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Abstract

Recently developed Neural Interconnection and Damping Assignment - Passivity Based
Control (IDA-PBC) can be applied to a wide range of mechanical systems described in
the port-Hamiltonian (pH) framework. It demonstrates a great potential to overcome an
obstacle that comprises solving the matching equations of closed-loop system. This con-
trol scheme relies upon exploiting the universal function approximation property of neural
networks and reformulating non-parameterized IDA-PBC into a supervised learning opti-
mization problem. This study aims to highlight the applicability of Neural IDA-PBC by
conducting real-life experiments on a fully-actuated physical system, namely working with
a swing-up pendulum problem. Finally, the performance of the Neural nonlinear controller
is compared to the analytical IDA-PBC, and the system’s transient response to different con-
troller parameters is analysed.
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1 Introduction

An appeal towards nonlinear control is caused by modern emerging technologies that de-
mand sophisticated control laws to meet design and functional requirements. A class of
nonlinear energy-based control techniques has demonstrated prominent results when deal-
ing with a wide range of mechanical systems that can be described in a port-Hamiltonian
(pH) framework. One of the examples is Interconnection and Damping Assignment - Passiv-
ity Based Control (IDA-PBC) (Ortega et al., 2002). The key idea has emerged from modeling
the dynamics of the physical system via energy and assigning the desirable interconnection
and damping matrices given new energy storing function has its minimum at the desired
equilibrium point. Recognizing the energy as ‘lingua Franca’ provides an exceptional ad-
vantage to this method, precisely its potential to deal with multi-domain physical systems
(Schaft and Jeltsema, 2014).

Even though this methodology provides a clear physical interpretation of the control scheme
in terms of energy and offers control while respecting the original dynamics of the system,
the main barrier that hinders its implementation is solving a set of partial differential equa-
tions (PDEs). So-called matching equations (MEs) preserve closed-loop dynamics of the sys-
tem and are required to fulfill the equilibrium assignment and achieve Lyapunov stability
of the closed-loop. Hence, most of the research in this field relies on restricting applica-
tion to certain types of systems or forming assumptions depending on the design choice
(Nageshrao et al., 2014).

Embedding Neural Networks (NN) into an IDA-PBC control scheme proposed by Sanchez-
Escalonilla et al. (2021) enables estimating the solution for partial differential equations. By
exploiting the universal approximation property of neural networks and encoding physics
law into supervised learning tasks, this research has shown that traditional non-parameterized
IDA-PBC can be reconstructed into optimization problem based on IDA-PBC. Hereby, this
methodology is referred to as Neural IDA-PBC. So far, it has shown promising results via
simulations on fully- and under-actuated physical systems (Sanchez-Escalonilla et al., 2022).

This research aims to validate the potential of Neural IDA-PBC via conducting experiments
on a fully actuated physical system, namely working on a swing-up pendulum problem. To
make this feasible simple pendulum is being seen as a port-Hamiltonian system. Further-
more, all required parameters for control implementation is obtained via experiments. The
analysis of system’s transient response is done for two different NN architectures, and the
results are compared to the analytical solution of the Algebraic IDA-PBC control scheme.
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Finally, major critical parameters that affect nonlinear controller performance are analysed.

This study comprises five following chapters. Chapter 2 presents preliminaries on Neu-
ral IDA-PBC. It covers fundamentals of port-Hamiltonian system modeling and Intercon-
nection and Damping Assignment; an introduction to universal function approximation
property of neural networks, and the method of incorporating physics laws into supervised
learning algorithm known as Physics Informed Neural Networks (PINNs). Chapter 3 en-
compasses the analysis of the studied system and a methodology used during the research
that serves for further control implementation. Chapter 4 determines simulation and ex-
perimental results for different scenarios to illustrate the working principle of the controller
design. Chapter 5 covers the discussion on the results and the limitations of this research,
and finally, it embraces the suggestions for future work. Finally, the discussion and con-
clusion of derived results, followed by recommendations for future work, are presented in
Chapter 6.
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2 Preliminary on Neural IDA-PBC

2.1 Port-Hamiltonian systems

Port-Hamiltonian (pH) framework emerges as a methodology for modeling complex phys-
ical systems. It is achieved by recognizing energy as the ’lingua Franca’ between physical
domains, employing interconnection of identified ideal system components that capture the
main characteristics of the system (Schaft and Jeltsema, 2014). In general, in port-based
modeling, physical systems are regarded as the interconnection of three types of ideal com-
ponents: (1) energy-storing elements, (2) energy-dissipating (resistive) elements, and (3)
energy-routing elements (Schaft and Jeltsema, 2014).

Furthermore, pH systems are the open dynamical systems, and can interact with their envi-
ronment through ports (van der Schaft, 2006). Hence, pH is a preliminary framework for the
control of complex physical systems. Particularly, when working with non-linear systems,
port-Hamiltonian provides a range of concepts and tools for modeling and interpreting the
physical properties of the system that should be exploited and/or respected in the design of
control laws (Schaft and Jeltsema, 2014).

2.1.1 Mechanical systems in port-Hamiltonian framework

The dynamics of a mechanical system in the pH framework with generalized coordinates q
on the configuration space Q ⊂ IRn and velocity q̇ ∈ TqQ can be represented as follows:

ẋ = [J(x)− R(x)]
∂H
∂x

(x) + g(x)u,

y = g⊤(x)
∂H
∂x

(x),
(1)

where x = (q, p) ∈ X is a state vector, p := M(q)q̇ is the generalized momentum, and u ∈
IRm, m ≤ n is the control input; J(x), R(x) : IRn 7→ IRn×n, with J(x) = −J⊤(x) and R(x) =
R(x)⊤ ≥ 0n×0 are interconnection and dissipation matrices respectively. H(x) : IRn 7→ IR is
the Hamiltonian, which is a total stored energy and is equal to H(x) = 1

2 p⊤M−1(q)p+U(q),
where scalar function U(q) is the potential energy and M(q) = M⊤(q) > 0 is the inertia ma-
trix. g(x) : IRn 7→ IRn×m is the input matrix. The input u represents generalized forces, while
the output y gives the generalized velocity, so its product has the units of power, while
u, y ∈ IRm. If n = m, the mechanical system in 1 is fully-actuated. Otherwise, if the rank of
input matrix is m < n, it means that the number of control inputs is less than the number of
independent degrees of freedom (Venkatraman, 2010).
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The power balance equation that provides a relation between internal and external power
is,

Ḣ(x) =
∂H⊤

∂q
(x)q̇ +

∂H⊤

∂p
(x) ṗ

= −∂H⊤

∂p
(x)R(x)

∂H
∂p

(x) + y⊤u ≤ y⊤u,
(2)

where the first term on the right-hand side (non-positive) represents the dissipation due
to the resistive (friction) elements in the system (Ortega et al., 2002). y⊤u is the external
supplied power.

