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Abstract
In this thesis, the Hasse-Minkowski theorem is proven for the rational numbers. We define
the p-adic numbers, and then explore properties of the p-adic numbers. The Hilbert symbol
is defined, and multiple properties of it are proven. Quadratic forms are introduced and we
develop theories on quadratic forms that are needed to prove the Hasse-Minkowski theorem.
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1 Introduction

The field of algebraic number theory is vast, and has many different topics that are researched
to some degree. One of the central topics in algebraic number theory is the p-adic numbers.
Most mathematicians are familiar with the relationship between the real numbers and the
rational numbers. The real numbers are the completion of the rational numbers with respect
to the Archimedean absolute value. This completion is done with the standard euclidean
absolute value. What would happen if we choose another absolute value? Do other absolute
values even exist? In this thesis we discuss the different absolute values that can be put on
the rational numbers and that they are dependent on the prime numbers. Completing the
rational numbers with these different absolute values yields the p-adic numbers.
Another topic that one encounters in different fields of mathematics are quadratic forms.
These are polynomials with only terms of degree 2. Quadratic forms have coefficients in
different fields, like the rational numbers or the p-adic numbers.
In this thesis we explore quadratic forms that have coefficients in the rational numbers and
how these forms behave in the completions of Q. In this thesis we first give some general
properties of the p-adic numbers. This first section defines the p-adic numbers and the p-adic
integers and then discusses the topology on the p-adic numbers, polynomials over the p-adic
numbers, the units of the p-adic integers and the squares of the p-adic numbers. In the next
section, the Hilbert symbol is defined and methods of computing the Hilbert symbol are
given. The fourth section covers all the necessary preliminaries on quadratic forms that are
needed to prove the Hasse-Minkowski theorem. Selmer’s counterexample is also discussed.
Students that are familiar with algebraic structures should be able to follow the arguments
given in this thesis.
The main theorem proven in this thesis is the Hasse-Minkowski theorem.

Theorem (Hasse-Minkowski). A quadratic form has a nontrivial solution in the rational
numbers if and only if it has a nontrivial solution in all completions of the rational numbers.

This theorem is a first introduction to the so called local-global principles. One calls the
solution in the rational numbers the global solution. With this global solution, we can find
a local solution in the p-adic numbers and the real numbers. However, the Hasse-Minkowski
theorem implies that if there is a solution in every completion, then we can glue these
solutions together to find a global solution. It is not obvious how one would translate this
notion of gluing together solutions to rigorous mathematics. It is also not always possible to
find a global solution, even though there are local solutions in every completion. A famous
counterexample to this is the cubic form 3x3+4y3+5z3, called Selmer’s equation. This cubic
form has a nontrivial solution in all of the p-adic integers, and in the real numbers, but there
is no solution in the rational numbers. In [3] other counterexamples are given of different
forms where we would like to apply the local-global principle, but where this is not possible.
One generalization that does work is the generalization of quadratic forms to number fields.
A number field is a finite extension of the rational numbers. Instead of prime numbers,
number fields contain prime ideals. These prime ideals are then used to create an analogue
of the p-adic valuation in number fields. Some arguments in this thesis can be generalized
to these number fields without much effort, but other proofs unfortunately fall apart when
generalizing to number fields. Local-global principles can also be applied on structures that
are not fields, like rings or algebraic groups, but these structures require different definitions
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and approaches to prove their respective local-global principles.
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2 The p-adic numbers

2.1 The sets Zp and Qp

This first section discusses the definition of the p-adic numbers. To first get some intuition,
we consider different ways to express the natural numbers. Every natural number can be
written as a sum of powers of a specific number. Take for example 33. On one hand this can
be written as 1∗20 + 1∗25, while on the other hand we could also write it as 2∗31 + 1∗33 and
most naturally as 3∗100 + 3∗101. For any positive integer, we can find a p-adic expansion by
using division with remainder, where we always want the coefficient of a specific power of p
to be less than p itself. Otherwise an expansion like 16 = 9∗70 + 1∗71 is possible, which is
undesired. Unfortunately, this means it is not possible to give such an expansion for negative
integers. To make representations for these numbers, we allow infinite series:

Definition 2.1. The p-adic integers can be defined as infinite series of the form:

∞∑
n=0

anp
n = a0 + a1p+ a2p

2 . . .

where, ai ∈ {0, 1, . . . , p− 1}. Here p is a prime number. The set of p-adic integers is denoted
by Zp.

Note that in this case we are not worried about convergence of these sums. Otherwise we
get that almost all of these sums would diverge1. We can also add negative powers of p in
the series to obtain a Laurent series.

Definition 2.2. The p-adic numbers can be seen as Laurent series of the form:

∞∑
n=−m

anp
n = a−mp

−m + · · ·+ a−1p
−1 + a0 + a1p+ a2p

2 . . .

where, ai ∈ {0, 1, . . . , p− 1}. The p-adic numbers are denoted by Qp.

This way we also get fractions. The p-adic numbers and p-adic integers are not always
intuitive to work with. Let’s think for example about −1 ∈ Zp.

Example 2.3. Since all of the ai have positive value, what is a representation of −1? It
turns out that:

−1 = (p− 1) + p(p− 1)p2(p− 1) + . . .

How would this ever make sense? We can get an intuition from the harmonic series. If we
would not worry about convergence, we could say that:

1

1− p
= 1 + p+ p2 + p3 + . . .

By then multiplying both sides by −(1− p) we get our representation for −1 in Zp.

1For convergence we would need that the series contains only finitely many nonzero terms.
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How do we define addition and multiplication? Addition works by adding every term in
the sum per power of p, but how would we define multiplication when there are an infinite
amount of terms? We therefore want to reinterpret these series as a sequences. Every
individual entry in a sequence is a partial sum. A sequence (sn) would consist of the entries:

sn =
n−1∑
n=0

anp
n = a0 + a1p+ a2p

2 + · · ·+ an−1p
n−1

Note that an entry in a sequence can be any value between 0 and pn [5, Prop 2.1.2], so each
entry can be thought of as a residue class of Z/pnZ. With this we have a sequence of partial
sums in

∏∞
n=1 Z/pnZ. In our case we also have that by applying the canonical projection

P : Z/pnZ → Z/pn−1Z, then P (sn) = sn−1 for all n ∈ N. Consider the subset of
∏∞

n=1 Z/pnZ
that have the property of P (an) = an−1 for all n ∈ N. This subset is called the projective
limit. There is a bijection between this set and Zp. By associating to the infinite series of
an element in Zp a sequence of partial sums (sn) as defined above. Then every element can
be identically sent to an element in the projective limit. There is a big advantage to using
this projective limit. The product

∏∞
n=1 Z/pnZ is a ring. Therefore we inherit a form of

addition and multiplication from this ring, and give this to our infinite series. Addition and
multiplication are defined componentwise in the sequence. This is easier to define than the
multiplication of two infinite series. Since Q is the field of fractions of Z, it would be nice
if Qp is the field of fractions of Zp. This is true and can be seen from the fact that every
element in b ∈ Qp can be rewritten as p−ma, where a ∈ Zp, by shifting all of the terms by m
spaces.

2.2 The p-adic absolute value

With the definition of the p-adic integers and the p-adic numbers in mind, we explore some
properties of these sets. The first thing we do is give them a topology. To do this, we define
the p-adic absolute value. Afterwards we can use our knowledge on metric spaces to define
an induced topology.

Definition 2.4. Let a ∈ Z and p be a prime number. Factor out p out of a as many times
as possible such that a = pmb, with gcd(b, p) = 1. Then we define |a|p = p−m. If a = 0, we
say that |a|p = 0.

As one can see, the map |.| is now a map from Z to R≥0.

Theorem 2.5. The map |.| defined in definition 2.4 is a norm.

Proof. By definition a = 0 ⇒ |a|p = 0. If we have |a|p = 0, then we can not have a ̸= 0,
since then p−m = 0, which would give a contradiction. Note that if a, b ∈ Z, we have
|ab|p = p−(n+m), where n and m are the numbers such that a = pnc and b = pmd, with
gcd(c, p) = 1 = gcd(d, p). We compute that p−(n+m) = p−np−m = |a|p|b|p. Finally, observe
that |a + b|p ≤ max{|a|p, |b|p} since we factor p out as many times as p appears in the
factorization of a or b. Clearly, max{|a|p, |b|p} ≤ |a|p + |b|p. This shows that the map
|.|p : Z → R≥0 is a norm.
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From this norm we obtain a metric, by setting d(a, b) = |a− b|p. It can be checked that
this choice satisfies all of the axioms of a metric. There are other metrics on Q. We could
for example take the ‘standard’ Archimedean metric. In the literature, this is denoted by
|.|∞. There are valid reasons as to why we use the symbol ∞ for this absolute value. There
is also the trivial norm defined from the map |.|0 : Q → R≥0 defined as sending 0 ∈ Zp to
|0| = 0 ∈ R≥0 and any other x ∈ Q to |x| = 1. Besides positive powers of the aforementioned
norms, it can be proven that these are all the norms one can place on Q. This is Ostrowski’s
theorem. The positive powers are clearly equivalent to their respective norms when raised to
the power of 1. The fact that these are the only norms is not immediately obvious. A proof
can be found in [5, Ch.2 Prop 3.7].
With this metric, we can finally create the topology using our metric. It turns out that Qp

is the completion of Q with respect to these metrics. This gives us another way of defining
the p-adic integers. If we were to look at the unit disc around 0 ∈ Qp, we would find that
these are all the Laurent series where all the negative terms are zero. These are precisely the
p-adic integers. Zp is also the closure of Z in Qp.

Figure 1: [4]

Figure 1 gives a visual interpretation of the 3-adic numbers. The number 0 is far away
from 1, because their difference is 1, and we can not factor out 3 out of 1. On the other hand
28 is very close to 1. Their difference is 27 and we can factor out 3 three times. This gives a
small distance between 28 and 1. By adding an infinite amount of layers to this picture, we
obtain the p-adic numbers. The 3-adic numbers fill up the space around the circles, similarly
to how the real numbers fill up the space between the rational numbers on the real line.

To get a further feel on the topology of the p-adic numbers, we can look at the Ap-
proximation Theorem. Let us return to the definition of |.|p. It is useful to define a second
function.
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Definition 2.6. For an integer a ∈ Z, the p-adic valuation of a is the integer m such that
a = bpm with gcd(b, p) = 1. The p-adic valuation of a is denoted by vp(a).

This function is often more useful than the absolute value itself, since we get the same
information as we get from the norm, except the p-adic valuation gives an integer instead of
a power of p, which can be more convenient to work with. The p-adic valuation directly tells
us how many times a prime p appears in the prime factorization of a number.

