
Predicting Editor Activity for Open-Access

Mega-Journals Using Fixed-Size Abstract

Embeddings

Bachelor’s Project Thesis

Joël During, s3468194, j.d.g.during@student.rug.nl,

Supervisors: Dr J.K. Spenader & B. Jansema, MSc, MA.

Abstract: Open-access mega journals (OAMJs) can make thousands of publications per month.
Due to their broad scope and large pool of editorial board members, finding a suitable editor for
a new manuscript is a complex problem. This work examines editors’ responses to invitations
to edit new manuscripts for one OAMJ and this dataset’s potential to be used in an editorial
board member recommender system, which aims to automate the finding of suitable editors. The
main challenge in this data is that only a few editors are invited for each manuscript, leading
to a highly sparse dataset and limiting the amount of data per editor. Different NLP techniques
such as Word2Vec, SciBERT, and Doc2Vec are used to transform the titles and abstracts of
new manuscripts into fixed-size embeddings that various machine learning methods can use. We
present an experiment to evaluate the performance of these methods in predicting an editor’s
response to invitations for new manuscripts using either a baseline classifier or support vector
classification. We find that the embedding methods presented here provide an improvement
over random classification. Word2Vec produces the best results in our experiment, although its
performance is similar to that of SciBERT and Doc2Vec. An additional experiment examines
whether similar editors can be clustered to reduce the problem of limited data availability per
editor in the EA dataset. None of the clustering methods presented here provide an improvement
over the method without clustering.

1 Introduction

Since the 2006 launch and consequent success of
the PLOS ONE journal, open-access mega-journals
(OAMJs) have taken over a large part of the aca-
demic publishing landscape (Spezi et al., 2017;
Björk, 2015). These OAMJs often operate based
on article publishing fees, encouraging high num-
bers of publications. This business model, combined
with the journals’ broad scopes and relatively low
publishing criteria, has allowed them to publish
thousands of papers per month, which earns them
their mega status. OAMJs maintain a large pool
of thousands of editorial board members to sup-
port this high throughput of publications. The role
of an editor is to find reviewers for a newly sub-
mitted manuscript, oversee the peer-reviewing pro-
cess, and decide whether the manuscript gets pub-
lished based on the reviewer’s comments. There-

fore, an editor needs sufficient knowledge of the
manuscript’s topic. An editor’s assistant is tasked
with finding and inviting editors with sufficient
expertise for new manuscripts. The broad scope
and large editor pool of OAMJs make finding edi-
tors with sufficient expertise for a newly submitted
manuscript a time-consuming, manual process with
a low success rate.

The Editorial Board Member Recommender
(EBMR) system is being developed to solve this
problem by Slimmer AI BV. The EBMR system
can recommend the most suitable editors for a new
manuscript for large journals, such as OAMJs. It
uses a dataset linking scientific authors to their
publications in various academic sources to achieve
this. The recommended editors can be invited
to become the editorial board member for the
manuscript in question. At this point, the editor

1



can still decline the invitation if the manuscript is
not in their area of expertise, they are too busy, or
there is a conflict of interest.
The Editor Activity (EA) dataset used in this

paper consists of invitations sent out in the past
two years to editors for one open-access journal and
those editors’ responses. This thesis introduced the
EA prediction task, in which the response of an
existing editor to an invitation for a previously un-
seen manuscript is predicted. The EA prediction
task is a binary classification per editor, predict-
ing accepted and declined decisions. Predictions of
this kind could be used to filter out recommen-
dations of the EBMR system where the editor is
likely to decline, which could help decrease the de-
cline rate of invitations. This thesis explores the
EA dataset’s potential and limitations for the EA
prediction task using several machine learning and
natural language processing methods.
A binary classifier is trained for each editor on

the manuscripts they have previously accepted and
declined. A simple baseline classifier is introduced
that does not fit any parameters but classifies a new
manuscript by looking at the class of the most sim-
ilar manuscripts in the training data using the co-
sine similarity measure (Salton & Buckley, 1988). A
more complex classifier is the Support Vector Ma-
chine (Cortes & Vapnik, 1995) which attempts to
linearly separate the training data by mapping it
onto a higher-dimensional space. This linear sep-
aration can then be used to classify new data
points after mapping them onto the same higher-
dimensional space. The experiments presented in
this paper show that classification using Support
Vector Machines produces similar or slightly bet-
ter results than the simple classification based on
cosine similarity for the decision prediction task.
Manuscripts can not directly be used to train

a binary classifier since they only contain an ab-
stract and a title in the form of text. This paper ex-
plores three different methods to transform various-
size abstracts into fixed-size high-dimensional em-
beddings that can be used to evaluate the seman-
tic similarity between manuscripts. These meth-
ods use Word2Vec, SciBERT, or Doc2Vec and ob-
tain fixed-size embeddings directly or by averaging
word embeddings. The experiments presented here
show that a simple method using fixed-size abstract
embeddings from averaged Word2Vec embeddings
performs best on the decision prediction task.