2.2 Interconnection and Damping Assignment Passivity-based Control

Passivity-based control (PBC) is a well-established controller design methodology intro-
duced by Ortega and Spong (2000). The control objective of this method is to achieve sta-
bilization by passivation, through passivizing the system with a storage function that is at its
minimum at the desired equilibrium point. Further work carried out by Ortega et al. (2002)
introduced Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC)
that extends controller implementation to a broader class of physical systems that are de-
scribed via the pH framework. Contrary to PBC, in this case, the system is controlled by
assigning it a desirable interconnection and damping matrices giving the new energy stor-
age function that has a minimum at the desired equilibrium point; and as it was stated by
Ortega et al. (2002) the stabilization is achieved via energy-balancing. The objective is to de-
sign a static state feedback control law u(x) = β(x) + v, such that the closed-loop dynamics
are given by the desired passive pH system,

ẋ = [Jd(x)− Rd(x)]
∂Hd
∂x

(x) + g(x)u(x)

y′ = g(x)
∂Hd
∂x

(x),
(3)

where the new energy function Hd(x) has a strict local minimum at the desired equilibrium
point x∗ = (q∗, 0). Jd(x) = −J⊤d (x), Rd(x) = R⊤

d (x) are the desired interconnection and
damping matrices respectively; y′ (which may be equal to y) is the new passive output.

Given J(x), R(x), H(x), g(x) of the pH system in (1) and the desired equilibrium to be stabi-
lized is x∗ ∈ X . Assuming that there are functions β(x), Ja(x), Ra(x), and a vector function
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K(x) satisfying the matching equation

[J(x) + Ja(x)− (R(x) + Ra(x))]K(x) = −[Ja(x)− Ra(x)]
∂H
∂x

(x) + g(x) (4)

such that the following four conditions hold:

(P1) Structure preservation:

Jd(x) := [J(x) + Ja(x)] = −[J(x) + Ja(x)]⊤ (5)

Rd(x) := [R(x) + Ra(x)] = [R(x) + Ra(x)]⊤ ≥ 0 (6)

(P2) Integrability: K(x) = ∂Ha
∂x is the gradient of the scalar function

∂K
∂x

(x) =
[

∂K
∂x

(x)
]⊤

(7)

(P3) Equilibrium assignment: K(x), at x∗ verifies

K(x∗) = − ∂H
∂x∗

(8)

(P4) Lyapunov stability: The Jacobian of K(x), at x∗ satisfies the bounds:

∂2K
∂x2 (x∗) = − ∂H

∂x∗
(9)

Under this condition, the closed-loop system PBC has the dissipation of the form (3), where

Hd(x) := H(x) + Ha(x) Jd(x) := J(x) + Ja(x) Rd(x) := R(x) + Ra(x) (10)

and
∂Ha

∂x
(x) = K(x). (11)

Furthermore, matching equation can be rewritten as:

g⊥(x)[Jd(x)− Rd(x)]
∂Hd
∂x

(x) = g⊥(x)[J(x)− R(x)]
∂H
∂x

(x), (12)

where g⊥(x) is the full rank left annihilator of g(x), i.e. g⊥(x)g(x) = 0 for all x ∈ IRn (Nunna
et al., 2013). Thus, the control law, where locally stabilized system (1) and the closed-loop
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system (3) is passive with the new input v and output y, can be written as:

u = [g⊤(x)g(x)]−1g⊤(x)
(
(Jd(x)− Rd(x))

∂Hd
∂x

(x)− (J(x)− R(x))
∂H
∂x

(x)
)

︸ ︷︷ ︸
β(x)

+v (13)

Moreover, if x∗ is the largest invariant subset in x ∈ X | ∂H⊤
d

∂x (x)Rd(x) ∂H⊤
d

∂x (x) = 0, then x∗ is
asymptotically stable (Sanchez-Escalonilla et al., 2021). The results hold globally if x∗ is
global minimum of Hd(x) and Hd(x) radially unbounded.

As it can be seen, the control law in (13), which achieves the desired objective, is obtained
via solving partial differential equations (PDEs) in (12). This is due to arbitrate choice of
the desired subsystems interconnections and damping (Ortega et al., 2002). If the system is
underactuated, it is crucial to implement Ja, otherwise, it can be left out of the control design.

2.2.1 IDA-PBC challenge

One of the main factors that hinder the use of the IDA-PBC method is solving matching
equations (Duindam et al., 2014). Hence, this topic has been a subject of interest for many
researchers. One of the approaches proposed by Fujimoto and Sugie (2001) was Algebraic
IDA-PBC. Using this technique, desired Hamiltonian function is fixed, such as Hd(x) =

(x − x∗)2. However, Ja and Ra are unknown and have to be determined to fulfill the design
requirements (Nunna et al., 2013).

2.3 IDA-PBC Example: Simple pendulum

One of the prevailing examples of nonlinear systems is a simple pendulum. The pH system
of the pendulum is given by: q̇

ṗ


︸︷︷︸

ẋ

=


 0 1

−1 0


︸ ︷︷ ︸

J(x)

−

0 0

0 D


︸ ︷︷ ︸

R(x)


∇qH(q, p)

∇pH(q, p)


︸ ︷︷ ︸

∂H
∂x

+

0

1


︸︷︷︸
g(x)

u(x)

y =
[
0 1

]
︸ ︷︷ ︸

g⊤(x)

∇qH(q, p)

∇pH(q, p)


︸ ︷︷ ︸

∂H
∂x

,

(14)
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Table 1: Simple Pendulum case: Parameters

Model Parameters Symbol Value Units

Pendulum mass mp 1 kg
Gravity gp 9.80655 m/s2

Pendulum length lp 1 m
Pendulum Inertia Jp 1 kgm2

Friction D 0.5 Nms

where D is a natural damping (in this case it is equal to 0) and g(x) = [ 0 1 ]⊤ since the system
is actuated at its join. The total energy of this system is given by the Hamiltonian function

H(q, p) =
1
J2
p

p2 + mpgplp(1 − cos(q)), (15)

where Jp is the rotational moment of inertia, mp and lp are the mass and length of the pen-
dulum, respectively, and gp is a gravitational constant. The states q, p is the position (angle
with respect to the normal) and the momentum accordingly. The model parameters used
for the simulation are given in Table 1.

