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Abstract: Statistical learning enables individuals to include regularity in their learning environ-
ment, as evidenced from the presence or absence indicated by the Mismatch Negativity (MMN)
in Event Related Potential (ERP) data. In the current study, we used statistical learning to an-
alyze 6 Mandarin tone-syllable combinations presented in two multi-featured oddball paradigms
to determine the likelihood that non-tonal language speakers were able to learn tones and dis-
tinguish between tonal differences. Subsequently, a behavioral test was conducted, wherein the
research findings indicated a lack of significant differences in the ERP results between early tone
and syllabic learning. The participants were essentially incapable of distinguishing between tone
differences during the early phase. Conversely, during the latter phase, we detected the presence
of MMN in both syllabic and tone learning. In the context of late learning, participants relied on
statistical learning to identify the tone differences. Moreover, the degree of accuracy in perceiving
tonal and syllabic differences was above the chance level in the behavioral test. Accordingly, we
concluded that non-tonal language speakers were capable of learning tones and distinguishing
between tone differences.

1 Introduction

The strenuous hurdles that non-tonal language
speakers face in mastering tonal languages are
universally and broadly recognized (Shen, 1989).
Notably, the vastly different pitch patterns, dis-
tribution, and functions between tonal and non-
tonal languages are major factors (White, 1981).
In this study, non-tonal language speaker par-
ticipants tested two multi-featured oddball tasks
through statistical learning to differentiate between
six Mandarin tone-syllable combinations. Appro-
priately, the results can be determined by observing
the presence of MMN in the ERP data to ascer-
tain memory traces of statistical learning among
the participants.

1.1 Tone and tonal language

As we mature, the innate capacity to assimilate
auxiliary language features apart from our native
language is greatly diminished. In general, an
individual’s native language substantially impacts
their perception of non-native language and affects

their ability to distinguish between linguistic fea-
tures of non-native languages (Antoniou and Chin,
2018). In a linguistic context, tone is employed as a
linguistic feature using pitch to express emotions,
indicate stress, and outline contrast. In addition,
it can be leveraged to ascertain the differences
between lexical and grammatical meaning. In a
vast majority of Western countries, tone is utilized
to emphasize word stress or express emotion (Yip,
2002). However, other languages employ tone to
both express emotion and distinguish between
words. Furthermore, languages have these linguis-
tic features are referred to as tonal languages,
which comprise more than half of the world’s
languages.

Subsequently, their intonation pattern of lexi-
cal tones is a contrastive feature that discerns the
differences between word meanings (Yip, 2002).
From a broader perspective, different tones in
conjunction with the same words could signify a
diversity of meanings. Likewise, tonal languages
such as Mandarin, Vietnamese, and Cantonese
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utilize lexical tones to distinguish between word
meanings. For instance, Mandarin (the most
commonly spoken tonal language) consists of four
tones: 1 (flat), 2 (rising), 3 (low-dipping), and 4
(high falling). In Mandarin’s linguistic context,
the same word can express different meanings
depending on the tone. For example, the usage
of the syllable /mi/ spoken with four Mandarin
tones, i.e., ‘mi1 mi2 mi3 mi4’ can be translated
as ‘to squint/narrow one’s eyes’, ‘a riddle’, ‘rice’,
and ‘honey’. Although these words have the same
pronunciation, their tone differences create vastly
different meanings.

In actuality, similar tone changes do not sig-
nify lexical meaning in non-tonal languages such
as English. Notably, specific studies highlight the
significant impact of these linguistic differences
based on lexical tone processing. For example, na-
tive Mandarin speakers are regarded as proficient
in recognizing tone (Gottfried and Suiter, 1997).
Moreover, these speakers are viewed as having a
strong categorical perception of Mandarin pitches,
which British listeners who are speakers of a
non-tonal language may lack (Antoniou and Chin,
2018). In addition, this innate native language ad-
vantage has also been detected in neurodisciplinary
studies on tone processing. Broadly, tonal language
listeners also have an advantage in cortical pro-
cessing Wong, Parsons, Martinez, and Diehl (2004)
owing to their devoted and robust subcortical
encoding of tones (Krishnan, Xu, Gandour, and
Cariani, 2005). Nevertheless, tonal languages vary
significantly in the size and composition of their
tonal inventories, which influences non-native tone
perception.