The EA dataset’s main limitation identified in
this thesis is the limited data availability per ed-
itor. Several methods are introduced to overcome
this limitation by clustering editors based on their
accepted manuscripts. Clusters of similar editors
will contain more data than the editors individu-
ally, hopefully resulting in a better performance on
the EA prediction task. Two exact-match meth-
ods are introduced that cluster editors that have
accepted invitations to the same manuscript in
the past. Additionally, a similarity-based cluster-
ing method is introduced that creates a fixed-size
representation for each editor and clusters editors
based on this representation using K-means clus-
tering (Lloyd, 1982). An experiment shows that
none of these clustering methods improve the per-
formance on the EA prediction task.

2 Background

The Editor Activity (EA) dataset introduced in
this thesis contains 626,333 invitations for 110,473
unique manuscripts submitted to an open-access
mega-journal. The number of data points (deci-
sions) per editor varies greatly; figure 2.1 shows
that the vast majority of editors have less than 25
data points, while some editors have as many as
250 decisions. Limited data availability per editor
is the main challenge of the EA dataset; there are
many invitations and manuscripts but not many
data points for each editor. The manuscript classi-
fication task can be seen as a sparse classification
task, where many manuscripts are available, but
for each editor, labels are only available for a small
subset of the complete set of manuscripts.

It is important to note that every data point rep-
resents a manuscript for which the editor was man-
ually selected as an appropriate candidate. There-
fore, we would expect decisions to be acceptance of
the invitation. However, many were declined. This
high decline rate highlights the difficulty of this
problem, which is the motivation for this thesis.
Another peculiarity of the EA dataset is that the
decline rate is higher for editors with more data
points, as shown in figure 2.2. The most plausi-
ble explanation is that editors who get asked to
edit manuscripts more often do not have time for
all of them and might, therefore, be more selective
in which invitations they accept. The manuscript

2



Figure 2.1: Distribution of number of decisions
per editor for the EA dataset.

Figure 2.2: Relationship between decline rate
and number of decisions per editor for the EA
dataset. Decline rate is the average decline rate
smoothed over 5 values.

data in the EA dataset can not directly be used
to train a binary classifier. We explore three NLP
techniques to transform manuscript data from text
to a fixed-size numerical representation: Word2Vec,
SciBERT, and Doc2Vec.

Word2Vec is a neural architecture that can gen-
erate word embeddings based on the usage of the
words in a training corpus (Mikolov et al., 2013).
Word2Vec obtains embeddings by training a sim-
ple neural network with one hidden layer on a cor-
pus. The two architectures available for Word2Vec
are Continuous Bag Of Words (CBOW), which pre-
dicts a target word using its context as input, and
skip-gram, which uses a target word to predict its
context. The resulting embeddings can be used to

evaluate semantic similarity and relationships be-
tween words. For example, words that are used in
similar contexts in the training corpus are assumed
to be semantically similar and will produce similar
embeddings.

Similar words in a corpus can be identified by
evaluating the cosine similarity of their embeddings
(Salton & Buckley, 1988). The cosine similarity of
two vectors is the cosine of the angle between the
vectors. The resulting similarity value lies in the
range [−1, 1], where -1 indicates that the vectors are
exactly opposite, 0 indicates that the vectors are
orthogonal, and 1 indicates that they are identical.
For example, this method has been used to identify
relationships between words in a corpus as paths of
similar words (Ros, 2020). For the EA prediction
task, word embeddings and cosine similarity can
not directly be used since manuscripts contain text
in the form of titles and abstracts, which contain
many words. These various-length texts need to be
represented by a fixed-size embedding so they can
be used as input to a binary classifier.

Word2Vec word embeddings can be used to rep-
resent sentences or longer pieces of text as a fixed-
size embedding by averaging the embeddings of
all the words in the text. This word averaging
model can represent the titles and abstracts of
manuscripts in our dataset. In sentences, these
fixed-size embeddings have been shown to be sur-
prisingly effective at representing the sentence’s
content (Adi et al., 2016). For short documents,
using this word averaging model can produce sim-
ilar or better results to more complicated convo-
lutional neural network models (Kalchbrenner et
al., 2014) for topic classification, sentiment analy-
sis, and ontology classification tasks (Shen et al.,
2018). Other research has found word averaging
models to perform well for sentence similarity tasks
but to be outperformed by more complex recurrent
neural network architectures such as LSTMs (Tai et
al., 2015) on sentiment classification tasks (Wieting
et al., 2015). Therefore, we will consider not only
Word2Vec but also more complex methods such as
SciBERT.