Theorem 2.7 (Approximation theorem). Take a finite subset V ′ of V = {∞, 2, 3, 5, . . . }.
The image of Q in

∏
v∈V ′ Qv is dense in this product.

Proof. By the properties of the product topology, we can freely add elements of V as we
like. So suppose that V ′ = {∞, p1, p2, . . . , pn}. Take a point in the product

∏
v∈V ′ Qv. We

need to show that for all points of the form (x∞, x1, x2, . . . , xn), there is a point arbitrarily
close to this point that is of the from (q, q, q, . . . , q), where there are n + 1 entries of q ∈ Q.
We multiply by some integer, so that all of the xi are in their respective p-adic integers.
We need a specific q such that |q − x∞|∞ < ε and for all other entries vpi(q − xpi) ≥ N for
all N ∈ N. This last condition is equivalent to |q − xp|p < ε. There is an integer z such
that vpi(q − xpi) ≥ N , obtained by multiplying enough powers of the pi. Call this number
w. Choose another integer q that is coprime to all the pi. From our knowledge of topology,
we know that the numbers of the form y/qm with y and m integers are dense in R. Take a
number u = y/qm such that |w − x∞ + upN1 . . . pNn | ≤ ε. Then the number w + upN1 . . . pNn is
the number in Q that has the desired property.

Another concept we define is the notion of primitiveness.

Definition 2.8. A point (x1, x2, . . . , xn) ∈ Zm
p is primitive if there is at least one xi that is

invertible, or equivalently that there is an element with vp(xi) = 0.

This definition is used for one theorem that is used in the proof of the Hasse-Minkowski
theorem.

Theorem 2.9. Let fi be homogeneous polynomials of degree 2 in m variables with p-adic
integers coefficients. Then the fi have a nontrivial common zero in Qm

p if and only if the fi
have a common primitive zero in Zm

p .

Proof. A common primitive zero in Zm
p is also a nontrivial zero in Qm

p . Conversely, assume
that there is a nontrivial common zero in Qm

p . This zero is a vector x = (x1, . . . , xn). We
construct a common primitive zero by setting h = mini∈{1,2,...,m}{vp(xi)}. The p-adic integer
p−hx has the desired properties.

Theorem 2.9 works in general for all homogeneous polynomials, but this is not necessary
for this thesis.
Another essential tool for studying polynomials over Zp is Hensel’s lemma.

Theorem 2.10 (Hensel’s Lemma). Let f(X) be a polynomial with p-adic integer coefficients.
If there is an a ∈ Zp such that f(a) ≡ 0 mod p and f ′(a) ̸≡ 0 mod p, then we can lift this
to a solution in Zp.
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Proof. We first prove that for all N ≥ 1, there is an an ∈ Zp such that f(an) ≡ 0 mod pn

and an ≡ a mod p with induction. The base case follows from the assumptions of Hensel’s
lemma. We want to construct an+1 from an. By assumption an has f(an) ≡ 0 mod pn. Take
an+1 = an + pntn for some tn ∈ Zp that we will have to find. It can be checked with the
binomial formula that the following polynomial equation is true: f(x+ y) = f(x) + f ′(x)y+
g(x, y)y2 for some g(x, y). Apply this on x = an and y = pntn. This gives f(an + pntn) =
f(an) + f ′(an)p

ntn + zp2nt2n for some z ∈ Zp. The last term vanishes when looking at this
equation mod pn+1. The second term is already multiplied by pn, so both f ′(an) and tn
are only relevant mod p. With this we reduce this to f ′(a)pntn mod pn+1. From this we
obtain the relation f(an + pntn) ≡ 0 mod p if and only if f ′(an)tn ≡ −f(an)/p

n mod p. By
the inductive assumption, the last ratio is in Zp. Because f ′(an) ̸= 0 there is always a tn
that satisfies this equation. Pick this tn. This tn gives the desired result. We now have a
sequence of an all satisfying the conditions f(an) ≡ 0 mod pn and an ≡ a mod p. It can
also be shown that these an satisfy an+1 ≡ an mod pn. This shows that the an are a cauchy
sequence. The limits of these sequences are also in Zp. Call this limit α. The p-adic integer
α has α ≡ an mod pn. For n = 1, this gives α ≡ a mod p. Then

α ≡ an mod pn =⇒ f(α) ≡ f(an) mod pn

This condition implies that |f(α)|p ≤ 1
pn
. This holds for all n, so f(α) = 0. This proves the

theorem.

There are many different formulations and generalizations of Hensel’s lemma. The strongest
version of Hensel’s lemma states that factozisations of a polynomial f ≡ ḡh̄ in Fp can be
lifted to a factorization f = gh in Zp. Neukirch gives a full statement [5, p. 129].

2.3 Units

This section discusses the units of Zp. Since Qp is a field, all of its elements, with the
exception of 0, are units. The group of units of Zp is more interesting. The units of Zp

necessarily need that they have norm 1. This follows from the fact that |ab|p = |a|p|b|p and
the fact that for all a ∈ Zp we always have that |a|p ≤ 1. Therefore we need that |a−1|p = 1.
This is equivalent to saying that the first term of a as a formal series is nonzero. If this term
is nonzero, we can not factor p out of the series, which implies that the norm is 1. Remember
that the first term of our p-adic integer a =

∑∞
i=0 aip

i can be represented by elements of
Fp. If a0 is nonzero, there exists an inverse of a0 in Fp. With this knowledge, we find an
inverse of a p-adic integer. The inverse a−1 of a must have the property that a−1a = 1.
Consider the product ab = (

∑∞
i=0 aip

i) (
∑∞

i=0 bip
i). If we expand this, we find that it is equal

to a0b0p
0 + (a1b0 + a0b1)p

1 + (a2b0 + a1b1 + a0b2)p
2 + . . . . Since we know all of the ai, we

first find b0. We want the product to equal 1, so set b0 equal to a−1
0 . The rest of the terms

have to be zero. This gives an infinite system of equations where we have the equations
0 =

∑n
i=0(aibn−i). We recursively find bk using the previous bi we computed. This gives

equations bi = a−1
0 (

∑n
i=1(aibn−i) that can be solved. By representing the p-adic integers

as sequences, we find the inverses componentwise. We still need that a0 ̸= 0, otherwise the
inverse would not exist. Besides the group of units, there are some more interesting subgroups
of Zp. These are Un, with n ∈ N. The Un are defined as the sets 1+pnZp. We are particularly
interested in the group U1. This group is the largest of all the Un, and contains elements
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of the form 1 +
∑∞

i=1 aip
i, which are essentially p-adic integers where the first term is equal

to 1. It is clear that U/U1 is isomorphic to F∗
p, which in turn is isomorphic to Z/(p − 1)Z.

Furthermore, we observe that Un/Un+1 is isomorphic to Z/(p)Z. Take the map

(1 + pnx) 7→ (x mod p).

This map is a homomorphism, since (1+ pnx)(1 + pny) = 1+ pnx+ pny+ p2nxy. The higher
order term then disappears because of the quotient with Un+1. Then we combine the two
middle terms, and we see that the map is a homomorphism. This can also be used to prove
that U1/Un−1 is of order p

n−1. Let us return to U1. In general this group also has a convenient
structure on its own.

Theorem 2.11. If p ̸= 2, U1 is as a group isomorphic to Zp.

This theorem requires the following lemma.

Lemma 2.12. If p ̸= 2, then x ∈ Un − Un+1 implies that xp ∈ Un+1 − Un+2

Proof. Take x ∈ Un − Un+1, so x = 1 + mpn, with m ∈ {1, 2, . . . , p − 1}. Then, expand
the product (1 +mpn)p to 1 +mpn+1 + · · · +mppnp. The extra power of p comes from the
binomial theorem. All of the exponents are larger than n + 2, except for the first two, so
xp ≡ 1 +mpn+1 mod pn+2. This is not in Un+2 because there is a lower power term, but in
Un+1.

With this lemma we can prove Theorem 2.11.

Proof. Take an element a ∈ U1−U2. Lemma 2.12 shows that, ap ∈ U2−U3. Repeatedly apply
Lemma 2.12 to elements of the form ap

i
to conclude that they are in Ui+1−Ui+2. We project

these elements back to U1/Un, and call them an. A computation shows that (an)
pn−2 ̸= 1, but

(an)
pn−1

= 1. Remember that U1/Un has order pn−1, which means it is a cyclic group. From
the computation, we see that an is a generator of this group. We set up an isomorphism from
Z/pn−1Z to U1/Un defined as b 7→ (an)

b. This gives the following commutative diagram:

Z/pnZ U1/Un+1

Z/pn−1Z U1/Un

By applying the same logic to other Ui we get a tower of maps. Take the projective limit of
both sides. On the left hand side we get a projective limit of Z/pn−1Z, which is a represen-
tation of Zp. On the right hand side we get the projective limit of U1/Un. The groups Un get
smaller as n goes to ∞, so this limit is equal to U1. Therefore, Zp is isomorphic to U1.

In the case where p = 2, the result is slightly different.

Theorem 2.13. If p = 2, then U2 is isomorphic to Z2, and U1 is isomorphic to (Z/2Z)×U2.

Proof. The proof that U2 is isomorphic to Z2 is similar to the previous proof. Then use the
fact that U1/U2 = Z/2Z.
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With this knowledge, we have a representation of Q∗
p.

Theorem 2.14. If p ̸= 2, then Q∗
p and Z× U .

Proof. Take an element a ∈ Q∗
p. Write a as pnu for some n ∈ Z and u ∈ U , which implies

that Q∗
p is isomorphic to Z×U . The part containing n gives the Z part, and the u gives the

second part of the product.

If we had a more specific structure of U , this would give us an even more detailed repre-
sentation of Q∗

p.

Theorem 2.15. The group U is isomorphic to F∗
p × U1.

To prove this theorem we need the next lemma involving exact sequences.

Lemma 2.16. Consider the exact sequence of commutative groups

0 → A → B → C → 0,

where the cardinality of A and C are finite and gcd(#A,#C) = 1. Consider the set B′ =
{b ∈ B|(#C)b = 0}. The group B is isomorphic to the direct sum of A and B′. The group
B′ is also isomorphic to C.

Proof. Let #A = a and #C = c. Because gcd(a, c) = 1, by Bézout’s identity, there are
integers r, s such that ar + bs = 1. If x ∈ A ∩ B′, then ax = 0 because the order of A is a,
and bx = 0 by the definition of B′. So, on one hand (ar + bs)x = 0. But on the other hand
(ar + bs)x = x. This must mean A ∩ B′ = 0. All elements in B can be seen as arx + bsx.
By definition, bB′ = 0, which implies that bE ⊂ A by exactness so, bsx ∈ A. From abE = 0,
we conclude that arx ∈ B′. This means A⊕ B′ = B, and the projection from B to C takes
the subgroup B′ to C isomorphically.