The objective is to stabilize the system at equilibrium point (q∗, p∗) = (kπ, 0) k ∈ Z, that
can also be seen in Figure 1. Using the analytical solution for algebraic IDA-PBC method as
described by Nageshrao et al. (2014), Hd(x) is define as H(x) + Ha(x), where Hd = c(q∗ −
q)2. c is auxiliary constant (gain) depends on design requirements. Hence, ∂Ha

∂q = ∂H
∂q + ∂Ha

∂q =

2c(q∗ − q). The closed loop feedback is calculated using (13) and is β(p) = − ∂Hd
∂q + ∂H

∂q . As a
result, by setting the desired angle of the pendulum, it is possible to stabilize it as it can be
seen in Figure 2.

2.4 Neural networks as universal function approximators

The method for solving ordinary and partial differential equations, that relies on func-
tion approximation capabilities of feedforward Neural Networks (NN) was introduced by
Hornik et al. (1989) and later by Lagaris et al. (1998). In recent years approximation prop-
erties of NN have attracted many researchers, including Raissi et al. (2019), Karumuri et al.
(2020), and Bai (2021) that utilized this technique for different applications.

This method is based upon a regression optimization problem. With this regard, the feedfor-
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Figure 1: Hamiltonian energy profile.

Figure 2: Closed loop Algebraic IDA-PBC: Simple Pendulum.
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ward neural networks function is exploited as an approximation element, whose parameters
(weight and biases) are adapting to minimize the loss (error) function defined beforehand
according to the initial and boundary conditions of the particular ODEs or PDEs. Assum-
ing, there is data that consist of inputs X : x1, x2, x3...xn and outputs Y : y1, y2, y3...yn. The
objective is to find the NN N(θ; x) that goes from input to output and minimizes the loss
function :

L(θ) = 1
n

n

∑
i=1

[yi − N(xi; θ)]2 (16)

This optimization method also involves the calculation of the stochastic gradient descent
(SGD) of the error with respect to the network parameters:

θt+1 = θt − at
1
m

m

∑
j=1

∇θ[yij − N(xij ; θt)]
2 (17)

where ∇θ is a gradient, at is a learning rate. Starting from arbitrarily selected set of parame-
ters, NN is trained until the loss function reaches optimal error.

However, depending on a function dealt with, NN may require an exponentially large num-
ber of neurons. According to Shannon’s theorem, there always exists a Boolean function
with n variables, which are greater than two (n > 2), that require at least 2n/n Boolean gates
regardless of the depths of neural networks. Moreover, when the problem gets complicated,
such as PDE constrained optimization and (Bayesian) inverse problems, generating training
data gets expensive (Bai, 2021).

2.5 Physics informed neural networks

Research done by Raissi et al. (2019) and Chen et al. (2020) has demonstrated the general
methodology, namely physics-informed neural networks (PINNs). The main purpose of
this technique is to implement physics laws into supervised learning tasks. This allows ob-
viating the need for generating an extensive amount of training data since the PDE residual
is collocated on training points of the approximating Deep Neural Networks (DNN) (Bai,
2021). To start with, consider parameterized nonlinear partial differential equations of the
general form:

ut +N [u; λ] = 0, (18)

where N [·; λ] is a nonlinear operator parameterized by λ and ut is the time derivative of the
function u(t, x). This setup comprises a wide range of mathematical physics, such as conser-
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vation laws and kinetic equations (Raissi et al., 2019). To proceed with a solution, a residual
term f (t, x) is defined as a left hand side of 17; i.e. f (t, x) := ut +N [u; λ]. Hence u(t, x)
is approximated by neural network f (t, x), while the network is derived by implementing
automatic differentiation (AD) and activation functions (Raissi et al., 2019). The neural net-
work that minimizes the residual is considered as an approximated solution of (18) and is
trained using the loss function L(θ; x) based on soft constraints approach is given in equa-
tion 19 as a main objective.

L(θ; x) = ut(θ; t, x) +N [u(θ; t, x); λ], (19)

where θ∗ = argminθL(θ; x), u(t, x) = uθ(θ
∗; t, x) + ϵ. To maintain computational efficiency

during the training, stochastic gradient descent is exploited together with mini-batch setting
(Goodfellow et al., 2017).

This methodology has provided empirical evidence for approximating the solutions for
PDEs as long as the equation is well-posed and has a unique solution(Sanchez-Escalonilla
et al., 2021).

2.6 Solving IDA-PBC using PINNS

Assuming the existence of the solutions for the matching equation (ME) problem defined in
12, and taking into account the proposal (P1)-(P4), finding the missing auxiliary functions
Ja(x), Ra(x), and Ha(x) is an inverse problem, in particular ill-posses (Karniadakis et al.,
2021), (Mishra and Molinaro, 2021).

To reduce the indeterminism of the problem, the non-parameterized IDA-PBC approach is
used for this methodology. As it was stated by Nageshrao et al. (2014), matching equations
then can be solved after fixing Jd(x) and Rd(x). Furthermore, Sanchez-Escalonilla et al.
(2021) argue that fixing Jd(x) and iteratively adapting Rd(x) assists evading from triviality
while assigning the values. Hence desired properties of the closed-loop system are achieved
accurately. Simultaneously, Hd(x) = H(x) + Ha(x) is approximated via NNs.

By implementing the PINNs methodology from section 2.5 into the IDA-PBC principles
(P1)-(P4) in 2.2, the new objective function, that will be minimized by NNs, according to
Sanchez-Escalonilla et al. (2021), is defined as follows.

(P1) Structure preservation residual
To assure the property, an auxiliary interconnection matrix Ja(x) has to be a skew-symmetric
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matrix. Thus, as proposed by Ortega and Spong (2000), Ja(x) =
[

0 J1(x)
−J1(x) J2(x)

]
, where J1(x)

is an arbitrary n × n matrix and J2(x) ∈ IRn×n is a skew-symmetric matrix. Both are fixed
prior the optimization process.