The EA prediction task presented in this the-
sis does not directly correspond to any of the
above tasks but involves classification and similar-
ity. Therefore, we expect that word averaging mod-
els can perform well relative to more complicated
methods for the manuscript classification task.

3



Other work suggests that word averaging mod-
els’ performance decreases for longer text pieces
(Yuferev & Razin, 2021). In this case, more com-
plex methods might produce better results than
Word2Vec. However, we do not expect this limita-
tion to apply to the manuscript classification tasks
since the title and abstracts are relatively short
(218.2 words on average, SD = 62.6).
Another method to obtain word embeddings is

using a more complicated language model such as
BERT (Devlin et al., 2018). BERT (Bidirectional
Encoder Representations from Transformers) uses
bidirectional training of transformers, which is an
attention mechanism, allowing the model to ac-
cess previous states (Vaswani et al., 2017). For
the EA prediction task, SciBERT (Beltagy et al.,
2019) can be used, which is a BERT-based model
pretrained on a corpus of scientific papers. BERT
and SciBERT are language models trained for var-
ious tasks such as question answering and lan-
guage inference. However, word embeddings can be
extracted from the hidden layers of the architec-
ture, which can then be used in the same way as
Word2Vec-generated embeddings, this method of
obtaining word embeddings is called feature extrac-
tion (Peters et al., 2019). The main difference be-
tween (Sci)BERT- and Word2Vec-generated word
embeddings is that BERT embeddings are context-
dependent, whereas Word2Vec generates the same
embedding for a word in every context (Miaschi &
Dell’Orletta, 2020).
BERT-generated word embeddings have been

used for various NLP tasks involving longer pieces
of text, such as citation intent classification (Ro-
man et al., 2021) and automatic text summariza-
tion (Wang et al., 2019). These tasks differ consid-
erably from the manuscript classification task but
show that BERT embeddings can be used success-
fully to represent pieces of text as fixed-size embed-
dings. To evaluate how useful these representations
are on the EA prediction task, we will use the SciB-
ERT averaging model in our EA prediction exper-
iment and compare it to the Word2Vec averaging
model.
Whereas Word2Vec and (Sci)BERT can be used

to obtain a fixed-size manuscript embedding by
averaging the word embeddings, the manuscript
embeddings can also be obtained directly from
Doc2Vec (Le & Mikolov, 2014). Doc2Vec is based
on Word2Vec but adds an extra neural network

input representing the piece of text or paragraph
from which the word comes. The two architectures
used for Doc2Vec are distributed memory, which
uses the paragraph ID and context to predict a tar-
get word, and Distributed Bag Of Words (DBOW),
which only uses the paragraph ID to predict the
words in the paragraph. This paragraph ID would
be the manuscript ID in the EA prediction task. Af-
ter training, fixed-size embeddings can be obtained
directly for a new manuscript by calculating the
weights to the paragraph ID input.

Doc2Vec embeddings have been used successfully
in a text classification task where pieces of text
from the internet were classified as containing hate
speech or not (Djuric et al., 2015). This task is sim-
ilar to the EA prediction task because it is a bi-
nary classification of pieces of text. The main dif-
ference with our task is that the dataset used is
much larger. An empirical evaluation of Doc2Vec
has found that it can provide better results than
word averaging models on a semantic textual sim-
ilarity task (Lau & Baldwin, 2016). These find-
ings should generalize well to the EA prediction
task, where the semantic similarity of abstracts will
be important in predicting editor decisions. How-
ever, in other tasks, such as sentiment analysis of
medical texts (Chen & Sokolova, 2021), Word2Vec
was found to produce more reliable results than
Doc2Vec. To examine if Doc2Vec performs better
than Word2Vec for the EA prediction task, we will
use the Doc2Vec model in our experiment and eval-
uate its performance compared to the Word2Vec
averaging model.

3 EA Experiment

In order to evaluate the performance of different
embedding models and classifiers on the EA pre-
diction task, an experiment is set up using the EA
dataset as training data.

3.1 Data Cleaning

In addition to the manuscripts, invitations, and cor-
responding editor decisions, the EA dataset con-
tains reasons for decline for a subset of the decline
decisions. This label has been recorded from July
2020, and its possible values are ‘topic out of exper-
tise’, ‘too busy’, ‘conflict of interest’, and ‘other’.

