
University of Groningen ·Master’s Thesis in Artificial Intelligence

Accelerated Learning and Potential Explainability Gains
Through Object-Based Deep Reinforcement Learning

Niels de Jong
Faculty of Science and Engineering,

University of Groningen

Dr. Matthia Sabatelli
Faculty of Science and Engingeering,

University of Groningen

7 July 2022

In the last two decades, artificial intelligence (ai) has seen considerable progress due to advances
in deep learning (dl). However, the challenges of data-hungriness and model explainability
seem to persist in dl’s most popular branch, namely supervised dl. Hence, researchers have
recently argued to shift attention towards non-supervised dl, such as deep reinforcement learn-
ing (drl). Within drl, a promising and relatively new avenue involves the use of high-level
features (‘objects’) in models, giving rise to object-based drl. Motivated by recent results, we
investigate whether object-level state representations accelerate learning in drl, and tentatively
attempt to answer whether they make drl methods more explainable. We do so by conducting
three experiments in which we compare, against non-object baselines, the average undiscounted
return curves of two existing and one proposed object-based drl method, while also extracting
object saliency maps (osms). Results indicate that learning may indeed be accelerated, provided
that a sufficiently effective drl method is chosen and that the representations are presented con-
sistently. Further, using the collected osms, we present a critical discussion of the potential
use of the osm as an object-based explainability tool for drl methods, and suggest how this
possible use may be evaluated in future research.

Keywords: Deep reinforcement learning (drl) · Object-based drl · Sampling efficiency ·
Model explainability

Introduction

The field of artificial intelligence (ai) has progressed con-
siderably since its inception at the Dartmouth workshop in
1956 ((Russell & Norvig, 2010), p. 17). Throughout this
historic progression, the field may be viewed as oscillating
between two contrasting paradigms. On the one hand we have
symbolic ai, which has a top-down approach to intelligence.
Its emphasis lies on generation, representation, and inference
of high-level symbols, such as logical statements. In direct
contrast to symbolic ai we have connectionist and situated or
embodied ai, which instead work from the bottom up. These
methods are relatively numerical and more biologically in-
spired, and seek to obtain intelligent behaviour from direct,
low-level input-output mappings or interactions with the envi-
ronment (Mira, 2008). During the 1940s, when ai was not yet

Dr. Sabatelli supervises de Jong’s project. Correspondence con-
cerning this thesis should be addressed to Niels de Jong, University
of Groningen, Broerstraat 5, 9712 CP, Groningen. Email should be
sent to n.a.de.jong@student.rug.nl.

a stand-alone research area, but instead still a component of
cybernetics (Goodfellow, Bengio, & Courville, 2016, pp. 12–
17), the field was situated largely within the second paradigm.
Then, from the Dartmouth conference until the mid-1980s,
researchers shifted their attention towards symbolic ai, after
which, from the 1990s onward, the connectionist paradigm
took on prominence again, albeit now more familiarly under
the name of ‘artificial neural networks’ (anns; Mira, 2008).
From around 2006 and onward, deep (artificial) neural net-
works (dnns) became viable to train due to broader access to
large datasets and advances in computer hardware, perhaps
most notably gpus (Goodfellow et al., 2016). Especially since
2012 (Krizhevsky, Sutskever, & Hinton, 2012), research in
ai once again appears firmly located in the connectionist
paradigm.

The recent successes achieved by deep learning (dl, the
field that studies dnns) are arguably caused by two primary
reasons. The first reason is possibly the most apparent: deep
learning methods have enabled advancements in for instance
computer vision (Krizhevsky et al., 2012), speech recognition
(Mohamed, Dahl, & Hinton, 2012), and natural language pro-
cessing (Vaswani et al., 2017) because of their unprecedented

mailto:n.a.de.jong@student.rug.nl

2 DE JONG

capability to map high-dimensional inputs to outputs. The
second reason flows from the first. Because of this mapping
capability, practitioners often need to perform fewer manual
steps in order to supply appropriate inputs, as compared to
simpler models such as linear regressors. Although generally
useful, this property is essential in situations where we have
inputs for which we do not generally know how to consis-
tently and efficiently extract relevant features from. Such
input classes often are (nearly) unconsciously processed by
what Kahneman (2011) would call ‘system 1’, such as the
just-discussed visual and auditory stimuli. However, dnns
may be of use in any problem domain where we have few
a priori insights in what may explain input-output relations.
Think, for example, also of weather (H. Wang, Lei, Zhang,
Zhou, & Peng, 2019) or stock market prediction (Chong, Han,
& Park, 2017).

A subdomain of deep learning known as supervised deep
learning has been most intensively studied in the last two
decades (Smith, 2020), and within this subdomain most of
the aforementioned successes have been obtained. However,
some important challenges seem to persist as well (Adadi,
2021; Marcus, 2018).

One of the challenges is data-hungriness, which refers to
the issue that often a significant amount of input-output pairs
need to be supplied to dl models for training before they reach
reasonable performance. Although we stated above that dl
has been enabled, in part, by exposure of large, high-quality
datasets, the problem persists because such datasets cannot
be readily prepared for every problem domain. For exam-
ple, collecting large amounts of data points in the healthcare
domain is difficult in part due to data privacy requirements.
In a sense, collecting enough samples is besides the point:
intuitively, modern ai systems should be able to learn more
efficiently, because we know animals are able to learn from
just a couple of examples. As Yoshua Bengio phrases it in
Smith ((2020), par. 2): “[. . .] Humans don’t need that much
supervision.”

Besides data-hungriness, another challenge for especially
supervised dl systems is explainability (Gilpin et al., 2018).
In their paper, Gilpin and co-authors suggest to distinguish
interpretability from explainability. They roughly define in-
terpretability as “[. . .] the science of comprehending what
a model did (or might have done)”. Explainability instead
requires “[. . .] models that are able to summarise the reasons
for neural network behaviour, gain trust of users, or produce
insights about the causes of their decisions” (Gilpin et al.,
2018, both on p. 80). Explainability is a desirable and often
crucial property of models, as such models may be easier
to debug, more straightforward to understand by expert and
non-expert users alike, and less prone to systemic biases, as
such biases are exposed more readily (Adebayo et al., 2018).

Since the aforementioned two challenges appear not eas-
ily solvable under supervised deep learning, multiple promi-

nent researchers have suggested to consider alternative, non-
supervised deep learning methods (Smith, 2020). For exam-
ple, Turing award-winner LeCun’s “[. . .] money is on self-
supervised learning, for machines to learn by observation, or
learn without requiring so many labelled samples” (Smith,
2020, par. 7).

One alternative to supervised deep learning that may be
particularly interesting is deep reinforcement learning (drl).
In order to understand drl, one first needs to grasp what
reinforcement learning (rl) is. One working definition may
be “a field of machine learning [ml] that focuses on how to
map [states] to actions [. . .] so as to maximise a numerical
reward signal”, paraphrasing (Sutton & Barto, 2018, p. 1).
Deep rl, then, is the involvement of dnns in this mapping,
often to estimate how much reward actions in states tend to
produce (Mnih et al., 2015). drl is of interest in our search
to alternatives to supervised dl, as it at least may address
the issue of data-hungriness. This is thanks to the fact that,
in (d)rl, we do not work with labeled input-output pairs but
with reward signals that are generated by an environment.
Crucially, the implementation of such reward signals may
sometimes be more straightforward to obtain than the large
amounts of samples required by supervised dl. For example,
in robotic control, it may be more straightforward to signal
a negative reward on contact with a rigid surface instead
of annotating frames of a robotic arm reaching dangerously
close to such a surface. In these cases, the drl approach
is less data-hungry in the sense that we annotated samples
follow automatically once the reward function is specified.
Here, of course, we rely on the reward function being easily
characterised, which is not always true.

However, rl methods that incorporate dnns directly still
face the explainability challenge. Moreover, learning may
take significant amounts of time—running programs for more
than a month is not uncommon for the just-mentioned Atari
environment, for example (Mnih et al., 2015, p. 534; Machado
et al., 2018, p. 532).

An avenue of research within drl that may address all
three problems may be called ‘object-based drl’. With this
approach, we exploit the fact that in deep reinforcement learn-
ing, the mapping from states to actions to take in those states
may actually be broken down into two steps. First, we encode
the states into a high-level representation, and then, in the
second step, we use this encoding of the state to make deci-
sions. This strategy intuitively appeals to how humans make
decisions at the level of ‘objects’ instead of low-level, minute
details. In playing video games, for example, a human player
would probably not deem singular changes in pixel colors
significant—it would instead reason about the playable char-
acter and how it interacts with opponents and items. Multiple
authors have taken an ‘object-based’ approach to drl and
obtained promising results; such studies range from playing
games to robotic control (Li, Sycara, & Iyer, 2017; Goel,

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 3

Weng, & Poupart, 2018; Lample & Chaplot, 2017; Guo,
Dong, Chen, & Li, 2019).

Motivated by the results obtained in object-based drl, we
formulate two research questions based on the two challenges
of drl that we identified above. Particularly, these two ques-
tions are:

1. Does representing the state by its high-level objects ac-
celerate learning in deep reinforcement learning meth-
ods, and

2. Can these high-level object representations make deep
reinforcement learning methods more explainable?

To make the investigation into these two research questions
concrete, we will work with and build on top of two relatively
recent papers that utilise an ‘object-based’ approach, namely
Li et al. (2017) and Goel et al. (2018). Furthermore, we
use a set of baselines provided by Castro, Moitra, Gelada,
Kumar, and Bellemare (2018)’s Dopamine framework to fa-
cilitate comparison to non-object-based approaches. Apart
from this, we must stress that our aim is to provide an answer
to the first research question, while we are only in the position
to give a tentative answer to the second question.

In addition to testing both Li et al. (2017) and Goel et al.
(2018)’s approach in the context of our two research ques-
tions, we seek to contribute to the research community by
introducing a third approach—essentially a further-simplified
version of (Li et al., 2017)’s architecture—which we involve
in our experimentation as well. Moreover, we propose and
implement three improvements for the computation of object
saliency maps (osms)—the object-based explainability tool
pioneered by Li and colleagues—and critically discuss their
merit as such a tool.

This thesis, then, is structured as follows. We begin in the
Theory by giving a brief exposition of some of the central
principles that underpin reinforcement learning. The Related
Work resumes from where the Theory ends by covering two
papers that have influenced the trajectory of deep reinforce-
ment learning (Mnih et al., 2015; Hessel et al., 2018), along
with the work done by Li et al. (2017) and Goel et al. (2018).
Then follows the Methdology, which explains in detail how
we operationalise the two research questions posed above,
building on the just-established Theory and Related Works.
Subsequently, we present our findings in the Results, which
is then succeeded by the Discussion. Finally, we close this
thesis in the Conclusion.

Theory

Markov Decision Processes (MDPs)

In order to understand the problem reinforcement learn-
ing tries to solve, we need to understand Markov Decision
Processes (mdps; Bellman, 2010; Puterman, 1994). As the
name implies, an mdp is a special type of stochastic process.

Generally, stochastic processes are defined as ordered sets of
random variables. In the case of mdps, we have an ordered
set of the form

{ (Rt, S t, At) | t ∈ T } , (1)

where Rt, S t, and At are the reward, state, and action at time
step t. The values that the rewards, states, actions, and time
steps can take on—respectively, R, Sall, A, and T—depend
on the problem that is modelled using the mdp framework. For
instance,Sall may be the set of points in [0, 255]210×160×3—the
possible images that can be displayed by a single Atari 2600
game frame; similarly, T is often the set of natural numbers,
N, representing discrete time.

Three notes need to be made at this point. First, we will
use T = N within this thesis. Second, although not generally
necessary, we will always set R0 to 0; it is a preset value and
not part of the random variables. Third, we have made the
set of possible actions A uniform across all possible states
Sall. This need not be true in more rigorous treatments of
mdps: one can imagine that only certain strict subsets of A
are legal within certain strict subsets of Sall. In that case, we
could instead write A(s) ⊆ A, for all s ∈ Sall, to make this
point explicit. Within this thesis, this uniformity assumption
is appropriate and thus used.

The connection between successive triples in an mdp is
defined by means of a so-called transition function,

pt
(
s′, r | s, a

) def
= P

(
S t = s′,Rt = r | S t−1 = s, At−1 = a

)
, (2)

for all s, s′ ∈ Sall, r ∈ R, a ∈ A, and t ∈ T \ {0}. Here, we
notationally view states as vectors and actions and rewards as
scalars. This is of course not generally applicable, but it is in
the context we will apply the mdp framework to. In words,
p maps state-action-reward-next state quadruples to values
within [0, 1], effectively assigning a probability of transition-
ing from (s, a) to s′, obtaining reward r along the way. Notice
that this transition function definition shows why the process
is regarded as Markovian: we rely only on the directly pre-
ceding state of s′, namely s; no states preceding s influence
pt(s′, r | s, a). Note further the subscript on pt: in the general
case, the transition function may adapt as t increases. If this
is not the case, we may drop the t subscript.

By now, it may be clear what the terms ‘Markovian’ and
‘process’ pertain to within the mdp framework. Equally im-
portant in mdps, however, is the decision maker. Given the
aforementioned stochastic, Markovian process, the objective
of the decision maker is to select actions within visited states
in such a way that the cumulative future-discounted reward
is maximised, in a manner to be made precise later. This
aggregation of rewards, also known as the return, is defined
as

Gt
def
=

∞∑
k=0

γkRt+k+1, (3)

4 DE JONG

where 0 ≤ γ < 1 is a hyperparameter known as the discount
rate, controlling how near- or far-sighted the decision maker
is: the lower γ is, the more the decision maker values near-
immediate rewards over longer-term rewards. An mdp with
γ = 0 is known as an undiscounted Markov Decision Process,
whereas one with γ , 0 is a discounted one; most mdps are
of the latter type. Besides this, t is any value in T .

The decision maker may influence its trajectory through
the mdp—and therefore its returns—by selecting actions ac-
cording to a decision function π(a | s). This is a function that
maps states to actions to take in those states; it may either be
probabilistic or deterministic. If bothSall andA store discrete
values, then π is a probability mass function (pmf); otherwise
it is a probability density function (pdf) in the states, actions,
or both. Also, if we fix π, the mdp reduces to a Markov
chain, with only the transition function pt affecting possible
outcomes in successor triples (Rt+1, S t+1, At+1).

Before moving on, we must note that mdps come in two
variants: episodic and continuing. In the former type, a
strict subset of the states Sall is known as the set of terminal
states. If the decision maker visits such a state, the sequence
of state-action-reward triplets stops. This does not occur
in the continuing type of mdps, where sequences proceed
indefinitely. From now on, if we consider episodic mdps, let

[0,T0], [T0 + 1,T1], . . . , [Tn−1 + 1,Tn], . . .

with T−1
def
= −1, T0,T1, . . . ∈ T , and n ∈ N

represent the episodes’ time step ranges, with T0,T1, . . . rep-
resenting time steps at which the decision maker encounters
terminal states. The symbol T−1 is notationally introduced
to allow us to write time step intervals covering episodes; it
does not represent a true time step in T . At terminal states
sT0 , sT1 , . . . any action may be taken (but is not ‘used’ further
in the process), and the reward is always set to zero: RTn = 0,
for all n ≥ 0. Then, at time steps T0 + 1,T1 + 1, . . . ∈ T , the
decision maker starts with a new instance of the stochastic
process, although it itself and its decision function carry over
from the just-ended episode. Notice that, possibly against
one’s intuition, time does not reset per episode. This is
purely done to enable certain mathematical expressions. Fur-
thermore, we must provide an alternative definition of re-
turn for the episodic case. Particularly, if we use Gt with
t ∈ [Tn−1 + 1,Tn], for any n ≥ 0, then the episodic return’s
definition is

Gt
def
=

∑Tn

k=t+1 γ
k−t−1Rk if t ∈ [Tn−1 + 1,Tn⟩,

0 if t = Tn,
(4)

with the same qualification on γ as in Equation 3. We require
one last notational addition to include episodic mdps in our
treatment. From now on, let S encompass all non-terminal
states and let Sterminal denote all terminal states. Note that
Sall = S ∪ Sterminal. For continuing tasks, Sterminal = ∅.

A natural observation to make is that not all decision func-
tions are equal in the returns they are probable to generate.
In order to determine which decision functions are relatively
‘good’—in the sense that their returns are probable to be rel-
atively large—we introduce two important functions. First,
the value function (of a state s, with respect to a policy π):

vπ(s) def
= Eπ[Gt | S t = s], (5)

for all s ∈ S, t ∈ T, and π ∈ P,

where P is a new symbol representing the set of all possible
policies. vπ(s) expresses the expected return of making de-
cisions using decision function π after having visited state s.
Intuitively, vπ(s) simultaneously expresses how ‘potent’ state
s is in terms of returns to be gained from it, as well as how
‘effective’ decision function π is in leveraging states to obtain
returns. Note that these two views are strongly related: a
state from which only low returns can be extracted make any
decision function seem ineffective, and, vice-versa, a policy
that cannot extract high returns in any state may cause all
states to have a relatively low vπ-valuation. Apart from this,
note that the valuation of any terminal state s ∈ Sterminal is
zero, because no further rewards can be gained once such a
state is visited.

The second π-evaluating function is very similar to vπ(s).
It is known as the action-value function (of a state-action pair
(s, a), with respect to a policy π) and it defined as follows:

qπ(s, a) def
= Eπ[Gt | S t = s, At = a], (6)

for all s ∈ S, a ∈ A, t ∈ T, and π ∈ P.

Akin to vπ(s), qπ(s, a) expresses the expected return of taking
action a upon visiting state s, and following decision function
π from that point onward. Further, as is the case with vπ(s),
qπ(s, a) = 0 when s ∈ Sterminal, for all a ∈ A.

An important observation pertaining to vπ(s) and qπ(s, a)
is that, because of their definitions, they can be recursively
expanded (Bellman, 2010; Sutton & Barto, 2018, pp. 59 ff.).
To begin, for vπ(s) we have

vπ(s) def
= Eπ[Gt | S t = s]
= Eπ

[
Rt+1 + γGt+1 | S t = s

]
=

∑
a∈A

π(a | s)
∑

s′∈S,r∈R

p(s′, r | s, a)

·
(
r + γEπ

[
Gt+1 | S t+1 = s′

])
=

∑
a∈A

π(a | s)
∑

s′∈S,r∈R

p(s′, r | s, a)
(
r + γvπ(s′)

)
, (7)

for all s ∈ S, t ∈ T, and π ∈ P,

where we applied the definition of vπ(s)—Equation 5—in the
transition from the one-to-last line to the last line, noting that

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 5

s′ is the state at t + 1. Similarly, for qπ(s, a) we obtain

qπ(s, a) def
= Eπ[Gt | S t = s, At = a]
= Eπ

[
Rt+1 + γGt+1 | S t = s, At = a

]
=

∑
s′∈S,r∈R

p(s′, r | s, a)
∑
a′∈A

π(a′ | s′)

·
(
r + Eπ

[
Gt+1 | S t+1 = s′, At+1 = a′

])
=

∑
s′∈S,r∈R

p(s′, r | s, a)
∑
a′∈A

π(a′ | s′)
(
r + qπ(s′, a′)

)
,

(8)
for all s ∈ S, a ∈ A, t ∈ T, and π ∈ P.

Again, we re-invoke the definition of the (action-)value
function—Equation 6 this time around—to obtain an inward-
expanded variant of qπ(s, a). Together, Equations 7 and 8
demonstrate the Bellman equation for the state- and action-
value functions, respectively. It will be used later to motivate
certain optimisation strategies for mdps.

We are now in the position to express more precisely
when we regard a decision function as being optimal. Let
π, π′ ∈ P be two policies. Then define the binary relation
≥ : P × P → {⊤, ⊥}, where π ≥ π′ is true if and only if
vπ(s) ≥ vπ′ (s), for all s ∈ S. Then, if for some policy π∗ ∈ P
it is true that

vπ∗ (s) ≥ vπ′ (s) for all s ∈ S and all π′ ∈ P
⇔

π∗ ≥ π′, for all π′ ∈ P, (9)

then we say that the policy π∗ is optimal with respect to the
mdp it is trying to maximise expected return for.

It is important to note that multiple optimal decision func-
tions may exist with respect to the mdp under consideration.
The value function for such optimal policies is known as
the optimal state-value function, or v∗(s). It is additionally
known that all such optimal policies have an identical, so-
called optimal action value function, q∗(s, a), as well (Sutton
& Barto, 2018, pp. 62–63).

Given the notion of an optimal policy π∗ ∈ P, the prob-
lem posed by mdps is this. Start at time t = 0. Let
the decision maker sequentially receive triples (rt, st, at) via
pt(st, rt | st−1, at−1), πt−1(at−1 | st−1) and πt(at | st), where the
decision maker only sees the triples, and often has no knowl-
edge of pt. Design an algorithm by which the decision maker
updates its πt−1 to πt given triples generated up until t by the
mdp, so as to obtain—or approximate as closely as possible—
one of the π∗ as defined by Equation 9. Note that, if the
problem is episodic, it continues across episodes: the triples
are reset, but the decision maker and decision function remain
in the configurations they were in at the end of the terminated
episode.

A straightforward and exact solution to the mdp problem
is to solve the so-called Bellman optimality equations via

dynamic programming; these are special cases of the Bell-
man equations for when vπ = vπ∗ and qπ = qπ∗ , for some
optimal policy π∗ ∈ P (Sutton & Barto, 2018, pp. 63–67).
However, this approach requires perfect knowledge of the
transition function pt—something that is often not applicable.
Even if pt were available, solving the problem exactly via dy-
namic programming can become computationally unwieldy
beyond toy problems. Thus, we need more sophisticated ap-
proaches.1 Before investigating more realistically applicable
solutions, we relate the mdp problem to the reinforcement
learning problem, and continue with the latter notion within
this thesis.

The reinforcement learning problem

The preceding discussion on mdps provides a minimal,
mathematical fundament necessary to understand the rein-
forcement learning problem. However, to transition from the
general mathematical topic of mdps to reinforcement learn-
ing, we need to shift in perspective and terminology: although
the mathematics remain very similar, conceptually, the two
fields are quite distinct. We now briefly detail this conceptual
difference.

The challenge of finding (near-)optimal decision functions,
in the sense of Equation 9, can be regarded as a pure, math-
ematical task of finding a π ∈ P that seeks to maximise the
expectation over future-discounted reward random variables
R0,R1, . . . , considering the stochasticity of the process, em-
bodied in the transition function pt. This search is carried out
by an algorithm that we previously called the decision maker.

In contrast, the (d)rl field views the decision maker first
and foremost as an active, autonomous system that adapts its
behaviour in response to feedback; the agent is implemented
as an algorithm, but it is viewed as an entity.

Concretely, this changes the terminology in the following
way. Previously, we said that a decision maker transitioned
from some reward, state, action triple (r, s, a) ∈ R × S × A
to another successor triple (r′, s′, a′) ∈ R × Sall × A2 due to
the transition function p(s′, r′ | s, a) and the decision function
π(a | s). In the terminology of (d)rl, we instead say that an
agent took action a in state s by following its policy π(a | s). In
turn, it received reward r′ and moved on to state s′ according
to the environment’s dynamics, dictated by p(s′, r′ | s, a).

1We remark that a sub-branch of dynamic programming, known
as approximate dynamic programming, may be used if one wishes
to continue using dynamic programming when time and memory
complexity increase. See, for an exposition, Buşoniu, Babuška, de
Schutter, and Ernst (2010).

2The successor state may be a terminal state, while the preceding
state may not. That is, unless we say that terminal states determin-
istically transition to themselves indefinitely and with zero reward,
as discussed above in the unification of episodic and continuous
problems.

6 DE JONG

Given this shift in perspective, we can rephrase the mdp
problem. Start at time t = 0. Let the agent continually
observe the environment, producing, at time t, state st. Based
on this state, the agent takes action at, drawn from its policy
πt(at | st), obtaining reward rt+1 and observing next state st+1
in doing so. Design an agent which adapts its policy from πt

to πt+1 such that the policy converges to—or approximates as
closely as possible—one of the π∗ as defined by Equation 9.
As was the case in the original mdp problem, the agent and
policy ‘carry over’ from episode ends to next episodes if the
problem is episodic.

The just-formulated task is known as the reinforcement
learning problem. As was mentioned in the mdp section, it is
often impractical to find a policy that exactly equals one of the
π∗, primarily due to memory and computational constraints.
For instance, if we would keep track of our approximations of
qπ(s, a), for every (s, a)-pair, the time and memory demands
of our program would grow at least proportional to |S| × |A|,
which can be significant if either S or A (or both) become
large sets. Thus, we often seek to approximate the π∗s as close
as possible. This ‘weaker’ task formulation is also adopted
within this thesis.

Two solution classes

As mentioned above, dynamic programming is a solution
that, in principle, is capable of solving the reinforcement
problem. It assumptions often do not hold, though—perhaps
first and foremost the requirement that the environment’s pt

is given in full. Within this subsection, we present two
reinforcement learning solution classes that do not require
this model to be present. They are known as Monte-Carlo
methods and temporal difference methods. Although they
both learn environmental dynamics from experience instead
of from specification, they can be viewed as polar opposites
of one another.

Monte-Carlo methods. Perhaps the primary character-
istic of agents from the Monte-Carlo solution class is that
they adapt their policies only after episodes have ended. Note
that as a direct consequence, this approach to reinforcement
learning is not well-defined for continuing problems. Further,
we could view Monte-Carlo methods as sampling full returns
from all possible (s, a) ∈ S×A pairs defined for the problem
that is being addressed.

In order to explain Monte-Carlo methods formally, we
begin by noting that, within Monte-Carlo methods, policies
are fixed within single episodes. As such, let us introduce the
notation πn ∈ P to denote the policy used within nth episode,
with n ≥ 0. Then realise that policy πn is in use at time steps
in the range [Tn−1 + 1,Tn]. Given this, we follow the division
of concerns used in Sutton and Barto (2018). Specifically,
we first consider the problem of making an estimate Vn of
vπn , and, analogously, of making an estimate Qn of qπn . We
subsequently find a way by which we can update πn to πn+1,

in order for it to be used in the next episode. Finally, we com-
bine the previous two steps to arrive at a complete control
algorithm to which a Monte-Carlo method can adhere.

We start with the estimating vπn using Vn. If the agent only
collects full episodic returns g0, gT0+1, . . . , then there is an
intuitive way to estimate vπn . Begin by observing that, at the
end of episode n, returns g0, . . . , gTn−1+1 are known. Given
these, we can, per state s ∈ S, collect returns starting from s
per each episode. We do so by finding per g ∈ g0, . . . , gTn−1+1
the first time step after having visited s—call this step tg, s ∈ T ,
and taking the arithmetic mean of the returns from these time
steps onward:

Vn(s) def
=

∑
g ∈ {g0, ..., gTn−1+1}

gtg, s

n + 1
(10)

≈ Eπn [Gt | S t = s]
≈ vπn (s),
for all s ∈ S, t ∈ T, and n ≥ 0.

It may happen that state s is never visited in some return g.
In that case, we let gtg, s = 0. The approximation given in
Equation 10 is known to converge to vπn as the collection of
first visits to states s tends to infinity (Sutton & Barto, 2018, p.
93). Another similar approximation exists that uses all visits
to s within episodes—not just the first one—but we omit that
case here.

