 = F220 . If we look at the next
few nimbers up to ∗3, we can see that we have the field F4 = F221 . The next field that we can
stumble upon is the one where we include all nimbers up to ∗15 which gets us to F16 = F222 . We
will show that, starting from F2, we can construct all other fields that arise in the nimbers which
are isomorphic to the fields of order a Fermat-2-power, which is the name we give to numbers of
the form 22

m

.

Notation. Throughout this chapter, we use the letters q and n, for which we have n ∈ Z≥0 and
q = 2n. We also want some shorthand notation for Fermat-2-powers, so we will use r = 2q = 22

n

.

4.1 The Frobenius map

In this section we will build towards finding a Artin-Schreier polynomial for Fq, which is used to
extend Fq to Fq2 . To do this we need to start from the basics. We know that the Frobenius map
on a field of characteristic 2 is the map

F : Fq → Fq

x 7→ x2

which is a field homomorphism. We can check that for any two elements a and b in Fq, that
F preserves multiplication, addition and that it sends the unit element to itself. The proof of
multiplication is straightforward. Using commutativity we get F(a · b) = (a · b)2 = a2 · b2 =
F(a) · F(b). For multiplication we need to use that we work in a field of characteristic 2, then
using distributivity and commutativity we get F(a + b) = (a + b)2 = a2 + 2a · b + b · a + b2 =
a2 + a · b+ a · b+ b2 = a2 + b2 = F(a) · F(b).

The Frobenius map will be the the starting point form which we will construct our other maps.
It is therefore important that we go over a few of its properties; the most important one being
F2-linearity. When we have a field Fq, we can see it as a vector space over over F2, the Frobenius
map becomes a linear transformation over that. This will then be used to construct the different
map ℘, called the Artin-Schreier map.

We need to show later on that the Artin-Schreier map is F2-linear, so we start with showing the
Frobenius map is F2-linear.

Lemma 41. The map F : Fq → Fq is F2-linear.

Proof. In order to prove that a map is linear over a field, we need to show that it preserves the vector
addition and scalar multiplication. The addition was already proved by F being a homomorphism.
The preservation of scalar multiplication can be proven using the fact that multiplication itself is
preserved, and then restricting it to the elements 0 and 1.

F(1 · n) = F(1) · F(a) = 1 · F(a)
F(0 · n) = F(0) · F(a) = 0 · F(a).

15

4.2 The Artin-Schreier map

One of me more important maps on the fields Fq, is the Artin-Schreier map, which is the map

℘ : Fq → Fq

x 7→ x2 − x.

The Artin-Schreier map is important as it allows us to find the right values for α for our A-
polynomials.

We would like to know what happens to our elements when we apply the Artin-Schreier map to
it. Therefore we look at what the kernel of our map is.

Theorem 42. The kernel of ℘ over Fq is {0, 1}.

Proof. We know that 02 + 0 = 12 + 1 = 0. These are two different solutions, and we cannot have
more than two different zero’s since the function is a degree two polynomial. Therefore the kernel
is exactly {0, 1}.

We also need to show that the Artin-Schreier map is F2-linear.

Theorem 43. The map ℘ is linear over F2.

Proof. The map ℘ can be expressed as F − id. We already know that F was a F2-linear map.
The identity is also linear, so this means that ℘ is a difference of two linear maps, which is still
linear.

Theorem 44. The image of ℘ has q/2 many elements.

Proof. When we look at ℘ as a linear map over Fq, we can apply the rank-nullity theorem, which
says that dim({0, 1}) + dim(Im(℘)) = n. We know that dim({0, 1}) = 1 so the dimension of the
image is n− 1, which implies that it has 1

2#Fq many elements.

4.3 Irreducible Artin-Schreier polynomials

This is the section where we finally meet our A-polynomials.

Definition 45. An irreducible Artin-Schreier polynomial or A-polynomial for a field Fq is a
polynomial of the form

x2 − x− α

for α ∈ Fq such that it is irreducible in Fq[x]. Note: normally any polynomial of the form

For what values of α do we get an A-polynomial and can we systematically find such an α? It
turns out that there are a lot of αs that satisfy the definition and that we can find such an α quite
easily.

Theorem 46. For α ∈ Fq \ ℘(Fq), the polynomial x2 − x− α is irreducible in Fq.