4



Of these reasons, only ‘topic out of expertise’ in-
dicates that the editor does not want to edit the
manuscript’s content. Other reasons are given be-
cause of other factors such as the invitation’s tim-
ing and the paper’s authors. Therefore, we filter our
dataset to contain only decline decisions for which
the reason ‘topic out of expertise’ was given. The
accepted decisions are filtered to contain only deci-
sions given after July 2020, to ensure both classes
of decisions are given in the same time frame. This
filtering brings the total number of decisions to
259,660 with a decline rate of 65.2%. To ensure ev-
ery editor has enough data points to be trained and
validated on, editors that do not have at least five
accepted and five declined decisions are dropped
from the dataset,bringing the total number of ed-
itors down to 3,380. For these editors, there are
165,291 decisions with a decline rate of 68.4%. Fig-
ure 3.1 shows that the distribution of number of
decisions is mostly similar after data cleaning, ex-
cept there are no editors with less than 10 data
points and fewer editors with many data points.
Finally, the data is split into 80% training data,
10% validation data, and 10% test data. This split
is performed in a stratified way, keeping the ratio
of accept to decline decisions as similar as possi-
ble for each editor. When there are less than 10
data points for a category for a specific editor, one
data point will be added to both the validation and
test set and the remainder to the training set. The
validation set will be used to tune the model pa-
rameters, and the test set will be used to evaluate
the performance of the tuned models.

3.2 Models & Training

Each manuscript’s title and abstract are extracted
as plain text and preprocessed. In this preprocess-
ing step, the title is appended to the abstract and is
tokenized, miscellaneous text such as HTML tags is
removed, and some frequently occurring stop words
such as ‘paper’ and ‘abstract’ are removed since
they are not discriminative among the abstracts.
Then, the processed abstracts are embedded into a
fixed-size embedding using one of three models.

The Word2Vec averaging model uses a
Word2Vec model trained on a corpus of 250,918
manuscripts that were either submitted to or pub-
lished by the open-access mega-journal that pro-

Figure 3.1: Distribution of number of decisions
per editor for the EA dataset after data clean-
ing.

duced the EA dataset. The Word2Vec model is
trained for 10 epochs using the skip-gram method
with a window of 10, a minimum word count of
5, and a resulting vector dimensionality of 1000.
These parameter values were found by evaluat-
ing the performance of the Word2Vec embeddings
for the EA prediction task on the validation set.
The processed abstracts are transformed by averag-
ing the Word2Vec embeddings of all the abstract’s
words, resulting in a fixed-size 1000-dimensional
embedding for each manuscript. OOV (Out Of Vo-
cabulary) words are ignored in creating fixed-size
embeddings.

The SciBERT averaging model uses the pre-
trained SciBERT language model. Each processed
abstract is split into word pieces using the pre-
trained SciBERT tokenizer. The resulting tok-
enized abstracts are given as input to the SciBERT
model. Word piece embeddings are then extracted
from the SciBERT architecture by taking the mean
of the last hidden state of the network, resulting
in 768-dimensional word(piece) vectors. The fixed-
size abstract embeddings are then created by aver-
aging the SciBERT embeddings of all word pieces,
resulting in a fixed-size 768-dimensional embedding
for each manuscript. The embeddings are extracted
from the last hidden state instead of, for example,
the pooler layer of SciBERT because this provides
the best performance on the validation set.

5



The Doc2Vec model is trained on the same cor-
pus as the Word2Vec model. The Doc2Vec model
is trained for 10 epochs using the Distributed Bag
Of Words (DBOW) method with a window of 10,
a minimum word count of 5, and a resulting vec-
tor dimensionality of 300. These parameter val-
ues were also found by evaluating the performance
of the Doc2Vec embeddings on the validation set.
For the processed manuscripts, the embeddings
are found by using them as input to the trained
Doc2Vec model and calculating the weights to the
manuscript ID input. No word averaging is needed
for this model, and the resulting manuscript em-
beddings contain 300 dimensions.

3.3 Classification

A baseline classifier is introduced for the bi-
nary classification of manuscripts per editor. This
simple classifier does not fit any parameters on the
training data. Instead, it predicts the editor’s deci-
sion for a new manuscript by evaluating the simi-
larity of its embedding with the embeddings of all
data points for this editor in the training set. The
cosine similarity measure is used to evaluate the
similarity of two vectors. The cosine similarity be-
tween two vectors a⃗ and b⃗ is denoted as dcos(⃗a, b⃗).
For any given editor, the training data contains a
set of accepted and declined manuscripts. The em-
beddings of a set of n accepted manuscripts are
denoted as A = {a⃗1, · · · , a⃗n}, and that of a set of

m declined manuscripts as D = {d⃗1, · · · , d⃗m}. The
prediction for a new manuscript with embeddings
x⃗ can be made using one of three methods.

The max prediction method computes the max
similarity between the target manuscript and those
in the accepted and declined sets:

amax = max
a⃗∈A

dcos(x⃗, a⃗), (3.1)

dmax = max
d⃗∈D

dcos(x⃗, d⃗). (3.2)

The prediction is then made using the following
function:

predictionmax =

{
accepted if amax ≥ dmax

declined otherwise

(3.3)
The mean prediction method computes the mean

similarity between the target manuscript and those

in the accepted and declined sets:

amean =

∑
a⃗∈A dcos(x⃗, a⃗)

n
(3.4)

dmean =

∑
d⃗∈D dcos(x⃗, d⃗)

m
(3.5)

The prediction is then made using these values in
the same way as for the max prediction method.