Our motivation for using state- and action-value functions
is to inform updates to policy. In any method that does not
assume a model—including Monte-Carlo methods—we as
such cannot use Vn, because it stores no information on the
value of actions performed in states. Thus, we use the closely
related estimation Qn instead:

Qn(s, a) def
=

∑
g ∈ {g0, ..., gTn−1+1, gtg, s, a }

gtg, s, a

n + 1
(11)

≈ Eπn [Gt | S t = s, At = a]
≈ qπn (s, a),
for all s ∈ S, a ∈ A, t ∈ T, n ≥ 0,

where we use the symbol gtg, s, a , with tg, s, a ∈ T , to denote
the cumulative, future-discounted return starting from state-
action pair s, a ∈ S × A in the trajectory that yielded return
g. Qn(s, a) has a similar convergence guarantee as Vn(s).
We may now use Qn(s, a) to update πn to πn+1. The naive
approach would be to, per state s ∈ S, select that action
a ∈ A that produces the maximal Qn(s, a)—a fully greedy
policy update. This course of action is problematic how-
ever, because it produces policies that never select certain
state-action pairs. If the optimal policy includes such never-
selected pairs, then greedy policy updating gets stuck in a
‘local optimum’ of policy-space. Instead, we must ensure a
minimal level of exploration. Two ways of doing so are: (i)
Ensuring a nonzero probability of the agent starting in state-
action pair (s, a) ∈ S × A, for all possible pairs. This can

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 7

be an unrealistic requirement, especially if the state-action
pair-space is considerably large. (ii) Guaranteeing a minimal
level of action-exploration per state. This can be done by
making πn ε-soft, which would impose the requirement that

πn(a | s) ≥
ε

|A|
, (12)

for all s ∈ S and a ∈ A. ε ∈ ⟨0, 1⟩.

The ε-greedy method of updating to πn+1 is one way to com-
promise between exploration and exploitation:

πn+1(a | s) =

1 − ε + ε
|A|

if a = arg max
a′∈A

Qn(s, a′),
ε
|A|

otherwise.
(13)

We present this ε-greedy updating method as an exemplary
approach to updating the policy; other procedures exist as
well.

Given our method of obtaining Qn(s, a), as well as an ap-
proach to updating πn to πn+1, we can simply cycle between
policy evaluation (producing Qn) and policy improvement
(yielding πn+1), for all n ≥ 0. The specific algorithm may
differ depending on how, for example, exploration is guaran-
teed, but this is a brief and minimal exposition of the primary
mechanism behind a Monte-Carlo agent.

Temporal-difference learning methods. As mentioned
before, Monte-Carlo methods have a great advantage over
analytical, dynamic programming methods: they learn the
environmental dynamics instead of needing these to be spec-
ified. Despite this, the Monte-Carlo solution class has a
weakness that may become problematic in certain problem
domains: they work on full, sampled returns instead of indi-
vidual rewards. Besides that it would be convenient to update
more frequently, it may also result in more efficient learning,
because a relatively rapidly updated policy may take on more
‘informative’ trajectories.

An extreme example: imagine a policy that has been ini-
tialised unfortunately and that, as a result, remains stuck in a
heavily penalising state throughout the complete first episode.
Monte-Carlo methods would need to await the whole episode
before being able to rectify behaviour. If we instead used a
faster-updating method, we could correct the policy already
during the episode. This would possibly cause the agent to
experience other states beside the penalising state; those other
states could then also be updated during the first episode while
the Monte-Carlo method would never have observed them.

This intuition motivates the solution class of temporal-
difference (td) learning methods. Because td learning meth-
ods update more frequently than after every episode, instead
of using the symbols Qn, qπn (s, a), and πn(a | s), we instead
use Qt+m, qπt+m (s, a), and πt+m, with t ∈ T and m ≥ 1. m
represents the number of steps we consider the update to πt

over. As was the case with the Monte-Carlo solution class,
we first discuss the evaluation problem, move on to the policy

improvement problem, and finally arrive at a specification for
agent control by combining the two steps.

We begin, again, with the action-value estimation prob-
lem. In the Monte-Carlo case, we used the arithmetic mean
of first-visits of state-action pairs across sampled trajectories
to obtain estimates Qn(s, a) ≈ qπn (s, a). Within td learning,
we instead estimate the action-value function for t + m time
steps from now. In order to do so, we leverage the definition of
return (Equation 3) to introduce the symbol Gt:(t+m). In words,
it expresses a future-discounted reward accumulation starting
from step t and adding up until t + m − 1, after which the
remaining rewards may be replaced by our Qt+m−1-estimation
of the remainder of the return, Gt+m−1. Mathematically, the
definition of Gt:(t+m) is

Gt:(t+m)
def
= Rt+1 + γRt+2 + · · · + γ

m−1Rt+m+

γmEπ[Gt+m−1 | S t+m = st+m, At+m = at+m],
(14)

for all t ∈ [0, T0 − m⟩ ∪ [T0 + 1, T1 − m⟩ ∪ · · ·

and m ≥ 1.

In the special case of Gt:(t+m) with t ≮ Tn −m, for any m ≥ 0,
Gt:(t+m) is defined to simply be Gt; in estimating Gt:(t+m), we
would drop the Gt+m−1 term in that case. Given this symbol,
we can finally specify how to estimate qπt+m (s, a). We do so
by defining Qt+m(st, at) as

Qt+m(st, at)
def
= Qt+m−1(st, at)

+ α
(
rt+1 + γrt+2 + · · · + γ

mQt+m−1(st+m, at+m)

− Qt+m−1(st, at)
)
, (15)

with the same qualifications for t and m as were the case in
Equation 14, and where α ∈ [0, 1] is called the learning rate.
Commonly, α ≪ 1.

Equation 15 shows why the solution class of temporal-
difference learning methods is named the way it is: the ap-
proach to estimating the action-value function is incremen-
tal, with successive corrections being made to action-value
estimates Q(s, a). These corrections are made by consid-
ering the discrepancy (thus, ‘temporal difference’) between
(i) the accumulated, future-discounted rewards of the last m
time steps plus a future-discounted stand-in for Gt+m, namely
the estimate Qt+m−1(st+m, at+m), and (ii) our current estimate
Qt+m−1(st, at). The former is sometimes referred to as the
target value; the latter is known as the predicted or estimated
value. Their difference is used to adjust Qt+m over the time
steps within an episode. Notice that the agent updates its
action-value estimates starting from time step m, and that the
last m−1 updates only get applied after an episode has ended,
provided that the problem is episodic.

As was the case in the Monte-Carlo solution class, the
policy improvement step builds upon the result of the action-

8 DE JONG

value estimation step. We can once again choose an ε-soft
policy, with ε ∈ ⟨0, 1⟩. Alternatively, we can separate the
policy πt+m into two: a target policy πtarget

t+m and a behaviour
policy πbehaviour

t+m . We can optimise the former greedily with
respect to Qt+m−1, while the latter remains ε-soft. However,
doing so requires taking into account the probabilistic differ-
ence in action selections per state between the two policies.3
Apart from this, td control follows from cycling back and
forth between action-value estimation and acting on these
estimations using a scheme such as ε-soft.

A special case of temporal-difference learning is known as
Q-learning (Watkins, 1989). The method is historically sig-
nificant due to it being the first off-policy temporal-difference
learning method. It also does not use importance sampling,
as suggested above. Let us consider the m = 1 case of Q-
learning. In this method, Qt+1-estimates are made according
to

Qt+1(st, at) = Qt(st, at) +

α
(
rt+1 + γmax

a∈A
Qt(st+1, a) − Qt(st, at)

)
,

(16)

where one should note the maximisation over the action-value
estimation; in the general m ≥ 1 action-value estimation
method presented earlier, we did not use such a maximum.
This maximisation is precisely the reason why Q-learning
may be used off-policy: the maximum operator implicitly
makes policy improvement strictly greedy with respect to the
Q-values. Crucially, however, we can introduce another be-
haviour policy that determines the action to take next; it need
not be equal to the implicit action-value-updating policy.

Related Work

Deep Q-networks

Most of the papers discussed in these Related Works extend
the work done by Mnih and colleagues on deep Q-networks
(dqns) (Mnih et al., 2013, 2015). As such, we start by
considering this seminal work.

Motivated by advances in the visual and auditory problem
domains, such as in Krizhevsky et al. (2012), the authors pose
the question of how to extend deep learning to the domain of
reinforcement learning. The challenges identified thereafter
flow directly from the fact that reinforcement learning is, in
some regards, very different from regular supervised learn-
ing problems. First, reinforcement learning has no notion
of ‘output labels’; instead, agents receive rewards per each
action taken. Although seemingly related, they function very
differently from the perspective of model training: labels
are always present (at least in the classic supervised learning
setting), they are assumed to be the ground truth, and you can
directly associate labels to inputs. Environmental rewards, in

contrast, may only be dispensed sporadically, may be contra-
dictory from one observation to the next, and may only be
presented after the ‘root cause action’ has been taken many
time steps back. Second, the input observations are highly
correlated: having seen some st, one can generally infer most
of the content of st+1. Further, those same observations may
alter in character over time as the policy changes. For ex-
ample, random policies may not get far into a video game
environment, whereas a relatively well-performing policy en-
counters new levels with entirely different observations to be
drawn from them.

The authors propose to combine two existing ideas to ad-
dress these issues: Deep off-policy Q-learning, as introduced
above, and experience replay (Lin, 1992; Riedmiller, 2005).
We will now discuss these ideas in turn.

Deep off-policy Q-learning. Q-learning as presented
earlier has an important flaw: as the state- or action-space
(or both) get large, learning becomes a daunting task because
all (s, a) ∈ S × A action-values need to be learnt separately.
Even with an exploring behaviour policy, the absence of gen-
eralisation across the pairs greatly inhibits learning. Since
many interesting problem domains are characterised by large
state-action spaces—think, for instance, of color images as
observations—it would be desirable to somehow learn action-
value functions without using straightforward but inefficient
(s, a)-lookups.

Let us concentrate for the moment on the implementation
of the action-value function; we drop the time step subscript
and re-introduce it later. One solution to replace the ‘lookup
version’ of Q(s, a) is to use linear methods. For example, we
could introduce a feature-extracting function f : S → RF .
Given any state s ∈ S, we compute F ≥ 1 features of s that
somehow help in the estimation of the action-value function.
We then can introduce a weights matrix W ∈ R|A| × F that
maps feature vectors to |A| Q-values, one for each action. In
total, we then may implement Q(s, a; W), now parameterised
on the features-to-action values weight matrix W, using a
linear model

Q(f(s), a; W) = (W f(s))a , (17)

where the a-subscript means to take the entry for ac-
tion a of the action-values vector. Then, instead of re-
vising Q(f(s), a; W) ‘classically’ as in Equation 16, we
can use stochastic gradient descent instead, assuming we
try to minimise the squared error between the target
rt+1+γmaxa∈A Q(f(st+1), a; Wt) and our action-value estimate

3Technically, the use of an ε-soft policy is not strictly required.
Instead, we must ensure that, for all states s ∈ S, whatever ac-
tion is chosen in the here-assumed deterministic target policy πtarget

t+m ,
πbehaviour

t+m also may select action with nonzero probability. This is
known as the principle of coverage.

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 9

Q(f(st), a; Wt):

Wt+1
def
= Wt − α

1
2
∇Wt ·(

rt+1 + γmax
a∈A

Q(f(st+1), a; Wt) − Q(f(st), at; Wt)
)2

,Wt + α ·(
rt+1 + γmax

a∈A
Q(f(st+1), a; Wt) − Q(f(st), at; Wt)

)
·

∇Wt Q(f(st), at; Wt)
(18)

Here, we notice a problem: we must also take the gradient
of the maximum term maxa∈A Q(st+1, a; Wt) as it also is pa-
rameterised by Wt, but it is well known that taking (partial)
derivatives and gradients of piecewise functions may lead to
discontinuities in the resultant function. A workaround to this
problem is to introduce another pair of weights W t ∈ R|A| × F

called the target weights, and replacing the maximisation’s Wt

by W t instead. Once every pre-defined duration, the weights
from the regular weights set Wt get copied to W t, effectively
synchronising the two. This alternative update can then be
used, avoiding this source of training instability.

Linear methods, however, are limited in two ways. First,
we must somehow obtain an effective feature extraction func-
tion f. This often requires manual labour and is domain-
specific. Further, as we know from the field of neural net-
works, linear methods are limited in effectiveness compared
to non-linear models.

Hence, Mnih et al. propose to use a deep learning model,
similar in spirit to the just-introduced linear model. Different
from the linear model is that a deep convolutional neural
network is used instead of a linear weights matrix. Let θt and
θt be the parameterisation of the online and target versions of
this network at time step t ∈ T . Then the update made for
this network at t is

θt+1 = θt + α ·(
rt+1 + γmax

a∈A
Q
(
f(st+1), a; θt

)
− Q(f(st), at; θt)

)
·

∇θt Q(f(st), at; θt).
(19)

For the sake of brevity, we abstain from discussing the net-
work architecture, but we do present it diagrammatically in
Figure 1, also to ease comparison with other, related net-
works. Full details can be found in Mnih et al. (2015).

Finally, we remark that this network is off-policy by the
same reasoning we used for regular Q-learning above. This is
relevant for the following idea: the use of experience replay.

Experience replay. Earlier we stated that successively
visited states highly correlate in their content. This problem
may be resolved if the quadruples (f(st), at, rt+1, f(st+1)) sup-
plied for training are not those that appear during online ex-
ecution, but instead randomly-drawn earlier quadruples from

all earlier episodes. This idea is known as experience replay
(Lin, 1992; Riedmiller, 2005). In that way, more diverse
situations are encountered during training, which makes the
network less likely to overfit as it has considerably less oppor-
tunity to parameter-tune to successive entries in the trajectory.
In order to allow this, however, we need to be able to decou-
ple the agent’s action-evaluations from its action-selections;
in other words, we require an off-policy method. As we men-
tioned just now, dqn is indeed off-policy. In particular, the
Q-learning algorithm underlying it has been chosen precisely
because it allows for off-policy agent control.

Let B ∈ (RF × A × R × RF)Breplay be an experience replay
buffer of size Breplay ≥ 1. Ideally, B’s size is unbounded, but
computer memory constraints force us to use a large but finite
value for Breplay instead. At every new time step t ∈ T within
an episode we append the quadruple (f(st−1), at−1, rt, f(st))
to the end of B. Once the buffer’s storage size Breplay is
reached the oldest quadruples can be overwritten by incoming
new ones. Samples can then be drawn uniformly (pseudo-
)randomly from B.

We mentioned above that experience replay addresses the
problem of correlation among successive environmental ob-
servations, which may be beneficial. Another important con-
sequence is that we may collect multiple quadruples simulta-
neously in a so-called batch. We can then make training more
stable by averaging over the update directions suggested by
the quadruples of the batch. This idea is what underlies mini-
batch gradient descent, which lies between the two extremes
of pure stochastic gradient descent (where we effectively use
a batch size of 1) and classic, full-dataset parameter updating
(which is often unwieldy for modern, large-scale datasets).
Mathematically, mini-batch updating changes Equation 19 to

θt+1 = θt +
α

|B|

∑
t′∈B

(
rt′+1 + γmax

a∈A
Q
(
f(st′+1), a; θt

)
− Q(f(st′), at′ ; θt)

)
· ∇θt Q(f(st′), at′ ; θt),

(20)

where B ∈ [min(0, t − Breplay),min(0, t − 1)]Bbatch of size
Bbatch ≥ 1 is a batch of chosen quadruple time steps, and
where the t′ ∈ B emphasise that the current time step t almost
always differs from the time steps at which B’s quadruples
were drawn. Mnih and colleagues used such mini-batch train-
ing, with Bbatch set to 32.

Atari 2600 environment. With the dqn and experience
replay buffer specified, we only need to discuss the environ-
ment used by Mnih and colleagues. They have chosen to
test their system in the Atari Learning Environment (ale;
Bellemare, Naddaf, & Bowling, 2013), a piece of emula-
tion software that allows one to programatically interact with
video games from the Atari 2600 console. Although an old

10 DE JONG

console—the system was brought to market in 1977 (Jain et
al., 2011)—its games still are challenging to humans.

Each ale environment consists of a game emulator
that, at every time step, provides an observed game frame
[0, 255]210×160× 3. The emulator runs at 60 frames per sec-
ond, but does not run in real-time; if the dqn agent requires
more than 1/60th of a second, the emulator will simply
wait for the agent’s response. Since the games are so di-
verse, the action space A varies per game. For instance,
Pong provides the integer space APong = [0, 5] which cor-
responds to no-op, firing, moving left or right, and firing
and moving left or right. Meanwhile, the legal action set
for Ms. Pac-Man is AMs. Pac-Man = [0, 8] which excludes
the option to fire, but includes the options to move diag-
onally in all four directions. A similar principle applies
to the reward spaces: RPong = {−1, 0, 1} (for losing, nei-
ther losing or winning, and winning, respectively) while
RMs. Pac-Man = {10, 50, . . . , 1,600} (for various types of ‘pel-
lets’, eating the ghosts, and losing lives).

The dqn authors make a few modifications to the basic
environments provided by the ale to enable faster learning
and discourage learning complete trajectories, which would
not count as true learning. First, they let the agent perform
the no-op action uniformly pseudo-randomly between 1 to 30
times at the start of each episode. Second, when a life is lost
in games which support lives, this is viewed as a game-over: it
ends the episode. Since separate lives frequently have similar
trajectories, separating them in episodes enables the dqn to
collect more experience replay quadruples for ‘true’ episodes,
and is thus arguably more informative than not ending on life
losses. Further, Mnih et al. only take a new action every
fourth frame of the game, repeating action input between
these ‘decision time steps’, in order to reduce computational
demand by around 75%, while not significantly impacting the
gameplay. The only exception is Space Invaders, as certain
blinking objects in the observations would be lost with a skip
size of four; there, a skip size of three is used instead. Lastly,
rewards are transformed as follows: if a reward is negative,
it is set to −1; if it is zero, it remains 0, and if it is positive,
it is set to 1. An obvious caveat with this procedure is that
information from magnitude in reward signal is lost—think,
for instance, of the various reward types in Ms. Pac-Man.
Mnih and colleagues argue that the modification has a net
benefit as it eases parameter configuration across the games
that they tested, which were 7 and 49 in Mnih et al. (2013)
and Mnih et al. (2015), respectively.

Finally, we briefly touch on the preprocessing used in order
to feed observations to the dqn; in Equations 19–20 this pre-
processing is implemented via the former feature extractor,
f. First, the input image is entry-wise maximised with the
directly preceding frame, which sometimes is referred to as
‘max(imum)-pooling’. Then, this pooled frame is sent to the
greyscale (luminance) colour space. Afterwards, it is shrunk

in height and width to the size 84 × 84 × 1 pixels.
We remark on an important detail here. The paper states

that “[the authors] take the maximum value for each pixel
colour value over the frame being encoded and the previous
frame” (p. 534), and that afterwards the luminance is taken
of this pooled frame. In practice, this actually may have been
the other way around, as there is no clear definition of taking
the maximum of two colours. Of course, it is possible to take
the entry-wise maximum of the red, green, and blue channels
and thereby define a maximisation operation, but this is not
explicitly defined in the paper.

Note that this operation is a very minor form of manual
intervention, while the authors stress dqn’s independence in
extracting relevant information from the observations. In our
experimentation, which we will discuss later in more detail,
we found that not cropping in this manner did not lead to any
noticeable performance degradation.

Rainbow

Introduced three years later, Rainbow (Hessel et al., 2018)
improves considerably on the Nature dqn agent. The authors
achieve this feat by fusing multiple extensions suggested in
the literature into a single updated design, specifically choos-
ing extensions that do not interfere with or contradict one
another. In total, six such extensions are used, which we
will now briefly go over. In the following, we write updates
to parameters as if a single-entry mini-batch with index t′ is
used, in order to keep notation more concise; via Equation 20,
one can obtain analogous mini-batch updates.

First is the idea to decouple dqn’s action-selection from
the action-value update in which it is embedded; this is known
as double Q-learning (van Hasselt, 2010). Specifically, we
perform the decoupling by splitting the action-value function
into two: one function for the selection task, another for eval-
uation. This has the benefit of reducing positive bias caused
by the bootstrapping nature of Q-learning. In our case, we
can use the separate parameterisations θt and θt to achieve the
intended goal. Given the original dqn update (Equation 19),
we may adapt it as follows:

θt+1 = θt′ + α ·
(

rt′+1 + γQ
(
f(st′+1), arg max

a∈A
Q(f(st′+1), a; θt′); θt

)
−

Q(f(st′), at′ ; θt)
)
· ∇θt Q(f(st′), at′ ; θt)

(21)

Notice that this change technically makes the update use semi-
gradients instead of ‘true’ gradients, as we do not account for
the θt in the action-selection argument maximum.

The second extension builds on top of the first: it re-
structures the ddqn architecture into a dueling architecture

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 11

(Z. Wang et al., 2016). Essentially, the dueling architecture
leaves the convolutional layers of the original Nature dqn
architecture as-is, while replacing the last two feed-forward
layers by two separate streams of fully-connected layers. Let
C(f(st); θt) be the result of sending preprocessed state f(st)
through only the convolution layers. Then one stream esti-
mates the state-value function output V(C(f(st); θt); θt) while
the second stream predicts so-called state-action advantages
A(C(f(st); θt), a; θt), for all a ∈ A. An advantage, intu-
itively, is the excess in cumulative expected future-discounted
reward when choosing a specific action in a state, in compar-
ison to the ‘action-average’ reward sum in said state. Math-
ematically put, A(st, at) ∈ R (for any t ∈ T) would normally
be defined as

A(st, at) = Q(st, at) − V(st). (22)

The state-value stream has a single, real-valued scalar output,
while the advantage stream has |A| outputs.4 Then, the du-
eling architecture computes the action-value function output
according to

Q(f(st), at; θt) = V
(
C(f(st; θt)); θt

)
+ A

(
C(f(st); θt), at; θt

)
−

1
|A|

∑
a∈A

A
(
C(f(st); θt), a; θt

)
. (23)

The main benefit of this refactoring is that the resultant net-
work can learn the value of states without having to have
explored all actions within said state. This is especially use-
ful in ‘liminal states’ in which taking any particular action
has no dramatic effect on agent performance.

The third extension used in Rainbow is to use multi-step
temporal difference targets (Watkins, 1989). Recall Equa-
tion 15, in which we already introduced multi-step time dif-
ference action-value updates. If we copy the first summand
of the parenthesised expression following the α scalar, we
almost already have the desired multi-step variant of our td
target. What remains is replacing Qt+m−1(st+m, at+m) by

Q
(
f(st′+m), arg max

a∈A
Q(f(st′+m), a; θt); θt

)
,

and also replacing each preceding reward t by a t′ counterpart
to emphasise we draw samples from the experience replay
buffer. If the resulting td target replaces its single-step coun-
terpart in Equation 19, we arrive at a multi-step variant of
dqn parameter updating. The last step is to adapt this update
for the dueling network architecture, but that can be achieved
by using Equation 23’s replacement for the original Q-values.

The fourth extension is perhaps most technical of all six. It
involves, in essence, replacing each output node Q(st, at; θt)
by multiple nodes that together form a (predicted) probability
distribution over the possible returns, given that action at is

taken in state st (Bellemare, Dabney, & Munos, 2017). Since
probability distributions provide richer output, this alteration
may both improve human understanding of the model and
improve agent performance.

Let us make this more precise. The dueling network
with multi-step td targets that we currently have provides,
for each state-action pair, an estimation of its action-value:
Q(st, at; θt). Now introduce three hyper-parameters: Natoms ≥

1, Gmin,Gmax ∈ R. Together, they specify a (heavily discre-
tised) sample spaceΩreturns for reinforcement learning returns:

Ωreturns =

{
Gmin + (i − 1) ·

Gmax −Gmin

Natoms

∣∣∣∣∣ i ∈ [1,Natoms]
}
.

(24)

We are now in the position to replace our Q(st, at; θt)-
predictions by functions that assign probability mass to each
of these atoms, depending on the specific state-action pair
under consideration. Denote these functions by p(st, at; θt) ∈
[0, 1]Natoms . Then let dt = (Ωreturns,p(f(st), at; θt)) be the net-
work’s predicted probability distribution.

What is still required is a way to train these probability
mass assignment functions. Bellemare and colleagues sug-
gest to leverage the analogy of the Bellman equation to relate
the predicted probability distribution of return at time step t
to its target counterpart at t+m, albeit with the latter’s support
scaled by γm and shifted by rt+1 + . . . + γ

m−1rt+m. That is, let

dtarget; t+m =

(
rt+1 + · · · + γ

m−1rt+m + γ
mΩreturns,

p
(
f(st+m), arg max

a∈A
Q(f(st+m), a; θt

)) (25)

be this target distribution, with m ≥ 1 indicating as before the
number of time steps to consider the value over.

This discrepancy in distributional support is immedi-
ately the next challenge: in order to meaningfully compare
the two distributions, they need to have identical support.
Thus, Bellemare et al. project the Gt+1 distribution’s support
space onto that of Gt by means of the L2-projection ΦΩreturns

(Bellemare et al., 2017, p. 454) and can subsequently use the
Kullback-Leibler divergence as an error signal between d and
dtarget.

Hessel et al. implement this distributional prediction of
action-values at the end of their Rainbow system, noting that
target weights θt are kept frozen, as was the case in the Nature
dqn architecture. In order to guarantee the outputs can be

4In Z. Wang et al. (2016), separate symbols θ, β, and α were
used to refer to the parameters of the pre-stream convolutions, the
state-value function, and the advantage function, respectively. For
notational simplicity, we use the θt hyperparameter in all three; it
covers the parameterisation for the complete dueling architecture
in our text. This may incorrectly convey that the components all
require the full set of parameters θt; this is not our intention.

12 DE JONG

interpreted as probability masses, they also apply the Soft-
Max operator across every Q(f(st), a; θt) predicted probability
distribution, for all a ∈ A.

Fifth, instead of using regular experience replay as out-
lined above, Hessel and colleagues use prioritised experience
replay instead (Schaul, Quan, Antonoglou, & Silver, 2016).
With prioritised experience replay, quadruples in the experi-
ence replay buffer B get assigned a probability of selection
based, intuitively, on the degree to which the network was
off in its prediction for the sample: the greater the discrep-
ancy, the higher the assigned probability. Since the Kullback-
Leibler divergence is used to train the network, this value is
used to determine, up to a scalar, the probability of selection.

Last but not least, the sixth extension involves ‘noisify-
ing’ the fully-connected layers of the network following the
approach taken by Fortunato et al. (2018). Although in the
original Nature dqn these would have been the last two layers,
they have been replaced by the dueling architecture. How-
ever, since its two streams also consist completely of fully-
connected layers, those layers are subjected to the noisifica-
tion instead.

Noisification of a fully-connected layer consists of linearly
adding a (pseudo-)randomly scaled bias vector and -weights
matrix. Let x ∈ RNin denote the input and y ∈ RNout the
output, let b ∈ RNout and W ∈ RNout×Nin be the regular bias
and weight matrix, and let bnoise ∈ RNout Wnoise ∈ RNout×Nin

denote noisy bias and weight matrix counterparts. Further,
let eb ∈ RNout , eW ∈ RNout×Nin denote randomly-drawn noise
scalars for the current time step. Then the output of the
noisified, fully-connected layer is defined as

y = b +Wx + bnoise ⊙ eb + (Wnoise ⊙ eW) x,

where ⊙ denotes the entry-wise multiplication. All the
weights and biases are trainable while the eb and eW are
not; the latter could be regarded as part of the environment.

Besides the regularising effect that noisy fully-connected
layers have, they have a specific application in drl as well:
they facilitate asymmetric exploration of the environment, in
the sense that certain, relatively well-known parts of the envi-
ronment may already be accounted for by the agent in terms of
noise, leading to (near-)greedy behaviour there, while in other
parts the agent may still explore due to the noise there not yet
being controlled by the agent’s parameterisation (Fortunato
et al., 2018; Hessel et al., 2018).

Finally, we remark that the morel architecture is shown in
Figure 1.

Object-sensitive deep reinforcement learning

In their 2017 paper, Li et al. suggest a new approach to
interpretable drl named object-sensitive deep reinforcement
learning (o-drl).

o-drl proposes to explicitly include a notion of ‘objects’
in existing drl models. Here, the authors do not specify what

counts as an object. Instead, they appeal to the categories we
as humans naturally use. For example, within a video game,
human players naturally group sets of pixels and assign these
high-level labels such as ‘playable character’, ‘enemy’, and
‘collectible’. By providing a drl model with such extra,
high-level ‘domain knowledge’, said model may learn more
efficiently.