This lemma mostly proves Theorem 2.15. Apply the lemma on the sequence

1 → U1/Un → U/Un → F∗
p → 1.

We know that the order of U1/Un is pn−1, and the order of F∗
p is p − 1. These orders

have greatest common divisor 1. The group U/Un contains a subgroup isomorphic to F∗
p.

The projection U/Un to U/Un−1 takes this subgroup to the subgroup of U/Un−1 that is also
isomorphic to F∗

p. Taking a projective limit, there is also a subgroup of U that is isomorphic to
F∗
p. We already know that U/U1 is isomorphic to F∗

p. From this, we conclude that U ∼= U1×F∗
p.

With this new representation of U , we find that Q∗
p
∼= Z× U1 × F∗

p.

2.4 Squares of Qp

This section discusses the group Q∗
p/Q∗2

p . In Chapter 4 the group Q∗
p/Q∗2

p will appear multiple
times throughout this thesis. We want to know what these groups look like for different primes
p. To do this, we prove the next theorem.

Theorem 2.17. Assume that p ̸= 2. Take an element x ∈ Q∗
p written as x = pnu, where

u ∈ U . The element x is a square if and only if n is even and the image of u into U/U1
∼= F∗

p

is a square. This would mean the image of u has Legendre symbol 1.
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Proof. We know that U is isomorphic to F∗
p×U1. Therefore, write u as (a, u1). By Theorem

2.14 and Theorem 2.15, Q∗
p
∼= Z× U1 × F∗

p we need that both a and u1 are squares, and n
must be even. The group U1 under multiplications is isomorphic to Zp under addition p ̸= 2.
Because 2 is invertible, all of the elements there are squares. This leaves the requirement
that n is even, and that the element a is a square. This proves the theorem.

Theorem 2.18. If p ̸= 2, the group Q∗
p/Q∗2

p is isomorphic to (Z/2Z)× (Z/2Z).

Proof. This follows from Theorem 2.17. The group Q∗
2
∼= 2Z× F∗2

P × U1. Dividing this out
gives the desired result.

A similar result can be given for the case where p = 2. Proves of these statements are
found in chapter 2 of [7]. For this thesis, the following theorems are relevant.

Theorem 2.19. An element pnu ∈ Q∗
2 is a square if and only if n is even and u ≡ 1 mod 8.

Theorem 2.20. If p = 2, the group Q∗
2/Q∗2

2 is isomorphic to (Z/2Z)× (Z/2Z)× (Z/2Z).

12



3 The Hilbert symbol

In this section, we discuss a useful tool that we use to define the invariant ε on quadratic
forms. The next section discusses this in more detail.

3.1 Definition of the Hilbert symbol

Let us give the definition of the Hilbert symbol.

Definition 3.1. For two nonzero p-adic numbers a and b, we let:

(a, b) = 1 if z2 − ax2 − by2 = 0 has a nontrivial solution with (x, y, z) ∈ Qp (or R)
(a, b) = −1 else

This number (a, b) is called the Hilbert symbol of a and b.

The Hilbert symbol does not change when we multiply a or b with squares. Suppose that
we would multiply a with a square c2 and b with another square d2. Then we take these
squares into x2 and y2 respectively, and relabel (cx)2 to v2 and (dy)2 to w2 to find the same
Hilbert symbol of a and b. We first proof the following theorem about the Hilbert symbol:

Theorem 3.2. Assume that a, b ∈ Q∗
p. Then (a, b) = 1 if and only if a belongs to the group

of the norms of elements of Qp(
√
b)∗.

Proof. Now assume that a belongs to the group of the norms of elements in Qp(
√
b)∗. We

can assume that b is not a square. Otherwise, the field extension would be trivial. We denote
by β a square root of b. Every element in our field can be written as c+ βd. Here the norm
is defined by c2 − bd2. We can use our assumption that a can be written as the norm of
an element in our extension. So a = c2 − bd2 for some c and d in Qp. Now we see that
c2 − a − bd2 = 0, so the triple (c, 1, d) is a nontrivial solution. Now assume that (a, b) = 1.
So there is a nontrivial triple (z, x, y) such that z2 − ax2 − by2 = 0. Observe that x ̸= 0
since otherwise b would be a square, and the statement is true since then Qp(

√
b) = Qp. This

means we can divide by x. We see that a must be equal to
(
z
x

)2 − (
βy
x

)2
, where β is a square

root of b. This is the norm of the element
(
z
x

)
+
(
βy
x

)
.

The Hilbert symbol satisfies the following properties.

Theorem 3.3. Let a, b, c, d ∈ Q∗
p. We have that:

i) (a, b) = (b, a)

ii) (a, c2) = 1

iii) (a,−a) = 1 and if a ̸= 1 then (a, 1− a) = 1

iv) (a, b) = 1 =⇒ (ad, b) = (d, b)

v) (a, b) = (a,−ab) and if a ̸= 1 then (a, b) = (a, (1− a)b)

The condition that a ̸= 1 when 1− a appears is necessary because the Hilbert symbol is
undefined when either a or b is zero.

13



Proof. (a, b) = (b, a) follows directly from the definition of the Hilbert symbol. Next (a, c2) =
1, since we could then choose the triple (c, 0, 1) to get a nontrivial zero. For the symbol
(a,−a) the triple (0, 1, 1) is a nontrivial solution and for (a, 1 − a) the triple (1, 1, 1) is a
nontrivial solution. To prove the implication we can use Theorem 3.2. Since (a, b) = 1, the
element a can be written as the norm of an element in Qp(

√
b)∗. Note that the norm has

the property that N(xy) = N(x)N(y). This must mean that d can be written as a norm
if and only if ad can be written as a norm. This proves the implication. The last equality
combines i), iii) and iv), with d = b applied on the symbol (a,−a). By the previous parts
(a,−a) = (−a, a) = 1, so by part iv), we have that (b, a) = (−ab, a). The same can be done
on the symbol (a, 1− a).

It turns out that the Hilbert symbol is bilinear in the sense that (ab, c) = (a, c)(b, c),
which we prove in the next section.

3.2 Computing the Hilbert symbol

In this section we give explicit formulas for the computation of the Hilbert symbol in different
fields. We first look at Q∞ = R.

Theorem 3.4. In R, the Hilbert symbol (a, b) = −1 if and only if both a < 0 and b < 0.

Proof. If (a, b) = −1, then there is no solution to z2 − ax2 − by2 = 0. This only happens if
both a and b are less than 0. Conversely, first assume that a < 0 and b < 0. The equation
does not have a nontrivial zero because we are adding nonnegative terms. Without loss of

generality, assume a > 0 and b < 0. Set x =

√
z2−by2

a
to get a nontrivial solution, and since

b < 0, the square root is always real. Finally, if both a > 0 and b > 0, there is also a
nontrivial solution.

We can move on to the remaining cases of the p-adic numbers. Consider the fields Qp,
where p ̸= 2. For this, we define the map ε:

ε(z) =
z − 1

2
mod 2 =

{
0, if z ≡ 1 mod 4

1, if z ≡ −1 mod 4

We can use this map to find an expression for (a, b) when a and b are in Qp and p ̸= 2.

Theorem 3.5. For any a, b ∈ Qp with p ̸= 2, first write a as pcu and b as pdv, with u, v ∈ U .
Then we have:

(a, b) = (−1)cdε(p)
(
u

p

)d(
v

p

)c

where (a
b
) denotes the Legendre symbol.

To prove that this is the case, we need the following lemma.

Lemma 3.6. Let v ∈ U . If the equation z2 − px2 − vy2 = 0 has a nontrivial solution in Qp,
then there is a solution with z, y ∈ U and x ∈ Zp.

14



Proof. From Theorem 2.9 we obtain a primitive solution. This solution has the properties
that we want. Assume that the obtained solution does not have the desired properties. Then,
either y ≡ 0 mod p or z ≡ 0 mod p. Because z2 − vy2 ≡ 0 mod p, and because v ∈ U , we
would actually need that both z and y are not congruent to 0 mod p. But this would imply
that px2 ≡ 0 mod p2. This then implies that x ≡ 0 mod p. This means that this is not a
primitive point, since x, y and z are all divisible by p.

We start proving Theorem 3.5.

Proof. We first notice that we have 4 cases. We can take both c and dmod 2, since multiplying
by −1 two times does not change the outcome. We can also make use of the symmetry of the
Hilbert symbol to skip the case where c = 0 and d = 1. This is the same as the case where
c = 1 and d = 0. So let us first consider the case where c = d = 0. In this case we need
to look at the symbol (u, v). This would have to be equal to 1. If we look at the equation
z2 − ux2 − vy2 mod p, we know that this has a nontrivial solution by Corollary 2 on page 6
in [7]. By a stronger version of Hensel’s lemma in [7] we get a nontrivial solution in our field,
hence (u, v) = 1 as desired.

We can go to the case where c = 1, and d = 0. We need to show that (pu, v) =
(

v
p

)
. Observe

that (pu, v) = (p, v) by applying part iv) of Theorem 3.3 to the symbol (u, v). This can be

done since (u, v) = 1 as seen in the previous case. So we need to prove that (p, v) =
(

v
p

)
. If

v is a square, by the definitions of both symbols, both are equal to 1. If v is not a square,

we have that
(

v
p

)
= −1. By Lemma 3.6, if a nontrivial solution exists, there would also be

a solution with z, y ∈ U and x ∈ Zp, which can not be the case, since this contradicts the

fact that
(

v
p

)
= −1. Finally, we assume that both c = d = 1. The symbol (pu, pv) can

be rewritten using part v) of Theorem 3.3 to (pu, pv) = (pu,−p2uv) = (pu,−uv). The last
equality follows from the fact that we can take squares out of the symbol. We use the previous

case to find that this is equal to
(

−uv
p

)
. Using our knowledge of the Legendre symbol, this is

equal to
(

−1
p

)(
u
p

)(
v
p

)
. We know that

(
−1
p

)
= (−1)

p−1
2 . Substituting this in our equation,

we see that this is precisely the desired result.

With the explicit formula we prove the following theorem.

Theorem 3.7. The Hilbert symbol is bilinear in the sense that (ac, b) = (a, b)(c, b).