Proof. Since we have a second degree polynomial, it suffices to check that we do not have any
roots; since the only way a second degree polynomial could be reducible, is by it being the product
of two linear factors. So suppose we do have a root of this polynomial β, then β satisfies

β2 − β − α = 0.

So this tells us that ℘(β) = α. However, α was supposed to be an element that is was not hit by
our map ℘, so this is a contradiction. Therefore our assumption that we have a root is false, and
we conclude that x2 − x− α is a irreducible polynomial.

16

We can use these polynomials go get field extensions from Fq to Fq2 .

This allows us to write a recursive procedure to get new field extensions. We can start with F2,
and join the root of the polynomial x2−x−1 to it. It is an irreducible polynomial since it was not
in the image of ℘. We can call one of these roots x1, and we get the field F2(x1). This new field
contains the elements x1 and x1 + 1. We now need to find an element that is not in the image of
℘ applied to this field. We can systematically find one.

Definition 47. We define F2(x1, . . . , xn+1) as the extension form F2(x1, . . . , xn) to which we add
a zero of the polynomial X2 − X − αn for some suitable αn ∈ F2(x1, . . . , xn) that makes the
polynomial irreducible.

This means that in order to talk about the field F2(x1, . . . , xn+1), we must already have defined
F2(x1, . . . , xn) and we should also state what αn is.

This next theorem is based on Theorem 4.2 in M. Jeninga’s master thesis [5] in which he shows a
way to make many different towers, one of them being the tower we’re currently working on. The
proof uses some results from algebra that we first will take for granted, afterwards we will prove
the results that we used.

Theorem 48. αn =

{∏n
j=1 xj n ≥ 1

1 n = 0.
is an element in F2(x1, x2, . . . , xn) that is not in the image

of ℘.

Proof. This proof is due to M. Jeninga [5].
The first claim we make it that αn not being in the image of ℘(F2(x1, . . . , xn)) is equivalent to
applying the Artin-Schreier map 2n − 1 = q − 1 times and getting 1 as a result. We will write
superscripts above our map to indicate repeated applications. So written out we get

℘[q−1](αn) = 1 ⇔ αm /∈ ℘(F2(x1, . . . , xn)).

Now, We start a prove by normal strong induction. For the base case we know that 1 is not in
℘(F2). Now for the induction hypothesis. We assume that for all k ≤ n,

∏k
i=1 xi is not in the

image of ℘ over F2(x1, x2, . . . , xk). Now we want to show that when we extend the field using

x2 − x−
∏n

i=1 xi, that the resulting field F2(x1, x2, . . . , xn, xn+1), has
∏n+1

i=1 xi not in the image of
℘.

Consider ℘[2n+1−1](αn+1), this is the same as ℘[q−1](℘[q](αn+1)). Another claim that we will back
up later is that ℘[2n] is F2(x1, . . . , xn)-linear. This allows us to write

℘[q−1](℘[q](αn+1)) = ℘[q−1](αn · ℘[q](xn+1)).

We know, by the definition of our previous field extension, that x2
n+1 − xn+1 − αn = 0. If we

multiply both sides by x−1
n+1 and rearrange, we get xn+1 = 1 + x−1

n+1 · αn. This means

℘[q](xn+1) = ℘[q](1 + x−1
n+1 · αn) = ℘[q](1) + ℘[q](x−1

n+1 · αn) = αn · ℘[q](x−1
n+1),

where we again used the fact that ℘[q] is linear over F2(x1, · · ·xn) to pull out the αn.
Now we need to know what ℘[q](x−1

n+1) is. Again consider x2
n+1 − xn+1 − αn = 0. If we divide by

x2
n+1 · αn, we get

α−1
n − α−1

n · x−1
n+1 − (x−1

n+1)
2 = 0.

This means that x−1
n+1 is a root of X2−α−1

n X+α−1
n . Since x−1

n+1 was not in the field F2(x1, . . . , xn),
it cannot be the solution of a linear polynomial. Therefore this has to be the minimum polynomial.
This then implies that ℘[q](x−1

n+1) = α−1
n .

If we now substitute all equations we see that

℘[2n+1−1](αn+1) = ℘[q−1](αn) = 1.

17

There were some claims that need backing up. We first try to justify why ℘[q] has the properties
that we said it has.

Lemma 49. ℘[2n] is the map that sends and element x to x22
n

−x. In other words, ℘[q] = Fq− id.