Two technical ideas take an arguably prominent role in the
paper—both directly related to the use of objects. As both
will become relevant later in the thesis, we treat them in detail.

First, we take a close look at how objects are detected from
raw environmental observations. Note that, as this requires
us to introduce various computer vision concepts, we need
to make a slight departure from the usual context of (deep)
reinforcement learning.

Second, we move on to so-called saliency maps (osms);
these bring us back again to the drl context.

Template matching. It is natural to ask how Li and col-
leagues extract objects from raw environmental observations.
To this end, they use template matching, a traditional com-
puter vision technique. Simply put, given an object channel, a
human expert selects a (relatively small) image representative
of the object and supplies it to the template matching algo-
rithm. This algorithm then sweeps from the top-left to the
bottom-right over the raw image with the template, computing
at each location a similarity score. If this score surpasses a
threshold—again set by the human expert—we say that that
position in the raw image contains the object. By performing
this comparison at every raw image location, we obtain a 2d
map of object locations; this map is the channel for the object
under consideration.

Since template matching will be used in some of our ex-
periments, it may be helpful to introduce this idea precisely.
Let Htemplate,Wtemplate ∈ Z+ denote the height and width of
the template, and let Himage,Wimage ∈ Z+ denote the same for
the image to template-match. We require that

Htemplate ≤ Himage and
Wtemplate ≤ Wimage

in order to avoid problems pertaining to out-of-bounds match-
ing of templates. Further, introduce

Itemplate ∈ [0, 255]Htemplate ×Wtemplate ×C and

Iimage ∈ [0, 255]Himage ×Wimage ×C

to represent the template and image, respectively. Here,
C ≥ 1 is the number of channels; commonly, C ∈ {1, 3, 4}
for greyscale, rgb, or rgba images, respectively. Then a

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 13

similarity-scoring function Msim can be defined as follows:

Mm
sim

(
Iimage, Itemplate

)
y, x
=∑

y′ ∈ [0,Hsim⟩,
x′ ∈ [0,Wsim⟩,

c ∈ [0,C⟩

m
(
Iimage; y′, x′, c, Itemplate; y+y′, x+x′, c

)
, (26)

where Hsim = Himage − Htemplate + 1 and
Wsim = Wimage −Wtemplate + 1,

and where the implementation of Msim depends on the algo-
rithm m that is used, not to be confused with the previously-
used time step range, m. The implementation that is most
relevant within this thesis is the square difference method,

msd
(
pimage, ptemplate

)
=

(
ptemplate − pimage

)2
. (27)

This is, however, not the method that Li et al. used. Instead,
they worked with the correlation coefficient method, mcc,
due to its balancing of accuracy with computational speed.
Instead of accepting Iimage and Itemplate directly, Mmcc

sim works
with modified versions of them, defined as follows:

I′template; y′, x′, c = Iimage; y′, x′, c

−

∑
y′′∈[0,Htemplate⟩,
x′′∈[0,Wtemplate⟩

Itemplate; y′′, x′′, c

Htemplate ·Wtemplate
, (28)

I′image; y+y′, x+x′, c = Iimage; y+y′, x+x′, c

−

∑
y′′∈[0,Htemplate⟩,
x′′∈[0,Wtemplate⟩

Iimage; y + y”, x + x”, c

Htemplate ·Wtemplate
. (29)

Given these, mcc is simply given by

mcc
(
pimage, ptemplate

)
=

(
ptemplate · pimage

)
. (30)

We would like to discuss two extensions to basic template
matching, as discussed just now. The first addition is to
normalise the similarity scores in Mm

sim. This produces a
normalised scores map, M̃m

sim, defined as

M̃m
sim

(
Iimage, Itemplate

)
=

Mm
sim

(
Iimage, Itemplate

)
√√√√√√√∑y′∈[0,Htemplate⟩,

x′∈[0,Wtemplate⟩,
c∈[0,C⟩

I2
template;
y′, x′, c

∑y′∈[0,Htemplate⟩,

x′∈[0,Wtemplate⟩,
c∈[0,C⟩

I2
image;

y+y′, x+x′, c

. (31)

Besides using mcc, Li et al. normalise the similarity scoring
maps according to the equation above in order to enable eas-
ier thresholding on potentially detected objects. As will be
shown later, we use this idea as well. The second extension
to basic template matching is to use masks. With masks,

a subset of positions Pmasked ⊆ [0,Htemplate⟩ × [0,Wtemplate⟩,
with Pmasked , [0,Htemplate⟩ × [0,Wtemplate⟩, is ignored or
‘masked’ when comparing Itemplate to Iimage; only positions
outside Pmasked are considered. Mathematically, adopting
masks leads to a replacement of the vertical and horizontal
iteration ranges under the summations in Equations 26–31:
(y′, x′)-pairs are now drawn from [0,Htemplate⟩ × [0,Wtemplate⟩\

Pmasked, instead. Additionally, the denominators in Equa-
tions 28 and 29 are replaced by Htemplate ·Wtemplate − |Pmasked|.

Object saliency maps. Increased learning efficiency is
not the only potential benefit of o-drl. The design of object
channels was also motivated in part by enabling more intuitive
interpretation of model input. As such, we can leverage these
channels to provide insight into model decision-making. In
order to do so, the authors introduce the object saliency map,
a graphic that shows per object in the state-action pair under
consideration how much said object contributes positively or
negatively to the overall action value. To understand object
saliency maps, however, we first need to understand ‘regular’
saliency maps.

A saliency map (Simonyan, Vedaldi, & Zisserman, 2013)
can be computed for any feed-forward neural network, for
any legal input. Consider any hidden or output neuron in the
network. Then that neuron’s activation can be viewed as a
highly non-linear function of the network’s input. Choose
any state s ∈ S to serve as an observation that is input to the
network, ignoring the time step subscript. Furthermore, let
a(s) ∈ R denote the activation of the neuron under considera-
tion when supplying s at the network’s input. (Do not confuse
a(s) with a, the symbol for an arbitrary action in A.) Since
a(s) is highly non-linear, it is difficult to understand how the
entries in s affect a(s). At the cost of only approximating the
answer, we can rewrite a(s) as a Taylor expansion:

a(s) = a(s0)

+
(
∇sa(s)

∣∣∣
s=s0

)
(s − s0)

+ H(s0) (s − s0)2 (32)
+ · · ·

where s0 is the input around which we want to approximate.
Simonyan and colleagues choose s0 = 0 and limit the polyno-
mial to the first degree, thereby obtaining the linear approxi-
mation

a(s) ≈ a(0) +
(
∇sa(s)

∣∣∣
s=0

)
· s. (33)

Of primary interest in Equation 33 is the gradient term
∇sa(s) |s=0, because each entry in it can be seen as functioning
as a weight for a corresponding pixel channel brightness in
the state s: the greater the weight, the less the associated
pixel needs to change in channel brightness in order to affect
a(s). In this way, we can order the pixels in s based on their
‘importance’ in establishing the activation a(s) of s: those

14 DE JONG

entries with relatively high weights are relatively ‘important’
or ‘salient’ to the network. Thus, Simonyan and colleagues
call this vector the saliency map of the neuron under consid-
eration.

Li and colleagues build on the idea of saliency maps to
obtain object saliency maps (osms). Since obtaining the
partial derivatives of a(s) with respect to objects is relatively
difficult in comparison to taking these derivatives with respect
to simply all input pixels—the entries of s—Li et al. instead
propose the following: for each object for which we would
like to determine the partial derivative, we create two states:
spresent and sabsent. The former state is simply the original, un-
modified input. The latter state is identical to spresent, except
that the object under consideration has been removed from all
channels—both the raw input image channels and the relevant
object channel.5 By calculating

a(spresent) − a(sabsent) (34)

we may obtain an approximate measure of the contribution
that the object under consideration makes to a(spresent). This
computation is both mathematically simple and affords a
straightforward interpretation: if a(spresent) > a(sabsent), then
the object contributes positively to the activation total; vice-
versa if a(sabsent) has a greater activation.

Importantly, the just-explained mode of computing salien-
cies assumes that objects contribute to state spresent’s total
saliency strictly on their own. Put differently, there should be
no interactions among objects in contributing to total saliency.
This assumption is not stated explicitly in Li et al. (2017).

The authors continue by evaluating o-drl using object-
augmented versions of the original Nature dqn, discussed
above, on Double dqns (ddqn (van Hasselt, 2010), Dueling
dqns (Z. Wang et al., 2016) and ‘Advanced [sic] Actor-Critic’
(a3c, actually known as Asynchronous Advantage Actor-
Critic; Mnih et al., 2016). They test their models on five Atari
2600 video games from the OpenAI Gym suite (Brockman
et al., 2016): Freeway, River Raid, Space Invaders, Bank
Heist, and Ms. Pac-Man. These have specifically been cho-
sen because of their frequent appeal to objects. Put briefly,
for every one of these games, one of the object-augmented
drl methods obtained the best average score out of all mod-
els that were considered for that game, demonstrating that
introducing objects at the input may be an effective approach
to improve drl performance. Additionally, the authors show
situations in which o-drl’s object saliency maps may improve
interpretation of model decisions relative to using Simonyan
et al.’s original saliency maps approach.

Although Li and colleagues show promising results, there
are three challenges to adopting this approach widely within
drl. First, o-drl requires us to provide object templates
up front. Many environments change continually, and as
such make the use of predefined templates a brittle choice
for a model. Additionally, o-drl assumes implicitly that

the object templates ‘work’: they match when objects under
consideration truly appear on-screen, and they do not when
no such object is present. To this end, Li et al. test their
templates against human annotations on a set of pre-collected
video game frames, but such testing becomes nearly impossi-
ble for the aforementioned more complex situations that drl
may be deployed in, such as real-time car driving. Lastly,
template matching can become costly when the input is of a
high resolution, when many frames need to be evaluated, or
when many different object channels are introduced, or need
to be introduced, as is the case in more complex environments
(for instance, modern video games).

Since we concentrate on direct extensions of the Nature
dqn architecture, and since Li et al. included an object-
oriented variant for it in their work, we have included it in our
architectures diagram; see Figure 1.

Motion-oriented reinforcement learning

One year after the presentation of o-drl, Goel et al.
(2018) introduce Motion-Oriented Reinforcement Learning
(morel). In a sense, morel can be viewed as an improved
and more generalised version of o-drl, although it requires
the agent’s deep learning model to change—something that
was expressly not needed in o-drl, because there only the
input was adapted.

In essence, Goel et al. propose to change the network in
such a way, so that it extracts features from the environment
that closely relate to a human’s notion of objects. This is
achieved by adapting a deep learning model used originally to
compute optical flow. Before explaining the adapted model, it
may be helpful to give a minimal explanation of what optical
flow is; the design of the model may become more apparent
afterwards.

Optical flow. Let there be two images,

I1, I2 ∈ [0, 255]Himages ×Wimages ×Cimages ,

where Himages,Wimages,Cimages ≥ 1. Image I1 precedes I2 in
a temporal sense. For example, I1 and I2 could be a pair
of successive frames in an Atari 2600 game. Intuitively, if
spatial displacements of both the observer and the contents of
the observed scene are not too great, then it may be plausible
to relate I1 and I2 to one another as follows:

I1; y, x = I2; y+∆y, x+∆x, (35)

where (y, x) ∈ [0,Himages⟩ × [0,Wimages⟩ and where ∆y,∆x ∈
R. Equation 35 is known as the brightness constancy as-

5Importantly, by ‘object’ we mean single objects, and not single
categories of objects. Hence, if a raw input image contains multiple
instances of some object category, we remove these objects individ-
ually, and not all of them together, simultaneously. This allows us
to determine the contribution to activation that single objects make
separately.

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 15

sumption6, because it assumes that pixel intensities at any
position (y, x) will remain the same over the duration, tak-
ing into account small spatial motion (∆y,∆x). Now, we
can collect the pairs (∆y, ∆x) per pixel to obtain a map
(V,U) ∈ R[0,Himages⟩ × [0,Wimages⟩ × 2 which describes how pixels
from image I1 move to arrive at their positions in image I2.
This pair (V,U), better known as the optical flow between
I1 and I2, is sometimes defined as “[. . .] the distribution of
apparent velocities of movement of brightness patterns in an
image”, after Horn and Schunk (1981).

Because the brightness constancy assumption directly re-
lates I1 to I2 via the optical flow, the assumption may natu-
rally be used to construct various loss measures for evaluating
estimates of optical flow between I1 and I2. One example is

Lrec
(
I1, I2, (V ′,U′)

)
= ∑
y∈[0,Himages⟩,
x∈[0,Wimages⟩

∣∣∣∣∣∣ I1; y, x − I2; y+V ′y, x, x+U′y, x

∣∣∣∣∣∣
1 ,

(36)

with (V ′,U′) ∈ R[0,Himages⟩ × [0,Wimages⟩ × 2 being the predicted op-
tical flow. The loss expressed in Equation 36 is used by
Vijayanarasimhan, Ricco, Schmid, Sukthankar, and Fragki-
adaki (2017). The authors of morel instead use a more so-
phisticated loss—structural dissimilarity (dssim), introduced
by Z. Wang, Bovik, Sheikh, and Simoncelli (2004)—because
its loss signal also considers relatively spatially distant re-
construction errors (Goel et al., 2018, p. 5,686). Regardless,
the reconstruction loss that was just introduced leads to a
straightforward idea: design a deep neural network, if given
a pair (I1, I2), returns an optical flow, which we then evaluate
using dssim to train the model. This is indeed what Goel and
colleagues did, and it is central to how morel works.

morel network architecture. Before discussing the
model, we should address an obvious question: how precisely
does the prediction of optical flow relate to the detection of
objects? In essence, the idea is to predict optical flow by
letting the network internally estimate how a set K ≥ 1 of
objects will move from their positions in I1 to those in I2,
separately. This is achieved by two network components:
one estimates per each pixel how probable that pixel is to
belong to object k, for each k ∈ [0,K⟩, producing a 2d map
Pk ∈ [0, 1]Himages×Wimages ; another estimates the vertical and hor-
izontal displacements (v′k, u

′
k) ∈ R2 of each of the k objects,

plus the movement of the camera (v′cam, u
′
cam) ∈ R2. Then,

naturally,

(V ′,U′) =

K−1∑
k=0

(v′k, u
′
k)

 − (v′cam, u
′
cam). (37)

This optical flow estimate can subsequently be supplied to
the aforementioned loss, and the error it produces may then
be used for backpropagation throughout the layers of the net-
work. Notice that, of the two components, we are most

interested in the part that produces the Pks as it can be viewed
as segmenting the objects from the image pair.

The network used in Goel et al.’s implementation has been
derived from an earlier work that considered the problem of
predicting I2 from I1 in isolation, apart from the drl setting
(Vijayanarasimhan et al., 2017). The original model, known
as the Structure-from-Motion Network (SfM-Net) included
an extra subnetwork known as the structure network, meant
for predicting per-pixel depth in the image pairs. Since the
SfM-Net authors considered general image pairs—notably,
video frames captured by a vehicle driving around in the real
world—the inclusion of such a depth-predicting component
made sense, as it allows for three-dimensional motion pre-
diction. However, since Goel et al. applied SfM-Net in the
two-dimensional problem domain of Atari 2600 games, they
removed the structure network.

morel’s architecture is visually summarised in Figure 1d.
Immediately observable is that the network actually consists
of two smaller networks: one computes optical flow for mov-
ing objects, and, in doing so, derives segmentations for mov-
ing objects (‘dynamic net’, grey block on the left); the other
addresses the remainder of the environmental observations,
namely all that is static (‘static net’, grey block on the right).
Both subnetworks share the same architecture for downsam-
pling the input, although the parameterisation of them may
differ. As could be expected from our discussion of optical
flow, the input consists of two single, successive environ-
mental observations stacked depth-wise. This stacked input
is primarily meant for the dynamic objects subnetwork, but
since, at least in principle, it should not affect the static object
network, this stack is fed to both subnetworks simultaneously.

Let us first consider the dynamic objects subnetwork in
more detail. After three layers of downsampling by convo-
lutions, the subnetwork splits into two branches: one is de-
signed to estimate the k object segmentation masks Pk while
the other estimates the movements (v′k, u

′
k) of said objects, plus

the movement (v′cam, u
′
cam) of the camera. Hence, these two

branches implement in a neural network what we discussed
above mathematically. Finally, the two branches are merged
again in the block named ‘Optical Flow’ in Figure 1d, and it
performs a bilinear interpolation that uses I2 and (V ′,U′) to
reconstruct I1. Subsequently, dssim can be used to derive the
loss of Equation 36. Notably, it does not involve any trainable
parameters.

The main reason why optical flow was introduced into
Goel et al.’s paper was to improve existing drl systems.
(They used Advantage Actor-Critic [a2c; Baird, 1993] in
their experimentation.) In the middle of the dynamic object

6For consistency, we always use the term ‘brightness’ in referring
to the brightness constancy assumption, even though Cimages may be
greater than 1. One could alternatively argue for the term ‘colour
constancy assumption’ if Cimages = 3, and similarly so for other
numbers of channels.

16 DE JONG

Convolution
21 × 21 × 32

ReLU
(32, 8×8, stride 4)

Convolution
11 × 11 × 64

ReLU
(64, 4×4, stride 2)

Convolution
11 × 11 × 64

ReLU
(64, 3×3, stride 1)

Fully-connected
512

ReLU

FC (Q-values)
Nactions
Linear

Input
84 × 84 × 4

(a) The original Nature dqn (Mnih et al., 2015).

Convolution
21 × 21 × 32

ReLU
(32, 8×8, stride 4)

Convolution
11 × 11 × 64

ReLU
(64, 4×4, stride 2)

Convolution
11 × 11 × 64

ReLU
(64, 3×3, stride 1)

M (Q-value distrib.)
Natoms × Nactions

SoftMax

Input
84 × 84 × 4

Noisy FC
512

ReLU

Noisy FC (Value)
Natoms
ReLU

Noisy FC
512

ReLU

Noisy FC (Advant.)
Natoms × Nactions

ReLU

(b) Rainbow (Hessel et al., 2018).

Convolution
84 × 84 × 32

ReLU
(32, 5×5, stride 1)

Maximum Pooling
42 × 42 × 32

Convolution
42 × 42 × 32

ReLU
(32, 5×5, stride 1)

FC (Q-values)
Nactions
Linear

Input
84 × 84 × (4 + K)

Maximum Pooling
21 × 21 × 32

Convolution
21 × 21 × 64

ReLU
(64, 4×4, stride 1)

Maximum Pooling
10 × 10 × 64

Convolution
10 × 10 × 64

ReLU
(64, 3×3, stride 1)

Fully-connected
512

ReLU

(c) Li et al. (2017)’s adaptation of the Nature dqn.

Convolution
21 × 21 × 32

ReLU
(32, 8×8, stride 4)

Fully-connected
10,584
ReLU

1D-to-3D Reshape
21 × 21 × 24

Deconvolution
42 × 42 × 24

(24, 3x3, stride 1)
ReLU

Deconvolution
84 × 84 × 24

(24, 3x3, stride 1)
ReLU

C (Object Masks)
84 × 84 × K

(K, 1x1, stride 1)
Sigmoid

M (Optical Flow)
84 × 84 × 2

Fully-connected
(K + 1) × 2

ReLU

Convolution
21 × 21 × 32

ReLU
(32, 8×8, stride 4)

Convolution
11 × 11 × 64

ReLU
(64, 4×4, stride 2)

Convolution
11 × 11 × 64

ReLU
(64, 3×3, stride 1)

Fully-connected
512

ReLU

Concatenate
1,024

Fully-connected
512

ReLU

FC (Actor)
Nactions
SoftMax

FC (Critic)
1

Linear

Input
84 × 84 × 2

Convolution
11 × 11 × 64

ReLU
(64, 4×4, stride 2)

Convolution
11 × 11 × 64

ReLU
(64, 3×3, stride 1)

Fully-connected
512

ReLU

Static
Net

Dynamic
Net

(d) Goel et al. (2018)’s morel model.

Figure 1. Architecture diagrams of drl models discussed in the Related Works. The shorthands C, FC, and M stand for
convolution, fully-connected, and manually computed (that is, not using any well-known layer, but implementing something
network-specific or unique), respectively. Further, Natoms and Nactions refer to |A| and Natoms within the text, and K is equivalent
to Li et al. (2017) and Goel et al. (2018)’s number-of-objects hyper-parameter, K. Lastly, for Convolutions (shorthand: C),
the second line of a block denotes the output size (without the batch dimension), while the fourth line denotes the triple
(number of filters, kernel size, stride). The stride’s first argument is the vertical displacement; the second argument represents
the horizontal displacement. For the definitions of the activation functions Linear, Sigmoid, ReLU, and SoftMax, see Appendix A.

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 17

subnetwork a relatively low-dimensional layer is situated: the
fully-connected layer of 512 entries. At any point in the
complete network’s state, this layer can be seen as encoding
a latent representation of the moving objects, because it is
used downstream in the computation of optical flow. Now,
Goel and colleagues concatenate this low-dimensional middle
layer with its ‘twin’ in the downsampling network of the static
object network. The concatenated representation is in turn
used by the critic and actor to predict V(s) and A(s, a) values.
In this manner, the entire system considers both influences
from dynamic and static objects.

Training. Lastly, we comment on a decision made on
morel’s training regime. The network is not trained in its en-
tirety starting from the very first episode. The authors observe
that the dynamic object subnetwork’s parameters can be ini-
tialised in such a way that the subnetwork is already strongly
predisposed to detecting movement: by training it in isolation
for a predefined number of time steps. Training observations
can be collected in a straightforward manner by letting a fully
random policy interact with the environment. Notice that the
subnetwork thus learns in a fully-unsupervised manner: no
reward signal is required, only inputs—that is, observations.
Specifically, Goel and colleagues train the dynamic subnet-
work for the first 250,000 time steps only on observations
from this random policy. Note that since the static object
subnetwork has not been connected yet during this timeframe,
the cross-subnetwork connection that allows the concatena-
tion between the aforementioned two fully-connected layers
is absent as well.

Finally, we must note that although the reconstruction loss
is the primary error signal to steer parameter updates of the
dynamic object network, another regularisation term is used
to actually complete the loss:

Ltotal(I1, I2, (V ′,U′)) = Lrec(I1, I2, (V ′,U′))

+ λregLreg

({(
Pk, v′k, u

′
k

)}K−1

k=0

)
(38)

where λreg ∈ [0, 1] and Lreg is defined as

Lreg

({(
Pk, v′k, u

′
k

)}K−1

k=0

)
=

K−1∑
k=0

∣∣∣∣∣∣∣∣ Pk

[
(V ′)⊤; (U′)⊤

] ∣∣∣∣∣∣∣∣
1

(39)

where the notation [· ; ·] is meant to denote depth-wise con-
catenation. λreg is slowly linearly increased from 0 to 1 over
the first 100,000 time steps to avoid premature, excessive
penalisation of high values for entries in the Pk, (v′k, u

′
k) ‘mul-

tiplications’.
We omit other training details as these are not directly

relevant to our discussion. The interested reader is referred
to Goel et al. (2018).

Methdology

We begin the Methodology by first operationalising our
two research questions. Thereafter, we give an overview of

the three experiments we plan to perform based on the op-
erationalised research questions, after which we explain the
procedures for these three experiments in detail in separate
subsections.

Operationalisation. As we explained in the Introduction,
we focus on two research questions within this thesis. Both
need to be operationalised for further use in the Methodology.

We recall the first research question: “Does representing
the state by its high-level objects accelerate learning in deep
reinforcement learning methods?” Multiple components of
the question require further specification.

To begin, we narrow ‘state representation by high-level
objects’ down to mean within this thesis: a representation
of state by means of either template-based object channels
as proposed by Li et al. (2017), or via object segmentation
masks computed by the dynamic subnetwork of Goel et al.
(2018). We argue for qualifying the representations derived
by both approaches as ‘high-level’, because both representa-
tion types have a clear correspondence to a human’s notion
of an ‘object’.

Next, we must address what it means for a method to
have ‘its learning be accelerated by a state representation’.
For this, we introduce a performance measure also used in
other works (Machado et al., 2018; Castro et al., 2018): the
episode-averaged future-undiscounted return (of a collection
of episodes). If we compute such average undiscounted re-
turns over multiple, evenly-spaced points7 during training of
an agent by a drl method, then we may construct an ‘average
undiscounted return curve’ built from these points. Further,
if we choose a specific average undiscounted return and com-
pare the points at which this return is reached—preferably,
using multiple such sampled curves—we may determine that
the method using the representation structurally sees its re-
turn curves reach this chosen return at an earlier point than the
method without the representation. The proportion between
the former and the latter’s average required number of points
may then be regarded as the ‘learning acceleration’ of using
the high-level representation for the method.

Moving to our second research question, we formulated
it as “Can high-level object representations make deep rein-
forcement learning methods more explainable?” Here, we
re-use our operationalisation of ‘high-level object represen-
tations’. We also employ Gilpin et al. (2018)’s definition of
‘explainability’ from the Introduction, where we specifically
emphasise the part “[. . .] [models that] produce insights about
the causes of their decisisons”.

At this point, the second question arguably still needs spec-
ification in two regards. First, we need to establish how we
measure a drl model’s explainability, with and without the
use of high-level object representations. Second, we need
a procedure to causally determine the relationship between

7These ‘points’ will later be made precise using the term ‘itera-
tion’.

18 DE JONG

(i) the use of said high-level object representations, and (ii)
obtaining a model that measurably is more explainable.

As already expressed in the Introduction, we answer the
second research question tentatively. We do so due to con-
straints of time and topical scope. Instead, we follow Li et al.
(2017)’s method to leverage object-level representations to
generate osms, which may make drl methods more explain-
able. We provide these osms systematically over a preset
number of drl methods, environments, and states, and addi-
tionally cover these critically in our Discussion. Our intent,
then, is that these results may help in further study of osms
as a path to model explainability.

Methodology overview. Now that we have made our two
research questions sufficiently precise, we continue by de-
scribing three experiments that we conduct to answer the re-
search questions. In all three, we structurally collect average
undiscounted return curves and object saliency maps.

In experiment 1, we largely repeat Li et al. (2017)’s pro-
cedure, although we introduce some changes to align their
methodology more closely to both the original work done by
(Mnih et al., 2015) as well as the baselines used within this
thesis (Castro et al., 2018).

In the above procedure, the environment’s ‘raw’ greyscale
input is supplied to the agent, accompanied by K ≥ 1 object
channels. Following this approach has an intuitive appeal:
we ‘augment’ the input with additional information, which,
we hope, may help in accelerating learning speed and making
the agent more explainable. However, if the aforementioned
two measures indeed appear to change from their non-object
baselines, there is an obstacle hindering us from attributing
said change to the addition of the K objects: since we also sup-
plied the original (albeit greyscaled) screen to the agent, we
cannot exclude with certainty that some information present
on the ‘raw’ screens during the object-based experiments af-
fected the deviation from the baselines, instead of the object
channels.

To address this methodological problem, in experiment 2,
we run experiments involving exclusively Li et al. (2017)-
style object channels. This object channel-only model is
the third, novel method to object-based drl that we stated
we would test in the Introduction. Since some environments
provide a non-object background that may arguably be crucial
to playing the game successfully—think for example of the
maze layout in Ms. Pac-Man—we append to the K object
channels a ‘background’ channel that exclusively encodes the
background, without any objects within it. As such, it is
different from the ‘raw’ screens that include both sources of
information.

Then, in experiment 3, we shift attention away from Li et
al. (2017)’s work and toward the model proposed by Goel et
al. (2018). Here, Goel et al.’s model may be seen as an adap-
tation to Li et al.’s system, as both have similarly-structured
object channels. The difference is that Goel et al. let these be

computed ‘autonomously’ by the agent, requiring no manual
involvement of a human supervisor. Like experiment 1, we
change Goel et al. (2018)’s methodology in order to align it
with the other work discussed and conducted in this thesis.