Proof. This is a direct computation. Let a = pdu and b = pev and c = pfw. Then:

(ac, b) = (−1)(d+f)eε(p)

(
uw

p

)e(
v

p

)(d+f)

= (−1)deε(p)(−1)feε(p)
(
uw

p

)e(
v

p

)(d+f)

and:

(a, b)(c, b) = (−1)deε(p)
(
u

p

)e(
v

p

)d

(−1)feε(p)
(
w

p

)e(
v

p

)f
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Unfortunately, the formula given in Theorem 3.5 does not work for the specific field Q2.
To obtain an explicit formula for this field, we introduce the map ω:

ω(z) =
z2 − 1

8
mod 2 =

{
0, if z ≡ ±1 mod 8

1, if z ≡ ±5 mod 8

Using this map, we define an explicit formula in that case that p = 2.

Theorem 3.8. For any a, b ∈ Q2 first write them as 2cu and 2dv respectively, with u, v ∈ U .
Then we have:

(a, b) = (−1)ε(u)+ε(v)+cω(v)+dω(u)

Proof. By the same reasoning as in the proof of Theorem 3.5 we consider c and d as either
0 or 1. Assume that c = d = 0. In this case, the formula tells us that (u, v) = 1 if either
u ≡ 1 mod 4 or v ≡ 1 mod 4. Otherwise it is −1. Assume that u ≡ 1 mod 4. This implies
that u ≡ 1 mod 8 or u ≡ 5 mod 8. If u ≡ 1 mod 8, it is a square by Theorem 2.19, so
the Hilbert symbol is equal to 1. In the other case, we take another element u + 4v ≡ 1
mod 8. There is an element w such that w2 = u+ 4v. Then (w, 1, 2) is a nontrivial solution
to z2 − ux2 − vy2. Hence the symbol is equal to 1.
Assume that both u and v are −1 mod 4. If there is a primitive solution to z2 − ux2 − vy2,
then z2 + x2 + y2 ≡ 0 mod 4. However only 0 and 1 are squares in Z/4Z. Therefore x
and y and z are all 0 mod 4. If they are 0 mod 4, they are 0 mod 2. This contradicts the
primitiveness of the solution, hence we must have that (u, v) = −1.
In the second case assume that c = 1 and d = 0. We need to show that (2u, v) =
(−1)ε(u)ε(v)+ω(v). Note that (2, v) = 1 if and only if v ≡ ±1 mod 8. If we have that (2, v) = 1,
then by Lemma 3.6 there is a solution in Z2 to z2 − 2x2 − vy2 that is primitive. This would
mean that y ̸≡ 0 mod 2 and z ̸≡ 0 mod 2. By the structure of Z/8Z we can conclude
that y2 ≡ z2 ≡ 1 mod 8 and reducing the polynomial mod 8 we find that 1− 2x2 − v ≡ 0
mod 8. The squares of Z/8Z are 0, 1 and 4. We can conclude that v ≡ ±1 mod 8. Either
v is a square or (1, 1, 1) is a solution which we lift to Zp using Hensel’s lemma to a full
solution. In either case we can conclude that (2, v) = 1. Our next objective is showing that
(2u, v) = (u, v)(2, v). By part iv) of Theorem 3.3, this is true if at least one of the symbols
is equal to 1. If both are −1, then this is equivalent to v ≡ 3 mod 8 and u ≡ 3 mod 8 or
u ≡ 7 mod 8. By multiplying with squares we can reduce this to u = −1 and v = 3 or u = 3
and v = −5. Then the equations z2+2x2−3y2 = 0 and z2−6x2+5y2 = 0 both have (1, 1, 1)
as a solution, hence the symbol (2u, v) = 1 = (2, v)(u, v). This proves this case.
In the last case, assume that c = d = 1, where we want to check that

(2u, 2v) = (−1)ε(u)+ε(v)+ω(v)+ω(u).

By part v) of Theorem 3.3 the symbol is equal to (2u,−4uv) = (2u,−uv). The equality
follows because 4 is a square. The second part is now a unit, so by the previous case, we
have (2u, 2v) = (−1)ε(u)ε(−uv)+ω(−uv). Both ε and ω are homomorphisms. We can split the
exponent into ε(u)(ε(−1) + ε(u) + ε(v) + ω(−1) + ω(u) + ω(v). A computation shows that
ε(−1) = 1 and ω(−1) = 0. Furthermore, ε(u)(1 + ε(u)) = 0, hence the exponent is equal to
ε(u)ε(v) + ω(u) + ω(v), which is the desired result.
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3.3 Properties of the Hilbert symbol

With the current results we prove some more advanced properties of the Hilbert symbol.
These results often involve all of the different Hilbert symbols in different fields of a pair of
numbers.

Definition 3.9. Let V be the set of prime numbers, alongside ∞. For some a, b ∈ Q∗, denote
(a, b)v the Hilbert symbol of the image of a and b in Qv.

The set V is often called the set of places. In this thesis, we are only interested in the
fields Qp where p is a prime number, but this notion can be generalised to all number fields,
which are finite extensions K of the field Q. We first prove Hilbert’s Reciprocity Law.

Theorem 3.10 (Hilbert’s Reciprocity Law). For two a, b ∈ Q∗, we have that (a, b)v = 1 for
almost all v ∈ V and: ∏

v∈V

(a, b)v = 1

The proof of this theorem makes heavy use of the formulas given in Theorems 3.5 and
3.8.

Proof. First notice that we can use the bilinearity proven in Theorem 3.7 to split the symbol
at a specific place into products of symbols of the prime factors of the numbers a and b
and possibly −1. Therefore, we only need to prove the theorem for the case where a and b
are prime numbers or −1. Assume that a = b = −1. From the explicit formulas given in
Section 3.2 it can be seen that (−1,−1)2 = (−1,−1)∞ = −1 and (−1,−1) = 1 for all other
cases. This means that for almost all the places the symbol is 1, and the product is also
equal to 1, since there are exactly two factors equal to −1. By symmetry, we can handle
the cases where a = −1 and b = p, and a = p and b = −1 at the same time. We further
subdivide the problem in the case where p = 2 and p ̸= 2. If p = 2, then by our formulas,
(−1, 2)v = 1 for all v ∈ V , and the product is also equal 1. If p ̸= 2, then we see that
(−1, p)v = 1 if v ̸= p and v ̸= 2, proving that for almost all v, (−1, p)v = 1. Furthermore,
(−1, p)2 = (−1, p)p = (−1)ε(p). Once again, we have exactly two factors of −1, so the product
must equal 1. Assume that both a and b are prime numbers. If they are the same, then
we use part v) of Theorem 3.3 to see that (p, p)v = (p,−p∗(−1))v = (p,−1)v. We have
reduced this to the previous case. This means we are left with a and b being two distinct
primes. Once again, we consider the case where either a or b is equal to 2 separately. By
Theorem 3.5, we have that (2, p)v = 1 for v ̸= 2 and v ̸= p, which proves that for almost

all v, (2, p)v = 1. Then (2, p)2 = (−1)ω(p) and (2, p)p =
(

2
p

)
= (−1)ω(p) by our knowledge

on the Legendre symbol. Finally, we consider the case where both primes are not equal to
2. Then, (a, b)2 = (−1)ε(a)ε(b) and (a, b)a =

(
b
a

)
and (a, b)b =

(
a
b

)
. We use our knowledge of

the Legendre symbol to see that
(
a
b

) (
b
a

)
= (−1)ε(a)ε(b). This cancels with the expression of

(a, b)2, so we once again conclude that the product of these three factors is equal to 1. For
the other symbols (a, b)v where v is not 2, a or b, we have that (a, b)v = 1 by Theorem 3.5,
so we conclude that almost all symbols are equal to 1.

Hilbert’s product formula is equivalent to the quadratic reciprocity law in Q. In the proof
we used the fact that

(
a
b

) (
b
a

)
= (−1)ε(a)ε(b), which is the quadratic reciprocity law we are
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familiar with [8, p. 23]. It can be proven that Hilbert’s Reciprocity law also implies the
quadratic reciprocity. A proof is given in [2]. The proof uses the explicit formula’s for the
Hilbert symbol and shows that they give equivalent conditions for the quadratic reciprocity
law. The main reason that Hilbert’s reciprocity law is interesting is that it generalises to
more than Q, while the quadratic reciprocity might not.
There are more properties of the Hilbert symbol that need to be discussed. The next theorem
tells us when there are rational numbers that have a certain Hilbert symbol.

Theorem 3.11. let A = (ai)i∈I be a finite subset of Q∗. Let (εi,v) be a set of numbers equal
to 1 or −1. There is an x ∈ Q∗ such that (ai, x)v = εi,v for all i and v if and only if we have
that

almost all εi,v = 1,

for all i ∈ I we have
∏
v∈V

εi,v = 1,

for all v there is a xv ∈ Q∗
v such that (ai, xv)v = εi,v for all i.

Proof. If there is such an x, then from Theorem 3.10 the first two conditions are met, and the
third condition is met by taking xv = x for all v ∈ V . For the other direction, first multiply
the ai with a square to make them integers. let S be a finite subset of V containing 2,∞ and
the prime factors of the ai. Let T be the set of all places where there is an i with εi,v = −1.
The set T is finite by Theorem 3.10. Assume that S ∩ T = ∅. Then take a =

∏
i∈T |i ̸=∞ i and

m = 8
∏

j∈S|j ̸=2,∞ j. These two are coprime, because the intersection of S and T is empty.
By Dirichlet’s theorem on arithmetic progressions, there is a prime number such that p ≡ a
mod m that also is not in both S and T . Set x = ap. For all v ∈ S the symbol εi,v = 1
because the intersection of S and T is empty. The symbol (ai, x)v is equal to 1 if v = ∞,
because x > 0. In the other case, v is a prime number q. Then x ≡ a2 mod m, which means
x ≡ a2 mod 8 if q = 2 and x ≡ a2 mod q otherwise. Both x and a are q-adic units, so x is
a square, so (ai, x)v = 1. Now v = q ̸∈ S, the ai are q-adic units. Because 2 ∈ S we can also
assume that q ̸= 2, so by Theorem 3.5, the following equation is true for all v ∈ Q∗

q:

(ai, b)q =

(
ai
q

)vq(b)

.

If then q ̸∈ T ∪ {p}, the x is a q-adic unit, so vq(x) = 0. By the equation, we find that
(ai, x)q = 1. Because q ̸∈ T , it is clear that εi,q = 1. If q ∈ T , then vq(x) = 1. With the third
condition we can find xq ∈ Q∗

q such that (ai, xq) = εi,q for all i. One of these is equal to −1,

so vq(xq) ≡ 1 mod 2. By the explicit formulas (ai, x)q =
(

ai
q

)
= (ai, xq)q = εi,q. In the final

case the prime q is equal to p. We already know all the other symbols, so we can use them
to find this symbol.