1.2 Statistical learning

Statistical learning (SL) is a crucial learning
mechanism in human cognition that allow hu-
mans to understand regularity in their learning
environment. SL usually occurs unconsciously
within minutes of exposure. (Thiessen, Girard,
and Erickson, 2016). An acquisition theory that
relies on SL proposes that an infant’s ability to
learn a language is based on pattern perception
rather than the infant’s innate biological grammar
(Wang and Saffran, 2014). Moreover, research has
shown that the perception of non-native language

features can be enhanced by implementing sta-
tistical learning language training (Erickson and
Thiessen, 2015). Likewise, the intricate language
learning process is aided by mechanisms that
subtly track the distribution of information in the
linguistic environment (Lany and Saffran, 2010).
For example, when listeners are exposed to new
speech patterns in a laboratory, they can easily
familiarize themselves with these patterns. Further
studies have argued that 9-month-old infants have
demonstrated these distinct capabilities (Saffran
and Thiessen, 2003; Kuhl, Ramı́rez, Bosseler, Lin,
and Imada, 2014), while adults maintain the ability
to rapidly acquire new phonemes following the
complete development of their native phonemes
(Goldrick, 2004).

In our study, we will adopt statistical learn-
ing to present Mandarin’s tonal vocabulary to
non-tonal speakers in order to determine the
likelihood of non-tonal speakers being able to
perceive non-native language features. We intend
to apply statistical learning in order to assess these
speakers’ capacity to learn the tonal differences.

1.3 ERPs and MMN

Several studies have revealed the human brain’s in-
herent capacity to detect subtle brainwave changes
by capturing event-related potentials (ERPs) in
an electroencephalogram (EEG), especially when
participants are constantly exposed to repetitive
stimuli. In short, our brain spontaneously detects
statistical regularities in the environment and
records ‘surprising’ events (Giuliano, Pfordresher,
Stanley, Narayana, and Wicha, 2011). We can see
evidence of statistical learning in the brain by
looking for the presence of mismatch negativity
(MMN) in ERP data.

In the MMN paradigm, the formulation of short-
term predictive representations of environmental
regularity are based on the individual’s perception
of recurrent events (Stefanics, Kremláček, and
Czigler, 2014). Specifically, establishing a direct
link between statistical learning and prediction
or consolidation is a critical factor. MMN is
usually evoked by using the oddball paradigm. The
standard stimuli (high-frequency stimuli) in the
oddball paradigm are occasionally interrupted by
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deviant stimuli (low-frequency stimuli) (Näätänen,
Paavilainen, Rinne, and Alho, 2007). MMN is
calculated by subtracting the brain’s response
to deviant stimuli from its response to standard
stimuli. In most experiments, the employed stimuli
are simple tones, while the difference between the
standard and deviant stimuli in the MMN is either
a frequency or amplitude Näätänen (1990). In
particular, MMN is observable within the range
of 200-350 ms following the stage of stimulus
presentation. In this study, we complied with the
multi-featured oddball paradigm published by
Näätänen, Pakarinen, Rinne, and Takegata (2004)
by using Mandarin tone-syllable combinations
as standard stimuli (high-frequency stimuli) and
deviant stimuli (low-frequency stimuli) presented
in the multi-feature oddball paradigm. While
research topics on exact brain regions associated
with MMN remain controversial (Zhang, Yan,
Wang, Wang, Wang, Wang, and Huang, 2018),
we will follow Näätänen et al. (2004)’s approach
and prioritize the observation of activity captured
by midline frontal (FZ) cortex electrodes in the
experimental results.

To summarize, this study exposed 6 Man-
darin tone-syllable combinations to non-tonal
language speakers to assess their ability to use
statistical learning. Additionally, the presence of
MMN can be detected by testing the participants’
ERP results. Thus, our research question is: Do
we find memory traces suggesting there is SL in
non-tonal language speakers through exposure to
two multi-featured oddball paradigms comprised
of Mandarin tones and syllables?