Proof. We know that ℘ is the map x 7→ x2 −x. using proof by induction, we can first assume ℘[2i]

is the map x 7→ x22
i

− x. Then the map ℘[2i+1] is the map ℘[2i] applied twice. We thus get

(
x22

i

− 1

)22
i

−
(
x22

i

− 1

)
.

Then, due to the binomial theorem, the fact that we are working on a field of characteristic 2, we

get that this is equal to x22
i+1

− x

Lemma 50. The map F i : Fq → Fq, x 7→ x2i is an automorphism of Fq, for i ∈ Z≥0.

Proof. We know that F is a field homomorphism from Fq to itself. Composing a homomorphism

with another one yield again a homomorphism. This means that all the mappings from x to x2i are
field homomorphisms. It turns out that all of these homomorphisms are in fact automorphisms.
Consider the kernel of F , it is an ideal of Fq. A field has only two ideals, {0} and Fq itself. We
know that F(1) = 1, thus the kernel is {0}. This means that F is injective, and since Fq is a finite
set, the mapping also has to be surjective. This means that we have an automorphism.

Lemma 51. F [n] is Fq-linear.

Proof. We first note that any nonzero element in Fq has an order dividing q − 1. This is because
of the multiplicative group being cyclic. This means that F [n] is the identity map, which is Fq-
linear.

With this last lemma, we have justified one of the claims we used in the proof of Theorem 48.
Now we need to prove the other claim.

Lemma 52. ℘[2n−1](αn) = 1 ⇔ αn /∈ ℘(F2(x1, . . . , xn)).

Proof. Let β be a root of X2−X−αn. Then ℘[2n−1](αn) = ℘[2n](β) = β22
n

−β. It turns out that

β22
n

− β = 0 if and only if β ∈ F2(x1, . . . xn) which is equivalent to αn ∈ ℘(F2(x1, . . . , xn)). This
implies that αn /∈ ℘(F2(x1, . . . xn)) ⇔ ℘[2n−1](αn) ̸= 0, but since ℘[2n−1] : F22n → F2, we must
have that it is 1.

We once again shoved the proof of this claim, onto a different one which we will immediately prove.

Lemma 53. All elements a ∈ Fq satisfy aq − a = 0, and elements b ∈ Fq2/Fq have bq − b ̸= 0.

Proof. We know that the the units of Fq form a cyclic group under multiplication and that the
order of that group is q − 1. This means that aq = a. For 0, we can immediately see that 0q = 0.

If β is an element of Fq2/Fq, the the order of β in the multiplicative group of Fq2 divides q2, but
not q, so it must be q2. This means that βq ̸= β, hence βq − β ̸= 0.

With this, we have finally covered all there is to Theorem 48.

We now need to show that On2 is isomorphic to this tower of fields, to to this we show that every
subfield of On2 is isomorphic to a field in the tower

Theorem 54. F2(x1, . . . , xm) is isomorphic to the field of all nimbers less than ∗22m , by mapping

xi to ∗22i−1 for all i ≤ m.

18

Proof. This proof is due to Conway in [2].

This is also a proof by backwards induction. Suppose we already knew ∗22m−1

(which are all
nimbers less than it) is a field. By the uniqueness of finite fields, it is isomorphic to F2(x1, . . . xm−1).

We suppose that every nimber ∗22i really corresponds to xi+1 for all i ≤ m− 1.

To continue we actually need some of the theorems Conway proved in On Numbers and Games,
namely his “Simple extension theorems”, for which we already have proven the first two; Lemma
28 and 29. The one that we need, Theorem 45, p58, states that if a nimber is a field but not
algebraically closed (which our finite fields are), then it is a root of the “lexicographically earliest”
polynomial with no root in the field. This theorem will not be proven in this thesis. It turns out
that the Artin-Schreier polynomial with the corresponing value of αm−1, is the lexicographically

earliest polynomial not with a root in ∗22m−1

.

Next, Conway’s 46th theorem (also part of his simple extension theorems) tells us that the addition
multiplication done in this bigger field like we expect it. It tells us that we can evaluate any nimber
in a field like ∗22n as follows.

(∗22
n

◦ ∗a1)⊕ ∗a0 = ∗(22
n

· a1 + a0)

for ∗a1, ∗a0 ∈ 22
n

. This means that we can really view our xi-s as corresponding to the right
Fermat-2-power.

Corollary 55. For any n, we have
(
∗22n

)2
= ∗(32 · 22n).