More specifically, we adapt morel’s dynamic (or, ‘unsu-
pervised’) subnetwork (schematically displayed in Figure 1d,
left block in grey), as used in the pre-training stage of morel,
to serve as a generator for motion mask channels that add to
the ‘raw’ greyscale screens. As such, this last experiment
is closer in form to experiment 1 than experiment 2, in the
sense that it augments input instead of replacing input by
object-only channels (plus a background channel), as is done
in experiment 2.

As we argued in our motivation for experiment 2, using
only object channels may give a better indication of the effect
of using objects. Consequently, all else being equal, it may
also be better to follow this approach with Goel et al.-style
object channels, so why do we treat objects in experiment 3
like we do in experiment 1?

The motivation for our decision is this. In many practical
situations, we cannot make use of the template-based genera-
tion of object channels for multiple reasons, three of which we
have already included in our Related Works-discussion of the
paper. (In brief, these reasons were continually-changing en-
vironments, quality of templates, and scalability.) Consider-
ing that templates may not always be available, by extension, a
background channel—which also is made manually—should
arguably also be revoked when transitioning from the ‘ideal’
approach of Li et al. towards a more practical and generally
applicable method as presented in Goel et al. Thus, we retain
the inclusion of ‘raw’ greyscale screens in the observations
for experiment 3.

With the overview of the experiments given above, we
structure the Methodology as follows. Three subsections,
one for each of the three experiments, cover the methodology,
except that we include a discussion on the implementation and
any relevant technical details at the end. For each experiment
subsection, we have the following sub-subsections. First, we
briefly repeat the rationale for conducting the experiment,
followed by a discussion of the environment and the agent,
including the network by which the latter derives its action-
values. Although the underlying environment will remain the
same—it builds on the OpenAI Gym for Atari 2600 games
(Brockman et al., 2016; Bellemare et al., 2013)—the obser-
vation generation may vary due to the inclusion of object and
motion mask channels. We close the experiment’s subsection
with details on the precise experimental setup, such as the
number of iterations the agent-environment interaction was
run for.

Experiment 1

Rationale. The methodology of experiment 1 revolves
around two objectives. First is the adaptation of Li et al.

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 19

(2017)’s methodology such that it more closely matches what
was done in Mnih et al. (2015) and Castro et al. (2018).
Second is establishing how we prepare the average return
curves and object saliency maps—not just for experiment 1,
but for the remaining two experiments as well. As we will see,
the method by which we generate osms is changed slightly
so as to obtain maps that are less susceptible to variation
in model configuration. Finally, note that Li et al. compare
multiple models to their object-augmented counterparts; we
concentrate solely on the Nature dqn.

Environment. Perhaps counterintuitively, we have
placed the responsibility of creating object channels on the
environment instead of the agent. Our reasoning is that en-
vironments provide the observations to which the agent pre-
pares a response in the form of an action. Hence, since object
channels are part of observations, we moved their creation to
the environment instead of the agent.

The emulated Atari 2600 environments provided by the
ale will form the ‘regular’ component of our environment,
separate from the object-channel component. As we already
discussed the ale in the Related Works, namely in the presen-
tation of the original Nature dqn, here, we focus primarily on
the addition of object channels. To be specific, this subsection
briefly covers general differences between our environment
and that used in Li et al., followed by a discussion on object-
channel creation, how this creation differs from Li et al.’s
methodology, and why we chose to diverge on such points.
We close this subsection by presenting the templates used in
this thesis, along with their thresholds and how these were
obtained.

General environmental differences. We begin with general
environmental differences. Somewhat problematically, Li et
al. (2017) do not mention within their paper how they set
up their environment, nor do they provide a repository with
their code so that we may inspect there the details of their
implementation. Without further knowledge, in this thesis,
we assume that the authors implemented their environment
identically to the one used originally in Mnih et al. (2015); this
assumption is suggested to be warranted when inspecting the
paper, where it is stated that “[the authors] implemented deep
Q-networks (Mnih et al., 2015), double deep Q-networks
(van Hasselt, 2010), dueling deep Q-networks (Z. Wang et
al., 2016), and advanced actor-critic model [sic] (Mnih et
al., 2016) as baselines” (p. 146). With this addressed, the
differences in environmental setup can be found in Table 1.

What can be noticed immediately is that the environments
differ in three regards.

The first difference revolves around the use of a termination
signal on life losses. As we explained in the Related Works,
some games in the ale use lives as a means of allowing the
player to try multiple times before a ‘game over’ is reached;
the reason why one may want to regard life losses as ‘game
over’ events, then, is to prevent redundancy in trajectories.

We do not follow Mnih and colleagues’ approach—episodes
are played in full, until all lives are lost—because that way
we retain the possibility to compare to the baselines provided
by Castro et al. (2018), which in their experiments also de-
activated this option. The reason why we do not compare
directly to Li and co-authors is that their implementation also
differs on other fronts from the original Mnih et al. setup (to
be discussed further below) which makes direct comparison
difficult regardless of the choice for the terminal on life losses
hyper-parameter. We opted for Castro et al. (2018) as a base-
line for two reasons: (i) we build on their implementation, and
(ii) Castro et al. designed their program to be “reliable and
reproducible” (Castro et al., 2018, p. 4), which may enable us
to compare to their results relatively easily.

The second implementation difference is the maximum
number of random no-ops to allow upon entering a new
episode. Castro et al. effectively disable this feature, and
in extension, we do so as well. The same argument from
before applies here, too: in order to retain comparability with
the baselines, we follow this methodological decision, even
though it deviates from what Mnih et al. used.

The no-op mechanism at the start of gameplay is designed
to inject stochasticity into the environment. The reason for
doing so is that Atari 2600 games, if left unmodified, are fully
deterministic. In turn, an agent with a sufficient capacity to
store representations may simply ‘memorise’ certain success-
ful trajectories without generalising to light deviations of said
trajectories. Deep learning models have this characteristic,
and demonstrations in the past have shown that memory ca-
pacity may indeed hurt the ability to generalise, for example
in the domain of vision (Goodfellow, Shlens, & Szegedy,
2014). We disable the use of no-ops at the start of episodes
for the same reason we chose not to regard losses of lives as
episode terminations.

To make up for this deficiency in environmental stochas-
ticity, we introduce ‘sticky actions’, as recommended by
Machado et al. (2018, pp. 535–538) and as used in Castro
et al. (2018)—this is immediately the third implementation
difference between our environment and that of Li et al. With
sticky actions, at every time step at which the agent may
select a new action, there is a ς ∈ [0, 1] chance of ignoring
the agent’s action input and instead repeating the previous
frame’s action input:

at =

at, agent With 100 · (1 − ς) % probability,
at−1 With 100 · ς% probability.

(40)

Here, we use at, agent ∈ A to signify the agent’s intended action
at time step t ∈ T , regardless of whether this action is exe-
cuted (at = at, agent) or not (at , at, agent, unless at−1 = at, agent).

Machado and colleagues recommend to use sticky actions
over no-ops for three reasons. First, initial no-ops may be
relatively ineffective in certain games that have a series of
still frames before the game starts. Examples include Free-

20 DE JONG

Table 1
A comparison of Mnih et al. (2013)’s environmental hyper-parameters with those we used. Hessel et al. (2018), Li et al. (2017),
and Goel et al. (2018) all used the same hyper-parameters as those used by Mnih and colleagues, with one exception: Li et
al. (2017) do not use reward clipping. Apart from this, we note that we used the same set of hyper-parameters across all three
experiments.

Hyper-parameter Mnih et al. Us Description
Terminal on life loss Yes No Do life losses end episodes?

Frame skip range 4 4 Number of frames to repeat the same action in.
Max. no-ops 30 0 Maximal random number of no-ops to use at episode starts.

Reward clipping Yes Yes Whether to apply max(−1,min(1, r)) to rewards r ∈ R.
ς 0 0.25 The sticky action probability.

way (where a game type needs to be selected first) and Ms.
Pac-Man (where an opening jingle plays at the start). Second,
and perhaps most obviously, the environment is deterministic
beyond the no-op number offset in time steps at the start of
episodes; this makes memorising trajectories more difficult,
but still not as difficult as introducing stochasticity at every
decision point, across full gameplay trajectories. Finally,
methods that actively exploit the deterministic character of
Atari 2600 games (called ‘brutes’ in Machado et al., 2018)
can still work well in environments using no-op starts instead
of sticky actions. Besides these reasons, the comparability-
to-baselines argument applies here as well.

Apart from this, we highlight a subtle but important detail
in Table 1: Li et al. (2017) do not use reward clipping—
while we, as well as Mnih and colleagues, do—because, Li
and colleagues argue, objects become hard to distinguish if
reward clipping is active. Put more precisely: objects may be
harder to distinguish in terms of action-values if the reward
signals that inform these Q-values are all similarly-valued.
Specifically, most rewards in Atari 2600 games lie outside
the range [−1, 1], such as the pellet-eating scores mentioned
in the Related Works section of Mnih et al. for the game Ms.
Pac-Man. We deliberately choose reward clipping over richer
signals for object generation, due, in part, to the usual reason
of comparability with Castro et al. (2018). The other primary
reason is improved environmental stochasticity, as explained
just now.

Aside from this, we will only study two Atari 2600 games
in this study: Pong and Ms. Pac-Man. In contrast, Li et
al. (2017) tested on five games: Freeway, Riverraid, Space
Invaders, Bank Heist, and Ms. Pac-Man. Thus, we (i) test on
less games, and (ii) choose to share one game in common,
while testing one other, different one (Pong). This raises two
questions: “Why do we not run tests for all five games?” and
“Why choose a game that cannot be compared with Li et al.’s
results?”.

To address the first question, we choose to prioritise as-
signment of our computational resources to complete all three
experiments, and to run multiple repetitions of experiments

where possible, instead of obtaining diverse results in only
one experiment. Note further that our computational re-
sources are limited. The second question’s answer is that
we would like to compare experimental results on an ‘object-
intensive’ game (such as Ms. Pac-Man) with those of a rel-
atively ‘object-deprived’ game, such as Pong; it may be that
the results claimed in Li et al.’s paper do not extend to such
games.

Object-channel creation. Having covered the hyper-
parameter differences, we now move on to adaptations made
to the construction of observations. In order to make it easier
to view the changes made at a glance, we provide Figure 2.

In their paper, Li and colleagues do not describe the proce-
dure by which ‘raw’ greyscale input frames are processed. As
we stated before, we assume that the authors follow Mnih et
al. precisely, apart, of course, from the object channel steps.
If our assumption holds, then the workflow for producing the
‘regular’, non-object component of environmental observa-
tions is to: (i) take the entry-wise maximum over frames with
their direct predecessors, (ii) extract the luminance maps from
these pooled results, and (iii) downscale the result to 84 × 84
pixels. This is what is shown in the left half of Figure 2a. As
can be seen in Figure 2b (left side), we take the same steps in
this regard.

Of arguably greater interest is that same Figure’s right
half, which displays how Li and co-authors compute object
channels. Following the authors’ description, we begin by
max-pooling over the last (‘newest’) two frames, followed by
template matching using K ≥ 1 objects, which produce K
‘matching maps’ of variable sizes. Li and colleagues use
the correlation coefficient method (discussed in the Related
Works; see Equation 30) because of its excellent performance
and suitability for practical applications (p. 5). We instead
opt for the normalised squared difference (Equation 27) as
our experimentation found that it produced better results.

Now, we take a considerable departure from the afore-
mentioned approach by template-matching not over just the
last two frames, but over all four frame pairs that eventually
form an observation; see Figure 2b (right side). There is a

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 21

(2, 3) (6, 7) (10, 11) (14, 15)

210×160×3×4

0 1 2 3

Maximum-pool

210×160×1×4 Greyscale

84×84×1×4Downscale

210×160×3×4 Maximum-pool

3
…×…×1×K Template match

(Correlation coefficient)

…×…×1×K Threshold
(Assign 0 or 1)

210×160×1×K Template sweep

84×84×1×K Downscale

84×84×(4+K) Stack

(14, 15)

210×160×3×8 (L), 210×160×3×8 (R) Split

(a) Li et al. (2017). Note (i) the switch of max-pooling and greyscale
conversion, and (ii) the use of only the last (newest) pair of frames
for the creation of object channels.

(2, 3) (6, 7) (10, 11) (14, 15)

210×160×1×8Greyscale

210×160×1×4 Maximum-pool

84×84×1×4Downscale

210×160×1×8Greyscale

210×160×1×4Maximum-pool

…×…×1×(4×K) Threshold
(Assign 0 or 255)

210×160×1×(4×K) Template sweep

84×84×1×(4×K) Downscale

210×160×3×8 (L and R) Split

(2, 3) (6, 7) (10, 11) (14, 15)

0 1 2 3 0 1 2 3

…×…×1×(4×K)Template matching
(Normalised sq. diff.)

84×84×(4×(1+K)) Stack

(b) Our environment’s observation pipeline for experiment 1. Note
that, for each max-pooled frame in the stack, we compute a set of
K object channels separately.

Figure 2. Observation pipelines for the environments of Li et al. (2017) and the one used by ourselves in experiment 1. Both
presented figures show how we transform 16 consecutive ‘raw’ rgb-coloured screens provided by an Atari 2600 OpenAI Gym
environment (Brockman et al., 2016).
Numbers under single frames and number pairs under pairs of frames indicate the frames’ indices in the original set of 16
frames: near-black frames are skipped while white frames are used. As is the case in Figure 1, K represents K, the number of
objects to create channels for. Furthermore, (L) and (R) refer to the left and right pipeline streams, respectively: left is meant
for ‘raw’ greyscale channels, while the right is meant for object channels. Aside from this, the . . . in the template matching and
thresholding steps point out the fact that, after template matching, we have a per-object variably-sized set of channels, because
each object may have a differently-sized template. The phrase ‘(Assign 0 or 1)’ (or 255) means to enter a luminosity value of 0
for below-threshold pixels, and to use 1 or 255 for above-threshold pixels.

22 DE JONG

clear computational penalty to doing so, but we argue that
the benefit outweighs the cost. Specifically, our decision
is related to a potential reason8 why Mnih and colleagues
originally proposed to stack four preceding frames to create
observations: such stacks may give a deep learning model
the necessary historical context to determine whether ac-
tions taken in the current state (in the last, newest frame)
are appropriate. Think, for instance, of playing Freeway:
knowing in which directions the cars are moving is crucial
in determining whether the current state-action pair should
be assigned a relatively high or low action-value. One could
object that this historical information is captured in the ‘raw’
greyscale channels. This is true for experiment 1, but within
experiment 2—as we will see below—we drop this source of
information. In order to retain historical context there, and
to preserve comparability between experiments as much as
possible, we argue that computing templates across all four
frame pairs is to be preferred.

We pause for a moment to explain why matching maps may
be of variable size. Refer back to our discussion on template
matching in the Related Works section of o-drl. Recall, in
particular, the definitions of Hsim and Wsim (Equation 26, the
variable qualification under the main equation). In these def-
initions, we see that as Htemplate or Wtemplate increases (or both
increase), Hsim or Wsim decrease, as—intuitively speaking—
the template has ‘less pixels’ to sweep over, thus producing a
smaller output map. Vice-versa for decreasing Htemplate and
Wtemplate. Crucial to observe now is that Htemplate and Wtemplate
may vary across the objects being detected, thus producing
differently-sized maps. We emphasise the potential differ-
ence in sizes in the subfigures of Figure 2 by displaying the
‘matching maps’ with irregular sizes. Of course, it is not
strictly required that objects have differently-sized templates;
it is just the general, common case.

After template matching, we move on to thresholding.
Here, Li et al. state that “[i]n each channel, for the pixels
belong[ing] to the detected object, we assign [a] value [of] 1
in the corresponding position, and 0 otherwise” (p. 6). From
this statement it is thus not clear when precisely a pixels is
deemed to belong to a detected object; this is determined by
the threshold, but its value is not mentioned anywhere in the
text. Apart from this, we remark that our approach to dif-
ferentiating between ‘object pixels’ and ‘non-object pixels’
is slightly different. In particular, we assign the maximal
luminance value of 255 to above-threshold matching map
pixels in order to maximally differentiate them from non-
object pixels, which we assign a luminance value of zero.
In principle, this difference should not be significant, as the
model that processes the object channels learns to adjust its
weights in accordance to the magnitudes of those channels,
but we cannot state this with certainty.

The next step—‘template sweeping’ as we call it—is iden-
tical between Li et al.’s implementation and that of ours. As

was the case with the thresholding step, the authors do not
mention this step anywhere, but it is required to be able to
recover equally-sized object maps that can be used alongside
the ‘raw’ greyscale channels. This step has an inverse effect
on the object channels’ dimensions compared to what was
done in the template matching step, in the sense that all chan-
nels recover a uniform size of Himage × Wimage pixels after
the computation. In our case, of course, Himage = 210 and
Wimage = 160. The algorithm underlying template sweeping
is covered in Algorithm 1. While reading, replace m by mcc
and msd for Li et al.’s implementation and that of our own,
respectively.

The resultant set of Cobject
k matrices would correspond to

the output of the ‘template sweep’ step of Figure 2, for both
subfigures. The name, as may now have become clear, comes
from the fact that we not only assign the top-left positions of
matching pixel locations the ‘fill-in value’, but all positions
of the template’s ‘silhouette’ at said position. In this manner,
we obtain the block-like contents that can be seen in Iyer et
al. (2018), at p. 147.

Finally, the last two steps of the observation pipeline are
to: (i) downscale the object channels to 84 × 84 pixels per
channel, and to (ii) concatenate these resized channels with
the regular resized channels. Our logic is almost identical
to Li et al. here, except that we need to concatenate object
channels for all four frame pairs. This is the reason behind
our different concatenation strategy, appending regular and
object channels in an interleaving manner, starting from the
‘oldest’ pair of frames (with indices 2 and 3) and ending at
the ‘newest’ frame pair (with indices 14 and 15). In contrast,
Li et al. simply append their object channels to the end of the
regular channels.

Templates and threshold determination. This nearly com-
pletes our discussion of the environment. One crucial aspect
that we have not made concrete yet is what templates and
thresholds we use, precisely. These are shown in Figure 3,
in the topmost two rows. Each of the Figure’s rows cor-
responds to a single game for which we define templates,
and the columns on that row correspond to single templates,
meant for targeting one or more individual objects of the
same ‘class’ in a ‘raw’ screen observation. For example, the
‘Paddle’ template is meant to capture both the player’s as well
as the opponent’s paddle in Pong. Fishing Derby and Freeway
are included in the Figure as well, even though they will not
be discussed within the main text; we have performed some
additional experimentation that we present in Appendix E,
and include the templates here for completeness.

We have determined the thresholds empirically, although
relatively informally, in the following way. For each game,
each template’s matches map was computed for various states

8In neither their 2013 arXiv report (Mnih et al., 2013, p. 5) nor
the official Nature publication (Mnih et al., 2015, p. 534) do Mnih
and colleagues argue why stacking is used.

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 23

Algorithm 1: Template sweeping.
Input : First, a set of Mm

sim(Iimage, Itemplate; k) ∈ RHsim; k ×Wsim; k × 1 template matching result maps, with k ∈ [0,K⟩ and
K ≥ 1. For each k, Hsim; k ∈ [1,Himage] and Wsim; k ∈ [1,Wimage]. Second, a set of template matching thresholds
τk ∈ R. Third, a ‘fill-in value’ vfill ∈ ⟨0, 255]. For Li et al. (2017) vfill is set to 1 while we set it to 255 instead.

Output : A set of Cobject
k ∈ {0, vfill}

Himage ×Wimage × 1 not-yet-resized object channels. Again, k ∈ [0,K⟩ and K ≥ 1.

begin
for k ∈ [0,K⟩ do

Cobject
k ←− 0 // Size: Himage ×Wimage × 1

for
(
yobject

k , xobject
k

)
∈

{
(y, x)

∣∣∣ Mm
sim(Iimage, Itemplate; k) y, x > τk

}
do

// Find template matching positions with above-threshold similarity scores.
for (∆y,∆x) ∈

{
(∆y,∆x)

∣∣∣ ∆y ∈ [0,Htemplate⟩, ∆x ∈ [0,Wtemplate⟩
}

do
// For every position of a template’s silhouette, fill said position with vfill.
Cobject

k; yobject
k +∆y, xobject

k +∆x
←− vfill

end
end

end
return

{
Cobject

k

}K−1

k=0
end

of the game. These maps were plotted, and a threshold was
sought that would capture only the object of interest across
all considered states. By playing the games for multiple
hundreds of frames, and by frequently computing and view-
ing template matches maps, the thresholds in Figure 3 were
obtained.

Attentive readers have likely noticed at this point that the
templates are in rgb, while our observation pipeline even-
tually yields greyscale images. We have resolved this dis-
crepancy by converting our templates to greyscale as well,
and again empirically testing various thresholds for the tem-
plates. The thresholds shown under the templates apply to
the greyscale variants of the templates.

Three other remarks need to be made regarding the tem-
plates. First is that the last column of each row represents
a so-called ‘background’ template, meant for matching walls
or paths. Importantly, these channels are only used in ex-
periment 2, where such environmental information cannot be
provided by the ‘raw’ greyscale input, as it is omitted. In both
experiments 1 and 3, background channels are left out from
the templates. Second, templates mentioning the keyword
‘mask’ in their first description line rely on the masking ex-
tension to template matching, explained in the Related Works
discussion of Li et al. (2017). In particular, any pixel adopting
the light-grey background color is a deactivated pixel, due to
the mask. Then, third and last, we remark that some templates
do not fully resemble their targeted objects. For example, the
Ms. Pac-Man template Ms. Pac-Man is a simple 3 × 3 block,
while Pong’s Paddle is a single, horizontal strip of the player’s
paddle, with background padding on the left and right. These

templates are not erroneous, but have been designed with the
specific goal of improved template matching. For example,
using only a block for Ms. Pac-Man allows us to both match
the player character in the maze, as well as miniature versions
of her in the bottom-left corner of the screen, representing
lives; it also accounts for various different poses of Ms. Pac-
Man.

Agent. In contrast to the environmental differences be-
tween our implementation and that of Li et al., the approach
to using models is largely identical. Specifically, we use one
of the models that is also considered in Li et al.’s procedure,
namely the Nature dqn. Furthermore, we adopt the same
optimiser.

Still, there are four differences that need to be made clear.
The first is perhaps most immediate: we only use the

Nature dqn, while we previously cited that Li et al. also work
with the Double dqn (van Hasselt, 2010), the Dueling dqn
(Z. Wang et al., 2016), as well as Asynchronous Advantage
Actor Critic (a3c; Mnih et al., 2016). We limit ourselves to
just the Nature dqn due to the aforementioned arguments on
assigning computational resources. Moreover, we are chiefly
interested in augmenting the input with objects; testing the
impact of such augmentation on multiple games and networks
is a concern that is secondary—although of course of impor-
tance.

The second difference is a direct consequence of our al-
ternative approach to the environment’s observation pipeline.
To be precise, the difference in output dimension of these
pipelines requires us to reformat the Nature dqn’s input di-
mension to a different shape than what was used by Li and col-

24 DE JONG

Paddle (1×14)
≤ 1.05 · 10−2

Normalised Sq. Diff.

Ball (4×2)
≤ 1.5 · 10−1

Normalised Sq. Diff.

Pong

Wall (10×1)
≤ 1.4 · 10−2

Normalised Sq. Diff.

Ms. Pac-Man (3×3)
≤ 1 · 10−3

Normalised Sq. Diff.

Ghost (12×10)
≤ 2.5 · 10−1

Normalised Sq. Diff.

Ms. Pac-Man

Pellet (4×6)
≤ 1 · 10−1

Normalised Sq. Diff.

Power Pellet (9×6)
≤ 6.7 · 10−2

Normalised Sq. Diff.

Road (12×12, mask)
≥ 1.05 · 105

Sq. Diff.

Fishing Derby

Fish (10×10)
≤ 2.4 · 10−1

Normalised Sq. Diff.

Shark (7×3)
≤ 2 · 10−1

Normalised Sq. Diff.

Tackle (3×7)
≤ 3 · 10−1

Normalised Sq. Diff.

Pier (5×7)
≤ 8 · 10−1

Normalised Sq. Diff.

Freeway

Car (3×8)
≤ 3 · 10−7

Normalised Sq. Diff.

Chicken (8×6)
≤ 5 · 10−2

Normalised Sq. Diff.

Walkway (3×3)
≤ 1 · 10−2

Normalised Sq. Diff.

Figure 3. The templates used to detect objects using Li et al. (2017)’s template matching method. Each row shows, for a single
game, what objects were targeted using template matching; the last two games are discussed in Appendix E and do not partake
in the main discussion; they are included here simply for completeness. Under each template are three lines. The first states
the targeted object’s name and its (Htemplate,Wtemplate) in pixels. The next line shows the threshold used. Note that all templates
use a maximum value for the threshold, except Ms. Pac-Man’s Road template, which uses a minimum. The last line shows the
template matching technique used; Sq. Diff. stands for ‘square difference’ (Equation 27), and the Normalised qualifier refers to
the normalisation extension to template matching, covered around Equation 31. In the rightmost column, we show example
gameplay frames from the respective games for reference. For other details, refer to the discussion of the environment in the
Methodology’s ‘Experiment 1’ subsection.

leagues. To see why, compare the output of the environment
observation pipelines, shown diagramatically in Figures 2a
and 2b: Li and co-authors obtain stacks of size 84×84×(4+K),
while we extract stacks with shape 84 × 84 × (4 × (1 + K)),
caused by our computation of object channels over all input
pairs instead of just the last pair. Thus, while Mnih and
colleagues originally required an input of 84 × 84 × 4, as all
frames were simply ‘raw’ greyscale screens, Li et al. need an
input of the form 84×84×(4+K) instead. We, in turn, deviate

from this mold by working with stacks of the aforementioned
84 × 84 × (4 × (1 + K)) form.

Third, we use a model loss that is different from the de-
fault loss used by Mnih et al. (2015). Originally they used the

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 25

Table 2
A comparison between the models relevant to experiments 1 and 2, in terms of hyper-parameters. The only model absent
from the comparison is Goel et al. (2018)’s morel model, for which we show comparisons in a separate table. Note that
Hessel et al. (2018)’s model has been tested with (i) a greedy policy and noisy layers (Fortunato et al., 2018), and (ii)
with an ε-greedy layer and no noisy layers. In the end, the authors opted for (i), but since we use ε-greedy policies
throughout this thesis, we wanted to highlight this fact in this overview. Apart from this, εevaluation represents a con-
stant value, and not a different final value for a linear schedule. The parameters under the ‘Us’ columns were derived
from Castro et al. (2018)’s framework. Specifically, we used their dopamine/dopamine/agents/dqn/configs/dqn.gin
and dopamine/dopamine/agents/rainbow/configs/rainbow.gin files (Castro et al., 2022) for the left and right ‘Us’
columns, respectively.

Nature dqn Rainbow

Hyper-parameter Mnih et al. (2015) Us Hessel et al. (2018) Us Description
Architecture As in Fig. 1a As in Fig. 1a As in Fig. 1b As in Fig. 1b The model’s topology and structure.

γ 0.99 0.99 0.99 0.99 The future discount factor.
Policy ε-greedy ε-greedy ε-greedy or greedy ε-greedy The policy that the agent uses.

ε schedule 1→ 0.1 (0.05) 1→ 0.01 (0.001) 1→ 0.01 (0.001) 1→ 0.01 (0.001) The linear exploration schedule.
Notation: εstart → εfinal (εevaluation)

ε time steps 1 · 106 1 · 106 1 · 106 1 · 106 ε annealing time steps.
Breplay 1 · 106 1 · 106 1 · 106 1 · 106 The size of the replay buffer.

t learning start 2 · 105 8 · 104 8 · 104 8 · 104 Time step at which learning starts.
Bbatch 32 32 32 32 The minibatch size.

m 1 1 3 3 The multi-step update parameter.
θt update frequency 16 16 16 16 Online net update freq. (time steps).
θt update frequency 4 · 104 3.2 · 104 3.2 · 104 3.2 · 104 Target net update freq. (time steps).