2 Methods

2.1 Participants

Eighteen non-tonal language speakers were re-
cruited for this experiment (10 males; Age range:
19-37, Mean age: 23.8 years). None of the partici-
pants reported hearing or neurological impairment.
Furthermore, all participants gave informed con-
sent and were paid 16 euros as remuneration within
two weeks of the experiment. As our study involved
statistical learning, we did not inform the partici-
pants in advance about the experiment content and

research topic to ensure the accuracy of statistical
learning.

2.2 Stimuli & Experimental Setup

Block Stimuli Syllable Tone

MO1
Standard1(S1) bi flat
Deviant1(D1) du flat
Deviant2(D2) bi rising

MO2
Standard2(S2) kou low-dipping
Deviant3(D3) pei low-dipping
Deviant4(D4) kou falling

Table 2.1: Table of syllable-tone combinations as
the standard and deviant stimuli in the experi-
ment.

To test whether participants would implicitly
learn and recognize changes in tone, four Mandarin
syllables (/bi/, /du/, /kou/, and /pei/) were
combined with one of the four Mandarin lexical
tones (flat, rising, low-dipping, and falling) to
produce six tone-syllable combinations in our ex-
periment. Namely, flat /du/, flat /bi/, rising /bi/,
low-dipping /kou/, falling /kou/, and low-dipping
/pei/, as 2 standards and 4 deviant stimuli in two
blocks, shown in Table 2.1.

Subsequently, a voice actress used a micro-
phone (Audio-Technica AT2020) to enunciate
and record the entire set of combinations at a
recording studio. Each audio file had a duration
of 1000ms and was harmonized using Audacity
3.1.3 to maintain an average peak frequency for
each Mandarin tone at 345, 290, 230, and 400
Hz, respectively, with a moderate intensity of
70 decibels (dB). Furthermore, the voice onset
time(VOT) was 290ms, while the offset time was
750ms for each sound file.

2.2.1 Multi-feature oddball stimuli

Our experiments used six stimuli with different
tones, i.e. two standard and four deviant stimuli,
presented in two multi-featured oddball paradigm
tasks. These experiments were created in OpenS-
esame 3.3.11. All stimuli were equally distributed
into two blocks named Multi-featured Oddball 1
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Figure 2.1: Example of multi-feature oddballs

(MO1) and Multi-featured Oddball 2 (MO2). To
highlight the effects of distributed frequencies on
specific stimuli, standard stimuli were also used as
high-frequency stimulation (HF), appearing 50% of
the time in each MO. The standard stimulus was
first presented 15 times at the beginning of the
task, followed by two deviant stimuli alternating
with the standard stimulus. The two deviant stim-
uli were low-frequency stimuli (LF), and each de-
viant stimulus was presented 25% of the time. The
two deviant stimuli were interchangeable. An exam-
ple of two multi-feature oddballs is shown in Figure
2.1. Throughout the experiment, which lasted ap-
proximately 20 minutes, the standard stimuli were
presented 315 times in each block, and each de-
viant stimulus was presented 150 times, as shown
by Näätänen et al. (2004).

2.2.2 Behavioral testing stimuli

Figure 2.2: Example of behavior testing trials

To determine the participants’ sensitivity to
tones and syllables, we tested whether they could
differentiate between different tone and syllable
stimuli. All six stimuli were used to form 32 pairs of
tone-syllable combination testing trials for the be-
havioral test. Each pair was separately presented
to the participants. Pairs of stimuli varied accord-
ing to tone (e.g., flat/bi/ and rising/bi/), syllable
(flat/du/ and flat/bi/), or both (e.g., flat/du/ and
rising/bi/). 2.2 shows an example of three pairs of

the tone-syllable combination testing trial in the
behavioral test.

2.3 Procedure

The entire experiment had two parts - the first part
was an EEG experiment with two multifeatured
oddball tasks, and the second part was a behav-
ioral test. The experiment lasted a total of one hour
- half an hour for the subject’s EEG setup, twenty
minutes for the EEG experiment and ten minutes
for the behavioural test. Participants listened to the
oddball experiment while watching a silent nature
documentary. We recorded the participants’ EEG
data using the EEG device and BioSemi. Half of
the participants started with MO1 and continued
with MO2. The other half started with MO2 and
continued with MO1 to ensure that the experiment
was counterbalanced. After the oddball experiment
ended, the behavioral experiment followed. During
the behavioral experiment, participants had three
trial tests that were used to ensure that the partic-
ipants understood the task. This was followed by a
formal test with a total of thirty-two pairs of stan-
dard and deviant stimuli, where participants had
five seconds to indicate and choose which stimulus
sounded more familiar. We recorded the accuracy
and reaction time for each testing trial. At the end
of the experiment, we also recorded the language
that participants used as well as their musical ex-
perience, as this may have affected their ability to
discriminate between tone difference.