The desired damping matrix Rd must be positive semi-definite. Hence, Ra(θ; x) =
[

0 0
0 Ra(θ;x)

]
,

where Ra(θ; x) ∈ IRn×n is symmetric and positive-definite matrix parameterized by θ. The
parameterization enables to define the justifiable damping that fulfills the design criteria
during the optimization process (Sanchez-Escalonilla et al., 2021). In particular, the residual
is defined as:

fstruct(θ; x) := max{0, c +ℜ(σ(Fd(x)))}︸ ︷︷ ︸
fdamping

+ ∥ℑ(σ(Fd(x)))∥︸ ︷︷ ︸
fharmonic

, (20)

where c > 0 is the convergence rate of the new energy function Hd, ℜ and ℑ are the real
and imaginary parts, respectively. The first term is related to the residual for prescribing the
damping of the target system, while the second term corresponds to the residual for mini-
mizing harmonic oscillations.

(P2) Integrability residual
As the NNs are used to obtain the scalar function Ha(θ; x), the integrability condition (P2)
is fulfilled by construction.

(P3) Equilibrium assignment residual
This condition implies that the closed-loop energy function, Hd(θ; x) := H(x) + Ha(θ; x),
has a global minimum at the desired equilibrium x∗ = (q∗, 0). Correspondingly, the follow-
ing residual function to assign the equilibrium point can be considered as:

feq(θ; x, x∗) :=
www∂Hd

∂x
(θ, x∗)

www2

︸ ︷︷ ︸
feq,1

+ (Hd(θ; x∗))2 + max{0,−Hd(θ, x∗)}︸ ︷︷ ︸
feq,2

, (21)

where feq,1 defines that x∗ is a stationary point and feq,2 is used to induce a lower bound on
Hd.

(P4) Lyapunov stability residual
This condition enforces ∂Hd

∂x (θ; x) to be positive. Therefore, the residual function to guarantee
(P4) is given by:

flyap := max{0, σ(Fd(θ; x))}, (22)
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where σ denotes the spectrum of a matrix and c > 0 is again a constant value that can be
added to make this condition strict.

As a result, the IDA-PBC ME 12 can be rewritten in the residual form moving all the terms
to the left-hand side as it is presented in section 2.5.

fmatching := g⊥(x)[Jd(x)− Rd(x)]
∂Hd
∂x

(x)− g⊥(x)[J(x)− R(x)]
∂H
∂x

(x) (23)

Combining all residuals, the final loss function is determined as:

L = fstruct + feq + flyap + fmatching (24)

which will be minimised using NN optimization algorithm, hence auxiliary functions R∗
a(x) ≈

Ra(θ∗; x) + ϵ and H∗
a (x) ≈ Ha(θ∗; x) + ϵ are approximated.
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3 Methodology

The object of this study is a pendulum system located in the Discrete Technology & Produc-
tion Automation (DTPA) lab at the University of Groningen (UG). Simple pendulum system
is a prevailing example of a nonlinear fully-actuated system with force applied by a DC
motor as input and the pendulum angle as a single output. The scope of this research con-
tains the real-life experiment on the stabilization of pendulum using a nonlinear controller
based on neural IDA-PBC methodology to validate the applicability of the proposed con-
trol methodology. The system is controlled to achieve the desired (upright) position. In this
section, the methods and tools used throughout the research are described.

3.1 Control objective

Figure 3: Neural IDA-PBC Controller

The design of the nonlinear controller is based on neural IDA-PBC methodology for pH sys-
tems proposed by Sanchez-Escalonilla et al. (2021). The significance of this method is that it
facilitates control of any physical system described in the port-Hamiltonian framework. To
solve the limitation of the theory that is encompassed by solving matching equations Physics
Informed Neural Networks (PINNs) were exploited. Within the scope of this research, the
objective is to stabilize the pendulum in the upright position. Furthermore, stabilizing the
system at any desired angle is considered as well. Achieving zero steady-state error in con-
trolled system is required. To validate the robustness of the proposed nonlinear controller,
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transient response of the system with two different NN architectures were analysed. The
visualisation of control idea is represented in Figure 3.

3.2 Physics informed neural network architecture

The neural networks approach implemented in this research was developed by Sanchez-
Escalonilla et al. (2021). Initialization of parameters for training NN is done with the use of
Glorot Normal Distribution. The error between the predicted and expected values is calcu-
lated after each mini-batch. Furthermore, the learning algorithm worked through the entire
training data set 1000 times, namely epochs. As a result of trained neural networks, final val-
ues of weights and biases used for calculating auxiliary Hamiltonian (Ha) function are ob-
tained. The function for calculating Ha used for simulations in MATLAB and SIMULINK can
be found in Appendix A. Other important characteristics are mentioned in Table 2. Within
the scope of this research, auxiliary interconnection and damping matrices were defined be-
fore the training.

Moreover, when dealing with DNN, defining the optimal amount of hidden layer plays cru-
cial role in neural networks performance. If the amount of hidden layers is very large with
regard to the complexity of the task, the problem known as overfitting occurs(Uzair and
Jamil, 2020). This affects the training time, efficiency, and, most importantly, error propaga-
tion during the training process. On the contrary, when there are not enough hidden layers,
underfitting appears. As a result, NN does not manage to deal with a given task. Therefore,
within the scope of this research, two NN architectures were considered:

• one input layer, three hidden layers, and an output layer, with 20 nodes inside each
hidden layer (2-20-20-20-1)

• one input layer, one hidden layer with 60 nodes, and one output layer (2-60-1).

3.3 Experimental setup

The interconnected parts are represented in Figure 4. Maxon DC motor generates power to
move the axle with a gearing ratio of 4.4:1 to which the pendulum is connected. Hence, the
motor translates the Voltage input to mechanical rotational force and is driven by the Kepco
Operational Amplifier that, in turn, supplies the required voltage based on the control law
from SIMULINK. To transfer the digital signal to a real-time experimental setup, dSpace
Hardware is used. SIMULINK computes the required voltage by comparing the current state
(in this case angle) of the inverted pendulum to the desired one. The current angle of the
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Table 2: Characteristics of Physics Informed Neural Networks

Characteristic Specification

Optimizer ADAM, LBFGS
Parameter initialization Glorot Normal Distribution

NN Class Tensorflow Keras
Activation function tanh
Number of Epoch 1000

Batch size 64
Learning rate 0.001

Figure 4: Closed loop representation of controlled plant

inverted pendulum is obtained by HEDL-5540 A02 encoder. Each of the components of the
interconnected system is further described in this section and can be found in Appendix B.