Optimiser RMSProp RMSProp Adam Adam The type of optimiser used.
α 2.5 · 10−4 2.5 · 10−4 6.25 · 10−5 6.25 · 10−5 The learning rate.
ε̂ 1 · 10−2 1 · 10−5 1.5 · 10−4 1.5 · 10−4 Numerical stability scalar for optimiser.
ρ 0.95 0.95 – – RMSProp’s moving average decay.

Momentum No No – – Optional RMSProp momentum.
Centered Yes Yes – – Center RMSProp squared gradients?

β1 – – 9 · 10−1 9 · 10−1 First Adam hyper-parameter.
β2 – – 9.99 · 10−1 9.99 · 10−1 Second Adam hyper-parameter.

Type of B Uniform Uniform Prioritised Prioritised The experience replay type used.
ω – – 5 · 10−1 5 · 10−1 The priority exponent.

βis schedule – – 0.4→ 1 0.5 (constant) The priority importance sampling exponent.
Notation: as with ε schedule.

βis time steps – – 2.5 · 105 – βis annealing time steps.
Natoms – – 51 51 Rainbow’s distribution support size.

[Gmin,Gmax] – – [−10, 10] [−10, 10] Rainbow’s distribution’s support range.
dnoisy – – N(0, 0.5) – Rainbow noisy layers’ distributions.

squared error (se) to inform updates to network parameters,

LSE; t(θt) = Eπθt
[(

RT ′+1 + γmax
a∈A

Q
(
f(S T ′+1) , a; θt

)
−

Q(f(S T ′) , AT ′ ; θt)
)2]
,

(41)

where T ′ is a uniform random variable whose support is
[min(0, t − Breplay), min(0, t − 1)] (for more on this, see the
experience replay subsection of the Nature dqn section).

Instead, we follow Castro et al. (2018)’s approach and use
an adaptation on the se known as the Huber loss (Huber,
1964). The motivation for choosing this loss over the default
se is that relatively large temporal-difference errors are as-
signed relatively small values, potentially avoiding numerical
instabilities. Using the Huber loss, our loss equation changes

to

LHuber; t(θt) = Eπθt
[
h
(
RT ′+1 + γmax

a∈A
Q
(
f(S T ′+1) , a; θt

)
−

Q(f(S T ′) , AT ′ ; θt)
)]
,

(42)

where h is a transformation applied on the temporal-difference
error. Using different variable names to avoid collisions with
other definitions in this text, this h is defined as (Huber, 1964,
p. 75)

h(x) def
=

1
2

x2 if |x| < dHuber,

dHuber|x| −
1
2

d2
Huber if |x| ≥ dHuber,

(43)

with dHuber ∈ R+. One may now realise why the claim of
relatively small transformed td errors applies when using the

26 DE JONG

Huber loss: beyond discrepancies of size dHuber, h becomes
linear instead of remaining quadratic at all values for x, as
would be the case for the se. For our agent, we choose
dHuber = 1.

The fourth and last difference has to do with network hyper-
parameterisation; for an overview of all the changes that are
made, see Table 2, and in particular the Nature dqn column
group. Under it, the ‘Mnih et al. (2015)’ column displays the
hyper-parameters used by the original Nature dqn authors.
Due to a lack of further knowledge, we assume Li and co-
authors used the same parameter set. The ‘Us’ column of
the column group is derived from the parameters used in
Castro et al. (2018), whose framework we use. In essence,
the hyper-parameters have been changed so as to allow for
an ‘apples-to-apples’-comparison with the Rainbow network
(Castro et al., 2022), which we will include in experiment 2.

We train the Nature dqn by applying minibatch gradient
descent, as discussed in the Related Works, and as presented
there in Equation 20. As is also shown in Table 2, the Nature
dqn agent works with this model while following an ε-greedy
policy with a linearly decaying exploration rate, transitioning
from always exploring at time step 0, to exploring only with
1% chance; during evaluation phases—to be discussed in the
next subsection—the exploration rate is set one magnitude
lower, namely to 1‰ chance. Furthermore, we use a learning
rate α of 2.5 · 10−4, using the RMSProp optimiser (Hinton,
Srivastava, & Swersky, 2012) to update the network’s pa-
rameters; its parameters can be viewed in Table 2 as well.
The online network is updated once every four time steps,
while the target network is updated once every 32,000 time
steps. The discount factor is set to 0.99. Although the proce-
dure here largely follows Mnih et al., and thus also Li et al.,
the specific parameters used are different, as can be seen in
Table 2.

Experiment. The final subsection of our treatment of the
methodology for experiment 1 discusses the experiment-level
details of what runs to conduct, with how many repetitions,
and what outputs to collect from runs. Let us start with
answering the first two questions; the third question requires
more elaboration.

Runs. By a ‘run’, within the context of this thesis, we mean
a single execution of an agent’s learning algorithm within an
environment for a defined amount of time steps. Concretely
for experiment 1, we only consider the Nature dqn-driven Q-
learning agent on the two ale Atari 2600 environments Pong
and Ms. Pac-Man. In order to define the number of time
steps to run this system for, we need to introduce multiple
keywords, originally employed by Castro et al. (2018).

We begin by introducing a function dur : N → N which
returns the duration in time steps of a single episode. dur(n) is
only defined for trajectories in episodic environments. Then,
let it be defined as

dur(n) def
= Tn − Tn−1. (44)

Continuing, we will use the words ‘time step’ and ‘episode’
as before, except that an episode now may not only end if a
terminal state is reached, but also if a given number of time
steps Ttimeout ∈ T \ {0} have elapsed. Within the theory of
mdps, this would correspond to introducing an extra terminal
state stimeout ∈ Sterminal that has a probability of 1 to transition
to after an episode’s trajectory would reach the timeout length:

t = Tn−1 + Ttimeout − 1 and t < Tn ⇒

p(st+1, 0 | st, a) =

1 if st+1 = stimeout,

0 otherwise,

for all a ∈ A, t ∈ T and n ∈ N. (45)

Since stimeout is a terminal state, if Equation 45 applies to
the environment under consideration, then no trajectory n of
duration dur(n) > Ttimeout is allowed to exist. A proof for this
claim is given in Appendix B.

We proceed by introducing the notion of a ‘phase’. A phase
is a sequence of episodes whose summed durations (in time
steps) is no less than Tphase ∈ T time steps, and where, if we
would omit the last episode, the resultant episode sequence’s
sum of durations would lie strictly before Tphase. Tphase can
then be specified to obtain phases of different possible lengths.
Written mathematically, ifΦ = [nstart, nend] is our phase, with
nstart, nend ∈ N and nstart < nend forming the indices of our first
and last episode, respectively, then∑

n ∈Φ

dur(n) ≥ Tphase, and∑
n ∈Φ\{nend}

dur(n) < Tphase.

The last keyword that we introduce is called an ‘itera-
tion’. An iteration consists of two phases: a ‘training phase’
and an ‘evaluation9 phase’, having separate time step limits
Tphase; train,Tphase; evaluation ∈ T . The difference between the
two is threefold. First, the agent’s action-value network is
updated during training, and the online and target networks
are synchronised after a set period of time (refer for this to
the update frequencies in Table 2); both of these steps are
not performed during evaluation. Second, experience replay
quadruples (f(st′), at′ , rt′+1, f(st′+1)) ∈ RF × A × R × RF

are only stored during the training phase. Third and last,
dynamically-adapted exploration schedules are used solely
during the training as well; the evaluation phase uses constant,
relatively low exploration values instead.

With the definitions of ‘phase’ and ‘iteration’ covered, we
are in the position to describe how many runs to perform, and
how many time steps these runs should take. For experiment
1, we perform a single run of 60 iterations: one for Pong,
and another for Ms. Pac-Man. For each, we train a separate

9Within the literature, one may also encounter the words ‘vali-
dation’ or ‘development’ instead of ‘evaluation’.

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 27

network. We specify that training phases must minimally
cover Tphase; 1; training = 1,000,000 time steps, while evalua-
tion phases are required to cover Tphase; 1; evaluation = 500,000
time steps. Further, single episodes are maximally allowed
to proceed for Ttimeout; 1 = 108,000 time steps. Thus, we have
the following experimental configurations grid, where cells
display the number of repetitions (in runs) of the configuration
it represents:

Game
Pong Ms. Pac-Man

Model Nature dqn 1× 1×

In order to compare our results, we remark on the follow-
ing. Mnih et al. (2015) trained their Nature dqn agents for 50
million time steps (p. 534). After that, they recorded undis-
counted returns (‘scores’) for 30 episodes, each lasting maxi-
mally 5 minutes, or, put differently, 5 min× 60 sec× 60 Hz =
18,000 time steps maximally. In contrast, Li et al. (2017) used
only 10 million frames and recorded scores over 50 episodes
(p. 9), with no qualification on the number of minutes maxi-
mally played, making it probable that episodes were run until
completion. Provided with Castro et al. (2018)’s baseline of
the Nature dqn, we can compare our results fairly with those
of Mnih and colleagues, whereas we need to take care with
Li et al.’s results, as we run for a number of time steps instead
of for a set amount of episodes.

Object saliency maps. Arguably central to this thesis is
the object saliency map (osm), as introduced by Li et al.
(2017). Since the procedure for creating osms may be seen as
involved, we have included Figure 4 to give a visual overview
besides the explanation of the osm creation procedure that
will now follow. At the end, we discuss how our approach
attempts to improve on Li et al.’s proposed method.

The creation of an object saliency map begins with find-
ing a set of consecutive gameplay frames. We immediately
need to be careful in order to handle an important detail
properly: just as in Mnih et al. (2015), we use both frame
skipping and maximum-pooling over frames, and as such we
cannot take immediately successive frames. If we would, it
could cause out-of-distribution problems when feeding the
processed frames into the drl network. As such, when col-
lecting gameplay frames, we collected the latest six pairs of
frames from a ‘skip cycle’. By a skip cycle, we simply mean
the last two frames from a four-frame block over which is
frame-skipped. We need the last two frames instead of only
the very last frame because of the max-pooling operation.
Furthermore, in contrast to our description of the environ-
ment’s observation pipeline (Figure 2), we do not start with
rgb frames but with greyscale counterparts; the size of the
unprocessed frames does remain the same: 210× 160 pixels.
The scenes we used across all three experiments can be found
in Appendix C.

Subsequently, we manually find our pre-specified number

Record a scene

Original scene
210×160×1
6×2 frames

Locate Kinstances objects
across the scene's frames

Object bounding boxes (BBs)
1×4
Kinstances×6×2 BBs

Generate Kinstances
'delta scenes'

Delta scenes
210×160×1
Kinstances×6×2 frames

Compute Kinstances + 1
states using the environment

Original state & delta states
84×84×Cenvironment
(Kinstances + 1)×4 frames

Compute a
 best, Q original by

sending the original state to
the model

a
 best & Q

 original
1
2 scalars

For all Kinstances delta states,
calculate Qk for a

 best and
obtain Q

 original − Qk

Q-value deltas
1
Kinstances scalars

For all Kinstances objects,
fill in Q

 original − Qk in OSM at
object positions

Object saliency map
84×84

1 matrix

Empty OSM
84×84
1 zeros
matrix

Figure 4. Creation of a single object saliency map (osm).
Kinstances, Cenvironment, abest, Qoriginal, and Qk correspond to
Kinstances, Cenvironment, abest, Qoriginal, and Qk within the text,
respectively.

28 DE JONG

K of objects in the scene. Note that, frequently, either a
searched-for object is not present in the frame or it appears
within the frame multiple times. An example of the former
may be a ball in Pong that has just gone off-screen; for the
latter case, think, for instance, of Ms. Pac-Man pellets. This
is why we introduce the symbol Kinstances ∈ N: it represents
the total number of objects that has actually been found across
at least one of the six skip-cycle pairs. If an object appears
in a strict subset of the pairs, then in any frame in which it
is absent, its location is assigned to a background pixel. At
the end of the localisation stage, we obtain for each detected
object (Kinstances), across all skip-cycle frame pairs (6 × 2) a
bounding box.

Next, we create Kinstances ‘delta scenes’. A delta scene
for an object k ∈ Kinstances is like the original scene from
the first step, except that across all skip-cycle frame pairs
the object enclosed in the bounding box has been removed.
More precisely put: the pixels within the bounding box that
encloses k is replaced by the background pixel color. Note
that Atari 2600 graphics do not display rich textures, and as
such, often a single color can be used to replace an object by
background without harming the ‘graphical integrity’ of the
resultant image.

We may now combine the results of the first and third
steps of our procedure to compute Kinstances + 1 states. A
state is different from a scene in that it can be directly
passed to a drl model: its shape is 84 × 84 × Cenvironment,
where Cenvironment ∈ N \ {0}. For instance, in experiment 1,
Cenvironment; 1 = 1+K as we combine a ‘raw’ greyscale screen
with object channels. Primarily to avoid manual labour, we
send the original and delta scenes to the environment and let
it compute the states; see also Figure 2b. At this point, one
may wonder why we have supplied six skip-cycle pairs, as
the pipeline only requires four. The reason is consistency, as
in our third experiment, due to an implementation detail, we
require two extra preceding skip-cycles. Strictly speaking for
experiment 1, they are not needed.

Once we have the states, we can compute Q-values for
them. This is significant, as differences in Q-values—‘Q-
value deltas’ as we call them—form the basis for the osm. To
start in this direction, we compute abest ∈ A and Qoriginal ∈ R.
The former is obtained by finding the Q-value-maximising
action when feeding the original state into the drl model; the
associated Q-value is Qoriginal.

Now, we find all Qk ∈ R, with k ∈ Kinstances, by sending
the Kinstances delta states to the drl model as well, except that
we always collect the Q-value at abest instead of maximising
over the actions again. Why this is necessary becomes clear
when one imagines a situation where, when some object of
interest is replaced by background, the Q-valuations per each
action change so drastically that a different action becomes
better, possibly with an even greater Q-value than the original
state. If we would not work with abest here, we would capture

the Q-value for taking this different course of action, while
we want to evaluate how much ‘worse off’ we get when the
situation changes. Given all Qk, we compute the Q-value
deltas Qoriginal − Qk. The order is important here, as we want
to quantify whether k’s removal is beneficial or not; swapping
the terms would quantify change in (estimated) return when
adding k to the scene.

Then, the final step in the osm creation pipeline is rel-
atively simple. First, we create an empty object saliency
map Msaliency ∈ 084×84, and then fill this map by determining
where objects were in the last frame of the input scene, and
entering at those pixel locations the Q-value delta for k. An
interesting problem here is that order matters: if we have
two objects k1, k2 ∈ Kinstances, which should go first if the two
have (partially) overlapping bounding boxes? Within this
thesis, we have found that such overlap was rare, and that if
it occurred, the overlap was only partial. In those cases, we
performed a manual re-ordering of the objects such that both
would be partially visible in the resultant map.

Up until now, the procedure we described has closely
matched Li et al.’s method (pp. 6–7). Previously, though,
we claimed that our approach seeks to improve in multiple
respects on the original workflow of those authors. We have
three proposed improvements, which we will explain in turn.

First, notice that an osm is essentially a highly discrete
heatmap. A shared problem in visual presentation among all
heatmaps is that we have to choose a minimum and maximum
value for the heatmap’s color range. Normally, this need not
be a considerable issue, as we can, for example, pick the
minimum and maximum values observed in the heatmap’s
grid. However, this method is inappropriate if the mapped set
of points contains outliers. In such cases, outliers dominate
the color range’s minimum or maximum (or both), and lead to
a drift in color of all values displayed. This problem is exac-
erbated when the color range is of the diverging type—which
means: having a ‘low-middle-high’ tripartition of color that
smoothly interpolates between one another—which would
cause most values to be sent to the ‘middle’ value. Since this
middle value is often a neutral color, suggesting neutrality,
outliers can seriously affect interpretation of heatmaps. Be-
cause osms also use a diverging color palette for heatmaps,
and as outliers do occur, we need to address this problem.

Our proposal is to collect, across scenes, all Q-value deltas,
keeping the experiment’s drl model and game on which said
model was tested constant during the collection. (Of course,
separate collections can be conducted for other model-game
pairs.) Subsequently, we sort the action-value deltas and
compute the 10th and 90th percentiles of those action-value
deltas, resulting in capturing around 80% of the data across
the scenes within the color range; all value deltas outside the
range are regarded as outliers. With this approach, across all
scene object saliency maps, the presentation is influenced less
by outliers. In turn, it may help viewers interpret the osms, as

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 29

(i) there is a clearer distinction between common action-value
deltas (colored within the color range) and notable, irregular
action-value deltas (colored at the minimum or maximum),
and (ii) it facilitates comparison across scenes—keeping the
model and video game constant—as all such scenes share an
identical color range. We provide boxplots of the Q-value
deltas for each experiment–drl model–video game combina-
tion; see Appendix D.

Our second suggested improvement is closely related to
the first: if we have values near the minimum or maximum
color value, we would arguably like to know whether they
are indeed outliers or simply close to, but not surpassing,
the color range bounds. To do so, we place a border around
each pixel belonging to an outlier; pixels that are not outliers
are displayed as-is, without a border. This adaptation further
improves differentiation between regular and irregular action-
value deltas.

The third and final adjustment is applied only during the
second experiment, but we mention it here for completeness.
If we perform multiple repetitions of training a drl model on
a game, then all resultant separate models each may produce
different osms for the same scene. Thus, it is possible to
‘average’ across all osms. The process of taking the av-
erage of multiple osms works as follows. For each object
instance in the considered scene, compute the average of all
Q-value deltas for said object instance given by all osms we
have. Then, create a new, empty object saliency map, locate
all object instances, and enter the average Q-value deltas in
the corresponding object instance locations. Finally, aggre-
gate all Q-value deltas across all osms and compute the 10th

and 90th percentile of this ‘grand total’ dataset of Q-value
deltas. Then, use these bounds as the bounds for the average
osm. The motivation behind using average osms is relatively
simple: it reduces the variance in Q-value deltas caused by
the specific parameterisation of individual networks, and at-
tempts to find, per object instance, a relatively model-agnostic
delta.

Model output. Now that we have introduced osms, we
can finally describe what the experiment’s intended output is.
Concretely, we collect two results from each trained Nature
dqn network, trained on Pong and Ms. Pac-Man: (i) a curve
displaying per iteration the episode-averaged, undiscounted
return of said iteration’s evaluation phase, and (ii) per each
scene, the model’s osm for said scene.

Experiment 2

Rationale. With the combination of both ‘raw’ greyscale
screen input and Li et al. (2017)-style object channels, we en-
counter an issue in the interpretation of results—especially
the average undiscounted return curves. The reason for this is
straightforward, although no less problematic: if our results
are different from the baselines provided by Castro et al.
(2018), then we cannot, with certainty, attribute this effect

to the object channels; it might as well be the case that the
greyscale channels remain the only useful channel of infor-
mation, but this source of information is leveraged relatively
effectively on our system due to an external effect, such as
using a different version of a machine learning library.

To rule out this possibility, we continue with experiment 2,
in which we only consider Li et al. (2017)-style object chan-
nels. Simultaneously, we allocate a relatively large portion
of our computational resources to this experiment in order
to (i) run, besides the Nature dqn, also with Rainbow-driven
agents (Hessel et al., 2018), and (ii) repeat each configuration
3 times.

Environment. Regarding the environmental setup, most
of the details from experiment 1 carry over to experiment 2.
The primary difference is the deprecation of ‘raw’ greyscale
screen input; only object channels remain. One caveat pre-
vents us from directly proceeding to the next experimental
aspect, however: certain environments store important ‘non-
object’ information in their greyscale inputs which would
be lost if we only included object channels in inputs. One
example that we already mentioned at the beginning of the
Methodology is the set of walls in Ms. Pac-Man: it is imag-
inable that the agent would require a significant amount of
time to navigate the maze if it would ‘play in the dark’.

To resolve this issue, we introduce a single extra channel
to the existing sequence of object channels: the so-called
background channel. The background channel is constructed
in much the same way as regular object channels, except
that the targeted ‘object’ now is not an object, but rather a
structural element. As can be seen in Figure 3, for Pong we
match the top and bottom walls, while for Ms. Pac-Man we
match the floor. Since the latter lies behind the objects of
interest—mostly pellets—we use a mask to avoid the most
frequently-occurring two object classes: pellets and power
pellets. Due to an implementation detail relating to OpenCV
(Bradski, 2000), we use regular square difference instead of
normalised square difference for such masked templates.

The revised observation pipeline can be viewed diagram-
matically in Figure 5.

Agent. For experiment 2, we introduce another agent
type besides the one driven by the Nature dqn, namely the
Rainbow agent (Hessel et al., 2018). Although similar in in-
terface to the Nature dqn—it also requires states as input and
returns, for each action, an action-value—Rainbow is known
to perform better on most games of the ale Atari 2600 game
suite (Hessel et al., 2018). For our experiment specifically,
using Rainbow besides the Nature dqn has an important rea-
son. The Nature dqn may have limited performance in select
games, simply because the network’s design inhibits further
performance increments on the task. In these cases, any
potential benefit of object channels may be obscured by the
‘inherent limitation’ of Nature dqn agents. Hence, using the
relatively powerful Rainbow besides the Nature dqn can help

30 DE JONG

210×160×1×8Greyscale

210×160×1×4Maximum-pool

…×…×1×(4×(K+1)) Threshold
(Assign 0 or 255)

210×160×1×(4×(K+1)) Template sweep

84×84×1×(4×(K+1)) Downscale

210×160×3×8Split

(2, 3) (6, 7) (10, 11) (14, 15)

0 1 2 3

…×…×1×(4×(K+1))
Template matching
(Normalised sq. diff.)

/ sq. diff.)

84×84×(4×(K+1)) Stack

Figure 5. Experiment 2’s observation pipeline—a revision
to our observation pipeline for experiment 1 (Figure 2b). We
now only use Li et al. (2017)-style object channels, plus a
background channel; this is the K + 1th channel. Note that,
although we use the normalised square difference for most
templates, Ms. Pac-Man’s background uses a mask which
required us to use the regular, non-normalised square differ-
ence. See also the commentary under Figure 3.

us detect these situations, helping us better determine whether
object channels are beneficial to agent performance.

The configuration of the Rainbow agent is shown in Ta-
ble 2, in the second column group. Note that we deviate
from Hessel et al. (2018) in that we do not use noisified dense
layers. Instead, we keep using an ε-greedy policy, which
was already considered as an alternative to noisy layers in
Hessel and colleagues’ original paper, although they finally
opted for noisy layers due to its increased performance (p.
3,220). Our reason to deviate from this choice is primarily
to remain consistent with Castro et al. (2018)’s baselines;
another argument is that the remaining five extensions to the
original Nature dqn are still sufficient to avoid the effect
of a Nature dqn’s limited performance on detecting object
channel benefits.

Besides this, we remark that, as the environment’s obser-
vation pipeline has changed—it now produces observations
of the shape 84 × 84 × (4 × (K + 1))—the input channels for
our Nature dqn and Rainbow agent are changed accordingly.

Experiment. As is the case with the preceding subsec-
tions, our overall experimental setup remains largely identical
to that used in experiment 1. We make two modifications to
the original scheme, to be precise.

First, we run each drl model-video game combination 3
times instead of just once. Note that the experimental grid has
also changed due to our inclusion of Rainbow. Thus, we have
the following experimental grid, identical in interpretation to
the one we presented in experiment 1:

Game
Pong Ms. Pac-Man

Model Nature dqn 3× 3×
Rainbow 3× 3×

Second, notice that we obtain three individual sets of av-
erage undiscounted return curve-and-osm pairs. While in
experiment 1 we could use the former directly, we now aggre-
gate the three curves by averaging per each iteration all three
episode-averaged undiscounted evaluation phase returns into
an ‘average-of-averages’. Further, we compute the standard
error over the three values in order to communicate spread.
Similarly, we aggregate the osms by computing their average,
as is described in the ‘Experiment’ sub-subsection of the
‘Experiment 1’ subsection. Note that we do not consider the
background channel while computing the maps, as we do not
regard its content as belonging to any object.

Experiment 3

Rationale. Our third and last experiment revolves
around using an alternative to the template-based object chan-
nels proposed by Li et al. (2017), namely object segmenta-
tion masks, introduced by Goel et al. (2018). The chief
motivation for working with these channels is that there is an
inherent limitation in Li and colleagues’ approach: it requires

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 31

manually-constructed templates of the environment. Ideally,
we would like to obtain agents that can extract the relevant
information from the environment fully on their own, as was
the case in the original Nature dqn, for instance. Unlike
that system, though, we require this information to be less
granular and more object-like.

This observation is also made by Goel et al. (2018). Hence,
they propose using Motion-Oriented Reinforcement Learning
(morel) which can detect motion from observations by min-
imising a reconstruction loss (Equation 36), derived from the
principle of optical flow.

Within this experiment, we use the unsupervised com-
ponent of morel to build a counterpart to experiment 1
which does not rely on manually-constructed templates. Once
trained, we can compare the systems obtained here with those
in experiments 1 and 2 to see whether trading in some of
the accuracy gained by using template-based objects for less
manual labour still produces any object-based improvement.

Environment

As is the case with template-based object channel creation,
we view the task of generating motion-based object channels
as belonging to the environment. One may object here that
in Goel et al. (2018)’s original design, the unsupervised mo-
tion model is part of the overall drl model, and thus part
of the agent. We counter this by pointing out that we only
use the unsupervised network component, which can—and
is—trained standalone, without any relation to the agent (pp.
5,686–87).

Before continuing, we need to address a terminological
detail that has remained unspecified up until now, but which
may cause confusion if we leave it that way. Specifically, we
have used two terms interchangeably: ‘motion mask chan-
nels’ or ‘motion-based channels’ on the one hand, and ‘ob-
ject segmentation masks’ on the other. Both refer to the same
idea: extracting the contents of the ‘Object (Segmentation)
Masks’ block in morel’s unsupervised submodel, which can
be found in Figure 1d’s left grey block, just left and below of
the ‘Optical Flow’ block. During the Related Works, it has
also been denoted mathematically as Pk ∈ [0, 1]Himages ×Wimages ,
with k ∈ [0,K⟩. Note that, although K ≥ 1 was already used
to denote the number of Li et al. (2017)-style object channels,
we re-use it here for morel object segmentation masks. Since
both populate the object-based channels, sharing the symbol
K, we argue, is appropriate. Note, besides this, that for
morel, K is a hyper-parameter that determines how many
unique objects can maximally (inclusively) be segmented
from the input observation. We fix K to 4 within this thesis,
as it matches the number of object channels maximally used
in the Li et al. (2017)-style object channels from experiments
1 and 2, not considering background channels.

We cannot use the morel subnetwork immediately; it
needs to be trained in a self-supervised manner first, as is

also described in the Related Works section on morel. We
follow Goel et al.’s procedure and create a single, pre-trained
subnetwork for each of the games Pong and Ms. Pac-Man.
This is done in three steps.

First, we let a random policy play the game under consid-
eration until precisely 100,000 processed frames have been
collected. These are frames that are not direct successors of
one another, but are instead frame-skipped, max-pooled, and
subsequently resized to 84×84 pixels, as is shown in the top-
most two steps of our observation pipelines for experiments
1 and 2 (Figures 2b and 5, respectively). Then, we aggregate
these frames per episode, producing sets F′1, F

′
2, . . . , F

′
Npretrain

,
where Npretrain ≥ 1 is the number of episodes that the random
policy ran for. Each F′i , with i ∈ [1,Npretrain] stores at least
one processed frame.