(ai, x)p =
∏
v ̸=p

(ai, x)v =
∏
v ̸=p

εi,v = εi,p

which is the desired result. To prove the general case where S ∩ T ̸= ∅, the Approximation
Theorem (Theorem 2.7) is used. By Theorem 2.7, there is a x′ ∈ Q∗ such that x′/xv are
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squares in Q∗
v. This follows from the openness of the squares [7]. Then (ai, x

′)v = (ai, xv)v =
εi,v. Take bi,v = εi,v(ai, x

′)v. It can be verified that these bi,v satisfy the conditions, and that
bi,v = 1 if v ∈ S. Then we can use the proven version where S ∩ T = ∅ to show that there is
a v ∈ Q∗ with (ai, y)v = bi,v for all i and v. Set x = yx′, and we can verify that this x gives
the desired result. This proves the theorem.

Finally, we prove this theorem related to p-adic units.

Theorem 3.12. Let a, b ∈ Z∗
p. Then we have that (a, b)p = 1.

Proof. Consider the equation z2 − ā2 − b̄y2 mod p. Here ā = a mod p. We define the set
T = {ct2|t ∈ Fp}. Its size is 1 + p−1

2
. The first term comes from c = 0, and the rest from

the other squares in F∗
p. Then set z = 1. The set of all elements of the form 1 − by2 also

contains 1 + p−1
2

elements using the same logic. Because of the size of these sets and the
pigeonhole principle, they share at least one element. This yields a solution of the equation
12− āx2− b̄y2 in Fp. Then by Hensel’s lemma, we can lift these solutions to a solution in Zp,
which shows that the Hilbert symbol is 1. We have to be careful with lifting this solution
since we can not simply lift two variables at the same time. The first lift can be without any
problems, but after that we have to make sure that the derivative is still nonzero.
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4 Quadratic forms

In this section, we discuss all the preliminaries on quadratic forms that are necessary to
understand the proof of the Hasse-Minkowski theorem.

4.1 Basics of quadratic forms

We start by giving the definition of a quadratic form.

Definition 4.1. Let k be a field, and V a vector space over k. Let Q : V → k be a function
such that:

1. Q(ax) = a2Q(x), with a ∈ k and x ∈ V .

2. The function (x, y) 7→ Q(x+ y)−Q(x)−Q(y) is bilinear.

Then Q is a quadratic form. The pair (V,Q) is called a quadratic module.

Definition 4.1 can be generalised to commutative rings, and modules over such rings, but
since we are only interested in the fields Qp and R, this is not necessary. Quadratic modules
have a natural choice for a scalar product. This scalar product is defined as long as we are
working over fields with a characteristic that is not equal to 2. This is no problem for us,
since Qp and R have characteristic 0.

Definition 4.2. The scalar product is a symmetric bilinear form defined as:

(x, y) 7→ x.y =
1

2
(Q(x+ y)−Q(x)−Q(y))

Note that x.x = 1
2
(Q(2x)−Q(x)−Q(x)) = 1

2
(4Q(x)−Q(x)−Q(x)) = 1

2
(2Q(x)) = Q(x).

Every quadratic form gives rise to a symmetric bilinear form with this relation. To get an
easier way to handle these forms, we define the matrix of a quadratic form.

Definition 4.3. Pick a basis of V with dim(V ) = n. The matrix A of Q is defined element-
wise, with aij = ei.ej, where the ei are the basis vectors of V . Then for a vector x =

∑∞
i=1 xiei,

we have Q(x) =
∑

1≤i,j≤n aijxixj.

Let us check whether this does indeed satisfy the definition of a quadratic form. If we
would multiply our vector x by a scalar a, then every element of the vector is multiplied
by a. Putting ax in Q(x) =

∑
1≤i,j≤n aijxixj, observe that every term has a factor of a2,

since we always multiply 2 entries of the vector in every individual term of the sum. This
means we can factor out a2, and the first part of Definition 4.1 is satisfied. Consider the map
(x, y) 7→ Q(x+ y)−Q(x)−Q(y). We need to check that (bx, y) = b(x, y). So:

Q(bx+ y)−Q(bx)−Q(y) =
∑

1≤i,j≤n

aij(bxi + yi)(bxj + yj)−
∑

1≤i,j≤n

aijbxibxj −
∑

1≤i,j≤n

aijyiyj

Expand the terms in the first sum to b2xixj+bxiyj+bxjyi+yiyj = b2xixj+b(xiyj+xjyi)+yiyj.
Notice that we can split the first sum into three separate sums, where two of them are equal
to the sums of Q(bx) and Q(y). This leaves just the sum

∑
1≤i,j≤n aijb(xiyj+xjyi). By taking
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out the b of the sum, we obtain b(x, y) = b(
∑

1≤i,j≤n aij(xiyj + xjyi). By the symmetry of
(x, y), we can conclude that (x, cy) = c(x, y). This means our new way of defining Q satisfies
the criteria to be a quadratic form. What would happen if we were to change the basis of the
vector space V with an invertible matrix X? This gives a new matrix B, with B = XAXT .
Applying the determinant on both sides gives the equality det(B) = det(A)det(X)2. We
can conclude that det(A) is determined up to multiplication with a nonzero square. This
constant is called the discriminant of Q, denoted by disc(Q).
By defining the scalar product, we have also defined orthogonality. Two vectors are orthogo-
nal if their scalar product is equal to 0. For a subspace W , define the orthogonal complement
W o as the set of vectors that are orthogonal to all elements in W . There might be a special
set of vectors that are orthogonal to all other vectors. That would be the set V o, which we
call the radical of V . A quadratic form is called nondegenerate if V o = 0. This is equivalent
with disc(Q) ̸= 0. If that is the case, then the matrix has full rank. With our notion of
orthogonality we define orthogonal sums.

Definition 4.4. Let V be a vector space. The space V is the orthogonal direct sum of a set
of pairwise orthogonal subspaces Ui if V = ⊕1≤i≤mUi.

By restricting Q to the subspaces Ui, we get a set of m quadratic forms (Ui, Qi). In this
case, we have that Q(x) =

∑m
i=1Qi(xi). With the power of orthogonality, we use this to

make orthogonal bases.

Definition 4.5. A basis (ei)i∈I of V is orthogonal if all of the basis vectors are pairwise
orthogonal. This implies that V = ⊕i∈Ikei, where k is the base field.

If the basis is orthogonal, the quadratic module has a diagonal matrix, which means that
every quadratic form can be written as

∑n
i=1 aix

2
i . Since having an orthogonal basis means

that there are significantly less terms in the quadratic form to deal with, orthogonal bases
are in general easier to work with than any ordinary basis.

Theorem 4.6. Every quadratic module has an orthogonal basis.

Proof. This basis can be constructed by applying the Gram-Schmidt procedure on the columns
of the matrix of the quadratic module.

Definition 4.7. If Q(x) = 0, then x is isotropic. A subspace of V that has the property
that all of its elements are isotropic is also called isotropic.

By the way quadratic forms are constructed, 0 is always an isotropic element. Further-
more, if x is an isotropic element, then the span of x is an isotropic subspace. To see this,
notice that an element in span(x) looks like ax. We can take a out of the quadratic form:
Q(ax) = a2Q(x) = 0. The definition of a hyperbolic plane is closely related to this concept.

Definition 4.8. If a quadratic module has two isotropic basis vectors x and y, and x.y ̸= 0,
then this quadratic module is called a hyperbolic plane.

An hyperbolic plane is always nondegenerate, which can be seen from the fact that x.y ̸=
0. We can prove the following theorem on the existence of hyperplanes.

Theorem 4.9. Let (V,Q) be a nondegenerate quadratic module. If x is isotropic, then there
exists a subspace of V that is a hyperbolic plane containing x.
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Proof. V is nondegenerate. So we can find an element z such that x.z = 1. If x.z ̸= 1, we
normalize the scalar product by multiplying z with 1

x.z
. We claim that 2z−(z.z)x = 2z−Q(z)x

is isotropic. We show this by adding 0 in a smart way.

Q(2z − (z.z)x) = Q(2z −Q(z)x) +Q(2z)−Q(2z) +Q(Q(z)x)−Q(Q(z)x)

Then notice that we can group three terms together to get:

Q(2z) +Q(Q(z)x) + 2(2z.−Q(z)x).

The second term is equal to 0 because x is isotropic. By bilinearity, the scalar product
reduces to −2Q(z)(z.x) = −2Q(z). Finally, we can change the first term to 4Q(z). Then we
find that 4Q(z) + 2(−2Q(z)) = 0, so the element 2z − (z.z)x is isotropic. Furthermore,

x.(2z − (z.z)x) = (x.2z)−Q(z)(x.x) = 2(x.z)−Q(z)Q(x) = 2.

The space xk + (2z − (z.z)x)k is a hyperbolic plane. Both of the basis vectors are isotropic,
and their scalar product is nonzero.

Theorem 4.9 enables us to prove the next theorem.

Theorem 4.10. If (V,Q) is nondegenerate and there exists an isotropic x ̸= 0, then Q(V ) =
k.

Proof. By Theorem 4.9, we can assume that there is a hyperplane containing x. For any
a ∈ k, we can choose the element x+ a

2
y. Then by adding 0 = −Q(x) = −a2

4
Q(y) = −Q(a

2
y),

we find:
Q(x+

a

2
y) = Q(x+

a

2
y)−Q(x)−Q(

a

2
y) = 2(x.

a

2
y) = a

So, for every a ∈ k, there is an element z ∈ V such that Q(z) = a.

With Theorem 4.6, we return to the discriminant of Q. Since every quadratic module
has an orthogonal basis, by picking this basis the matrix of Q is a diagonal matrix. This
makes computing the discriminant easy. It is just the product of the elements on the diagonal.
Remember that this is unique up to multiplication by a square. If a module is nondegenerate,
the discriminant is nonzero. In this case we view the the discriminant as an element of k∗/k2∗.

4.2 Equivalence of quadratic forms

In our proof of the Hasse-Minkowski we want to reduce the amount of quadratic forms that
we need to consider. This is why in this section we discuss equivalence of quadratic forms. For
now, the fields k are the p-adic numbers. The real numbers are easier to handle, but they do
require different techniques from the p-adic numbers. Assume that we have a homogeneous
quadratic polynomial f of n variables. The amount of terms of the polynomial f is called
the rank. The polynomial f(x1, x2, . . . , xn) looks like

∑n
i=1 aiix

2
i + 2

∑
1≤i<j≤n aijxixj. Then

(kn, f) is a quadratic module, with an associated matrix A = (aij). The first part of this
section is similar to Subsection 4.1.

Definition 4.11. Two quadratic forms f and g are equivalent if the corresponding modules
are isomorphic. This is equivalent to saying there exists an invertible matrix B such that
g(x) = f(Bx). If f and g are equivalent, we say f ∼ g.
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Another easier way to see that two forms are equivalent is by showing that there exists
an nonsingular matrix B such that G = BFBT , where G and F are the matrices of g and
f respectively. We want to combine different forms to create new forms. To do this, we use
the orthogonal sum.