Proof. We know that ∗22n corresponds to xn+1, which satisfies X2 = X + αn. This means that

(
∗22

n
)2

= ∗

22
n

·
n−1∏
j=1

22
j

 = ∗
(
3

2
· 22

n

)

.

Lemma 56. xq − x has no multiple zeros.

Proof. We know that the derivative of xq − x is equal to qxq−1 − 1. But we are working in a
field of characteristic 2, so the derivative becomes just -1. This means that there are no multiple
zeroes.

Lemma 57. Fq is the splitting field of the polynomial xq − x over F2.

Proof. This proof is from [9] Since the polynomial has no multiple zeros, the splitting field must
have the elements {a0, a1, . . . , aq} all distinct and zeroes of Xq −X. But these zeroes also satisfy
that (ai + aj)

q − (ai + aj) = 0 by the Frobenius homomorphism, and (aiaj)
q − (aiaj) = 0 and

(a−1
i)q − (a−1

i) for all i and j ∈ {0, . . . , q}. This means that the set {a0, . . . , aq} is actually a
subfield of the splitting field. But the splitting field F2(a0, . . . aq) is a subset of {a0, a1, . . . , aq},
hence this must be the splitting field.

Corollary 58. The tower of fields F2 ⊂ F4 ⊂ F16 ⊂ . . . is unique up to isomorphism.

This corollary is due to the fact that splitting fields are unique up to isomorphism.

The last corollary also implies that our Nimbers On2 which is equal to this tower, is also unique.

19

4.4 Galois groups

It turns out that every extension F2(x1, . . . xn+1)/F2(x1, . . . xn) is Galois. We can show this by
checking if the polynomial that defined the extension splits in the bigger field and if it has distinct
zeroes in it.

Lemma 59. The polynomial X2 −X − αn ∈ F2(x1, . . . xn)[X] splits in F2(x1, . . . , xn+1)[X] and
has distinct roots xn+1 and xn+1 + 1.

Proof. We can check that (X + xn+1)(X + xn+1 + 1) gives us our polynomial back. We need to
use that x2

n+1 = xn+1 + αn.

We can now see that the extension is indeed Galois. But how about the extension from F2 to
F2(x1, . . . xn)?

Since every field extension we took was due to adding a zero of an irreducible polynomial of
order 2, we have that the extension F2(x1, . . . xn+1)/F2(x1, . . . xn+1) is Galois. This is because the
polynomial now splits in our new field.

Theorem 60. The extension F2(x1, . . . , xn)/F2 is Galois.

Proof. Since we already new that splitting field s are unique, we know that F2(x1, . . . , xm) is

isomorphic to the splitting field of X22
n

−X over F2. We showed X22
n

−X was separable hence
the extension is Galois.

What do these Galois groups look like? The automorphism group Aut(Fq) consist of dif-
ferent powers of the Frobenius map, until it gets back to being the identity map. So it is
{id,F ,F [2], . . . ,F [q−1]}. This is naturally isomorphic to Z/qZ.

5 Programming nimber addition and multiplication

We discovered a lot about the structure that the nimbers have, but we have not done any explicit
calculations. If we wanted to know what (∗2022 ◦ ∗1729)⊕∗31415 is by hand, that would be really
tedious. In this chapter, we will implement two different algorithms for addition and two different
algorithms for multiplication of nimbers. We will also compute some polynomial equations using
these algorithms.

This section will use Magma because is a powerful programming language which can be used for
free via the Magma site. It also has no limits on the size of integers you can use.

5.1 The original definitions coded

Before we can implement the code for the original definition, we need to code the max function.
For finite nimbers it is quite easy to compute. Given a set, we check if 0 is in the set, and if it
isn’t we check for the next number, and then the next, until we find a number that is not in the
set. This number is the minimum excluded value of the set.

[mex]

mex:= function(S);

i := 0;

while i in S do

i := i + 1;

end while;

return i;

end function;

20

This is a reasonably fast program. It should be O(n) in time at worst, with n being the size of
the set.

Now we can implement addition. Since addition is defined recursively, our program would be too.