The max-k prediction method combines the pre-
vious two methods. It computes Ak and Dk: the
k manuscript embeddings in the accepted and de-
clined set with the highest similarity value to the
target manuscript. Then, it uses the mean predic-
tion method on Ak and Dk to make a prediction for
the target manuscript.

In evaluating these prediction methods on the
validation set for the EA prediction task, the max-k
method with k = 3 provides the best performance.
This is the prediction method used in the rest of
our experiments.

Support Vector Classification can also be
used for binary classification of manuscripts in the
EA prediction task. This method trains a support
vector machine on the training data for each editor.
The support vector machines fit a linear separation
between the two classes of data points, potentially
by mapping them onto a higher-dimensional space.
This separation can be achieved using a linear ker-
nel, polynomial kernel, or Gaussian kernel. For the
EA prediction task, support vector machines with
the polynomial kernel are used with degree 3 and
a regularization parameter of 10. These parameter
values were found by evaluating the performance of
support vector classification on the validation set.

4 EA Experiment Results

We evaluated the performance of the different em-
bedding models and classifiers on the EA prediction
task with the experiment as explained above. The
training set is used to train the classifiers, and the
test set is used to evaluate their performance. As a
measure of accuracy over all classifiers (one for each
editor), the weighted averaged f1-score is used. The
results for the Word2Vec averaging model, SciB-
ERT averaging model, and Doc2Vec model for both

6



Embedding Baseline Support Vector Random
Model Classification Classification (Stratified)

0.65
Word2Vec averaging 0.80 0.82
SciBERT averaging 0.79 0.81

Doc2Vec 0.79 0.79

Table 4.1: Weighted averaged f1-scores for different embedding models and classifiers. The random
classifier is a stratified model which makes guesses based on the distribution of classes in the
training data.

Figure 4.1: Correlation between weighted aver-
aged f1-score per editor on the testing set and
the number of training samples for the stratified
random model. Each dot represents an editor
and the smoothed average f1-score is shown.

the baseline classifier and support vector classifier
can be seen in table 4.1.

Figure 4.1 shows the weighted averaged f1-score
for each editor individually for the model using ran-
dom (stratified) classification. This stratified model
makes guesses based on the distribution of accept
and decline decisions in the training set for each
editor. Interestingly, the average score of editors in-
creases with the number of data points. Since this
model does not train on the manuscripts, this in-
dicates that the distribution of accept and decline
decisions differs for editors with more data points.
Figure 2.2 shows this distribution change for the
EA dataset; the decline rate increases for editors
with more decisions, which explains why the ran-
dom model performs better for those editors.

As seen in table 4.1, all of the embedding mod-
els and classifiers give similar performance. The

Figure 4.2: Correlation between weighted av-
eraged f1-score per editor on the testing set
and the number of training samples for the
Word2Vec averaging model with support vec-
tor classification.

combination that produces the best performance is
the Word2Vec averaging model with support vector
classification. Figure 4.2 shows the weighted aver-
age f1 scores for this combination for each editor in-
dividually. This model offers a substantial improve-
ment over the random prediction model, showing
that it is learning from the training data. For edi-
tors with more than 60 training samples, this model
gets close to a weighted averaged f1-score of 90%,
but the performance is much lower for editors with
very few training samples. The performance per ed-
itor of the other embedding models and classifiers
is very similar and can be found in appendix A.

5 Clustering Experiment

An additional experiment was set up to evaluate
whether clustering editors based on their accepted
manuscripts increases performance on the EA pre-

7



diction task. Clustering similar editors could help
overcome the limitations of sparse data and lim-
ited data availability of the EA dataset. For this
experiment, the same data cleaning steps are used
as for the EA experiment, as described in section
3.1. The embedding model and classifier that pro-
duced the best results in the EA experiment will
be used, which is the Word2Vec averaging model
with support vector classification. Editors will only
be clustered based on the content of their accepted
manuscripts because we aim to cluster editors that
would accept similar manuscripts. This technique
differs from most clustering techniques because it is
not unsupervised; the data labels are used to deter-
mine what data to use for clustering. We introduce
three supervised clustering methods for use on the
EA dataset.

Exact-match clustering exploits the fact that
for most manuscripts in the EA dataset, multiple
editors have been invited to edit them. Therefore, it
is common for a manuscript to have been accepted
by multiple editors. In exact-match clustering, ed-
itors that have accepted the same manuscript are
clustered together under the assumption that they
are likely to accept the same manuscripts in the fu-
ture. After clustering, one support vector classifier
is trained on each cluster’s accepted and declined
manuscripts. For a new manuscript, an editor’s re-
sponse will be predicted using the classifier of the
cluster with which the editor is associated.