Definition 4.12. If f(x1, x2, . . . , xn) and g(y1, y2, . . . , ym) are two quadratic forms over
the spaces V and W respectively, then f

.
+ g is the quadratic form f(x1, x2, . . . , xn) +

g(y1, y2, . . . , ym) in n +m variables over the space V ×W . If it is clear that we are talking
about this type of sum we write the normal +.

This definition is very similar to how we defined orthogonal sums in Subsection 4.1. There
is also the operation

.
− defined as f

.
− g = f

.
+ (−g). In a similar way to how we defined

hyperbolic planes in Definition 4.8, we also want to define it for our new forms.

Definition 4.13. A quadratic form f(x1, x2) in two variables is hyperbolic if f ∼ x1x2 ∼
x2
1 − x2

2.

This might not be intuitive at first, but this is equivalent to saying that the quadratic
module (k2, f) is a hyperbolic plane. If the form is similar to x1x2, then if either x1 or x2

is zero, the form yields zero. Thus both basis vectors are isotropic. The inner product is
also nonzero. The matrix of x1x2 can also be turned into the matrix of x2

1 − x2
2, so they

are equivalent. We also want to translate the notion of isotropic elements. This is done by
saying that f represents an element a if there exists a nonzero vector x such that f(x) = a.
So, f represents 0 if there is a nonzero x such that f(x) = 0. In this case, x is an isotropic
element of the quadratic module (kn, f). There is a translation of Theorems 4.9 and 4.10 to
this alternate way of defining quadratic forms.

Theorem 4.14. If f is nondegenerate and represents 0, then f ∼ f2
.
+ g, with f2 hyperbolic.

We also have that every element of k is represented by f .

Using this theorem we can prove the following fact.

Theorem 4.15. If g is a nondegenerate quadratic form in n− 1 variables and a ∈ k∗, then
the following are equivalent:

i) g represents a.

ii) g ∼ h
.
+ ax2 where h is in n− 2 variables.

iii) g
.
− ax2 represents 0.

Proof. First assume that g represents a. This means there exists an x such that x.x = Q(x) =
a. The orthogonal complement U of xk has the property that V = U ⊕ xk. This must mean
that g ∼ h

.
+ ax2, since their modules are isomorphic. Here h is the quadratic form of U .

Also, because g represents a, the form g
.
− ax2 represents 0. Choose the element y such that

g(y) = a, and x = 1. It is clear that g(y)
.
− ax2 = 0, so g

.
− ax2 represents 0. Assume that

g ∼ h
.
+ ax2. We choose the 0 element in the space of h and set x = 1. Then h

.
+ ax2 = a,

and since g ∼ h
.
+ ax2, the quadratic form g also represents a. Finally, assume that g

.
− ax2

represents 0. The nontrivial zero is (x1, . . . , xn−1, z). If z = 0, it is clear that g represents 0
and then also a. If this is not the case, then g(x1/z, . . . , xn−1/z) = a.
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A similar theorem is also required for the proof of a later theorem.

Theorem 4.16. If both g and h are quadratic forms of rank greater than or equal to 1, then
these are equivalent:

i) f = g
.
− h represents 0.

ii) There is an a ∈ k∗ such that both g and h represent a.

iii) There is a b ∈ k∗ such that both g − bz2 and h− bz2 represent 0.

Proof. The equivalence follows from Theorem 4.15, specifically the equivalence of part i) and
part iii) of that theorem. If g(x) = h(y) = a, then the element z = (x, y) can be put in f to
find f(z) = g(x) − h(y) = a − a = 0, thus ii) =⇒ i). The only implication that is left to
prove is i) =⇒ ii). Since f represents 0, there is an element (x, y) such that g(x) = h(y). If
g(x) = a = h(y), then we are done. If g(x) = h(y) = 0, then g represents zero. Because the
forms are nondegenerate, we can apply a translation of Theorem 4.10 to see that g represents
all elements of k, so also some nonzero value of h(y). This proves the theorem.

4.3 The discriminant and the invariant ε

The final tools that are needed to prove the Hasse-Minkowski are two invariants. The first
is the discriminant, discussed in Subsection 4.1. The other is the invariant ε. This invariant
relies heavily on the Hilbert symbol, introduced in Section 3. First take an orthogonal basis
(e1, e2, . . . , en) = e of V . By Theorem 4.6, we know that this can be done for any V . In
this case, the matrix A associated to the quadratic form is diagonal, and the elements on the
diagonal are ai = ei.ei.

Definition 4.17. We define ε(e) =
∏

i<j(ai, aj) = ±1.

One might wonder if the choice of basis gives a different Hilbert symbol. This is not the
case.

Theorem 4.18. ε(e) is independent of the choice of (orthogonal) basis.

To prove Theorem 4.18, we use contiguous bases.

Definition 4.19. If two bases share at least one element, then they are contiguous.

We want to prove the following theorem on contiguous bases.

Theorem 4.20. If (V,Q) is a nondegenerate quadratic module of dimension greater than
3 with two orthogonal bases e = (e1, e2, . . . , en) and e′ = (e′1, e

′
2, . . . , e

′
n), then there is a

sequence of orthogonal bases e0, e1, . . . , em with e = e0, e′ = em and for all i, ei is contiguous
with ei+1.

To prove this theorem, we need the next lemma.

Lemma 4.21. There is an a ∈ k such that ea = e′1 + ae′2 is not isotropic, and together with
e1, it forms a nondegenerate plane.
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Proof. Firstly, ea.ea = (e′1.e
′
1) + a2(e′2 + e′2) + (e′1.ae

′
2) + (ae′2.e

′
1). The last two terms are

zero, since the bases are orthogonal. We want Q(ea) = ea.ea ̸= 0, so choose an a such that

a2 ̸= − (e′1.e
′
1)

(e′2+e′2)
. The plane generated by e1 and ea should be nondegenerate. This is equivalent

with the condition that the discriminant of the matrix is nonzero, so the following equation
must hold: (e1.e1)(ea.ea) − (e1.ea)

2 ̸= 0. If we assume that (e1.e1)(e
′
1.e

′
1) − (e1.e

′
1) = 0 and

(e1.e1)(e
′
2.e

′
2) − (e1.e

′
2) = 0, then we can rewrite 0 to −2a(e1.e

′
1)(e1.e

′
2). By nondegeneracy,

e1.e1 and e1.e2 are both nonzero. By some computations we can show that ea satisfies the

conditions, if we would pick an a such that a ̸= 0 and a2 ̸= − (e′1.e
′
1)

(e′2+e′2)
, alongside the condition

that (e1.e1)(e
′
1.e

′
1) − (e1.e

′
1) = 0 and (e1.e1)(e

′
2.e

′
2) − (e1.e

′
2) = 0. The conditions take away

three values of a, but since our field is infinite, this is no problem.

This allows us to prove Theorem 4.20.

Proof. First assume that (e1.e1)(e
′
1.e

′
1) − (e1.e

′
1)

2 ̸= 0. This means the discriminant of the
matrix of this quadratic module is nonzero, and thus nondegenerate. That is, the space P =
ke1 + ke′1 is nondegenerate. We could also pick some other basis vectors that are orthogonal
to e1 and e′1 to make a better basis for the space. This gives P = e1k+eok and P = e′1k+e′ok.
We can take the orthogonal complement of P . Take some orthogonal basis of P o, and call it
f . Then the basis (e1, eo, f) is contiguos with e and (e′1, eo, f). This last basis is contiguous
with e′. This proves the statement. Similarly, if (e1.e1)(e

′
2.e

′
2)− (e1.e

′
2)

2 ̸= 0, the same proof
can be used. In the last case, both (e1.e1)(e

′
1.e

′
1)−(e1.e

′
1) = 0 and (e1.e1)(e

′
1.e

′
1)−(e1.e

′
2)

2 = 0.
Using Lemma 4.21, there exists ea = e′1 + ae′2. It is not isotropic, so there is another vector
e′′2 to make a hyperbolic plane with it. The basis (ea, e

′′
2, e

′
3, . . . .e

′
n) is an orthogonal basis of

V . It is contiguous with e′. Using the same proof of the first case, this basis is contiguous
with e. Combine the chains of basis changes to get that e and e′ are contiguous.

We can finally prove Theorem 4.18.

Proof. The proof is split in three cases, dependent on the dimension of V . If dim(V ) = 1,
ε(e1) is always 1, since there is nothing to multiply. If n = 2, by definition, ε(e) = 1 if
z2 − ax2 − by2 represents 0. By Theorem 4.15, this is equivalent to ax2 + by2 representing
1. So, then there must exist a v ∈ V with Q(v) = 1, which in turn is independent on
the choice of basis. The rest of the cases are proven using induction on n, the dimension
of V . The base case where n = 2 is already proven. We use Theorem 4.20 to show that
we only need to show that equality holds if the bases are contiguous. Then we can repeat
the same argument a finite amount of times on the chain of contiguous bases. The Hilbert
symbol is symmetric. We can therefore shuffle the basis vectors such that e1 = e′1. Let
a′i = e′1.e

′
1 = e1.e1 = a1. Then, ε(e) = (a1, a2a3 . . . an)

∏
2≤i<j(ai, aj). We can put an

extra square in the Hilbert symbol without changing its value. In this case, put a21 in
the second element of the first Hilbert symbol. The second part can then be rewritten
to d(Q)a1. The same can be done for ε(e′) = (a1, a1d(Q))

∏
2≤i<j(a

′
i, a

′
j). The inductive

hypothesis can be applied on the orthogonal complement of e1, which has one dimension less.
In this space, the products

∏
2≤i<j(ai, aj) and

∏
2≤i<j(a

′
i, a

′
j) are equal. Hence, the products

(a1, a1d(Q))
∏

2≤i<j(ai, aj) and (a1, a1d(Q))
∏

2≤i<j(a
′
i, a

′
j) are also equal. This proves the

theorem.

Since the invariant ε is independent of basis, we write ε(Q) instead of ε(e). With all of
these invariants, we prove the next theorem.
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Theorem 4.22. The quadratic form f represents 0 if and only if:

i) n = 2 and d = −1 or,

ii) n = 3 and (−1,−d) = ε or,

iii) n = 4 and d ̸= 1 or d = 1 and ε = (−1,−1) or,

iv) n ≥ 5.

Here d = d(f) and ε = ε(f).