2.4 EEG recording and pre-
processing

We used 32 Ag/AgCI active electrodes (BioSemi
ActiveTwo system) to record the EEG, and
digitized it at a sampling rate of 1024 Hz. In
addition, we attached six additional electrodes to
each participant. Two of the EOG electrodes were
placed in the outer corners of each eye, while two
others were placed above and below the left eye to
detect eye movements. Two EOG electrodes were
mounted behind the ear to detect mastoid signals.
Data from each participant was re-referenced to
determine the grand mean of whole-head elec-
trodes. Scalp impedance of each electrode was
maintained at 30 kΩ. We used the open-source
toolbox EEGLAB (Delorme Makeig, 2004) and
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custom scripts from MATLAB (MathWorks, Inc.)
to pre-process and analyze the EEG.

We pre-processed the raw EEG data to make
it viable and analyzable. First, we divided it
into two groups. The first 50% of each MO was
concatenated into one set called Early Learning.
The second 50% of each MO was concatenated
into another group called Late Learning. This was
used to analyze whether SL occurred before or
after each MO was introduced for 5 minutes. Next,
a 50 Hz notch filter was applied to the two sets
of raw EEG data, while a 0.01 Hz high-pass filter
and a 30 Hz low-pass filter were used for band-
pass filtering. This removed the noise from the
data to obtain a high-quality ICA decomposition
during subsequent processing. The data was then
re-referenced to the average reference value, and
then artifacts were removed from the data using
the automatic channel and a significantly different
artifact. This also resulted in the loss of about 20%
of the data from both sets. Hence, we re-referenced
the data based on the average reference value.
The two data sets were then corrected using the
independent component analysis (ICA) algorithm
to calculate the ICA components and return the
data to the respective channels. Moreover, high
currents captured by multiple electrodes were used
to identify sources other than the brain, namely,
eye and muscle movements, which were removed.
Finally, we divided the data into epochs starting
from 100 ms before and 900 ms after stimuli
presentation. Each epoch was labeled in the early
or late data sets as a standard stimulus, a deviant
tone stimulus, or a deviant syllable stimulus.

3 Results

In this experiment, we employed 1-way repeated
measure ANOVA in the EEGLab in Matlab to gen-
erate the ERPs result.

3.1 ERP results

Figure 3.1, we can see the ERP results of the syl-
labic learning. Specifically, Figure 3.1 a) represents
the ERP result during the stage of early syllabic
learning, which aligns with the participant’s
perceived differences between the standard stimuli

in conjunction with the deviant syllable stimuli
during this stage. Additionally, Figure 3.1 b) de-
picts the ERP result during late syllabic learning,
and portrays the difference in the participant’s
perceived difference between the standard stimuli
with the deviant syllable stimuli in this stage.

Figure 3.2 infers the ERP result in the tone
learning. Notably, Figure 3.2 c) constitutes the
ERP result during the early tone learning in accor-
dance with the participant’s perceived difference
between the standard stimuli with the deviant tone
stimuli in the early learning phase . Additionally,
Figure 3.2 d) corresponds to the ERP result
during the late tone learning. This highlights the
difference based on the participant’s perceived
difference between the standard stimuli with the
deviant tone stimuli during the late learning phase.

In each figure, the bold black vertical line
represents the voice on set time (VOT) in our
experiment, which is approximately 290ms. In
addition, the red dashed rectangle portrays the
typical occurrence of MMN. As a reminder, MMN
generally occurs between 150-250ms following the
presentation of the stimuli. (Zhang et al., 2018) In
short, the event takes place after the VOT. Ideally,
our MMN should occur within the time window of
400-500ms.