Exact-match clustering has two main drawbacks.
Firstly, an editor only needs to have an exact match
with one editor in the cluster to be assigned to it.
Because of this, large clusters might form where
any editor only has indirect links (through another
editor) with most of the other editors in the clus-
ter. These indirect links are a weaker indicator that
two editors might accept the same manuscripts in
the future and, therefore, might decrease the per-
formance. Secondly, in exact-match clustering, edi-
tors with more accepted manuscripts are likelier to
have an exact match to another editor. Because of
this, editors with few training samples have a lower
chance of clustering than editors with many train-
ing samples. This is problematic because the EA
prediction system already performs well for editors
with many training samples but not for editors with
few data samples.

Local exact-match clustering aims to combat
the problem of indirect linking with other editors
by only clustering an editor with editors to whom
they have a direct exact-match link. As a result,
each editor will have its own ‘local’ cluster. One
support vector classifier is then trained per editor
on all the accepted and declined manuscripts in its
local cluster, and predictions are made using the
editor’s own classifier. Local exact-match clustering
solves the problem of indirect linking but still ex-
hibits the problem that editors with more accepted
manuscripts are more likely to cluster with other
editors.

Similarity-based clustering clusters editors
based on a fixed-size representation per editor.
This editor representation is computed by aver-
aging the fixed-size embeddings (obtained from
the Word2Vec averaging model) of all the ed-
itor’s accepted manuscripts in the training set.
This way, editors that have accepted many simi-
lar manuscripts should obtain similar editor rep-
resentations. The editors are then clustered using
K-means clustering (Lloyd, 1982) using a K value
of 100, 500, or 1000. One support vector classifier
is trained per cluster on the accepted and declined
manuscripts of the editors in the cluster. For new
manuscripts, a prediction for an editor is made us-
ing the classifier of the cluster associated with the
editor. This method of clustering clusters all edi-
tors, independently of how much data is available
per editor. Therefore, it does not exhibit the be-
havior of (local) exact-match clustering that editors
with more data are more likely to be clustered.

6 Clustering Results

We evaluated the performance of the different clus-
tering methods on the EA prediction task with the
experiment explained above. The training set is
used for clustering and to train the classifiers. The
test set is used to evaluate their performance. The
results, in terms of weighted averaged f1-scores, can
be seen in table 6.1.

Figure 6.1 shows the weighted averaged f1-score
per editor together with the number of decisions
of the editor. We can see that the average score
is lower than that of the method without cluster-
ing shown in figure 4.2. The lower weighted aver-

8



Clustering Method Performance
None (Baseline) 0.82
Exact-Match 0.72

Local Exact-Match 0.78
Similarity-Based, k = 100 0.75
Similarity-Based, k = 500 0.77
Similarity-Based, k = 1000 0.79

Table 6.1: Weighted averaged f1-scores for dif-
ferent clustering methods on the EA prediction
task.

Figure 6.1: Correlation between weighted aver-
aged f1-score per editor on the testing set and
the number of training samples for the exact-
match clustering method.

age f1-score over all editors of 0.72 reflects this.
The other clustering methods also perform worse
than the method without clustering; the perfor-
mance per editor for these methods can be found
in appendix B.

7 Discussion

We found that the EA prediction system using the
Word2Vec averaging model produces similar or bet-
ter results to more complicated methods, which is
in line with the findings of (Shen et al., 2018) and
partially in line with the findings of (Wieting et
al., 2015). In the EA prediction task, SciBERT-
generated word embeddings performed well when
used in an averaging model, which aligns with the
findings of (Roman et al., 2021) and (Wang et al.,
2019). The Doc2Vec model was found to be useful

in binary classification, which is in line with (Djuric
et al., 2015). However, the Doc2Vec model did not
perform better for the EA prediction task than a
word averaging model. This result is in line with
the results of (Chen & Sokolova, 2021) but in con-
flict with the findings of (Lau & Baldwin, 2016).
The most likely explanation for this is that the EA
prediction task is too different from the duplicate
detection and semantic similarity tasks used by Lau
& Baldwin, which is why the results do not gener-
alize to our task.

For the EA prediction task, we found the SciB-
ERT averaging model to perform similarly to the
Word2Vec averaging model. Since the main dif-
ferentiating factor of SciBERT word(piece) em-
beddings from Word2Vec word embeddings is
their context sensitivity, our results indicate that
context-sensitive information of embeddings is not
more predictive for the EA prediction task than
static embeddings. One explanation for this is
that abstracts and titles of manuscripts are very
information-rich pieces of text with many specific
content words. Therefore, the semantic content of
the words might be a lot more indicative of the
content of the abstract than the context in which
they are used, especially since in a word averaging
model, the context words are also used to create
the fixed-size embedding of the abstract. An impor-
tant consideration is that SciBERT is a much more
complicated model than Word2Vec and is therefore
more computationally expensive.