Proof. The proof is done in four different cases, depending on the rank of the form f . Let
n = 2. In this case f ∼ ax2 + by2. This form can only represent zero if −a

b
is a square. In

the group k∗/k∗2, we have that −a
b

= −ab = −d. If then d ̸= −1, the expression −a
b

would
not be a square. So we must have d = −1. This completes the proof for n = 2.
Let n = 3. Then f represents 0 if and only if ax2 + by2 + cz2 represents 0. We can normalize
this function to a

c
x2 + b

c
y2 + z2 −−a

c
x2 −− b

c
y2 + z2. By the definition of the Hilbert symbol,

this form represents 0 if and only if
(
−a

c
,− b

c

)
= 1. First multiply by squares to reduce this

to (−ac,−bc). By Theorem 3.7 that states that the Hilbert symbol is bilinear,

(−ac,−bc)

= (−1,−bc)(ac,−bc)

= (−1,−bc)(a,−bc)(c,−bc)

= (−1,−1)(−1, b)(−1, c)(a,−bc)(c,−bc)

= (−1,−1)(−1, b)(−1, c)(−1, a)(a, b)(a, c)(c,−bc)

= (−1,−1)(−1, b)(−1, c)(−1, a)(a, b)(a, c)(−1, c)(b, c)(c, c).

There are two factors of (−1, c) in the product, and they cancel each other out. By part v) of
Theorem 3.3, (c, c) = (−1, c). By the bilinearity, we combine the factors (−1, a)(−1, b)(−1, c)
into (−1, abc). Also, the factors (a, b), (a, c) and (b, c) give the invariant ε and abc = d. This
reduces our formula to (−1,−1)(−1, d)ε. Using bilinearity again, we can combine the final
two symbols to obtain the condition (−1,−d)ε = 1. Since ε ∈ {−1, 1}, multiplying both
sides by ε gives the condition (−1,−d) = ε, which is the desired result.

To prove the final two cases we need two lemmas. The first is a consequence of the second
case that we have already proven.

Lemma 4.23. If a ∈ k∗/k∗2, then a rank two form f represents zero if and only if (a,−d) = ε.

Proof. This is proven by constructing a form of rank 3 that represents 0. Consider the form
g = f

.
− az2. This form represents 0 if and only if f represents a. The invariants of this

form are d(g) = −ad(f) and ε(g) = (−a, d)ε. By applying the already proven part ii) of
Theorem 4.22 on the form g, we get the condition (−1,−(−ad)) = (−a, d)ε. By part v) of
Theorem 3.3, (−a, d) = (−a, ad). Taking this to the other side, and using bilinearity, gives
the condition (a, ad) = (a,−d) = ε.

The second lemma is a lot more complicated.
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Lemma 4.24. Recall that in Theorem 2.18 and Theorem 2.20 we gave explicit representa-
tions of k∗/k∗2. Here the size of the groups was 2r elements with r = 2 if p ̸= 2 and r = 3 if
p = 2. Let a ∈ k∗/k∗2 and ε = ±1. The set Hε

a = {x ∈ k∗/k∗2|(x, a) = ε} has 2r−1 elements
if a ̸= 1. If a = 1, then H1

1 has size 2r, and H−1
1 = ∅. Furthermore, if we have a, b ∈ k∗/k∗2

and ε ε′, and assume that both Hε
a and Hε′

b are nonempty. Then, Hε
a ∩Hε′

b = if and only if
a = b and ε = ε′.

Proof. If a = 1, this is a square, which means the Hilbert symbol is always 1. If a ̸= 1, then
since the Hilbert symbol is nondegenerate, we define a surjective homomorphism b 7→ (a, b).
This implies that its kernel must have 2r−1 elements, and its kernel is H1

a . Its complement
H−1

a in turn must have 2r−1 elements. If a = b and ε = −ε′, then by definition Hε
a ∩Hε′

b = ∅.
To prove the final part of this lemma, assume that Hε

a ∩ Hε′

b = ∅, and both are nonempty.
They must have 2r−1 elements. From this we can conclude that H1

a = H1
b , which in turn is

equivalent to (x, a) = (x, b) for all x. By the nondegeneracy of the Hilbert symbol, we need
a = b and ε = −ε′. This proves the lemma.

With both lemmas, we can continue the proof of Theorem 4.22.

Proof. Let n = 4. By Theorem 4.16, this is only possible if there are two forms that represent
the same element. These two forms are equivalent to ax2 + by2 and −a′z2 − b′w2. Using
Lemma 4.23, we know that such an element c is represented by these forms if and only if
(c,−ab) = (a, b) and (c,−a′b′) = (−a′,−b′). Denote the set of all elements c that satisfy the
first equation with A. The set of all elements that satisfy the second equation is denoted by
B. Both of these sets are nonempty. For example, a ∈ A and −a′ ∈ B. The quadratic form
f does not represent zero if and only if A∩B =. By Lemma 4.24, this is in turn equivalent to
ab = a′b′ and (a, b) = −(−a′,−b′). Because ab = a′b′, the discriminant is a square, so d = 1.
If this is the case, then ε = (a, b)(a, a′)(a, b′)(b, a′)(b, b′)(a′, b′). By bilinearity and part v) of
Theorem 3.3, the invariant ε gets reduced to

(a, b)(a′, b′)(a, a′b′)(b, a′b′) =

(a, b)(a′, b′)(a, a′b′)(b, a′b′) =

(a, b)(a′, b′)(ab, a′b′) =

(a, b)(a′, b′)(a′b′, a′b′) =

(a, b)(a′, b′)(−1, a′b′) =

(a, b)(a′, b′)(−1, a′)(−1, b′) =

(a, b)(−1, a′)(−a′, b′) =

(a, b)(−1,−1)(−a′,−1)(−a′, b′) =

(a, b)(−a′,−b′)(−1,−1).

Using the condition (a, b) = −(−a′,−b′), this finally reduces to ε = −(−1,−1), which proves
this case.
Let n = 5. By Lemmas 4.23 and 4.24, a form of rank 2 represents at least 2r−1 elements.
This is also true for forms of higher ranks, by taking some entries of an input vector to be
0. Thus, f represents at least one other element besides d. Call this element a. Then, f is
equivalent to a quadratic form g

.
+az2. The form g is one rank lower than f . Its discriminant
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is equal to d/a ̸= 1. Because we have proven the previous case, g represents 0. Then by
the way f is written (take x = 0), it also represents 0. The same procedure can be done for
forms of higher ranks, which proves the theorem.

Knowing when a form represents 0 is enough to find when it represents any a. This leads
to the following corollary.

Theorem 4.25. If a ∈ k∗/k∗2, then a quadratic form f represents a if and only if:

i) n = 1 and d = a

ii) n = 2 and (a,−d) = ε

iii) n = 3 and d ̸= a or d = −a and ε = (−1,−d)

iv) n ≥ 4

Here d = d(f) and ε = ε(f).

The proof of the second case of this theorem is given in Lemma 4.23. The proof of
the other cases is analogous. Theorem 4.25 is of course quite powerful. It gives us specific
conditions to show if any element a can be represented by a quadratic form. However, since
a ∈ k∗/k∗2, we still do not know requirements for any element in the field. We also know
that any form of rank greater than 5 in a field Qp represents 0. The next theorem is useful
for reducing the number of quadratic forms that need to be considered in a proof concerning
all quadratic forms.

Theorem 4.26. For two quadratic forms to be equivalent, it is necessary and sufficient that
they have the same rank, discriminant and invariant ε.

Proof. That two equivalent forms have the same invariants follows from the definitions of
those invariants. The converse statement is proven by induction on the rank of the quadratic
form. If n = 0, there is nothing to proof. By Theorem 4.25, two quadratic forms f and g
with the same invariants represent the same elements in k∗/k∗2. Both can be written in the
form f ′ .

+ax2 and g′
.
+ax2, for some element a that they both represent. The forms f ′ and g′

have one rank less. By the induction hypothesis, these are equivalent if they have the same
invariants. Computations show that this is the case:

d(f ′) = ad(f) = ad(g) = d(g′)

ε(f ′) = ε(f)(a, d(f ′)) = ε(g)(a, d(g′) = ε(g′).

All the invariants are the same, hence the forms f ′ and g′ are equivalent. By induction, f
and g are equivalent.

Computing whether two forms are equivalent is now easy. We need to compute the
invariants, instead of doing some complicated matrix computations.
Our work on quadratic forms over Qp does not fully translate to quadratic forms over R.
In R every quadratic form is equivalent to

∑r
i=1 x

2
i −

∑s
j=1 y

2
j . If either s = 0 or r = 0,

then this form does not represent zero, since the form only sums positive or negative terms,
hence never getting to 0 except when we set all variables to 0. If both r and s are nonzero,
the quadratic form represents every element in R. The invariants d and ε are also defined
differently in R.
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Definition 4.27. The invariants ε and d are defined as follows:

ε(f) = (−1)s(s−1)/2

and

d(f) = (−1)s.

It can be proven that parts of Theorem 4.22 also hold for the real case. The first three
requirements also work in the real case. The last condition definitely does not hold, since
a real quadratic form with more than 4 variables can easily not represent a number. A
counterexample would be the quadratic form x2

1+x2
2+x2

3+x2
4, which does not represent any

nonnegative number. The next theorem covers a case where Theorem 4.22 does generalise
to R.

Theorem 4.28. A real quadratic form with 3 variables satisfying (−1,−d) = ε represents
0.

Proof. We know that there are only four of these forms up to equivalence. A computation
shows that (−1, 1)∞ = 1 and (−1,−1)∞ = −1.

If f = x2 + y2 + z2, d(f) = 1, ε(f) = 1,

if f = x2 + y2 − z2, d(f) = −1, ε(f) = 1,

if f = x2 − y2 − z2, d(f) = 1, ε(f) = −1,

if f = −x2 − y2 − z2, d(f) = −1, ε(f) = −1.

Indeed, the first and fourth forms do not represent zero, and they have that (−1,−d) ̸= ε.
The second and third do represent zero and they have that (−1,−d) = ε.
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5 Local-Global Principles

5.1 The Hasse-Minkowski theorem

With all of the groundwork laid down, we can begin to prove the Hasse-Minkowski theorem.
The proof is taken from [7]. So far we have covered invariants and quadratic forms. If f is
a quadratic form over Q, then f ∼ a1x

2
1 + a2x

2
2 + · · · + a1x

2
n. Let V be the set of all places,

so V = {∞, 2, 3, 5 . . . }. The invariants are defined as d(f) =
∏n

i=1 ai and with the injection
Q −→ Qv, f can be seen as a quadratic form over Qv, denoted by fv. In these extended
fields we define dv(f) and εv(f). The invariants dv(f) are the image of d(f) in Q∗

v/Q∗2
v . The

other invariant is defined as εv(f) =
∏

i<j(ai, aj)v.

Theorem 5.1. A quadratic form f represents 0 in Q if and only it represents 0 in Qv for all
v ∈ V .