[Addition]

Add := function(n,m);

Output := {}; // This will be the final set that we put through the max function

x := {0..n-1}; // construct the nimber

y := {0..m-1};

for z in x do

Output := Output join {$$(z,m)}; // inductively add x’ + y to the set

end for;

for w in y do

Output := Output join {$$(n,w)};

end for;

return mex(Output); // the mex of Output is the nimber we are after

end function;

This algorithm is spectacularly bad. It takes a lot of time to compute the sum of small numbers.
Below I plotted a graph in Matlab that shows the relation between the calculation of Add(10,n) for
n ∈ {0, . . . , 7} and the average time it takes for the online browser version of Magma to compute
that value 5 different times, rounded to two decimals after the point. The small sample size is
due to the fact that the online version of Magma stops computing whenever it has been running
for two minutes. This happens for the calculation Add(10,8), hence it cannot be plotted on the
graph.

The values I found for n = 0, . . . , 7 are as follows

n 0 1 2 3 4 5 6 7
time 0.01 0.03 0.12 0.46 1.73 6.22 20.78 67.05

Plotting this table gives When we divide the time value of n by the one of n − 1, we see that

Figure 5: Computing time

we get exponential growth in time with a base between 3 and 4. Which I find surprising since the

21

recursive nature of the algorithm let’s me to think that it should behave like a factorial. Undeniably
however is that the main reason why this algorithm is so slow, is because of its recursive nature.

5.2 Faster algorithms

If we want to have a faster algorithm, then we need something that does away with the recursion,
but we know of a different way to add two nimbers, namely to binary exclusive or them. We can
thus make faster algorithms doing exactly this.

Add := function(n,m);

if m le n then // if m is smaller than n, swap them around

a := m;

m := n;

n := a;

end if;

x := Intseq(n,2); // the binary repesitation of n (in reverse order)

y := Intseq(m,2);

i := #x;

j := #y;

for k in {i+1..j} do // filling in the missing zeroes

x[k] := 0; // so the sequences have the same lenght

end for;

for k in {1..j} do // XOR

x[k] := Abs(x[k] - y[k]);

end for;

Output := 0;

for k in {1..j} do // making the final output number

if x[k] eq 1 then

Output := Output + 2^(k-1); // Magma starts indexing at 1

end if;

end for;

return Output;

end function;

This is a really fast algorithm. It is not recursive anymore which allows it to compute additions
of nimbers with several digits. For a demonstration of its speed, I chose some arbitrary numbers
between 0 and 1025 and computed their Nim sums.

a b a⊕ b
4847381782734080799239049 6778423099897418741533812 1931929433905992411129853
7333835062302402685418147 6229268323450549420702386 3890763134890839421190161
3547451684189401312708021 7027894805684716428932748 8760087635495893003531065
6012538830143602990075256 1679164417444447002363435 6774968944027081281915731
6626544573140098746378272 5996165599367199544398670 1881964114636314525973358

Any one of these calculations took the supercomputer less than 0.020 seconds.

We also want an algorithm that can calculate the Nim multiplication fast. This however cannot
be done without recursions. Still, the algorithm was made is pretty fast. It is also quite long so
this algorithm will be put in the appendix.

22

6 Nimber codes

In the book ”The book of Numbers” by John Conway and Richard Guy [3], there is a remarkable
fact about a code, namely the integral lexicographical code of minimum distance 3 called S3, is
closed under pointwise Nim addition and multiplication. However, the book does not provide a
proof, although a more general statement about codes of this kind was proven earlier by Conway
in a 1987 paper [1]. In this section we will restate that this specific code forms a vector space and
try to prove as much as possible that, if we assume that S3 is a vector space, that we get our Nim
addition and multiplication back. What is a code? Normally a code consist of code words which

are finite sequences of elements usually belonging to some finite alphabet. We define code words a
bit differently.

Definition 61. A code word is a sequence of non-negative integers (ai)
∞
i=0 such that for only

finitely many ai ∈ Z≥0 we have ai ̸= 0. We write the sequence (ai) in reverse order, so

(ai)
∞
i=0 = (· · · , a3, a2, a1, a0).

Definition 62. The distance between two code words (ai)
∞
i=0 and (bi)

∞
i=0 is defined by

d((ai)
∞
i=0, (bi)

∞
i=0) =

∞∑
i=0

||ai − bi||H (1)

where ||x||H is the Hamming norm on Z; the norm that returns 0 if x = 0 and 1 otherwise. This
distance function is also known as the Hamming distance.

Definition 63. For two different code words (a) and (b), we say (a) < (b) if and only if ∃n such
that an < bn and ∀N > n, aN = bN .

This definition is the reason why we write our code words in reverse order. By doing that we can
easily read which of the words is the smaller one by interpreting them as normal numbers, although
we need to be careful that a single element of a word can take any value, not just one digit values.