Second, we sample 250,000 pairs of successive, processed
frames by repeatedly performing the following: (i) Select an
episode frame set F′ ∈ {F′1, . . . , F′Npretrain

} proportional to the
number of processed frames it has. That is, each set F′i with
i ∈ [1,Npretrain] has a selection probability of

pF′i =

∣∣∣F′i ∣∣∣∑
j ∈ [1,Npretrain]

∣∣∣∣F′j∣∣∣∣ .
This approach partially avoids training the morel subnetwork
on only relatively ‘underperformant’ trajectories, by prefer-
ring trajectories in which the agent managed to play for a
relatively long number of time steps. (ii) Then, draw two con-
secutive processed frames by uniformly (pseudo-)randomly
sampling an index i′ ∈ [0, |F′| − 1⟩ and using (i′, i′ + 1).

Third, the resultant set of pairs of processed frames are
sequentially input to the morel subnetwork. At each output,
we adapt the network’s parameters using the loss described
in Equation 38. As is done by Goel and colleagues, we use
the Adam optimiser (Kingma & Ba, 2015) with the following
hyper-parameters (the symbols having the same interpretation
as in Table 2):

Parameter Value

α 1 · 10−4

β1 9 · 10−1

β2 9.99 · 10−1

ε̂ 1 · 10−8

Further, we use the same linearly-increasing λreg as was men-
tioned in the Related Works section on morel.

Once we have a trained model, we can use it to generate
object segmentation mask frames for our environmental ob-
servations. Recall from the introduction to the Methodology
that—unlike experiment 2—we also need greyscale frames
to account for the static component of the observations. All
in all, the pipeline is shown in Figure 6. In it, the use of
six skip cycles at the input is due to our aforementioned
implementation detail.

32 DE JONG

(10, 11) (14, 15) (18, 19) (22, 23)

210×160×1×8Greyscale

210×160×1×4 Maximum-pool

84×84×1×4Downscale

210×160×3×8 (L), 210×160×3×10 (R)Split

(2, 3) (6, 7) (10, 11) (14, 15)

0 1 2 3

84×84×(4×(1+K)) Stack

(18, 19)

210×160×1×5Maximum-pool

0 1 2 3 4

210×160×1×10Greyscale

84×84×1×5Downscale

84×84×1×8Pair

84×84×1×(4×K)Segment objects using MOREL

(0, 1) (1, 2) (2, 3) (3, 4)

Figure 6. The environmental observation pipeline for ex-
periment 3. It is interpreted similarly as the diagram for
experiment 1, so refer to Figure 2b as well.

Agent

We use the same two agents as in experiment 2: the Nature
dqn and Rainbow; their parameterisations also remain as-is to
facilitate comparison across experiments. Our inputs remain
of the same size, too: 84×84× (4× (1+K)). Here we change
K + 1 to 1 + K to highlight the facts that (i) we re-introduce
the greyscale frame, which we put first in the sequence of
observation channels, and (ii) we remove the background
channel, which comes last in the channels sequence.

Experiment

For experiment 3, the experimental setup is nearly identical
to the one used in experiment 1, except that we now use both
the Nature dqn as well as Rainbow. Thus, our experimental

configurations grid changes to the following:

Game
Pong Ms. Pac-Man

Model Nature dqn 1× 1×
Rainbow 1× 1×

Although we would have been interested in repeating each
configuration three times, like we did in experiment 2, we
were limited in computational resources and had to priori-
tise.

Technical implementation

We close the Methodology by referring to software that
has enabled the concrete implementation of this thesis’ ideas.
The overall project has been written in Python (van Rossum,
1995), and is a fork from Castro et al. (2018)’s Dopamine
framework. The machine learning framework on which we
build is TensorFlow (Abadi et al., 2016). Observation prepro-
cessing is achieved via a combination of OpenCV (Bradski,
2000, primarily for resizing and template matching) and Pil-
low (Lundh, 1995, Clark & Contributors, 2010). NumPy
(Harris et al., 2020) helped with general array programming.

Results

We discuss our results with the same approach that we took
with the Methodology: we consider experiments 1, 2, and 3 in
turn. For each, we first show the average undiscounted return
curves per each drl model-game combination, followed by
a presentation and explanation of interpretation of the object
saliency maps. We postpone closer examination of the osms
until the end of the Results, as then the maps from all three
experiments can be compared with one another. Furthermore,
experiment 3 has an extra subsection because we also present
examples of object segmentation masks there.

Experiment 1

Average undiscounted return curves. We begin our
overview of the results by considering the episode-averaged
undiscounted evaluation phase return curves for experiment
1; they are shown in Figure 7. While observing the plots,
recall that experiment 1’s configuration grid does not include
Rainbow—it is included from experiment 2 onward. Further-
more, we remark that even though we use reward clipping
throughout all experiments, the total undiscounted reward
that can be collected varies considerably between the two
games. Two reasons for this phenomenon are that episode
lengths differ between games, and that rewards may occur
more or less frequently depending on the game played. For
instance, in Pong one gains or loses points relatively infre-
quently, namely when winning or losing matches. In con-
trast, in Ms. Pac-Man, each single pellet—abundant across
the playing field—contributes to the score when eaten.

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 33

−20

−10

0

10

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Pong, DQN

(a) Nature dqn–Pong.

1000

2000

3000

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Ms. Pac−Man, DQN

(b) Nature dqn–Ms. Pac-Man.

Figure 7. Episode-averaged undiscounted return curves for experiment 1, varying over the two games Pong and Ms. Pac-Man,
but keeping the drl model—the Nature dqn—the same. The baseline’s curve is actually a ‘grand average’ of individual
episode-averaged undiscounted returns at that iteration; the shaded area around it is the standard error around the averages.
The baseline used five averages to compute a grand average and standard error at an iteration.

When examining the left subplot (Figure 7a), it appears
that the Nature dqn agent reaches similar levels of episode-
averaged undiscounted return as does Castro et al. (2018)’s
baseline, which uses the ‘raw’ greyscale screen input without
any object channels. However, our object channel-augmented
agent seems to reach such levels relatively quickly, speaking
in terms of iterations. In particular, if we consider an average
undiscounted return of 15 as the ‘convergence score’, then we
could argue that the object channel-augmented Nature dqn
reaches this score around iteration 30, while the ‘regular’,
baseline Nature dqn arrives at such a score only past 60 iter-
ations. Indeed, if we view Castro and colleagues’ baselines
in full—which go on for 198 iterations—it seems that the
regular Nature dqn only reached an average undiscounted
return of 15 near 120 iterations (Castro et al., 2022).

Moving on to Ms. Pac-Man, to the right, in Figure 7b, the
situation seems different. Specifically, the object channel-
augmented Nature dqn agent appears to yield similar episode-
averaged undiscounted returns over the iterations to Catro et
al.’s regular, baseline Nature dqn agent. If ran for even longer,
it may even have become the case that the object channel-
augmented agent stagnated, while the baseline continued to
improve.

Taking stock of both graphs, we bring attention to one re-
maining detail that appears to be shared among both Pong’s
object channel-augmented agent and that of Ms. Pac-Man:
the two curves seem more noisy than the baselines, where es-
pecially our Ms. Pac-Man Nature dqn agent oscillates more
in average undiscounted return than the baseline: the stan-
dard error around the baseline’s curve is difficult to notice,
suggesting almost no fluctuation around the ‘grand average’
of average undiscounted returns across the five runs of which

it is composed. Contrast this to the variation in average
undiscounted return of our agent, which sometimes varies
with almost 1,000 score points—a relatively large amount.

Object saliency maps. Besides average undiscounted
return curves, we present object saliency maps of the Nature
dqn agent applied to both Pong and Ms. Pac-Man. The results
can be seen in Figure 8, although for understanding the plots
we need to explain the following three points.

First, as we have already explained in the Methodology,
osms display ‘silhouettes’ of objects. Recall that these have
been produced during the template-sweeping step, shown in
Figure 5). Consequently, osms display rectangles instead of
more recognisable object outlines, which may make it diffi-
cult to determine which object is present where in the Figure.
To address this issue, we provide Table 3 for assistance. As
the scenes stay the same across experiments, Table 3 can be
used throughout the rest of the Results to find the rectangle
belonging to the object of interest.

Second, we need to make precise what the interpretation
is of each single colored rectangle in our osms. Denote
by spresent; k, sabsent; k ∈ S the state under consideration with
k ∈ [0,Kinstances⟩ present on all channels, and that same state
with k removed from all channels, following the procedure
outlined in the Methodology, respectively. Then, the value
∆k ∈ R represented by the color of k’s rectangle in the osm
is the action-value difference, evaluated at the Nature dqn,
between

1. The action-value of the scene’s original state spresent; k,
choosing the action abest ∈ A that maximises action-
value for said state, and

2. The action-value of the delta scene’s state, sabsent; k,

34 DE JONG

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−3.6e−01 6.8e−01
Q−value delta

Pong, DQN, Experiment 1
Lose

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−3.6e−01 6.8e−01
Q−value delta

Pong, DQN, Experiment 1
Pass

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−3.6e−01 6.8e−01
Q−value delta

Pong, DQN, Experiment 1
Win

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−4.8e−01 5.6e−01
Q−value delta

Ms. Pac−Man, DQN, Experiment 1
Pellets

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−4.8e−01 5.6e−01
Q−value delta

Ms. Pac−Man, DQN, Experiment 1
Power Pellet

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−4.8e−01 5.6e−01
Q−value delta

Ms. Pac−Man, DQN, Experiment 1
Crossroad

Figure 8. Object saliency maps for experiment 1.

choosing abest again.

Mathematically, this is equivalent to

∆k = Q
(
f
(
spresent; k

)
, abest; θfinal

)
− Q

(
f
(
sabsent; k

)
, abest; θfinal

)
,

(46)

where θfinal is the parameterisation of the online network of
the Nature dqn at the end of training, and where

abest = max
a∈A

Q
(
f
(
spresent; k

)
, a; θfinal

)
. (47)

Intuitively, ∆k > 0 suggests an action-value-heightening ef-
fect of k on the overall estimation of spresent; k’s expected re-
turn; vice-versa for ∆k < 0. Throughout the text, we have
occasionally used the term ‘Q-value delta’ for the ∆k.

If we use this interpretation to understand Figure 8’s ‘Pass’
scene for the game of Pong, then the opponent’s paddle (to
the left) appears to provide a slight, positive action-value-
heightening effect on the total action-value of the state derived
from the scene.

In that same scene, we observe the ball having a consider-
ably high Q-value delta. In particular, the color of the ball is
a darker green than displayed on the color range. An inverse
effect can be observed for some objects with significantly neg-
ative Q-value deltas; these have a dark-brown color instead
of the color range’s orange. These object instances illustrate

our third and last point on interpreting our osm plots: outlier
objects. Object instances with a Q-value delta preceding or
surpassing the minimum or maximum of the color range, re-
spectively, are marked by placing a border around each pixel
of the object instance’s ‘silhouette’, producing these darker
colors, implementing our second improvement proposal to Li
et al. (2017)-style osms. In terms of interpretation, we may
say that these object instances have a relatively large effect on
the final state’s Q-value, compared to non-outlier objects.

Experiment 2

Average undiscounted return curves. In terms of
episode-averaged evaluation phase undiscounted return
curves, experiment 2 diverges from experiment 1 in two re-
gards. First, we use three repetitions to obtain our return
curves. As a result we may compute the standard error around
the curve per each iteration, which we show using a shaded
region similar to the one used for the baseline. Second,
we introduce the Rainbow agent, which causes our complete
plot to be extended with a second row to accommodate for
this addition. Of course, the most central difference to look
out for in the plots is the exclusive use of object channels.
Hence, a comparison with experiment 1’s return curves may
give insight in the effects of removing ‘raw’ greyscale screen
input, and relying solely on what was previously only an

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 35

Table 3
An overview of the approximate positions of objects per game, per scene, in the osms (Figures 8, 10, and 13). Coordinates
are given in the format (height,width), with both entries expressed in pixel indices. Entries with only a single coordinate pair
imply a static object, invariant to three scenes; entries marked by a ‘–’ communicate that that particular object cannot be
found in that scene. Two causes are (i) the irregular intervals at which objects are present on screen, even when working with
maximum-pooling, and (ii) occlusion, preventing template matching from working correctly. Apart from this, note that we have
omitted one object type—the regular Ms. Pac-Man pellets—due to their abundance. They can be identified as horizontally
elongated rectangles in the Ms. Pac-Man osms.
Note that one can verify these positions for themselves by comparing these coordinates and the osms with the scene source
frames (Figures C1 and C2 in the Appendix). When doing so, be careful to take into account the resizing and max-pooling that
took place to produce the osms.

Scene

Pong Lose Pass Win Description

Our paddle (62, 75) (30, 75) (30, 75) The player’s (rather, agent’s) paddle.
Opponent’s paddle (30, 10) (20, 10) (25, 10) The computer opponent’s paddle.

Ball (28, 80) (17, 50) (28, 10) The ball.

Ms. Pac-Man Pellets Power pellet Crossroad Description

Ms. Pac-Man (41, 38) (74, 10) (62, 22) The player’s (agent’s) character.
Blinky (62, 38) (80, 22) (70, 6) The first ghost to enter the maze.
Clyde (50, 46) (68, 70) (62, 62) The second ghost to enter the maze.
Inky (45, 46) – (53, 41) The third ghost to enter the maze.

Pinky – (50, 38) (48, 38) The fourth ghost to enter the maze.
Power pellet 1 (80, 80) The upper-right power pellet.
Power pellet 2 (22, 80) The lower-right power pellet.

Life 1 (12, 8) The leftmost (last-to-be-used) life of Ms. Pac-Man.
Life 2 (12, 16) The rightmost (first-to-be-used) life of Ms. Pac-Man.

input-side augmentation. Figure 9, then, presents the average
undiscounted return curves for experiment 2.

The left column displays the object channel-only versions
of the Nature dqn and Rainbow applied to Pong; they are
shown in Figures 9a and 9c, respectively. Both plots suggest
that the object only-versions of the agents, again, reach the
same level of average undiscounted return, albeit at a rela-
tively ‘early’ iteration. If we use a ‘convergence score’ of
17 points, then the object channel-only Nature dqn seems to
reach this average undiscounted return around 40 iterations,
while the baseline—again referring to the extended baseline
plot provided by (Castro et al., 2022)—requires 130 iterations.
Similarly, let us choose a convergence score of 20 points for
the Rainbow agents. Then the object channel-only agent
appears to reach this target around the 15th iteration, whereas
the baseline requires almost 100 iterations; Figure 9c even
suggests that the baseline has already converged to a policy
that produces average undiscounted returns that structurally
score a point lower than the object channel-only counterpart.

Perhaps more interesting is the right column, which
presents the same two agents’ return curves, except on Ms.
Pac-Man instead of Pong. Again, the upper Figure, Fig-
ure 9b, shows the object channel-only Nature dqn, while

Figure 9d below it presents Rainbow. Recall experiment 1’s
return curves, and especially our comment on how it appeared
that our object channel-augmented Nature dqn agent yielded
worse average undiscounted returns in the last few iterations,
compared to the baseline. Figure 9b seems to show a more
extreme trend of this kind: in the last third of the iterations,
the object channel-only Nature dqn produces lower average
undiscounted returns than the baseline. Still, it does not
seem as if the object channel-only Nature dqn stagnates, as
in the last five iterations the curve increases lightly again.
These observations are in stark contrast to what can be seen
in Figure 9d, directly below it. There, after approximately
iteration 4, the object channel-only Rainbow agent’s average
undiscounted return curve departs from the trend shown by
the baseline Rainbow agent, with at its peak near iteration
25 a difference in score of around 1,000 points. Moreover,
while the object channel-only Rainbow agent seems to reach
its ‘convergence score’ of nearly 4,000 points around iteration
40, the baseline Rainbow agent requires almost 180 iterations
(Castro et al., 2022).

With the use of three repetitions, we may gain a better in-
sight in the level of noise around our ‘grand averages’ of aver-
age undiscounted returns. For Pong, the object channel-only

36 DE JONG

−20

−10

0

10

20

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Pong, DQN

(a) Nature dqn–Pong.

1000

2000

3000

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Ms. Pac−Man, DQN

(b) Nature dqn–Ms. Pac-Man.

−20

−10

0

10

20

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Pong, Rainbow

(c) Rainbow–Pong.

1000

2000

3000

4000

5000

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Ms. Pac−Man, Rainbow

(d) Rainbow–Ms. Pac-Man.

Figure 9. Episode-averaged undiscounted return curves for experiment 2, varying over the two games Pong and Ms. Pac-Man,
and also considering both the Nature dqn and Rainbow as drl models. Both the baselines and our results display ‘grand
averages’ and standard errors of individual episode-averaged undiscounted return curves. The baselines used 5 repetitions,
while we used 3.

agents seem to produce curves with similar levels of noise
as the baselines—perhasp even less oscillatory in the spe-
cific case of the Nature dqns. However, the object channel-
only agents applied to Ms. Pac-Man do appear to yield more
varying levels of average undiscounted return, whether we
consider the Nature dqn or Rainbow agents.

Object saliency maps. In Figure 10, we present the ob-
ject saliency maps for our second experiment. As is the case
with the average undiscounted returns under experiment 2, we
add extra rows to the Figure to accommodate for Rainbow’s
production of osms, besides the Nature dqn. Similarly, we
average over each drl model-video game’s three osms to
obtain aggregated osms, as laid out in the Methodology.

Due to the averaging operation, our interpretation of
the ‘osms’—in actuality aggregated osms—needs to subtly
change. Specifically, while previously Equation 46 was ap-
propriate for singular object instance Q-value deltas, we now

need to adapt it to

∆k =

3∑
i=1

∆k; i, (48)

where the iteration, in the general case, of course need not be
restricted to three repetitions. ∆k ∈ R is the average Q-value
delta over the three repetitions’ individual Q-value deltas,
∆k; 1,∆k; 2,∆k; 3 ∈ R. As a direct consequence, we should
add the qualification ‘on average’ before interpreting singular
object instance averaged Q-value deltas.

Experiment 3

Object segmentation masks. Because the unsupervised
morel subnetwork is so central to the environment’s obser-
vation pipeline in experiment 3, it may be informative to

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 37

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−3.1e−01 1.0e+00
Q−value delta

Pong, DQN, Experiment 2
Lose

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−3.1e−01 1.0e+00
Q−value delta

Pong, DQN, Experiment 2
Pass

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−3.1e−01 1.0e+00
Q−value delta

Pong, DQN, Experiment 2
Win

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−3.8e−01 9.7e−01
Q−value delta

Pong, Rainbow, Experiment 2
Lose

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−3.8e−01 9.7e−01
Q−value delta

Pong, Rainbow, Experiment 2
Pass

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−3.8e−01 9.7e−01
Q−value delta

Pong, Rainbow, Experiment 2
Win

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−5.4e−02 2.9e−01
Q−value delta

Ms. Pac−Man, DQN, Experiment 2
Pellets

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−5.4e−02 2.9e−01
Q−value delta

Ms. Pac−Man, DQN, Experiment 2
Power Pellet

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−5.4e−02 2.9e−01
Q−value delta

Ms. Pac−Man, DQN, Experiment 2
Crossroad

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−1.1e−03 2.4e−03
Q−value delta

Ms. Pac−Man, Rainbow, Experiment 2
Pellets

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−1.1e−03 2.4e−03
Q−value delta

Ms. Pac−Man, Rainbow, Experiment 2
Power Pellet

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−1.1e−03 2.4e−03
Q−value delta

Ms. Pac−Man, Rainbow, Experiment 2
Crossroad

Figure 10. Object saliency maps for experiment 2.

38 DE JONG

Figure 11. Two examples of object segmentation mask results. The first row shows a relatively successful example of object
segmentation via motion. The second row demonstrates that, sometimes, not all moving objects in the scene are captured by
morel’s unsupervised subnetwork. Note that the displayed frames are processed. Hence, they are of 84 × 84 pixels, and can
seem somewhat blurry.

consider the quality of output generated by this subnetwork
before moving on to the return curve and osm discussions.

In Figure 11 we show two examples of the K = 4 object
segmentation masks produced by the subnetwork. The top
row shows the network trained on Ms. Pac-Man, and applied
to the ‘Crossroad’ scene, whereas the bottom row displays
the network trained on Pong and confronted with the ‘Pass’
scene. We have chosen these two exemplary output masks,
as they are representative of the qualitative behaviour of the
network, also in different scenes.

Specifically, we observe that the morel subnetwork learns
to partially segment the image’s objects. In both rows of
Figure 11, we can discern a strict subset of the objects from
the Li et al. (2017)-style object channels being segmented:
for Ms. Pac-Man, it appears that Blinky, Ms. Pac-Man, and
a ghost in the maze’s centre are captured throughout the four
masks of the top row. Similarly, both the player’s as well
as the opponent’s paddles seem to be encoded in the object
segmentation masks of the network of the bottom row of the
Figure.

Now, we emphasise the word ‘partially’ from before, be-
cause arguably relevant objects are still missing from the
masks. Although one may state that Ms. Pac-Man’s ob-
ject segmentation masks are relatively complete—perhaps the
blinking power pellets could still be captured—the encoding
in Pong is notably incomplete: it does not store a segmenta-
tion of the ball in any of its four channels, while such informa-
tion is probably essential to successful gameplay. Despite the
incompleteness of the resultant object segmentation masks,
however, it is still interesting to consider to what degree the
two drl models considered in this thesis may leverage this
imperfect source of additional information.

Besides this main observation, we report on successfully
reproducing two qualitative phenomena mentioned by Goel

et al. ((2018), pp. 6–7).
The first phenomenon is due to the ‘low-texturedness’ of

Atari 2600 games. Particularly, if we translate a uniformly-
colored block over the vertical or horizontal axis, and if the
destination position overlaps at least partially with the starting
position, then the morel subnetwork estimates for the over-
lapping pixels a movement of zero pixels, because technically
these pixels do not change brightness. This can be seen in
the lower row of Figure 11: the opponent’s paddle consists of
two small blocks, which is the ‘difference’ in the paddle over
the considered skip cycle.

Second, in relatively ‘object-intensive’ Atari 2600 video
games, multiple objects tend to move consistently in similar
directions—or exactly the same direction. Goel et al. (2018)
brought up the example of Space Invaders, in which the en-
emy ships move in a coordinated manner. In our Figure 11, we
see in Ms. Pac-Man’s row that the first object channel—which
should normally consist of a single, unique object—actually
contains both Blinky, Ms. Pac-Man, as well as the maze-
centre ghost. It seems that, in this situation, the network has
learned to perform an ‘aggregate motion prediction’ on all
three objects.

Having briefly inspected the morel subnetwork used to
generate the motion-component of our environment’s obser-
vations, we now move on to the average return curves.

Average undiscounted return curves. For experiment
3, we again show the performance in terms of episode-
averaged evaluation phase undiscounted returns for the Nature
dqn and Rainbow agents, applied on Pong and Ms. Pac-Man.
Different from experiment 2 is that we revert back to one
repetition due to computational limitations, as was already
explained within the Methodology. Figure 12 presents the
average undiscounted returns for experiment 3.

As we did before, we concentrate first on the left column,

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 39

−20

−10

0

10

20

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Pong, DQN

(a) Nature dqn–Pong.

1000

2000

3000

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Ms. Pac−Man, DQN

(b) Nature dqn–Ms. Pac-Man.

−20

−10

0

10

20

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Pong, Rainbow

(c) Rainbow–Pong.

1000

2000

3000

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Ms. Pac−Man, Rainbow

(d) Rainbow–Ms. Pac-Man.

Figure 12. Episode-averaged undiscounted return curves for experiment 3, varying over the two games Pong and Ms. Pac-Man,
and also considering both the Nature dqn and Rainbow as drl models. The baselines’ interpretation remains the same.
Note that we revert back to one iteration in comparison to experiment 2, so we directly show an individual episode-averaged
undiscounted return, and no standard error, as in experiment 1.

which summarises the performances of the greyscale-and-
motion Nature dqn and Rainbow agents on the game of Pong
(Figures 12a and 12c, respectively). Interestingly, we observe
two apparent stages in the two agents’ average undiscounted
return curves. The fist stage occurs within iterations 0 up until
approximately 20. There, the return curves of the greyscale-
with-motion agents seem to fall below those of the baseline
counterparts. Directly after the first stage, there appears to
be a ‘turning point’ after which the greyscale-and-motion
agents produce average undiscounted returns that seem to lie
below the baseline return curves. At the final iteration we
considered, we see, similar to experiment 2, that the baseline
curves require an additional number of iterations to reach the
same level of average undiscounted reward. Since the ‘con-
vergence scores’ of both the greyscale-and-motion Nature
dqn and Rainbow lie around the values they took on during
experiment 2, we omit reporting on the baselines’ number of

iterations to reach those scores, as they would be identical to
those reported in experiment 2.

To the right, in Figures 12b and 12d, we do not discern the
two-stage pattern. Instead, for both the greyscale-and-motion
Nature dqn and Rainbow agents, the average undiscounted
return over iterations for the game Ms. Pac-Man seems to
progress similarly over iterations as for the baseline agents,
although our two agents again display more variation around
the central average undiscounted return. As was the case
with Ms. Pac-Man during experiment 1, it may be that in
the last few iterations (from iterations 55–60) the greyscale-
and-motion Nature dqn agent performs slightly worse than
the baseline counterpart, but we would need to run for a
prolonged number of iterations to become more confident in
this observation.

Lastly, we notice that for Pong our greyscale-and-motion
Nature dqn and Rainbow agent show similar levels of oscilla-

40 DE JONG

tion in average undiscounted return as the iterations progress;
for Ms. Pac-Man this is not so, as we discussed in the preced-
ing paragraph.

Object saliency maps. Figure 13 displays the object
saliency maps obtained from experiment 3. Since we re-
turn to only using a single repetition, our interpretation from
experiment 1 can be re-used. Unlike experiment 1 however,
we derive additional osms using Rainbow agents as well.

Examination of object saliency maps

We end the Results section by taking a closer look at the
three experiments’ object saliency maps. Particularly, we
point to commonalities and differences between the osms at
the experiment-, video game-, and agent-level, instead of de-
scribing each osm in words, as this would demand too much
space and would arguably duplicate in writen form what is
already displayed visually.

Commonalities. We begin with considering what is shared
among the osms, across the three experiments, two drl mod-
els, and two video games.

First, we concentrate on Pong. What can be noticed across
all osms is that the ball consistently assumes the most extreme
Q-value deltas and average Q-value deltas of all three objects
portrayed in the maps: in the ‘Lose’ scene the ball is the
most negative of all three, whereas in ‘Pass’ and ‘Win’ it is
most positive, or at least on par with the opponent paddle. In
direct contrast is our own paddle, which takes on near-zero
Q-value deltas (or averages of those) across the experimental
configurations. Indeed, in some osms the paddle is nearly
invisible, as it takes on the neutral Q-value delta of 0 of the
background. Between these two extremes lies the opponent’s
paddle, which takes on relatively pronounced or subdued Q-
value deltas, depending on the scene. Generally, it appears
that in the ‘Pass’ and ‘Win’ scenes, the paddle is associated
with relatively large Q-value deltas—although not as large
as the ball—while the opposite applies to the ‘Lose’ scene.
An exception here is experiment 2’s Rainbow agent applied
to the ‘Pass’ scene, in which the opponent’s paddle is nearly
zero in terms of Q-value delta.

Moving on to Ms. Pac-Man, we notice five patterns.
First, the titular character takes on a positive Q-value delta

(or average Q-value delta) in nearly all experimental con-
figurations, large to such a degree that these are marked as
outliers. The only deviation is the ‘Crossroad’ scene supplied
to the Nature dqn agent in experiment 1, where Ms. Pac-Man
instead has a light-negative Q-value delta.

Similarly, her leftmost, last life is also frequently assigned
a positive Q-value delta or average of Q-value deltas. Two
counterexamples exist in experiment 2, where the Nature dqn
assigns it a negative value instead. Also, in experiment 3
with the Rainbow–‘Crossroad’ scene combination, the life is
nearly neutral.

Ms. Pac-Man’s rightmost, first life is instead consistently
changing Q-value delta ‘polarity’ across experiments, drl
models, and scenes. Comparing experiment 2’s Nature dqn–
‘Power pellet’ value with experiment 3’s Rainbow–‘Pellets’
value illustrates this point.