If a form represents 0 in Q, then by the injection of Q into Qv, it also represents 0 in all of
those fields. The other direction will have to be proven in multiple different cases, depending
on the rank n of the quadratic form.

5.1.1 The case n = 1

Proof. The theorem only applies if the form f represents 0 in R. In R the form can be seen
as f(x) = ax2, which never represents 0. The theorem is then vacuously true.

In all other cases, f can be written as
∑n

i=1 aix
2
i . By dividing with a1, we can also assume

that a1 = 1. From now on, also assume that the quadratic form f represents 0 in all of the
fields Qv.

5.1.2 The case n = 2

Proof. Rewrite the form to x2
1 − a2x

2
2. The form f∞ represents 0. This is only the case if

a2 > 0. This term can be written as
∏

p p
vp(a2). Here vp is the p-adic valuation defined in

Definition 2.6. The forms fp all represent 0. This must mean that a2 is a square in Qp, which
implies that vp(a2) is even in all fields Qp. Therefore, a2 is a product of squares, which is also
a square. Hence, a2 is a square in Q. Take the input (

√
a2, 1). This shows that f represents

0 in Q.

5.1.3 The case n = 3

Proof. In this case, our quadratic form looks like x2
1−ax2

2− bx2
3. By taking all square factors

into the squares, we can assume that vp(a) and vp(b) are either 0 or 1 for all primes. Without
loss of generality, assume that |a| ≤ |b|. If this is not the case, simply flip a and b. The
proof is done by induction on the integer m = |a| + |b|. The base case has m = 2. Then f
can be one of four different forms: x2

1 ± x2
2 ± x2

3. The form must represent 0 in R, so we do
not have to consider the case x2

1 + x2
2 + x2

3. In all other cases, the form represents 0, either
by the element (1, 1, 0) or (1, 0, 1). This proves the base case. For induction, assume that
m > 2. Since |a| ≤ |b| and |b| ≥ 2 the number b has a prime factorization. It is also square
free, so b = ±p1p2 . . . pk. Take a specific pi. If a ≡ 0 mod p, then a is a square modulo p. If
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a ̸≡ 0 mod p, then a is in U , the set of p-adic units. By assumption, fpi represents 0, so there
is a triplet (x′, y′, z′) with the property (z′)2 − a(x′)2 − b(y′)2 = 0. By Theorem 2.9, we can
assume that this triplet is primitive. Therefore, (z′)2 − a(x′)2 ≡ 0 mod pi. If x

′ ≡ 0 mod pi,
this reduces to (z′)2 ≡ 0 mod pi, which implies that z would be divisible by pi. Furthermore,
b(y′)2 is then divisible by p2i , and because vpi(b) = 1, y is also divisible by pi. This contradicts
with the fact that (x′, y′, z′) is primitive. So, we can assume that x′ ̸≡ 0 mod pi. We conclude
that a is a square mod p, otherwise we can not have (z′)2−a(x′)2 ≡ 0 mod pi. By the structure
theorem for finite abelian groups, we know that Z/bZ =

∏k
j=1 Z/pjZ. Because we did not

pick any particular pi, we can assume that a is a square in all of the factors of Z/bZ, hence
a square in Z/bZ itself. There exist integers c and d such that d2 = a + bc. This is the case
because a and b are square free. In particular, choose d such that |d| ≤ |b|/2. By rewriting
the equation, we find that bc = d2 − a. Both a and d2 are squares. The value d2 − a is the
norm of an element in k(

√
a)/k. By the property |bc| = |b||c|, f represents 0 if and only if the

form g = x2
1 − ax2

2 − cx2
3 represents 0. Because f represents 0 in all Qv, so does g. Also note

that |c| =
∣∣∣d2−a

b

∣∣∣ ≤ |b|
4
+ 1 < |b|. The first inequality follows from the fact that |d| ≤ |b|/2

and the second inequality follows from the fact that |b| ≥ 2. Finally, write c as c′u2, with c′

square free. Then we can use the inductive hypothesis by noting that |c′| < |b|. This means
that h = x2

1 − ax2
2 − c′x2

3 represents 0 and is equivalent to g by taking the square of u out of
x2
3. So g represents 0, which was equivalent to f representing 0. This proves this case.

5.1.4 The case n = 4

Proof. Without loss of generality, write f = ax2
1+bx2

2−(cx2
3+dx2

4). By Theorem 4.16 and the
fact that fv, represents 0, there exist elements xv ∈ Q∗

v that are represented by both ax2
1+bx2

2

and cx2
3 + dx2

4 (in Qv). By Theorem 4.25 that also works in R by the last results of Section
4, this is only true if both (xv,−ab)v = (a, b)v and (xv, cd)v = (c, d)v. We use the product
formula from Theorem 3.10, to find that

∏
v∈V (a, b)v = 1 =

∏
v∈V (c, d)v. Theorem 3.11 tells

us there exists an x ∈ Q with the properties (x,−ab)v = (a, b)v and (x,−cd)v = (c, d)v.
Because of this, the form ay2+bz2−xw2 represents zero in Qv for all v ∈ V . We have proven
the case where n = 3, so this implies that the form ay2 + bz2 − xw2 represents 0 in Q, which
means that x is represented by az2 + by2. This reasoning can be applied to cz2 + dy2, to find
that it also represents x in Q. Both of the forms represent the same element, so the original
form f represents 0 in Q. This proves this case.

5.1.5 The case n ≥ 5

The final proof will be done by trying to reduce the rank of a quadratic form of rank 5 or
greater to one of lower rank. Then the results follows from induction.

Proof. Take the form f = h − g and split it into the forms h = a1x
2
1 + a2x

2
2 and g =

−(a3x
2
3 + · · · + anx

2
n). Take a subset S of V containing 2,∞ and the primes such that

vp(ai) ̸= 0 for some specific i ≥ 3. By the way fractions work, this must be a finite set.
For some v ∈ S the form fv represents 0, which by Theorem 4.16 is equivalent to having an
element av that is represented by both h and g. The squares of Q∗

v are an open set. The
Approximation Theorem 2.7 can be applied to find two rational numbers x′, y′ such that if
a = h(x′, y′), then a

av
∈ Q∗2

v for all v ∈ S. Also, if v ∈ S, the element av is represented by
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g. Then by taking the square root of a
av

out of the form, g also represents a. Then the form

az2 − g represents 0. If we do not have v ∈ S, then −a3, . . . ,−an are v-adic units by the
definition of S. Their product is also a v-adic unit. This product is equal to the discriminant
of g. Because v ̸= 2, all of the v-adic units have Hilbert symbol equal to 1 by Theorem 3.12.
By Theorem 4.22, g represents a, and so az2 − g represents a in Qv. This form is one rank
less than f , so it represents 0 in Q. That implies that g represents a in Q. The other form
h also represents a, and thus, f represents 0, which proves the final case.

As discussed in Section 1, the Hasse-Minkowski theorem is an example of a local-global
principle. These principles state that when there is a solution in all local fields, then there is
a solution in the global field. In the case of the Hasse-Minkowski theorem, the Qp and R are
the local fields, and Q is the global field. The Hasse-Minkowski theorem can be generalized
to finite extensions K of Q.

5.2 Selmer’s equation

On the other hand there are also situations where even though there are local solutions in
all places, we can prove that there is no global solution. The first example that one might
encounter is Selmer’s equation.

Theorem 5.2. the cubic form 3x3 + 4y3 + 5z3 has solutions in R and all the Qp, but not in
Q.

The proof that there are local solutions will rely mostly on Hensel’s lemma.

Proof. The fact that there is a nontrivial zero in R is clear. The point (1, (4/3)1/3, 0) is a
solution. The proof of the existence of solutions in Q is split in three cases. The first case
considers p = 3, the second case p = 5 and the last case covers the other primes. By applying
Hensel’s lemma we want to show that certain numbers are cubes in the p-adic numbers.
Consider the 3-adic numbers. We need to find a solution to 3x3 + 4y3 + 5zy = 0 in Qp.
Set x = 0 and z = −1. We have to find y such that 4y3 − 5 = 0, or equivalently y3 = 5

4
.

Considering this equation mod 9, we find 5∗4−1 ≡ 5∗7 ≡ −1 mod 9. This is however not
strong enough to use Hensel’s lemma yet. For a solution y we want that |f(y)|3 ≤ |f ′(y)|23.
So we want a y such that |y3 − 5

4
|3 ≤ 1

9
. Therefore we consider the equation mod 27. We

want a y such that y3 ≡ 5
4

mod 27. In this group we take y = 2. By using Hensel’s lemma to
lift the solution to Zp, we conclude that 5

4
is a 3-adic cube, and therefore there is a solution

to Selmer’s equation in Q3.
Assume that p = 5. Take x = 1 and z = 0 to reduce the equation to 3 + 4y3 = 0 or y3 = −3

4
.

In Z/5Z we see that −3
4
≡ 23 mod 5. By applying Hensel’s lemma on x3 + 3

4
we can get a

full solution in Q5.
With these two cases covered we can assume that both 3 and 5 are not congruent to 0 mod p.
If p ≡ 1 mod 3, then the subgroup of the cubes of (Z/pZ)∗ has index 3. Otherwise, every
element of the group is a cube. If 3 is a cube mod p, then by applying Hensel’s lemma on
x3 − 3 we solve the equation with the solution (x, 1,−1), where x has that x3 = 1

3
. In the

other case 3 is not a cube in (Z/pZ)∗, which means there are more elements that are not
cubes. Therefore, by our earlier observation, we have that p ≡ 1 mod 3. Every element in
(Z/pZ)∗ can be written as b3, 3b3 or 9b3 for some b. This also applies to 5. If 5 ≡ b3 mod p,

32



we can just apply Hensel’s lemma on x3 − 5 to conclude that 5 is a cube, and therefore
(−y, y,−1) with y3 = 5 is a solution. If 5 ≡ 3b3 mod p, then 5

3
is a cube and (x, 0,−1) with

x3 = 5
3
is the nontrivial solution. Lastly, assume that 5 ≡ 9b3 mod p. Multiply both sides

by 3 to get that 15 ≡ 27b3 ≡ (3b)3 mod p. By applying Hensel’s lemma on x3 − 15 we find
that 15 is a cube. Take the point (3t, 5,−7) with t3 = 15. This solves Selmer’s equation, and
we can conclude that Selmer’s equation has a solution in Qp for all p.

The proof that there are no solutions in Q is more involved, and uses theory that is
beyond the scope of this thesis. A proof can be found in [1]. Similarly there are quartic
forms that also do not have a global solution, even though they do have local solutions. The
form 2z2 = x4 − 17y4 is an example of such a form [6].
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