Definition 64. The integral lexicographic code of minimal distance 3 is the code with the properties
that the zero code word is in it, and for every code word (w), the set {(v) ≤ (w)} has the properties
that

i) d(w, v) ≥ 3 ∀v
ii)∀s s.t. d(s, v) ≥ 3∀v =⇒ w ≤ s.

Just like the nimbers have a mex function, the code words have one too. This mex is a bit
more involved than the one on nimbers since it has to deal with several infinitely long lists of code
words, but it works the same way.

Theorem 65. For two code words (a) and (b), we have

(a)⊕ (b) = mex{(a)′ ⊕ (b), (a)⊕ (b)′},

and
µ(a) = mex{µ′(a)⊕ µ(a)′ ⊕ µ′(a)′},

where (a)′ ranges over all the code words that came before (a) and where µ is a nimber. This gives
the same result as doing pointwise Nim addition.

Proof. The proof can be found in integral lexicographic codes [1].

Theorem 66. These code words are closed under pointwise nimber addition and multiplication.
They even form a vector space over the nimbers.

23

Proof. This again can be found in integral lexicographic codes [1]

Example 67. We want to see what this sequence of code words looks like. We have no code words
to begin with so the first one we get is (. . . , 0, 0, 0). The next word we get is (. . . , 0, 0, 0, 1, 1, 1),
then (. . . , 0, 0, 0, 2, 2, 2). If we continue we get(. . . , 0, 0, 0, n, n, n).

Lemma 68. The first code words are all of the form (. . . , 0, 0, 0, n, n, n).

Proof. This proof is from Conway’s paper on codes [1]. It is a proof by (normal) induction.
Suppose we know the first m code words are all of the form (. . . , 0, 0, 0, n, n, n) for n < m, we

want to show that the next code word is (. . . , 0, 0, 0,m + 1,m + 1,m + 1). We should try to find
the smallest word, so we can assume ai = 0 for i ≥ 3. What if a2 ≤ m, then there is some code
that has at most distance 2 from it. Thus ruling out a2 ≤ m. The smallest option we can choose
is a2 = m + 1. We similarly come to the conclusion that a1 = m + 1 and a0 = m + 1. Thus
(. . . , 0, 0, 0,m+ 1,m+ 1,m+ 1) is the next code word in our sequence.

Although we now have infinitely many code words, we do not stop. We can set a3 = 1 to
look at what the next smallest code word would be. Since a2 = 0 doesn’t cause the word to be
within distance 2 of other words, it becomes the smallest possible choice. With that, we cannot
choose a1 = 0 anymore because otherwise the word would be too close to (. . . , 0, 0, 0), so we choose
a1 = 1. And with that we are forced to pick a0 = 2. We can continue to find the next code words
by checking it with all previous words or prove the patterns that exist with induction again and
again, but that is too tedious.

Theorem 69. If we assume the integral lexicographic code is a vector space over some field with N
as its elements but with addition and multiplication yet undefined, then the addition on N must be
⊕. Furthermore, if we assume 1 is the multiplicative identity, then we get ◦ as our multiplication.

procedure to find the nimbers. From [1].
We know that the zero code word is in the code. If we add the zero code word to itself, we should
get a code word consisting the same element, for all positions. This can then only be the zero code
again. Thus 0⊕ 0 = 0.

This immediately tells us that 0 has to the additive identity of our field since no element except 0
satisfies x⊕ x = x.

We can similarly use code words higher in the list to see what the value is of any sum we might
have.

For multiplication it is a bit different. If we do not assume 1 is the multiplicative identity, then we
can make any element the multiplicative identity by defining a new multiplication operation that
uses the previous one. namely a ◦new b = a ◦old b ◦old c−1. This makes c the new multiplicative
identity.

So if we suppose that 1 is the multiplicative identity, we can again preform multiplications on the
code words and see what values we should get. In this way, we get our nimbers.

7 Transfinite Nimbers

We have mainly discussed finite nimbers in this thesis. As hinted throughout, this is not all there
is. Nimbers can be defined for any ordinal number. The mex function also extends to the ordinals.
For example

mex{0, ∗, ∗2, ∗3, . . .} = ∗ω,

where ω is the first finite ordinal. Nimber addition can easily be extended to transfinite ordinals,
as ordinals also have unique binary representations for which the rule of binary exclusive or still
holds. Nimber multiplication however does not extend in a easy way.