3.3.1 Controller board/ Converter

For conducting the experiments with the real system and embedding the Neural IDA-PBC
controller into the physical system, Digital Signal Processor (DSP) is required. In this case,
dSpace CLP1104 Connector Panel for DS1104 with 8 ADC Inputs (4 Multiplex ×16 − bit;
4 × 12 − bit) and 8 DAC Outputs (16 − bit) allows converting digital signal to analog and
vise versa. The main function of DSP is to mediate between the controller in SIMULINK and
the power amplifier by means of signal processing and enabling controller implementation.

3.3.2 Power Amplifier

The KEPCO BOP 36-12M Bipolar Operational Power Amplifier (Op-amp) can act as a Volt-
age or Current source for the appliance connected to it. Within the scope of this research,
Voltage is used as a source. The saturation of Op-amp is ±36 V and ±12 A. Hence, 10 V
supplied to the amplifier generates an output of 36 V, meaning that the conversion factor is
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0.27̇. Similarly, both Current and Voltage read-back from the KEPCO BOP 36-12M Op-amp
is 12 A/V and 36 V/V respectively KEPCOINC. (2018).

3.3.3 Sensor: Encoder

To determine the angle of the pendulum, Quick Assembly Two Channel Optical Encoder
HEDL-5540 A02 with Line driver was used during the experiments. The resolution is ap-
proximately N = 500 cycles per revolution. The encoder is located on the back side of the
DC motor which is connected to the pendulum via Planetary Gearhead GP 26 B with a 4.4:1
ratio. Hence, the angle at a certain moment can be calculated as follows:

q =
2π

4.4N
[rad] (25)

3.3.4 Actuator: DC motor

RE 25 ø25 mm, Precious Metal Brushes CLL, 10 Watt Maxon DC motor 118748 was used
as an actuator is the experimental setup. The voltage from the amplifier, according to the
control law, is supplied to the DC motor. Hence, the electrical energy is translated to the
torque that drives the pendulum. Characteristics of the motor in Table 3 are used for further
calculations in Section 4.5 (MaxonAG, 2021).

Table 3: DC Maxon motor characteristics

Characteristic Value Units

Terminal resistance 32.6 Ω

Terminal inductance 3.48 mH

Torque constant 89.9 mNm/A

Speed Constant 106 rpm/A

Mechanical time constant 4.23 ms

Rotor inertia 10.5 gcm2

3.4 Mathematical expression

When considering the interconnected system of the Pendulum and DC motor, such as in an
experimental setup, there are three storing energy elements with physical states ϕ, p, q flux,
generalized momentum, and angle correspondingly. Coupling of the electrical and mechan-
ical systems occurring via coupling coefficient α: τ = αi, Vem f = 1/αω, where τ is torque
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Figure 5: DC Motor Pendulum System

applied by DC motor, i is a current running through the circuit, Vem f is an electromagnetic
force voltage, and ω is an angular velocity of the pendulum. For calculation simplification,
it is assumed that Φ = αϕ. The Hamiltonian function then is:

H(Φ, p, q) =
1

2Lm
Φ2 +

1
2Jp

p2 − mglcos(q) (26)

where Lp is an inductance, Jp = I +ml2 is rotational inertia (sum of electrical and mechanical
inertia). 

Φ̇

ṗ

q̇


︸ ︷︷ ︸

ẋ

=


−R −1 0

1 −D −1

0 1 0


︸ ︷︷ ︸

J(x)−R(x)


∇ΦH(Φ, q, p)

∇pH(Φ, q, p)

∇qH(Φ, q, p)


︸ ︷︷ ︸

∂H
∂x

+


α

0

0


︸︷︷︸
g(x)

u

y =
[
α 0 0

]
︸ ︷︷ ︸

g⊤(x)


∇ΦH(Φ, p, q)

∇pH(Φ, p, q)

∇qH(Φ, p, q)


︸ ︷︷ ︸

∂H
∂x

,

(27)

However, considering the characteristics of the DC motor presented in an experimental
setup, the system was analysed via the simulation. The results of the simulation can be
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(a) DC Motor and Pendulum (b) DC motor only

Figure 6: Response of the system to constant input

seen in Figure 6. On the left side, Figure 6a shows angle response (with present damping).
However, it can be seen that flux has a very low amplitude; it oscillates around 0. Hence,
the DC motor was modeled separately. Figure 6b represents the response of the flux to 300
V input. The conclusion has been made that the used DC motor is a stiff system with almost
immediate response. Hence, it can be excluded from the modeling if the correct coupling
between voltage input and response of the mechanical system is found.

Hence, the final mathematical expression of the system becomes: q̇

ṗ

 =

 0 (1 + Ja)

−(1 + Ja) −(R + Ra)

∇qH(q, p)

∇pH(q, p)

+

0

α

 β(x)

y =
[
0 α

] ∇qH(q, p)

∇pH(q, p)

 ,

(28)

where α = kn
Rm

, where kn is torque constant, R is resistance of the motor according to the
Table 3. Thus, the Hamiltonian energy profile is expressed in terms of two states, namely
angle and generalized momentum as can be seen in Figure 7.

3.5 Parameter acquisition

Next step towards control of the real physical system is defining the parameters involved.
It also assists in comprehending the systems behaviour, and ensures the accuracy of the ex-
perimental data. As it was shown in section 3.4 some of the parameters have to be found via
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Figure 7: Hamiltonian Energy of the research system

conducting experiments and further analysing of data. This subsection covers acquisition of
the required parameters.

3.5.1 Pendulum

Since the mass of the pendulum bob is very low, the whole mass, considering both rod and
bob jointly, was measured, and is equal to 42 g (0.042 kg). Furthermore, the length of the
pendulum was measured to be 20.8 cm (0.0208 m). Taking complete mass of the pendulum
complicates the task of defining the center of mass that is crucial for modeling. The approach
taken for the final definition of mass and length is described in a further section.