The correlation between performance and the
number of training samples per editor for the word
averaging model shown in figure 4.2 is also present
in the results of the random model shown in fig-
ure 4.1. Therefore, it is unclear whether the word
averaging models benefit from more training data
or if they only perform better for editors with
more training samples because the decline rate is
higher (as shown in figure 2.2). Nevertheless, the
word averaging model offers a substantial improve-
ment over random classification. However, the per-
formance is still relatively low for editors with very
few training samples (less than 25) in comparison
to editors with more training samples. This limita-
tion can be problematic because many editors have
very few training samples, as shown in figure 3.1.
The average accuracy over the whole testing set of
82% is only achieved on average for editors with
more than 60 training samples.

9



For the EA prediction task, we found that none
of the clustering methods presented here improved
the performance of the EA prediction system.
The exact-match clustering method performed the
worst of all the clustering methods, most likely be-
cause it clusters editors through indirect links and
because this method is more likely to cluster edi-
tors with many data points. The local exact-match
clustering method solved the problem of indirect
linking, and we observed better performance on the
EA prediction task. However, this method is still
more likely to cluster editors with more data points,
which is a possible explanation for why it per-
forms worse than the EA prediction system without
clustering. The similarity-based clustering method
solved this limitation of the exact-match clustering
methods, but still performed worse on the EA pre-
diction task than the method without clustering. A
possible explanation for this is that the editors in
the EA dataset are too different from one another,
which is why clustering only decreases the perfor-
mance. Another explanation is that the editor rep-
resentations used for similarity-based clustering are
inaccurate because too much information gets lost
in averaging the fixed-size manuscript representa-
tions, which are in turn averages of word embed-
dings. In future work, an experiment could be set
up to test this theory by classifying groups of texts
using a single averaged fixed-size representation.
While the EA prediction task is interesting in and

of itself, it is not guaranteed to be exactly repre-
sentative of the usage of the EA prediction system
in combination with the EBMR system. One reason
for this is that the current EA data comes from invi-
tations for which the editors were manually selected
without the help of the EBMR system. Therefore,
the EA dataset contains a higher decline rate than
expected from invitations sent out by the EBMR
system. The performance measures presented here
might not be a good indication of real-world perfor-
mance and should only be used to compare differ-
ent models. Once invitation data becomes available
from the EBMR system, it is important to reeval-
uate the performance of the word averaging model
on the EA prediction task before incorporating it
into the EBMR system.
In future work, the integration of the EA predic-

tion system and EBMR system should be imple-
mented. The most obvious way to integrate these
two systems is by using the EA prediction system as

a filtering layer on top of the EBMR system. This
filtering layer could prevent invitations from being
sent out that are likely to be declined. In this ap-
proach, there is a possibility that invitations are fil-
tered out that would have been accepted (false neg-
atives). If this is undesirable, high precision on de-
cline decisions indicates better performance. How-
ever, if the goal is to decrease the decline rate as
much as possible without regard for false negatives,
a high recall of decline decisions indicates a better
performance. To ensure that the desired precision,
recall, or overall accuracy is achieved, the decision
can be made to only use the EA prediction system
for editors with sufficient samples. For example, if
an overall accuracy of at least 70% is required, we
could decide, based on figure 4.2, to only use the
EA prediction system for editors with more than
25 samples.

8 Conclusion

This thesis presents an explorative overview of dif-
ferent embedding models and classifiers and their
performance on the EA prediction task. The main
challenge of the EA prediction task is the spar-
sity of the dataset, which results in a very lim-
ited amount of data per editor. We have demon-
strated that an EA prediction system with fixed-
size embeddings and a binary classifier can offer a
substantial improvement over a random model for
the EA prediction task. However, the EA predic-
tion task’s challenges cause this system’s main lim-
itations: its performance is worse for editors with
very few data samples. This limitation might not
be a deal-breaker when the system is incorporated
with the EBMR system, depending on the design
decisions made in the process.

As seen in table 4.1, a Word2Vec averaging
model with support vector classification offers the
best performance. The SciBERT averaging model
and Doc2Vec model perform slightly worse, but
the results of all three methods are very simi-
lar. We can not conclude that the Word2Vec av-
eraging model performs statistically significantly
better than the SciBERT averaging model or the
Doc2Vec model. However, the Word2Vec averaging
model is the simplest of these three models. There-
fore, by the principle of Occam’s razor, we con-
clude that the Word2Vec averaging model is the

10



most suitable model for the EA prediction task.
Using the Word2Vec averaging model with sup-
port vector classification, table 6.1 shows that all
of the clustering methods presented in this thesis
decrease the system’s performance. From this, we
conclude that clustering editors based on their ac-
cepted manuscripts does not improve performance
on the EA prediction task.
This thesis has found the Word2Vec averaging

model with support vector classification without
clustering to offer the best performance on the EA
prediction task. Future work can incorporate this
model into the EBMR system and evaluate how
this impacts the decline rate of invitations sent out
to editors.