3.1.1 Syllabic Learning

Conforming with our visualization of early syllabic
learning from Figure 3.1 a), the lack of MMN
occurrence when the p-value is greater than 0.05
in the MMN area is evident. Although the deviant
stimuli elicited greater amplitudes compared to
the standard stimuli, the statistics did not show
difference (t(1228.7) = 0.91704. p = 0.3593). In
the absence of significant difference inferred from
the comparison of standard and deviant syllable
stimuli, it implies that the participant failed to
differentiate the tone difference between standard
and deviant syllable stimuli

In the late syllabic learning from Figure 3.1
b), the deviant syllable stimuli evoked a nega-
tive component and larger amplitude (t(1798)
= 24.781, p < 0.05) compared to the standard
stimuli, in tandem with the appearance of MMN
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Figure 3.1: ERP results in Syllabic learning. a)Comparison of standard to deviant syllable stimuli
in early phase b)Comparison of standard to deviant syllable stimuli in late phase

during its specific time range, thereby indicating
the prevalence of a significant difference during
late syllabic learning. Specifically, the partici-
pants failed to deduce the difference between the
standard and deviant syllable stimuli.

3.1.2 Tone Learning

In Figure 3.2 c), a MMN was shown in a narrow
time interval before 450 ms in the early tone
learning. The deviant tone stimuli elicited a
more negative component and smaller amplitude
(t(1495.1) = 21.245, p < 0.05) compared to
the standard stimuli. As a result of negligible
disparities, we were unable to deduce this is a
meaningful MMN response. Based on the time
window between 670-700ms, we could observe
pertinent components other than MMN. The
components are termed Late Discriminative Neg-
ativity (LDN) and typically appear between the
latency range of 350-450m after stimulus onset.
(Rosburg, Trautner, Dietl, Korzyukov, Boutros,
Schaller, Elger, and Kurthen, 2005) The LDN
component exhibited positive component from the
deviant tone stimuli to the standard stimuli while
concurrently displaying significant differences.

Figure 3.2 d) depicts three components dur-
ing late tone learning. Initially, MMN occurs

within the time window of 400-500ms along with
the negative ERP response and larger amplitude
(t(1797.2) = 4.1729, p < 0.05) from the deviant
tone stimuli to the standard stimuli. Accordingly,
the results highlight the participants’ ability to
distinguish the tone difference between the stan-
dard and deviant tone stimuli. P300 component is
also shown in the figure, and this event typically
happens within the range of 250-350ms after the
VOT (Dunn, Dunn, Languis, and Andrews, 1998).
In addition, the LDN component is observed
during the time window of 630-680ms. However,
both components elicited positive ERP response
in deviant tone stimuli compared to the standard
stimuli, while concurrently upholding significant
differences in P300 and LDN.

3.2 Behavior testing results

In the context of behavioral testing results, we in-
vestigated the likelihood of participants being able
to distinguish between deviant tone stimuli and de-
viant syllable stimuli from their standard counter-
parts. Accordingly, we excluded 16 testing trials
where that the stimuli differ in both tone and sylla-
ble. The remaining data were grouped into two con-
ditions of tone learning and syllable learning, with
8 testing trails for each condition. Finally, we cal-
culated the mean accuracy for syllabic learning as
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Figure 3.2: ERP results in Tone learning. c)Comparison of standard to deviant tone stimuli in
early phase. d)Comparison of standard to deviant tone stimuli in late phase

71.53 and SD as 27.58. Likewise, the mean accuracy
for tone learning was 69.14 and SD was 27.58. Fig-
ure 3.3 compares both tone and syllabic learning to
the chance level. Afterwards, we performed the one
sample T-test to compare both tonal learning and
syllabic learning to the chance levels. Based on the
results, there was a significant difference when com-
paring tone learning with the chance levels (t(17)=
4.05, p < 0.05). In addition, we saw significant dif-
ferences when comparing syllabic learning with the
chance levels (t(17) = 3.22, p < 0.05 ). Similarly,
we adopted a paired t-test to compare the magni-
tudes of tone learning and syllabic learning. How-
ever, no differences were discovered(t(17) = -0.41, p
= 0.685). Taken the above results together, we can
conclude that tone difference can be learned sta-
tistically. But our participants did not show more
prominent learning on either tones or syllables.