3.5.2 Damping identification

To define the damping coefficient of the System, two experiments of releasing the pendulum
from the 45 degrees position were conducted. Considering Newton’s second law, a simple
pendulum system equation of motion can be written as:

mpl2
pq̈ + dpq̇ + mpgplpsin(q) = τ (29)
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(a) Experiment 1 (b) Experiment 2

Figure 8: Fitting data in Python for damping identification

where mp, lp, gp, dp are the mass, length of the pendulum, gravitational constant, and damp-
ing coefficient respectively; q, q̇, q̈ are the angle, angular velocity and acceleration of the pen-
dulum; τ is applied force, considered to be zero in this case. Obtained data of angle mea-
surement was used to approximate the parameters mp, lp and dp of the differential equation
(29) when input is equal to zero. Parameter fitting was done via Non-Linear Least-Squares
Minimization and Curve-Fitting in Python. The results of the data fitting are depicted in
Figure 8, where the blue line represents measured data and yellow is the fitted one.

Both analysis have shown the following results: mass mp = 0.042 [kg], lp length = 0.185 [m],
dp damping = 0.006 [Ns/m]. These values were used as parameters for further simulations
and experiments.

Moreover, in Figure 8, it can be seen that the fitted data is not completely aligned with the
measured one. It can be due to inconsistent friction throughout the pendulum trajectory.
Moreover, in Figure 8a blue line is not smooth. Therefore, the conclusion can be made that
nonlinearities are present in the friction. However, it is known that PBC is robust to passive
unmodeled dynamics, such as friction (Romero et al., 2013)

3.5.3 Coupling coefficient

As it was mentioned in Section 3.4, the coupling coefficient between the voltage and torque
is kn/R, where kn is a torque constant and R is the resistance of the motor. Hence, consid-
ering the characteristics of Maxon DC Motor in Table 3 the coupling coefficient is given as
α = 2.7576688 [N/V].

To verify the coupling coefficient between the input voltage and mechanical system ten ex-
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Table 4: Experimental data for coupling coefficient calculation

N Voltage fed Measured Voltage Measured Angle α

[V] [V] [rad]

Trial 1 Trial 2 Average Trial 1 Trial 2 Average

1 1 0.9659 0.96679 0.966345 0.4332 0.43911 0.436155 0.0322

2 1.5 1.4591 1.458984 1.459042 0.6815 0.674 0.67775 0.0319

3 1.75 1.7068 1.7067 1.70675 0.8305 0.7947 0.8126 0.0316

4 2 1.9648 1.9648 1.9648 0.9997 0.9399 0.9698 0.0314

5 2.25 2.2141 2.2145 2.2143 1.1586 1.1564 1.1575 0.031

periments with Voltage pulse response were conducted. A pulse signal with different ampli-
tudes, a period of 5 sec and 50% width (2.5 sec) was fed to the system. Considering equation
29 with torque τ = αV and the range of recorded data when the velocity and acceleration
of the pendulum are constant, the coupling coefficient can be found as mglsin(q)

Vf ed
. Recorded

experimental data can be found in Table 4. The value of the coupling coefficient is given as
α = 0.03162 [mN/V].

Moreover, Figure 9 shows recorded experimental data of the system response to the fed
pulse signal with an amplitude of 1.5 V and width of 5 sec. Again, it can be seen that the
friction is not linear as spikes are present in velocity readouts. On the other hand, those can
also be due to the noise in the digital encoder or eliminating the DC motor from the mathe-
matical expression.

Finally, curve-fitting for pulse response of the system was done in PYTHON, while consider-
ing system as pH. Equation 28 with Ja, Ra = 0 was used for fitting when voltage is applied
(Appendix C). The results can be seen in Figure 10.
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Figure 9: Experimental data: Voltage pulse input.

Figure 10: Fitting data for coupling coefficient definition. System response for 1.5 V input
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4 Results

In this chapter we aim to illustrate the applicability of Neural IDA-PBC methodology via ex-
plaining the results of simulations and real life experiments of the nonlinear control for stud-
ied system. To meat the objective of the research the following analysis was done. Firstly,
the performance of NN was compared to the nonlinear controller using analytical solution
for the control law. Secondly, to see the effect of amount of hidden layers with respect to
the complexity of the problem, two different architectures of DNN were considered, namely
(2-20-20-20-1) and (2-60-1). Finally, the influence of the desired damping on the controller
performance was analysed.

4.1 Towards design of nonlinear controller for a fully actuated system

The final control law was defined according to equation 13, and is given for research System
as:

β(x) =
1
α

[
− (1 + Ja)

∂H
∂q

+
∂H
∂q

− (R + Ra)
∂Hd
∂p

]
(30)

Modelling of the neural nonlinear controller was designed according to Neural IDA-PBC
Methodology described in section 3.3. Prior to NN training Ja(x), Ra(x), initial conditions,
desired equilibrium point, and defined parameters of physical system were fixed. After-
wards, neural network was trained to define the Ha(θ; x) function with weights and biases
as parameters, and tanh as activation function.

Looking at the performance of two adopted NN architectures, it can be seen that both man-
age to estimate auxiliary Hamiltonian function (Table 5). However, one of the crucial factors
is training time. DNN with only one hidden layer (2-60-1) can solve the task faster, even
though the entire dataset needs to pass through more epochs before getting to sufficient fi-
nal loss. In this setting, there is no crucial difference between both architectures. However,
as the complexity of the problem increases (for instance, when dealing with under-actuated
systems), the amount of hidden layer plays a significant role in terms of accuracy of the
results and training time efficiency. Afterward, Ha(θ; x) is induced into the control law in
SIMULINK.
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Table 5: Training performance of two different NN architectures, Ja = 0, Ra = 0

Characteristic [2-20-20-20-1] [2-60-1]

Training time (s) 4.22 2.31

Training stopped at epoch 500 1000

Training loss at last epoch 0.0037 0.0030

Final validation loss at last epoch 0.0006 0.0016

Final loss (L) 5.09177771e-05 1.4559766e-05

4.2 Simulation results

Before moving to the real life experiments the simulation of the NN IDA-PBC control was
carried out both in PYTHON and MATLAB. It provides with a basis for predicting systems
behaviour. As an intermediate step before moving to RTI, simulation with discrete time step
of 0.001 sec and ode4 Runge-Kutta solver in SIMULINK took place. The simulation results
can be found in Figure 11, while the model itself in Appendix D.