24

There are many field to be found in the nimbers due to Conway’s simple extension theorems.
Fields like ω (which we have worked with in this thesis) but also ωω and even ωωω

. Of the many
field that are found, we only know that ωωω

is algebraically closed. Finding the next algebraically
closed field is tremendously hard task that as far as I know has not been solved yet.

8 Appendix

Multiply := function(n,m);

x := Intseq(n,2); // construct base 2 repesentation

y := Intseq(m,2);

i := #x;

j := #y;

b := [];

d := [];

Output := 0;

Index := 1; // We want to know the exponents of the powers of 2 that make up n

for k in {1..i} do // also in base 2 representation

if x[k] eq 1 then

b[Index] := Intseq(k-1,2);

Index := Index + 1;

end if;

end for;

Index := 1; // similarly but for m

for k in {1..j} do

if y[k] eq 1 then

d[Index] := Intseq(k-1,2);

Index := Index + 1;

end if;

end for; // E.g now we have list of the form [[1,1],[1,0,1]] representing 40

h := 0; //we will make all elements (sequences) the same length

for k in {1..#b} do // to do that we first need the maximum lenght

h := Max({h,#b[k]});

end for;

for k in {1..#d} do

h := Max({h,#d[k]});

end for;

for k in {1..#b} do //now we change everything to have the max lenght

for f in {#b[k]+1..h} do

b[k,f] := 0;

end for;

end for;

for k in {1..#d} do //similarly for d

for f in {#d[k]+1..h} do

d[k,f] := 0;

end for;

end for;

// Now the actual multiplication starts

25

for k in {1..#b} do // I won’t indent these two for for clarity

for l in {1..#d} do

h := #b[k];

ManagableTerm := []; // these will contain different powers of 2^2^i

NonManagableTerm := []; // these will be our 2^2^i terms squared

EndTerm := 1;

// as long as there is not a 1 in the same spot for both, we can add the values

for f in {1..h} do

if b[k,f] eq 1 and d[l,f] eq 1 then // now we have to do 3*2^(2^n -1)

ManagableTerm[f] := 0;

NonManagableTerm[f] := 1; // noting that this term is a square of 2^2^i

else; // we can just use the value we have

ManagableTerm[f] := b[k,f] + d[l,f];

NonManagableTerm[f] := 0;

end if;

end for;

// Now we can normally multiply the values in the managable term

for f in {1..h} do

if ManagableTerm[f] eq 1 then

EndTerm := EndTerm * 2^(2^(f-1));

elif NonManagableTerm[f] eq 1 then

EndTerm := $$(EndTerm,3*2^(2^(f-1) -1)); // The only...

end if; // ...recursive part of this algoritm, since we cannot compute this...

end for; // efficiently

Output := Add(Output, EndTerm);

end for; // the end of our multiplication and indents

end for;

return Output;

end function;

References

[1] J. H. Conway. “Integral lexicographic codes”. In: Discrete Math. 83.2-3 (1990), pp. 219–235.
issn: 0012-365X. doi: 10.1016/0012-365X(90)90008-6. url: https://doi.org/10.1016/
0012-365X(90)90008-6.

[2] J. H. Conway.On numbers and games. Second. A K Peters, Ltd., Natick, MA, 2001, pp. xii+242.
isbn: 9781568811277.

[3] J. H. Conway and R. K. Guy. The book of numbers. Copernicus, New York, 1996, pp. x+310.
isbn: 9780387979939. doi: 10.1007/978-1-4612-4072-3. url: https://doi.org/10.1007/
978-1-4612-4072-3.

[4] Thomas S Ferguson. “GAME THEORY”.

[5] M. Jeeninga. On a Tower of Fields related to Onp. 2015.

[6] A. H. Jorgensen. “Context and driving forces in the development of the early computer game
Nimbi”. In: IEEE Ann. Hist. Comput. 31.3 (2009), pp. 44–53. issn: 1058-6180. doi: 10.1109/
MAHC.2009.41. url: https://doi.org/10.1109/MAHC.2009.41.

[7] D. E. Knuth. Surreal numbers. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam,
1974, pp. iii+119. isbn: 9780201038125.

26

[8] H. W. Lenstra Jr. “Nim multiplication”. In: Séminaire de Théorie des Nombres 1977–1978.
CNRS, Talence, 1978, Exp. No. 11, 23.

[9] J. Top. Algebraic Structures. 2017.

27