4 Discussion & Conclusions

The present study examined the changes in brain
waves of non-tonal language speakers during the
early and late learning phases by implementing sta-
tistical learning of tonal language. During the early
period of statistical learning, no MMN appeared in
the ERP results, which correlates with the findings
of Bogaerts, Richter, Landau, and Frost (2020).

Figure 3.3: Mean accuracy of the deviant condi-
tions for the behavior test

Conversely, participants elicited a significant MMN
in the ERP results during the second half of the
experiment (the late period). During this period,
participants deduced significant differences in both
tone learning and syllable learning, which indi-
cates tonal differences between standard and de-
viant stimuli based on the participants’ stimuli ex-
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posure. This also suggests that learning to dis-
tinguish tone differences may involve the process
of developing memory traces for two sounds with
different tones. The behavioral test results con-
firmed that non-tonal language users were capa-
ble of learning tones by participating in statistical
learning. Despite participants’ inability to distin-
guish between deviant tone stimuli and deviant syl-
lable stimuli through statistical learning, the mean
accuracy of all stimuli was greater than the chance
level.

4.1 Limitations

According to Craciun, Gardella, Alving, Terney,
Mindruta, Zarubova, and Beniczky (2014), the up-
per limit of the length of the awake EEG experi-
ment was 20 minutes. The duration of our EEG ex-
periments was around 20 minutes. Excessively long
experiments can also increase artifacts and lead
to excessive noise in the experimental data, which
can affect the accuracy of the results. Accordingly,
shortening the duration of this experiment may en-
hance the overall accuracy of its results. In addi-
tion, P300 and LDN components appeared in the
ERP data during the second half of the early and
late learning stages. The deviant tone stimuli elicit
a positive ERP response compared to the standard
stimuli, whereas it should normally elicit a nega-
tive component. Notably, this strange result could
be attributed to excessive noise in the data. Even
though we removed a vast portion of the noise dur-
ing the pre-processing phase, our laboratory’s lack
of fully soundproof facilities created disturbances
among participants during the experiment phase,
which resulted in noisy EEG data.

4.2 Future research

There are many compelling aspects that we can
meticulously evaluate during future research. It is
particularly evident that the participants’ musical
background greatly contributed to their differenti-
ation between tones. In a study by Delogu, Lampis,
and Olivetti Belardinelli (2006), a well-informed
musical background can impart the ability to dis-
tinguish between tonal differences. Accordingly, the
group comprised of highly melodic participants per-
formed better than the other group in detecting
tone variation. Mandarin includes only 4 different

lexical tones. In future studies, we plan to focus on
complex tonal languages such as Cantonese, which
has 6 lexical tones (So, 1996). Moreover, we can
employ different syllable combinations as deviant
stimuli to assess participants’ ability to detect and
distinguish between tonal differences.
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Czigler. Visual mismatch negativity: a predictive
coding view. Frontiers in human neuroscience, 8:
666, 2014.

Erik D Thiessen, Sandrine Girard, and Lucy C Er-
ickson. Statistical learning and the critical pe-
riod: how a continuous learning mechanism can
give rise to discontinuous learning. Wiley In-
terdisciplinary Reviews: Cognitive Science, 7(4):
276–288, 2016.

Tianlin Wang and Jenny R Saffran. Statistical
learning of a tonal language: The influence of
bilingualism and previous linguistic experience.
Frontiers in psychology, 5:953, 2014.

Carolyn M White. Tonal perception errors and in-
terference from english intonation. Journal of
Chinese Language Teachers Association, 16(2):
27–56, 1981.

Patrick CM Wong, Lawrence M Parsons, Michael
Martinez, and Randy L Diehl. The role of the
insular cortex in pitch pattern perception: the
effect of linguistic contexts. Journal of Neuro-
science, 24(41):9153–9160, 2004.

Moira Yip. Tone. Cambridge University Press,
2002.

Yun Zhang, Fei Yan, Liu Wang, Yubo Wang, Chun-
shu Wang, Qiang Wang, and Liyu Huang. Cor-
tical areas associated with mismatch negativity:
A connectivity study using propofol anesthesia.
Frontiers in Human Neuroscience, 12:392, 2018.

9