Fourth, we observe that in nearly every single osm both
positive and negative Q-value delta pellets can be found, al-
though often pellets with a shared polarity are located directly
adjacent to one another. Experiment 2’s Nature dqn–‘Pellets’
configuration forms an exception, as there almost all pellets
are positively-valued.

Fifth and last, the ghosts inhabiting the contraption at the
maze’s centre are given high Q-value deltas (or averages
thereof), even to an extent that they are sometimes marked as
positive outliers. This does not hold in the osm produced by
the Rainbow agent on the ‘Power pellet’ scene of experiment
3, though.

Differences. We continue to the differences among the var-
ious osms. Our coverage of this topic is split in three parts.
We first consider broad differences observable between the
three experiments. Then, video game-specific differences are
considered. Finally, we close our examination of the osms by
listing some deviations due to using a different drl model.

At the level of experiments, observe how the Pong osms of
experiments 2 and 3 are nearly identical in terms of (average)
Q-value delta polarities and relative magnitudes. Instead, in
experiment 1 we see a discrepancy: the two paddles take on
negative (average) Q-value deltas in two of the three scenes.
For Ms. Pac-Man it is more challenging to find structural
differences between the three experiments. One pattern that
seems to apply is that in experiment 2, none of the scenes
across any of the two drl models contains multiple dozens of
outlier-level negative averaged Q-value deltas. We do observe
this in experiments 1 and 3—consider the Nature dqn applied
to ‘Pellets’ for the former, or Rainbow–‘Power pellet’ for the
latter. Related to this is that it appears as if relatively large
Q-value deltas, regardless of polarity, concentrate closely to
Ms. Pac-Man in experiment 2, while such values are scattered
more evenly over the maze in experiments 1 and 3.

Between games, we note that Pong has relatively large
Q-value deltas, or averages thereof, in comparison with the
deltas for Ms. Pac-Man. Specifically, when comparing any
experiment–drl model combination, the associated Q-value
delta range is always shifted downwards when moving from
Pong to Ms. Pac-Man; this is a relatively small difference of
1.2 · 10−1 for experiment 1, but takes on a double-magnitude
difference in experiments 2 and 3.

A similar downward shift can be observed when comparing
drl agents instead of games: the Rainbow agents’ Q-value
delta ranges (or ranges of averages of these deltas) are shifted
downward from 3 · 10−2 points up until a difference of, again,
two magnitudes.

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 41

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−2.1e−01 9.1e−01
Q−value delta

Pong, DQN, Experiment 3
Lose

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−2.1e−01 9.1e−01
Q−value delta

Pong, DQN, Experiment 3
Pass

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−2.1e−01 9.1e−01
Q−value delta

Pong, DQN, Experiment 3
Win

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−1.6e−01 7.5e−01
Q−value delta

Pong, Rainbow, Experiment 3
Lose

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−1.6e−01 7.5e−01
Q−value delta

Pong, Rainbow, Experiment 3
Pass

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−1.6e−01 7.5e−01
Q−value delta

Pong, Rainbow, Experiment 3
Win

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−8.4e−02 2.4e−01
Q−value delta

Ms. Pac−Man, DQN, Experiment 3
Pellets

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−8.4e−02 2.4e−01
Q−value delta

Ms. Pac−Man, DQN, Experiment 3
Power Pellet

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−8.4e−02 2.4e−01
Q−value delta

Ms. Pac−Man, DQN, Experiment 3
Crossroad

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−5.9e−03 6.1e−03
Q−value delta

Ms. Pac−Man, Rainbow, Experiment 3
Pellets

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−5.9e−03 6.1e−03
Q−value delta

Ms. Pac−Man, Rainbow, Experiment 3
Power Pellet

0

20

41

62

83

0 20 41 62 83
X (pixel index)

Y
 (

pi
xe

l i
nd

ex
)

−5.9e−03 6.1e−03
Q−value delta

Ms. Pac−Man, Rainbow, Experiment 3
Crossroad

Figure 13. Object saliency maps for experiment 3.

42 DE JONG

Discussion

Recall from the Methodology that we have designed our
methods in such a way so that we may answer the two research
questions from the Introduction by considering the Results’
outcomes across all three experiments. As such, we discuss
the results by first considering the three experiments’ aver-
age undiscounted return curves, and then the object saliency
maps, instead of stepping through all three experiments sep-
arately. Of course, if any noticeable effects take place when
shifting from one experiment to another, we remark on these.

Average undiscounted return curves

We start with the average undiscounted return curves.
What can be noticed across all three experiments is that the
majority of all object-augmented drl models appear to reach
certain levels of average undiscounted return faster than their
baseline counterparts, in terms of number of iterations re-
quired. An important exception is the Nature dqn model
applied to Ms. Pac-Man, which only succeeded in reach-
ing average undiscounted returns faster during experiment 2.
Furthermore, Rainbow only seems to have managed to match
the average undiscounted return curve for the baseline when
using inputs consisting of ‘raw’ greyscale screens and object
segmentation masks (experiment 3).

An interesting follow-up question is to ask how much faster
the object-augmented systems reach these average undis-
counted return levels. Table 4 attempts to answer this ques-
tion by aggregating from the Results, per each experiment,
video game, and model, how long the object- and non-object
versions of a model took to reach a set average undiscounted
return: the ‘target aurs’ in the Table.

As can be derived from Table 4, if the object-augmented
model indeed improves over the baseline, we see speed-ups
of 70% up until 85%, which is considerable. Of course, there
are two important qualifications that need to be made with
this statement. First, the potential speed-ups that may be
expected can vary per game and per drl model type. This is
illustrated by the difference in the Nature dqn versus Rainbow
on Ms. Pac-Man: only the latter agent type appears to manage
consistently to obtain a speed-up, or at least, no degradation
in learning speed. Second, the selection of target aur may
impact the precise speed-up value. We have chosen the first
point at which the average undiscounted return curve sur-
passes the targeted average undiscounted return. Instead, one
might reasonably argue that the curve should have surpassed
the target for some number of iterations, and stay repeatedly
above it during that period.

As Goel et al. (2018) already suggest, the observed
speed-ups may be attributed to an increased sampling effi-
ciency, or stated differently, a reduction in sampling com-
plexity. ‘Sampling’ refers here to drawing quadruples
(f(st′), at′ , rt+1, f(st′+1)) from the experience replay buffer B,

while ‘efficiency’ and ‘complexity’ are opposing extremes
that point to the same attribute of samples. Intuitively put,
highly efficient (low-complexity) samples represent the same
‘information’ with relatively little ‘noise’ compared to inef-
ficient (complex) samples. Consequently, drl models learn-
ing from high-efficiency samples may concentrate more on
improving their parameterisation to relate input features to
output action-value estimates. Models learning from inef-
ficient samples additionally need to to learn to ignore in-
put noise while establishing the relation. This requires
extra sample presentations without improving the mapping
from states to action-value estimates. Hence, an increased
sampling efficiency—or, equivalently, a reduced sampling
complexity—may contribute to accelerated learning.

In the above, ‘information’ refers to aspects of the input
that may be successfully used to improve the drl model’s
mapping from inputs to action-value estimates, while ‘noise’
is any apparent pattern that cannot be structurally leveraged
for said mapping’s improvement. Thus, a sample’s observa-
tions often contains both information and noise, regardless
of whether said observations are made from greyscale screen
inputs or object channels. The suggested possibility is that the
information-to-noise ratio of observations using object chan-
nels may be higher than those using greyscale screen input,
arguably because object channels present the observations in
a highly abstracted and minimal form.

Another pattern found within the Results is that the Nature
dqn agent consistently appears to fail to improve over the
baseline in terms of learning speed, while this is not so for
the Rainbow agent. For this phenomenon, we propose the
following explanation. From the argument on sample effi-
ciency above, it may be that the information-to-noise ratio of
baseline inputs—only greyscale screens—is lower than that
of object channel inputs; the former may contain relatively
many elements that are irrelevant to estimating action-values
correctly, such as, possibly, the color of a maze’s background
in Ms. Pac-Man. However, the more ‘object-intensive’ an
observation becomes, the lower the benefit of using object
channels over greyscale screens becomes, as the latter now
has a higher information-to-noise ratio, while the former’s
information-to-noise ratio remains approximately the same:
in the object channels, noise was already minimal. Now,
depending on the performative capacity of a drl model, this
smaller benefit for more object-intensive games may or may
not be leveraged, or worse: it may demand more time steps
for the agent to learn the relation of states to action-value
estimates, as there are more channels to learn from. It seems
safe to say that Ms. Pac-Man is more object-intensive than
Pong: the number of pellets in Ms. Pac-Man alone already
surpass the number of total objects in Pong, Thus, perhaps in
Ms. Pac-Man, only the relatively performant Rainbow agent
may leverage the object channels’ information effectively.

One last matter we discuss regarding the Results’ average

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 43

Table 4
An overview of speed-ups—percent point reductions in number of iterations required to reach the targeted average undiscounted
return (auc)—when using object-augmented drl models instead of baseline models provided by Castro et al. (2018), for each
experiment, video game, and model. ‘–’ indicates that an object-augmented model performs inferior to the baseline, and that
as such there is no speed-up.

Target With Without
Experiment Game Model aur object channels object channels Speed-up (%)

1 Pong Nature dqn 15 30 120 75.0
Ms. Pac-Man Nature dqn – – – –

2
Pong Nature dqn 17 40 130 69.2

Rainbow 20 15 100 85.0

Ms. Pac-Man Nature dqn – – – –
Rainbow 4,000 40 180 77.8

3
Pong Nature dqn 17 40 130 69.2

Rainbow 20 20 100 80.0

Ms. Pac-Man Nature dqn – – – –
Rainbow 3,400 60 60 0.0

undiscounted reward curves is that seemingly, using greyscale
screens plus object segmentation masks, we obtain agents that
learn less rapidly than the object-based agents relying on Li
et al. (2017)-style templates.

We hypothesise that this gap may be caused by a difference
in ‘consistency’ between template-based and object segmen-
tation mask-based object channels. By this we mean that the
two approaches differ in (i) how often objects are detected,
and (ii) whether they are presented in a similar form across
frames. If the input is highly consistent in this sense, then
a learning drl model may learn the input-output mapping
faster because the anomalous cases of absent or irregularly-
detected objects need not be regularly accounted for; vice-
versa for inconsistent object channels. Then, template-based
object channels are possibly more consistent because (i) they
detect objects regardless of presence or degree of motion, (ii)
they produce objects of a uniform, rectangular shape—object
segmentation masks may deliver varying shapes of ‘blobs’,
as can be seen in Figure 11, and (iii) they are relatively robust
to shifts in the input distribution, while object segmentation
masks are, preferably, adapted continuously alongside the
agent during training (Goel et al., 2018, p. 5,690).

Object saliency maps

As we explained in the Methodology, we are not in the
position to address our second research question in full. In-
stead, we critically consider whether the osm may serve as
an object-based model explainability tool, and, based on this,
provide only a tentative answer. At the end of this subsec-
tion, we additionally present a possible operationalisation for
evaluating the osm’s merit as an explanatory tool.

Critical evaluation of osms. We present two arguments in
favour of the potential use of osms as an object-based model
explainability tool, and two arguments against.

The first affirmative argument is relatively straightforward,
and appeals to how Q-value deltas may intuitively appeal to
the human notions of ‘good’ and ‘bad’, as also already sug-
gested in (Li et al., 2017)’s original work (p. 5). It may
further be seen as an improvement over the pixel saliency
map (Simonyan et al., 2013) as it presents ‘good’ or ‘bad’
influences in a model’s determination of Q-values at the level
of objects, which is arguably a more natural level of resolution
for humans to reason at than single pixels.

The second argument for the use of osms as an explain-
ability tool is based on the empirical data we have collected
over the three experiments. Specifically, we see that multiple
important objects in both Pong and Ms. Pac-Man have Q-
value deltas that probably align with intuitions that expert
and non-expert human users would have about those objects.
For instance, the Q-value deltas that the ball in Pong takes
on in the situations ‘Lose’, ‘Pass’, and ‘Win’ appear logical:
the ball is negatively-valued when it is certain that it will
cause a point for the opponent; it is generally positive when
moving towards the opponent (i.e. there is no ‘risk’ of a loss),
and it has an outlier-level positive Q-value delta when it is
certain that the player will score a point. Similarly, we would
arguably expect Ms. Pac-Man and the leftmost (last) life to be
valued positively. Reasoning inductively from such empirical
observations, we could say that the osms produce at least for
a subset of the objects human-interpretable and -explainable
results.

These empirical observations may simultaneously also be
used to argue against the appropriateness of osms as an object-

44 DE JONG

based model explainability tool, as we may also find examples
of objects that are valued contrary to intuitions that end-users
(or even expert users) may have about the likely Q-value deltas
of such objects. For instance, the rightmost (first) life in Ms.
Pac-Man is only sometimes assigned a positive Q-value delta,
while at other times it is negatively-valued. Similarly, regu-
lar pellets vary widely in their Q-value deltas—from highly
positive to highly negative. Now, one can propose intricate
arguments as to why these objects are valued the way they are.
Absence of a pellet, for instance, may suggest that template
matching at its location failed due to a ghost obscuring the
pellet, thus justifying the ‘unintuitive’ Q-value delta. The
problem with these hypotheses is that we must perform fur-
ther testing to confirm or reject them, defeating in part the
purpose of the tool. Worse, if no further investigation is
performed, the resultant hypotheses stand as-is, without test-
ing. This makes osms prone to ‘informed guessing’, while,
preferably, explainability tools are unambiguous and clear in
their interpretation.

There is one other potential weakness of osms that may
be important. Notice that, at least in our implementation,
osms are always built by using the Q-value maximising ac-
tion abest in the original state spresent, and keeping this abest
constant when collecting Q-values for the various ‘absent
states’, sabsent. Now consider the following situation. We
remove some object from the original state, producing a spe-
cific s′absent ∈ S. It is not completely inconceivable that the
Q-value for s′absent is differing minimally from the Q-value
of spresent. In these cases, we would obtain a near-neutral Q-
value delta. Now consider how the other actions’ Q-values
may change from the exclusion of the object under consider-
ation. It may happen that another action’s Q-value changes
considerably positively—perhaps even becoming the action-
value maximising action in s′absent. This is possible, because
the action-values for a state are not ‘mutually inhibitory’, as,
for example, the entries of a SoftMax layer (Appendix A) are.
Surely, this change is important with respect to explaining the
causes to a model’s decision, but it is not captured in the osm.

If we collectively consider the two arguments for and
against the application of osms to improving model explain-
ability, then the final conclusion remains undecided. osms
may intuitively appeal to expert and end-users alike. Still,
their empirical results in the three experiments gives mixed
results depending on which objects we concentrate on specif-
ically. We have also identified two obstacles that prevents
osms from being interpreted ‘naively’, as the maps may de-
liver ambiguous results that require additional testing. This
aligns with the discussion presented by Atrey, Clary, and
Jensen (2020), which argues that saliency maps ought to be
regarded as exploratory tools instead of explanatory ones.

Further research on osms. In order to determine whether
object saliency maps may work as an explanatory tool for
drl models, we must first realise that important work has

already been performed by Iyer et al. (2018) (pp. 147–149).
Specifically, Iyer and colleagues tested for the game Ms. Pac-
Man (i) whether osms can be matched with game scenes,
similar to those we have provided in Appendix C, (ii) whether
participants could produce ‘reasonable’ explanations for the
behaviour of Ms. Pac-Man in said scenes, and (iii) whether the
participants could predict how Ms. Pac-Man would behave
after the one-to-last frame. They subsequently designed psy-
chological tests around these three questions, and asked hu-
man participants to perform these tests. By expanding these
designs to include the object channel-only and greyscale-and-
motion agent types, and by conducting tests on multiple Atari
2600 video games and scenes, the second research question
may be answered more rigorously. Of course, this is only one
suggested approach.

Conclusion

In this thesis, we have attempted to answer two research
questions, one regularly, the other only tentatively:

1. Does representing the state by its high-level objects ac-
celerate learning in deep reinforcement learning meth-
ods, and

2. Can these high-level object representations make deep
reinforcement learning methods more explainable?

Given the results and our discussion around them, it ap-
pears that the first question may be answered affirmatively,
provided that the specific drl method is sufficiently effec-
tive to leverage the additional information provided by the
objects, and given that these object-level representations are
presented consistently. Regarding potential gains in explain-
ability provided by object-level representations, we have criti-
cally examined (Li et al., 2017)’s object saliency map applied
to the three methods considered in this thesis. The conclu-
sion of said examination was neither definitely affirmative
nor negative—a further investigation into the procedure is
required instead, for which we have suggested one possible
approach.

We hope that this thesis has motivated the reader, along
with others within the deep learning community, to (re-
)consider the possible utility of high-level objects in drl
methods specifically and dl methods generally, be it in terms
of accelerating learning, or potentially improving explain-
ability of current methods—both arguably central topics at
the current frontier of artificial intelligence.

Acknowledgements

Access to the Peregrine supercomputing cluster at the Uni-
versity of Groningen has been invaluable to obtain timely re-
sults, for which the author would like to thank its supporting
staff.

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 45

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,
Dean, J., . . . Google Brain (2016). TensorFlow:
A System for Large-Scale Machine Learning. In
K. Keeton & T. Roscoe (Eds.), Proceedings of the
USENIX Symposium on Operating Systems Design
and Implementation (Vol. 12, pp. 265–283). Re-
trieved from https://www.usenix.org/system/
files/conference/osdi16/osdi16-abadi.pdf

Adadi, A. (2021). A Survey on Data-Efficient Algorithms
in Big Data Era. Journal of Big Data, 8(24). doi:
10.1186/s40537-021-00419-9

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow,
I., Hardt, M., & Kim, B. (2018). Sanity
Checks for Saliency Maps. In Advances in
Neural Information Processing Systems (Vol. 31,
pp. 9,505–9,515). Retrieved from https://
proceedings.neurips.cc/paper/2018/hash/
294a8ed24b1ad22ec2e7efea049b8737-Abstract
.html

Atrey, A., Clary, K., & Jensen, D. (2020, December 9).
Exploratory Not Explanatory: Counterfactual Analy-
sis of Saliency Maps for Deep Reinforcement Learn-
ing. arXiv pre-print. Retrieved from https://
arxiv.org/abs/1912.05743

Baird, L. C. (1993, November 4). Advantage Updating (Tech-
nical Report). Dayton, OH, United States: Wright-
Patterson Air Force Base. (The internal technical report
identifier is WL-TR-93-1146.)

Bellemare, M. G., Dabney, W., & Munos, R. (2017). A
Distributional Perspective on Reinforcement Learn-
ing. In D. Precup & Y. W. Teh (Eds.), Pro-
ceedings of the 34th International Conference on
Machine Learning (Vol. 70, pp. 449–458). Re-
trieved from https://proceedings.mlr.press/
v70/bellemare17a.html (The volume and url per-
tain to the submission of this article in the Proceedings
of Machine Learning Research.)

Bellemare, M. G., Naddaf, Y., & Bowling, J. V. M. (2013).
The Arcade Learning Environment: An Evaluation
Platform for General Agents. Journal of Artificial
Intelligence Research, 47, 253–279. doi: 10.1613/
jair.3912

Bellman, R. (2010). Dynamic Programming (1st ed.). Prince-
ton University Press.

Bradski, G. (2000, November). The OpenCV Li-
brary. Dr. Dobb’s Journal of Software Tools,
25(11), 122–125. Retrieved 5 June 2022,
from https://www.drdobbs.com/open-source/
the-opencv-library/184404319

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., & Zaremba, W. (2016,

June 5). OpenAI Gym. arXiv pre-print. Retrieved
from https://arxiv.org/abs/1606.01540

Buşoniu, L., Babuška, R., de Schutter, B., & Ernst, D. (2010).
Reinforcement Learning and Dynamic Programming
Using Function Approximators (1st ed.). CRC Press.

Castro, P. S., Moitra, S., Gelada, C., Kumar, S., & Bellemare,
M. G. (2018, December 14). Dopamine: A Research
Framework for Deep Reinforcement Learning. arXiv
pre-print. Retrieved from https://arxiv.org/abs/
1812.06110

Castro, P. S., Vassalotti, A., Greaves, J., Agarwal, R.,
Evci, U., Moitra, S., . . . Teboul, O. (2022, May 20).
dopamine. GitHub. Retrieved June 7, 2022,
from https://github.com/google/dopamine
(The latest commit at our time of reference was
a34615cb611c7c23b63ca7e6fee45331e6e1f912.
Further, the baselines we refer to throughout the main
text can be viewed at https://google.github.io/
dopamine/baselines/atari/plots.html.)

Chong, E., Han, C., & Park, F. C. (2017). Deep Learning
Networks for Stock Market Analysis and Prediction:
Methodology, Data Representations, and Case Studies
. Expert Systems with Applications, 83, 187–205. doi:
10.1016/j.eswa.2017.04.030

Clark, A., & Contributors. (2010, July 31). Pillow. Im-
age processing library. Retrieved 6 June 2022, from
https://python-pillow.org/

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel,
M., Osband, I., . . . Legg, S. (2018). Noisy Networks
for Exploration. In Y. Bengio, Y. LeCun, T. Sainath,
I. Murray, M. Ranzato, & O. Vinyals (Eds.), Pro-
ceedings of the International Conference on Learning
Representations (Vol. 6). Retrieved from https://
openreview.net/forum?id=rywHCPkAW

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M.,
& Kagal, L. (2018). Explaining Explanations: An
Overview of Interpretability of Machine Learning . In
F. Bonchi & F. Provost (Eds.), International Confer-
ence on Data Science and Advanced Analytics (Vol. 5,
pp. 80–89). Turin, Italy: IEEE.

Goel, V., Weng, J., & Poupart, P. (2018). Unsu-
pervised Video Object Segmentation for Deep
Reinforcement Learning. In Advances in Neu-
ral Information Processing Systems (Vol. 31,
pp. 5,683–5,694). Retrieved from https://
proceedings.neurips.cc/paper/2018/hash/
96f2b50b5d3613adf9c27049b2a888c7-Abstract
.html

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep
Learning (1st ed.). MIT Press.

Goodfellow, I., Shlens, J., & Szegedy, C. (2014, Decem-
ber 20). Explaining and Harnessing Adversarial Ex-
amples . arXiv pre-print. Retrieved from https://

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://proceedings.neurips.cc/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
https://arxiv.org/abs/1912.05743
https://arxiv.org/abs/1912.05743
https://proceedings.mlr.press/v70/bellemare17a.html
https://proceedings.mlr.press/v70/bellemare17a.html
https://www.drdobbs.com/open-source/the-opencv-library/184404319
https://www.drdobbs.com/open-source/the-opencv-library/184404319
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1812.06110
https://arxiv.org/abs/1812.06110
https://github.com/google/dopamine
https://google.github.io/dopamine/baselines/atari/plots.html
https://google.github.io/dopamine/baselines/atari/plots.html
https://python-pillow.org/
https://openreview.net/forum?id=rywHCPkAW
https://openreview.net/forum?id=rywHCPkAW
https://proceedings.neurips.cc/paper/2018/hash/96f2b50b5d3613adf9c27049b2a888c7-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/96f2b50b5d3613adf9c27049b2a888c7-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/96f2b50b5d3613adf9c27049b2a888c7-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/96f2b50b5d3613adf9c27049b2a888c7-Abstract.html
https://arxiv.org/abs/1412.6572

46 DE JONG

arxiv.org/abs/1412.6572

Guo, W., Dong, G., Chen, C., & Li, M. (2019). Learn-
ing Pushing Skills Using Object Detection and Deep
Reinforcement Learning. In IEEE International Con-
ference on Mechatronics and Automation (Vol. 16, pp.
469–474). doi: 10.1109/ICMA.2019.8816481

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., . . . Oliphant, T. E.
(2020). Array Programming with NumPy. Nature, 585,
357–362. doi: 10.1038/s41586-020-2649-2

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., . . . Silver, D. (2018). Rain-
bow: Combining Improvements in Deep Reinforce-
ment Learning. In S. A. McIlraith & K. Q. Weinberger
(Eds.), Proceedings of the AAAI Conference on Artifi-
cial Intelligence (Vol. 32, pp. 3,215–3,222). Palo Alto,
CA, United States: AAAI Press.

Hinton, G., Srivastava, N., & Swersky, K. (2012).
Neural Networks for Machine Learning: Lec-
ture 6e: RMSProp: Divide the Gradient by
A Running Average of its Recent Magnitude.
Presentation Slides. Retrieved June 1, 2022,
from https://www.cs.toronto.edu/%7Etijmen/
csc321/slides/lecture_slides_lec6.pdf

Horn, B. K. P., & Schunk, B. G. (1981). Determining Optical
Flow. Artificial Intelligence, 17(1–3), 185–203. doi:
10.1016/0004-3702(81)90024-2

Huber, P. J. (1964). Robust Estimation of a Location Pa-
rameter. The Annals of Mathematical Statistics, 35(1),
73–101. doi: 10.1214/aoms/1177703732

Iyer, R., Li, Y., Li, H., Lewis, M., Sundar, R., & Sycara,
K. (2018). Transparency and Explanation in Deep
Reinforcement Learning Neural Networks. In Pro-
ceedings of the AAAI/ACM Conference on AI, Ethics,
and Society (Vol. 1, pp. 144–150). doi: 10.1145/
3278721.3278776

Jain, P., Hosch, W. L., & other Encyclopedia Britan-
nica contributors. (2011, August 11). Atari Con-
sole [Encyclopedia article]. In Encyclopedia Britan-
nica. Retrieved May 25, 2022, from https://www
.britannica.com/technology/Atari-console

Jarrett, K., Kavukcuoglu, K., Ranzato, M., & LeCun, Y.
(2009). What is the Best Multi-Stage Architecture for
Object Recognition? In T. Matsuyama, R. Cipolla,
M. Hebert, X. Tang, & N. Yokoya (Eds.), IEEE 12 Inter-
national Conference on Computer Vision (pp. 2,146–
2,153). doi: 10.1109/ICCV.2009.5459469

Johnson, M., Hawkins, P., Vanderplas, J., Necula, G.,
Frostig, R., Wanerman-Milne, S., . . . Klitgaard, J.
(2022, July 7). jax. GitHub. Retrieved July 7,
2022, from https://github.com/google/jax
(The latest commit at our time of reference was
2b8fbe9fe4753dce17d4093b5e1a70db9feb164a.)

Kahneman, D. (2011). Thinking, Fast and Slow. Macmillan.
Kingma, D. P., & Ba, J. L. (2015). Adam: A Method

for Stochastic Optimization. In Y. Bengio, Y. LeCun,
B. Kingsbury, S. Bengio, N. de Freitas, & H. Larochelle
(Eds.), Proceedings of the International Conference
on Learning Representations (Vol. 3). Retrieved from
https://arxiv.org/abs/1412.6980

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).
ImageNet Classification with Deep Convolu-
tional Neural Networks. In Advances in Neu-
ral Information Processing Systems (Vol. 25,
pp. 1,097–1,105). Retrieved from https://
proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract
.html

Lample, G., & Chaplot, D. S. (2017). Play-
ing FPS Games with Deep Reinforcement Learn-
ing. In AAAI Conference on Artificial In-
telligence (Vol. 31, pp. 2140–2146). Re-
trieved from https://www.aaai.org/ocs/index
.php/AAAI/AAAI17/paper/view/14456/14385

Li, Y., Sycara, K., & Iyer, R. (2017). Object-sensitive
Deep Reinforcement Learning. In Global Conference
on Artificial Intelligence (Vol. 3, pp. 20–35). doi:
10.29007/xtgm

Lin, L.-J. (1992). Self-Improving Reactive Agents Based
on Reinforcement Learning, Planning and Teach-
ing. Machine Learning, 8, 293–321. doi: 10.1007/
BF00992699

Lundh, F. (1995). Python Imaging Library. Image process-
ing library. Retrieved from http://www.pythonware
.com/products/pil/ (Accessed on 6 June 2022
using the Wayback Machine (https://web.archive
.org/), by selecting the date 21 November 2020.)