Figure 11: Simulation of System response and Control action in SIMULINK; Ra = 1, Ja = 0.



32

(a) Energy profile: Algebraic IDA-PBC (b) Energy profile: Neural IDA-PBC

Figure 12: Numerical simulation of the pendulum Hamiltonian Energy profile for Ja = 0,
Ra = 1, Hd(x) = Ha(x) + H(x): a) Analytical solution that comprises pure potential energy
compensation; b) Ha(θ; x) approximated by Neural Network with [2-20-20-20-1] architecture
that fulfils matching equations of the system.

Parameters of the pendulum, excluding coupling coefficient, defined in previous section
were used. Since the DC motor is left out from simulation results differ from real life im-
plementation. Furthermore, because the generalized momentum of a real physical system
is very low, it was necessary to implement Saturation block, which caused such a rough be-
haviour for analytical solution in the middle graph of Figure 11. Even though in both cases
system reaches to the desired equilibrium, NN control outperforms analytical case in terms
of overshoot and settling time.

Moreover, the analysis of the Hamiltonian energy profile (Figure 12) again demonstrates
that Analytical IDA-PBC encompasses potential energy compensation only. Even though it
does not impede control of fully actuated systems, full energy compensation is required for
underactuated systems.

4.3 Experimental results

The aforementioned simulations show the capability of Neural IDA-PBC. This allows the
researcher to proceed with a swing-up pendulum problem in real life. For this, the setup in
the DTPA lab was used. Similar to the previous section, the performance of Neural control
was compared to Algebraic IDA-PBC on the studied System. Finally, the effect of the auxil-
iary damping matrix was studied by conducting experiments with different values.
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Figure 13: Fast Fourier Transform of recorded Voltage signal

Nevertheless, noise was detected during the first trials for implementing control for exper-
imental setup. It led to disturbances of the control of such a sensitive system. Hence, there
is a need for low-pass filter in a SIMULINK model. To identify the stopband frequency, Fast
Fourier Transform (FFT) was applied to the recorded voltage signal. As a result, the noise
was detected at 100 [Hz] (Figure 13).

4.3.1 Algebraic vs Neural IDA-PBC

In this subsection the performance of the Neural nonlinear controllers is compared to Al-
gebraic IDA-PBC with analytical solution for control law. Since the main requirement for
Algebraic IDA-PBC is to have desired Hamiltonian quadratic in increments (Section 2.3),
the arbitrary gain for its partial derivative can be chosen. Here, standard gain (c = 2) was
used, and it shows that this variant cannot manage to bring the pendulum to the desired
equilibrium. Control action in this case depends purely on potential energy of the System,
as it can be seen in a third graph of Figure 14. Hence, depending on initial gain, system gets
enough momentum to get to the desired position. The decision has been made to double the
gain, which is represented as a red line in Figure 14. Moreover, given non-parameterized
IDA-PBC methodology, auxiliary interconnection and damping were fixed prior the control
implementation. Within the frame of this analysis Ja = 0 and Ra = 0.25.

Furthermore, the results of the Neural control show that both NN[2-20-20-20-1] and NN[2-
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Figure 14: System’s transient response and Control laws; Ja = 0, Ra = 0.25
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60-1] manage to deal with a task, however, DNN with one hidden layer has an advantage
in raising and settling time. Besides, the control law (Figure 14) is more smooth. In case of
DNN with three hidden layers, the trajectory of the pendulum looks similar to Analytical
control with c = 4, however, it can be clearly seen that the control action compensated both
kinetic and potential energy. On the other hand, when moving towards the implementation
of a control law in real life, for instance in case of a automatized factory, the amount of power
used to drive the system plays crucial role as it leads to expenses. In the measured Voltage
graph of Figure 15 it can be seen that NN [2-20-20-20-1] requires the least amount of voltage
to bring the pendulum to the desired equilibrium.

4.3.2 Damping Analysis

One of the features of non-parameterized IDA-PBC is the variety of options for tuning the
auxiliary interconnection and damping depending on the design requirements. This sec-
tion aims to analyse the effect of assigning different desired damping for the controller
since closed loop system behaviour highly depends on this parameter. The main criteria
for analysing the system’s response to the controller and, as a result, checking controllers
performance are: raising time, overshoot, and settling time. Hence, the objective is to deter-
mine the optimal desired damping that keeps the system from high overshooting and does
not make the system underdamped. For this, the transient response of the system was anal-
ysed while applying four different values for auxiliary damping Ra while Ja = 0 as it can be
seen in Figure 15.

The measured data is compiled in Table 6. Low auxiliary damping leads to high overshoot
(14.33%). While in the case of Ra = 0.25, the system is critically damped and settles within
0.6 sec. If the damping value is increased, high kinetic energy counteraction occurs, which
stops the pendulum from reaching desired equilibrium.

Table 6: Transient response characteristics depending on desired damping.

Experiment Raising time Overshoot Settling time

Tr [s] (90%) M % Ts [s] (2%)

Ra(x) = 0.01 0.475 14.33 0.55

Ra(x) = 0.25 0.31 0.01 0.6

Ra(x) = 0.5 0.8 0 1.8302

Ra(x) = 1 1.135 0 -
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Figure 15: Experimental results: different desired damping used
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5 Discussion

5.1 Results

This study demonstrates the experimental results of nonlinear control for pendulum using
the Neural IDA-PBC. Hence, the results of this study unravel the method of implementation
of a neural nonlinear control to fully actuated systems. It elaborates on the behaviour of the
controlled system when two variants of DNN are used for approximating the solution of the
matching equations required to fulfill closed-loop stability. For this problem, both NN[2-20-
20-20-1] and NN[2-60-1] control-informed neural networks managed the task. However, it
can be concluded from the results that one hidden layer is enough to ensure the fastest rising
and settling time for the swing-up pendulum. The conclusion can be made that the archi-
tecture of NN has to be chosen with regard to the complexity of the system.

In this setting, the desired damping, as one of the tuning control parameters, was analysed
via conducting experiments with different damping. Since the desired damping is included
in the training of NN, this approach is not efficient when working with more complex prob-
lem where training requires more time or computational power. Moreover, even though
considering the studied system analytical IDA-PBC is cooping with the task, the NN IDA-
PBC controller still outperforms it.