References

Adi, Y., Kermany, E., Belinkov, Y., Lavi, O., &
Goldberg, Y. (2016). Fine-grained analysis of
sentence embeddings using auxiliary prediction
tasks. arXiv preprint arXiv:1608.04207 .

Beltagy, I., Lo, K., & Cohan, A. (2019). Scibert:
A pretrained language model for scientific text.
arXiv preprint arXiv:1903.10676 .

Björk, B.-C. (2015). Have the “mega-journals”
reached the limits to growth? PeerJ , 3 , e981.

Chen, Q., & Sokolova, M. (2021). Specialists, sci-
entists, and sentiments: Word2vec and doc2vec
in analysis of scientific and medical texts. SN
Computer Science, 2 (5), 1–11.

Cortes, C., & Vapnik, V. (1995). Support-vector
networks. Machine learning , 20 (3), 273–297.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv
preprint arXiv:1810.04805 .

Djuric, N., Zhou, J., Morris, R., Grbovic, M., Ra-
dosavljevic, V., & Bhamidipati, N. (2015). Hate
speech detection with comment embeddings. In
Proceedings of the 24th international conference
on world wide web (pp. 29–30).

Kalchbrenner, N., Grefenstette, E., & Blunsom,
P. (2014). A convolutional neural net-

work for modelling sentences. arXiv preprint
arXiv:1404.2188 .

Lau, J. H., & Baldwin, T. (2016). An empirical
evaluation of doc2vec with practical insights into
document embedding generation. arXiv preprint
arXiv:1607.05368 .

Le, Q., & Mikolov, T. (2014). Distributed repre-
sentations of sentences and documents. In In-
ternational conference on machine learning (pp.
1188–1196).

Lloyd, S. (1982). Least squares quantization in
pcm. IEEE transactions on information theory ,
28 (2), 129–137.

Miaschi, A., & Dell’Orletta, F. (2020). Contex-
tual and non-contextual word embeddings: an in-
depth linguistic investigation. In Proceedings of
the 5th workshop on representation learning for
nlp (pp. 110–119).

Mikolov, T., Chen, K., Corrado, G., & Dean,
J. (2013). Efficient estimation of word rep-
resentations in vector space. arXiv preprint
arXiv:1301.3781 .

Peters, M. E., Ruder, S., & Smith, N. A. (2019).
To tune or not to tune? adapting pretrained
representations to diverse tasks. arXiv preprint
arXiv:1903.05987 .

Roman, M., Shahid, A., Khan, S., Koubaa, A., &
Yu, L. (2021). Citation intent classification using
word embedding. Ieee Access, 9 , 9982–9995.

Ros, K. (2020). Iteratively linking words using
word2vec and cosine similarity..

Salton, G., & Buckley, C. (1988). Term-weighting
approaches in automatic text retrieval. Informa-
tion processing & management , 24 (5), 513–523.

Shen, D., Wang, G., Wang, W., Min, M. R., Su,
Q., Zhang, Y., . . . Carin, L. (2018). Base-
line needs more love: On simple word-embedding-
based models and associated pooling mecha-
nisms. arXiv preprint arXiv:1805.09843 .

Spezi, V., Wakeling, S., Pinfield, S., Creaser, C.,
Fry, J., & Willett, P. (2017). Open-access mega-
journals: The future of scholarly communication
or academic dumping ground? a review. Journal
of documentation.

11



Tai, K. S., Socher, R., & Manning, C. D. (2015).
Improved semantic representations from tree-
structured long short-term memory networks.
arXiv preprint arXiv:1503.00075 .

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A. N., . . . Polosukhin, I.
(2017). Attention is all you need. Advances in
neural information processing systems, 30 .

Wang, Q., Liu, P., Zhu, Z., Yin, H., Zhang, Q.,
& Zhang, L. (2019). A text abstraction sum-
mary model based on bert word embedding and
reinforcement learning. Applied Sciences, 9 (21),
4701.

Wieting, J., Bansal, M., Gimpel, K., & Livescu, K.
(2015). Towards universal paraphrastic sentence
embeddings. arXiv preprint arXiv:1511.08198 .

Yuferev, V. I., & Razin, N. A. (2021). Word-
embedding based text vectorization using clus-
tering. Modeling and Analysis of Information
Systems.

12



A EA Experiment Results

Figure A.1: Plots showing the correlation be-
tween weighted averaged f1-score per editor on
the testing set and the number of training sam-
ples for the different embedding models and
classifiers.

13



B Clustering Experiment Re-
sults

Figure B.1: Plots showing the correlation be-
tween weighted averaged f1-score per editor on
the testing set and the number of training sam-
ples for the different clustering methods.

14