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J.,
Hausknecht, M., & Bowling, M. (2018). Revisiting
the Arcade Learning Environment: Evaluation Proto-
cols and Open Problems for General Agents. Journal
of Artificial Intelligence Research, 61, 523–562. doi:
10.1613/jair.5699

Marcus, G. (2018, January 2). Deep Learning: A Crit-
ical Appraisal. arXiv pre-print. Retrieved from
https://arxiv.org/abs/1801.00631

Mira, J. M. (2008). Symbols Versus Connections: 50 Years of
Artificial Intelligence. Neurocomputing, 71, 671–680.
doi: 10.1016/j.neucom.2007.06.009

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., . . . Kavukcuoglu, K. (2016). Asyn-
chronous Methods for Deep Reinforcement Learn-
ing. In M. F. Balcan & K. Q. Weinberger (Eds.),
Proceedings of the 33rd International Conference on
Machine Learning (Vol. 48, pp. 1,928–1,937). Re-

https://arxiv.org/abs/1412.6572
https://www.cs.toronto.edu/%7Etijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/%7Etijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.britannica.com/technology/Atari-console
https://www.britannica.com/technology/Atari-console
https://github.com/google/jax
https://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14456/14385
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14456/14385
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
https://web.archive.org/
https://web.archive.org/
https://arxiv.org/abs/1801.00631

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 47

trieved from https://proceedings.mlr.press/
v48/mniha16.html (The volume and url pertain
to the submission of this article in the Proceedings of
Machine Learning Research.)

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013,
December 19). Playing Atari with Deep Reinforce-
ment Learning. arXiv pre-print. Retrieved from
https://arxiv.org/abs/1312.5602

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., . . . Hassabis, D. (2015). Human-
Level Control Through Deep Reinforcement Learning.
Nature, 518, 529–533. doi: 10.1038/nature14236

Mohamed, A.-R., Dahl, G. E., & Hinton, G. (2012). Acoustic
Modeling Using Deep Belief Networks. IEEE Trans-
actions on Audio, Speech, and Language Processing,
20(1), 14–22. doi: 10.1109/TASL.2011.2109382

Puterman, M. L. (1994). Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming (1st ed.). John
Wiley & Sons.

Riedmiller, M. (2005). Neural Fitted Q Iteration – First
Experiences with a Data Efficient Neural Reinforce-
ment Learning Method . In J. Gama, R. Camacho,
P. B. Brazdil, A. M. Jorge, & L. Torgo (Eds.), Ma-
chine Learning: European Conference on Machine
Learning (Vol. 3720, pp. 317–328). Springer. doi:
10.1007/11564096_32

Russell, S., & Norvig, P. (2010). Artificial Intelligence: A
Modern Approach (3rd ed.). Pearson.

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2016).
Prioritized Experience Replay. In H. Larochelle,
S. Bengio, B. Kingsbury, Y. Bengio, & Y. LeCun
(Eds.), Proceedings of the International Conference
on Learning Representations (Vol. 4). Retrieved from
http://arxiv.org/abs/1511.05952

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013, De-
cember 20). Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency
Maps . arXiv pre-print. Retrieved from https://
arxiv.org/abs/1312.6034

Smith, C. S. (2020, February 12). The Future of ML:
Unsupervised Learning, Reinforcement Learning, or
Something Else? Web article. Retrieved 12 June
2022, from https://blog.paperspace.com/the
-future-of-ml/

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning:
An Introduction (2nd ed.). MIT press.

van Hasselt, H. (2010). Double Q-Learning. In Advances
in Neural Information Processing Systems (Vol. 23,
pp. 2,613–2,621). Retrieved from https://
proceedings.neurips.cc/paper/2010/hash/
091d584fced301b442654dd8c23b3fc9-Abstract
.html

van Rossum, G. (1995, April 10). Python Tutorial (Tech-
nical Report). Amsterdam, the Netherlands: Centrum
voor Wiskunde en Informatica. (The internal technical
report identifier is CS-R9526.)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., . . . Polosukhin, I.
(2017). Attention is All you Need. In Advances
in Neural Information Processing Systems (Vol. 30,
pp. 5,998–6,008). Retrieved from https://
proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract
.html

Vijayanarasimhan, S., Ricco, S., Schmid, C., Sukthankar,
R., & Fragkiadaki, K. (2017, April 25). SfM-Net:
Learning of Structure and Motion from Video. arXiv
pre-print. Retrieved from https://arxiv.org/abs/
1704.07804

Wang, H., Lei, Z., Zhang, X., Zhou, B., & Peng, J. (2019). A
Review of Deep Learning for Renewable Energy Fore-
casting. Energy Conversion and Management, 198,
111,799. doi: 10.1016/j.enconman.2019.111799

Wang, Z., Bovik, A. C., Sheikh, H., & Simoncelli, E.
(2004). Image Quality Assessment: From Error Vis-
ibility to Structural Similarity. IEEE Transactions on
Image Processing, 13(4), 600–612. doi: 10.1109/
TIP.2003.819861

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot,
M., & Freitas, N. (2016). Dueling Network Ar-
chitectures for Deep Reinforcement Learning. In
M. F. Balcan & K. Q. Weinberger (Eds.), Proceed-
ings of the 33rd International Conference on Ma-
chine Learning (Vol. 48, pp. 1,995–2,003). Re-
trieved from https://proceedings.mlr.press/
v48/wangf16.html (The volume and url pertain
to the submission of this article in the Proceedings of
Machine Learning Research.)

Watkins, C. (1989). Learning from Delayed Rewards
(PhD Thesis). King’s College, Cambridge, Cambridge,
United Kingdom.

https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.mlr.press/v48/mniha16.html
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034
https://blog.paperspace.com/the-future-of-ml/
https://blog.paperspace.com/the-future-of-ml/
https://proceedings.neurips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/1704.07804
https://arxiv.org/abs/1704.07804
https://proceedings.mlr.press/v48/wangf16.html
https://proceedings.mlr.press/v48/wangf16.html

48 DE JONG

Appendix A
Activation Functions

Below, we briefly explain what the activation functions used
within the main text refer to. Before doing so, we must
establish what we mean by the term. At least within this
text, by an activation function, we mean a function mapping
tensors to equally-shaped tensors

a : RL1, ..., LL → RL1, ..., LL ,

where L ≥ 1 is the number of dimensions of the input and
output tensors, and where L1, . . . , LL ≥ 1 are the number
of entries contained within each of the dimensions of the
tensor. For instance, for a 3 × 2 matrix, the general form of
the activation function would be

a3× 2 matrix : R3× 2 → R3× 2.

It must be noted that the output dimension RL1, ..., LL may,
for certain activation functions, actually be more constrained
than one real-valued output per input entry; we simply define
it as such to cover all cases generally. One example of an
activation function with a constrained output is the logistic
sigmoid, to be discussed below.

Let us now discuss the activation functions used in
this text.

Linear. The linear activation function simply returns
the input tensor as-is, without manipulating said tensor’s en-
tries in any way. If x ∈ RL1, ..., LL is our input tensor, then the
linear activation function is thus defined as

alinear(x) def
= x.

Logistic sigmoid. The logistic sigmoid activation
function, sometimes referred to as the ‘sigmoid activation’, is
defined as

alogistic sigmoid(x) def
=

1
1 + e−x .

The logistic sigmoid is characterised by its sending of input
entries to the range [0, 1], for each input tensor entry. Deeply
negative input values are close to 0; deeply positive input
values lie close to 1. Logistic sigmoid activations may be
used to create neural network layers that confer, per each
tensor entry, a ‘degree of applicability’, with values closer to
1 indicating greater application. This is, however, only one
use case of logistic sigmoids.

Rectified Linear Unit. The rectified linear unit
(ReLU; Jarrett, Kavukcuoglu, Ranzato, & LeCun, 2009) is
a piecewise-linear function that clamps all strictly negative
entries within the input tensor to zero; all non-negative values
are left as-is:

aReLU(x) def
= max(0, x),

where the maximisation happens entry-wise, and 0 shares the
size of x. According to Goodfellow et al. (2016), it is a good
default for neural network layers.

SoftMax. The SoftMax activation function takes—as
the name implies—an input tensor and performs an operation
that is similar in spirit to regular maximisation. Specifically,
it distributes a single unit of activation across all entries of
the tensor, assigning relatively large portions of the unit to
relatively large entries in the tensor. As would be expected,
the maximal entry (or entries) is (are) assigned the largest
portion(s). Mathematically, the SoftMax is defined as

aSoftMax; i(x) =
exi∑L1 × ..., LL−1

i=0 xi
,

where i ∈ [0, L1 × . . . , LL − 1] accesses a single entry of the
input tensor x using zero-based indexing. It must be noted
that the SoftMax can also be applied across subsets of the
axes. In that case it is guaranteed that all entries across the
axes subset sum to one in activation.

Appendix B
Timeout Proof

We need to prove that for any episodic environment, if (i) the
implication described in Equation 45 holds for the environ-
ment, and (ii) if dur(n) = Ttimeout + c′ with n ∈ N and c′ > 0
(such that dur(n) > Ttimeout), then we can always pick

t = Tn−1 + Ttimeout − 1
(ii)
< Tn−1 + dur(n) − 1,

with t ∈ T which, at t + 1, already leads to the timeout state
stimeout. Then we can obtain dur(n) ≯ Ttimeout.

The proof breaks down into five steps, which go as
follows:
Step 1. Begin by considering any n ∈ N. Then let us pick
t = Tn−1 + Ttimeout − 1.
Step 2. Utilise the definition given in Equation 44 to obtain
the following equality:

dur(n)
(ii)
= Ttimeout + c′

Tn − Tn−1
(Eq. 44)
= Ttimeout + c′

Tn = Ttimeout + c′ + Tn−1

Tn = (Tn−1 + Ttimeout − 1) + 1 + c′

Tn
(Step 1)
= t + 1 + c′.

Step 3. Realise that from the result of step 2 it directly follows
that t < Tn, as t < t + 1 + c′.
Step 4. The two premises of Equation 45 now hold, and as
such we may obtain its consequent. Particularly, we obtain
p(stimeout, 0 | st, a) = 1, for all st ∈ S and all a ∈ A. We
conclude that at t + 1 we already enter terminal state stimeout
with probability 1.

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 49

Step 5. From step 4 we know that t + 1 is the ‘true’ final step,
call it T ∗n . Then, any further time steps t + 2, . . . , t + 1 + c′

are ‘excessive’, in the sense that trajectory n + 1 already is
supposed to start at T(n+1)−1 + 1 (see the Theory, paragraph
on episodes), which should be T ∗n + 1 = (t + 1) + 1 = t + 2.
Formulated differently,

T ∗n = t + 1
(Step 1)
= (Tn−1 + Ttimeout − 1) + 1
= Tn−1 + Ttimeout,

plugging this into the rhs of dur (Equation 44),

dur∗(n) = T ∗n − Tn−1 = (Tn−1 + Ttimeout) − Tn−1 = Ttimeout,
(49)

and so dur(n) ≯ Ttimeout, as we instead derive dur∗(n), evalu-
ating to Ttimeout.

Appendix C
Object Saliency Map Scenes

Here, we display the scenes used to compute object saliency
maps (osms) for the games Pong and Ms. Pac-Man, as shown
in the main text. For each figure, recall from the Methodol-
ogy that a scene—at least in our implementation—consists
of 6× 2 frames: six skip cycles, of which we take the last two
frames to maximum-pool over. We use six instead of four
skip cycles due to an implementation detail; although not
strictly necessary, we include them here for reproducibility
purposes. Further, it may be helpful to view these images
using a pdf viewer, in which one can zoom in.

With this addressed, the scenes for Pong and Ms. Pac-
Man are shown in Figures C1 and C2, respectively.

Appendix D
Object Saliency Map Q-Value Delta Ranges

In this appendix subsection, we present per experiment–drl
model–video game combination a boxplot of all Q-value
deltas observable across the scenes and repetitions. These
figures motivated our choice for the minimum and maximum
Q-value delta, per each experiment–drl model–video game
group of osm plots. The boxplots can be reviewed in Fig-
ure D1.

We limit the boxplots to the 5th and 95th percentiles
instead of plotting all data. This is done because, for some of
the combinations, certain outliers are so pronounced that the
boxplot gets ‘compressed’, preventing us from clearly seeing
the first, second, and third quartiles clearly. Also, vertical
striped bars indicate the 10th and 90th percentiles of the data;
these were used as the minimum and maximum of the osms
of the collection under consideration, respectively.

Appendix E

Additional Experimentation
Here, we show additional experiments that we have performed
for the games of Fishing Derby and Freeway. For these
two extra games, we have followed nearly the exact same
workflow as described in the Methdology, except that (i) for
all three experiments, we conduct only single runs—even
for experiment 2, and (ii) we only collect episode-averaged
undiscounted return curves.

We first present the return curves, after which we
briefly discuss how these results relate to what we found
in the main results.

Results. Figures E1, E2, and E3 display the episode-
averaged undiscounted return curves for experiments 1, 2,
and 3, now applied to the games Fishing Derby and Freeway.

Let us begin by considering experiment 1 (Figure E1).
In the left column, displaying results for Fishing Derby, the
agent using both greyscale frames plus Li et al. (2017)-style
object channels reaches a ‘final’ level of performance—a
score of around 15 points—at approximately iteration 8 while
the baseline attains a similar value nearly three iterations later.
Furthermore, as the iterations progress, the object-augmented
agent’s average undiscounted returns seem to come closer and
closer to the baselines. In the same Figure’s right column,
we see an almost opposite effect for the Nature dqn agent
applied to Freeway. Particularly, the object-augmented agent
appears to obtain average undiscounted returns (far) below
the baseline for the major part of the return curve. Only from
iteration 44 the situation changes: after its completion, the
object-augmented agent’s returns rapidly rise, even to a score
seemingly above the baseline’s maximal standard error value
at the very last iteration. Important to notice here is that
the object-augmented agent’s score is not mostly below the
baseline—it is perpetually zero.

Next, we look at experiment 2 (Figure E2), starting
with the left column. The Nature dqn agent applied to Fish-
ing Derby (Figure E2a) seems to closely mimic the return
curve of Figure E1a: the ‘final’ average undiscounted return
is attained comparatively early, after which the score remains
stable, albeit with considerable noise over the iterations. The
curve seems to, again, reach a score around 15 points, and this
score is obtained before the tenth iteration. For the Rainbow
counterpart in the plot below (Figure E2c), we again see that
the object-augmented agent attains a score at an earlier iter-
ation than the baseline—this time a score of approximately
7 points near iteration 5 instead of the baseline’s iteration 9.
Different from the Nature dqn agent, however, is that both
the object-augmented and baseline return curves continue to
improve after this value is reached: see iterations 10 and
onward. Within this latter section of the curve, the object-
augmented agent’s return curve seems to match that of the
baseline.

Continuing to the right column of Figure E2, which
displays performances on Freeway, attention is arguably im-

50 DE JONG

Fr
am

e
2

Skip cycle 0 Skip cycle 1 Skip cycle 2 Skip cycle 3 Skip cycle 4 Skip cycle 5

Fr
am

e
3

(a) The ‘Lose’ scene: the ball gets behind our paddle (the right one).

Fr
am

e
2

Skip cycle 0 Skip cycle 1 Skip cycle 2 Skip cycle 3 Skip cycle 4 Skip cycle 5

Fr
am

e
3

(b) The ‘Pass’ scene: the ball bounces from our side to that of the opponent.

Fr
am

e
2

Skip cycle 0 Skip cycle 1 Skip cycle 2 Skip cycle 3 Skip cycle 4 Skip cycle 5

Fr
am

e
3

(c) The ‘Win’ scene: we score a point by getting the ball behind the opponent’s paddle.

Figure C1. Scenes for Pong.

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 51

Fr
am

e
2

Skip cycle 0 Skip cycle 1 Skip cycle 2 Skip cycle 3 Skip cycle 4 Skip cycle 5

Fr
am

e
3

(a) The ‘Pellets’ scene: Ms. Pac-Man begins a new episode and eats the first few pellets.

Fr
am

e
2

Skip cycle 0 Skip cycle 1 Skip cycle 2 Skip cycle 3 Skip cycle 4 Skip cycle 5

Fr
am

e
3

(b) The ‘Power pellet’ scene: Ms. Pac-Man eats a power pellet, making all normally-invincible ghosts vulnerable (by making them edible).

Fr
am

e
2

Skip cycle 0 Skip cycle 1 Skip cycle 2 Skip cycle 3 Skip cycle 4 Skip cycle 5

Fr
am

e
3

(c) The ‘Crossroad’ scene: Ms. Pac-Man needs to make a decision: at the upcoming juncture, should she turn left or right? On the left is a
power pellet as well as Blinky (one of the ghosts) while the right side contains Clyde (another ghost) and various regular pellets.

Figure C2. Scenes for Ms. Pac-Man.

52 DE JONG

−0.4 0.0 0.4 0.8
Q−value delta

Pong, DQN, Experiment 1

−0.4 0.0 0.4 0.8
Q−value delta

Ms. Pac−Man, DQN, Experiment 1

(a) Experiment 1.

−0.5 0.0 0.5 1.0
Q−value delta

Pong, DQN, Experiment 2

−1.0 −0.5 0.0 0.5 1.0
Q−value delta

Pong, Rainbow, Experiment 2

−0.1 0.0 0.1 0.2 0.3 0.4
Q−value delta

Ms. Pac−Man, DQN, Experiment 2

−0.002 0.000 0.002 0.004
Q−value delta

Ms. Pac−Man, Rainbow, Experiment 2

(b) Experiment 2.

−0.5 0.0 0.5 1.0
Q−value delta

Pong, DQN, Experiment 3

0.0 0.5
Q−value delta

Pong, Rainbow, Experiment 3

0.0 0.2 0.4
Q−value delta

Ms. Pac−Man, DQN, Experiment 3

−0.005 0.000 0.005 0.010
Q−value delta

Ms. Pac−Man, Rainbow, Experiment 3

(c) Experiment 3.

Figure D1. Q-value delta ranges for the three experiments of the main text. In each figure, we show the 5th up until the 95th

percentile of all Q-value deltas observed while creating the osm for the experimental configuration under consideration. The
striped vertical lines denote the 10th and 90th percentiles—the Q-value deltas at which we cut off the color bar range in the
main text’s osm plots. Observe the values outside the 10–90th percentiles, but after and before the 5th and 95th percentiles,
respectively: these are values marked as outliers in the osms, using per-pixel rectangles.

−90

−60

−30

0

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Fishing Derby, DQN

(a) Nature dqn–Fishing Derby.

0

10

20

30

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Freeway, DQN

(b) Nature dqn–Freeway.

Figure E1. The average undiscounted return curves for experiment 1 on the games Fishing Derby and Freeway.

mediately drawn to the Nature dqn plot (Figure E2b). Simi-
lar to the Freeway graph from experiment 1, we see that the
object-augmented agent’s return curve lies considerably be-
low the baseline for the major part of the curve. Only around
iteration 39 the situation changes, similar to what we saw in
Figure E1b. Different from experiment 1 is that the ‘sudden
switch’ occurs earlier. As a consequence, we see a larger
part of the return curve after the switch has completed—see
iterations 55 and onward. From that point and further, it
appears that the object-augmented agent stably remains at or
just above the standard error of the baseline’s return curve.
The same effect cannot be observed in the Rainbow agent’s
return curve (Figure E2d); there, the baseline and the object-

augmented agent seem to produce nearly indistinguishable
average undiscounted returns over the iterations.

Last but not least are the return curves for the third
experiment, shown in Figure E3). Again, we begin with
the left column’s upper-left graph, displaying the Nature
dqn’s average undiscounted returns on Fishing Derby. Dif-
ferent from the observations we made for the same config-
uration during experiments 1 and 2, here it seems that the
object-augmented and baseline agents obtain similar aver-
age undiscounted returns across all iterations; notably, the
object-augmented agent does not appear to reach the ‘final’
average undiscounted return at an earlier iteration than the
baseline. Furthermore, the object-augmented agent obtains

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 53

−90

−60

−30

0

30

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Fishing Derby, DQN

(a) Nature dqn–Fishing Derby.

0

10

20

30

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Freeway, DQN

(b) Nature dqn–Freeway.

−100

−50

0

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Fishing Derby, Rainbow

(c) Rainbow–Fishing Derby.

0

10

20

30

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Freeway, Rainbow

(d) Rainbow–Freeway.

Figure E2. The average undiscounted return curves for experiment 2 on the games Fishing Derby and Freeway. Note that,
unlike the main results’ experiment 2 return curves (displayed in Figure 9), we only use one repetition, not three.

highly varying returns once this final score is reached, in
contrast to the baseline. Below this plot we see the average
undiscounted returns attained by the Rainbow agent. Qual-
itatively, the curve seems very similar to what we saw in
experiment 2 (Figure E2c): the object-augmented agent’s
curve seems to reach a certain score at one or more iterations
before the baseline reaches it, after which both curves follow
a nearly identical trend. The difference with experiment 2 is
that the ‘headstart’ of the object-augmented agent seems to
be diminished: the difference is perhaps one or maximally
two iterations whereas in experiment 2 this offset was closer
to six or seven iterations.

On the right-hand side of the Figure, we notice that
the Nature dqn agent deployed on Freeway now does seem to
succeed in attaining a final average undiscounted return at an
earlier iteration than the baseline; the ‘convergence iterations’
for the object-augmented and baseline agents seem to respec-
tively be 15 and 25. Furthermore, the object-augmented agent
reaches a final score that, as was the case in experiments 1

and 2, lies at or just above the baseline’s upper standard
error region. Moving to the Rainbow agent’s curve below it
(Figure E3d), we see an almost identical return curve to what
could be seen in experiment 2’s Rainbow–Freeway plot. This
return curve nearly completely matches the baseline, with no
clear offset being discernable.

Discussion. Recall from the Results section of the the-
sis that, in a majority of the experimental configurations, the
object-augmented agents appear to reach pre-set ‘final’ levels
of average undiscounted return at earlier iterations than do
the baseline counterparts. This conclusion also applies to the
results we have collected here, although the ‘majority’ only
consists of 6 out of 10 experimental configurations. Specif-
ically, we argue that in all Fishing Derby experiments the
object-augmented agents have at least a one-to-two-iteration
lead on the baseline in terms of reaching near-final average
undiscounted return; for Freeway, only the Nature dqn agent
applied during experiment 3 seems to improve over the base-
line in terms of accelerated learning. (For our definition of

54 DE JONG

−75

−50

−25

0

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Fishing Derby, DQN

(a) Nature dqn–Fishing Derby.

0

10

20

30

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Freeway, DQN

(b) Nature dqn–Freeway.

−100

−50

0

50

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Fishing Derby, Rainbow

(c) Rainbow–Fishing Derby.

0

10

20

30

0 20 40 60
Iteration

A
ve

ra
ge

 r
et

ur
n

(e
va

lu
at

io
n

ph
as

e)

Baseline Us

Freeway, Rainbow

(d) Rainbow–Freeway.

Figure E3. The average undiscounted return curves for experiment 3 on the games Fishing Derby and Freeway.

accelerated learning, review the Methodology from the main
text.) All remaining experimental configurations seem to
produce either (i) neither an advantage nor a disadvantage—
these are all Rainbow agent plots, so this class consists of two
configurations, or (ii) they produce a clear disadvantage—
exemplified in the Nature dqn plots for experiments 1 and
2, and so this class also consists of two configurations. All
in all, the experimental outcomes from this additional set
of experiments still supports the claim made in the thesis,
although its degree of support appears weak.

The main text’s reasoning behind the phenomenon of
accelerated learning can be re-applied to the return curves
we have obtained here. Similarly, we can put forth again the
‘inconsistency’ explanation when considering the relatively
inhibited (but not non-existent) accelerated learning seen in
the third experiment. Furthermore, considering that in Fish-
ing Derby maximally eight objects are on-screen whereas in
Freeway we may have twelve or even more, the argument
of object complexity leading to the requirement of relatively
capable networks—that is, Rainbow over the Nature dqn—

may be plausible within our extended set of experiments as
well.

What remains is one anomaly that was not observed
in the main text’s Results section: the phenomenon that the
object-augmented agent’s return curve lies considerably be-
low the baseline until around the last third of the experiment—
observable in the Nature dqn–Freeway scenarios for experi-
ments 1 and 2.

In both Nature dqn–Freeway plots, we can see that
once the return curves do attain a non-zero average undis-
counted return at some iteration, the agent swiftly learns a
policy similar to what was seemingly maximally attainable
under the baseline. In experiment 1, this happens at iteration
44, while it occurs at iteration 39 in experiment 2. This
suggests that the agent requires multiple tens of iterations
before it has found a network parameterisation that produces
Q-value estimates from which a policy can be derived that
actually derives any points at all.

A possible explanation for this behaviour requires
some understanding of Freeway. Put briefly, you, playing

UNIVERSITY OF GRONINGEN ·MASTER’S THESIS IN ARTIFICIAL INTELLIGENCE 55

as a chicken, need to cross the proverbial road as many times
as you can while avoiding bypassing traffic. Points are only
scored if the chicken reaches the end of the road, and you are
moved back to the pavement at the bottom of the screen once
you get hit by a car. There are ten lanes, with, on every lane,
vehicles of varying widths moving by quickly. Now consider
a randomly-initialised Nature dqn for this game. With ar-
bitrary Q-value estimates for state-action pairs, the chance
is low that the agent-controlled chicken successfully crosses
even a single lane, let alone ten in succession. Problematic,
then, is that zero reward is dispensed everywhere except when
this low-probability event of a perfect road-crossing occurs.
As a result, the parameterisation of the Nature dqn remains
stuck on what is technically known as a (zero average undis-
counted reward) ‘plateau’ in nonlinear optimisation. Only in
the unlikely case that the agent, with the help of exploration,
reaches the end in a single run, can it start to properly improve
the network, escaping the plateau. This is what we see in the

aforementioned iterations 44 and 39.
Still, this proposed explanation does not seem to apply

exclusively to the object-augmented agent—why, then, do we
not see a similar effect for the baseline? Actually, such an
effect can be seen when considering the return curves pro-
vided by the Dopamine baselines (Castro et al., 2022) for
related agent. Particularly, if we consider their Nature dqn
agent, now, however, (i) trained using the Adam optimiser
(Kingma & Ba, 2015), (ii) corrected using the Mean Squared
Error (mse) instead of the Huber loss, and (iii) implemented
in jax (Johnson et al., 2022), we see that similar ‘late starts’
happen there as well—the standard errors even suggest that
some return curves may start later than iteration 45. All in
all, it may perhaps be concluded that Freeway is generally a
difficult game to learn for drl agents, simply due to its design,
and that probability plays a large role in determining when
the agent starts learning properly. This, then, may interfere
with our claims of accelerated learning.

	Introduction
	Theory
	Markov Decision Processes (MDPs)
	The reinforcement learning problem
	Two solution classes
	Monte-Carlo methods.
	Temporal-difference learning methods.

	Related Work
	Deep Q-networks
	Deep off-policy Q-learning
	Experience replay
	Atari 2600 environment

	Rainbow
	Object-sensitive deep reinforcement learning
	Template matching
	Object saliency maps

	Motion-oriented reinforcement learning
	Optical flow
	MOREL network architecture
	Training

	Methdology
	Experiment 1
	Rationale
	Environment
	Agent
	Experiment

	Experiment 2
	Rationale
	Environment
	Agent
	Experiment

	Experiment 3
	Rationale

	Environment
	Agent
	Experiment
	Technical implementation

	Results
	Experiment 1
	Average undiscounted return curves
	Object saliency maps

	Experiment 2
	Average undiscounted return curves
	Object saliency maps

	Experiment 3
	Object segmentation masks
	Average undiscounted return curves
	Object saliency maps

	Examination of object saliency maps

	Discussion
	Average undiscounted return curves
	Object saliency maps

	Conclusion
	Acknowledgements
	References