In general, IDA-PBC methodology shows that nonlinear system is controlled by shaping its
closed-loop energy while respecting the dynamics of the original system. Inherently, this
method can assure high-performance and, most importantly, cost-efficient controllers.

5.2 Limitations

Reflecting on the result of this work, a few limitations can be observed. Firstly, the findings
cannot be extrapolated to any system, as IDA-PBC has a high dependency on the model
dealt with. Even though this experimental work shows the potential of the Neural IDA-PBC
for fully actuated systems, the implementation of the method is highly constrained by the
software and hardware used in this research. Furthermore, the studied mechanical system
was modeled by relying on physics principles, such as Newton’s law or other realistic as-
sumptions. However, within the scope of this research, the modeling of the DC motor was
omitted considering that the system is stiff. Hence, if high precision is required and the
parameters of the mechanical system are bigger at scale, it might be important to include
the DC motor in the modeling, which significantly changes the problem. Moreover, param-
eter acquisition was done via experiments, and an assumption has been made, such as in
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the case of damping identification. However, most uncertainties usually come from inertial
parameters (generalized momentum directly depends on damping in the case of a simple
pendulum) and can deteriorate the performance of the controller.

5.3 Future work

From the results of this work, it can be seen that there are some aspects that can be addressed
in future work. Firstly, training time and accuracy of the neural networks can be significantly
reduced by introducing hard constraints into PINNs by means of penalty method Lu et al.
(2021). Secondly, throughout this research controller parameter, namely auxiliary damping,
was analysed by applying different values. However, a method to define optimal controller
parameters can be obtained bypassing the whole training procedure. For instance, Linear
Quadratic (LQ) optimal control can be used Vu and Lefèvre (2018). Finally, this research has
shown the method of implementation Neural IDA-PBC controller for fully actuated system.
The further study on under actuated systems need to be conducted (Sanchez-Escalonilla
et al., 2022).
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6 Conclusion

From the theoretical perspective, the IDA-PBC methodology allows for stabilizing a wide
spectrum of systems modeled in the port-Hamiltonian framework. Likewise, it provides
a clear interpretation of the control scheme in terms of energy. However, certain obstacles
hinder its application. The first one regards solving partial differential equations, which are
required for preserving closed-loop stability. Another obstacle is a high dependency on the
physical system dealt with. Within the scope of this research, the Neural IDA-PBC method
that proposes eliminating the difficulty of solving the matching equations was analysed.

Towards the end of this research, the mathematical expression of the nonlinear controller for
a given system based on Neural IDA-PBC was defined. To examine the performance of the
proposed controller another case was considered as well: the analytical solution of Algebraic
IDA-PBC. Furthermore, the methods for the acquisition of unknown pendulum parameters,
such as mass length and damping coefficient, were described. Besides the parameters of the
mechanical system, the interconnection and coupling of separate parts required for experi-
menting were done.

The verification of Neural IDA-PBC applicability took place via experimenting on a fully
actuated system, namely a pendulum. The effect of critical controller parameters, such as
the desired damping, was analysed. Moreover, two different architectures with different
amounts of hidden layers were considered. It assisted in correlating the system’s complex-
ity to the depths of neural networks. As it was enough to use deep neural networks with
one hidden layer to get exceptional results, it shows that this methodology has the potential
to deal with more complex systems. Moreover, obtained results were compared to an ana-
lytical solution for IDA-PBC control that offers pure potential energy compensation. Even
though for fully-actuated systems it is enough to implement an analytical solution of Alge-
braic IDA-PBC, Neural IDA-PBC outperformed it.

The studied approach highly depends on the system to be controlled, so the results of this
research cannot be generalised and extrapolated to apply to other physical systems. Never-
theless, it shows great opportunity for dealing with nonlinear systems in terms of respecting
model dynamics and its robustness to unmodelled nonlinearities, such as friction.
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A Ha MATLAB function

1 function Ha= fcn(q, data1, data2, data3, p, data7, data6, data4, data5, data8)

2 % Simulink function for calculating Ha based NN data

3

4 firstLayer = zeros(1,20);

5 secondLayer = zeros(1,20);

6 thirdLayer = zeros(1,20);

7

8 for n=1:20

9 firstLayer(n) = tanh(q*data1(1,n)+p*data1(2,n)+data2(n));

10 end

11 for i=1:20 %from neuron i in the second layer

12 dummy = 0;

13 for j = 1:20 %to neuron j in the first layer

14 dummy = dummy + firstLayer(j)*data3(j,i); % weight from neuron

15 % i (1st layer) to neuron j (2nd layer) multiplied by the output

16 % of neuron i plus the bias in neuron j

17 end

18 secondLayer(i) = tanh(dummy + data4(i));

19 end

20 for i=1:20

21 dummy = 0;

22 for j = 1:20

23 dummy = dummy + secondLayer(j)*data5(j,i);

24 end

25 thirdLayer(i) = tanh(dummy + data6(i));

26 end

27 dummy = 0;

28 for n=1:20

29 dummy = dummy + thirdLayer(n)*data7(n);

30 end

31 a = (dummy + data8);

32 Ha = a; % k is for p, l is for q
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B Experimental setup

(a) Pendulum connected to Maxon DC motor (b) Digital Encoder

Figure 16: Pendulum and Encoder
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Figure 17: dSpace

Figure 18: KEPCO Op-Amp
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C Python code for Data Fitting

1 " " "
2 Created on Mon May 30 0 9 : 3 5 : 1 8 2022
3 @author : veronika
4 " " "
5 import numpy as np
6 import m a t p l o t l i b . pyplot as p l t
7 import sc ipy . io
8 from scipy . i n t e g r a t e import odeint
9 from l m f i t import minimize , Parameters , Parameter , r e p o r t _ f i t

10

11 d a t a F i t t i n g = sc ipy . io . loadmat ( ' VoltageExperiment . mat ' )
12 t = d a t a F i t t i n g [ ' t ' ] [ 0 ]
13 y = d a t a F i t t i n g [ ' Angle ' ] [ 0 ]
14 # P l o t measured Data
15 p l t . f i g u r e ( dpi =300)
16 p l t . p l o t ( t , y , l a b e l = ' Measured data ' )
17

18 def f ( y , t , paras ) :
19 " " "
20 Port −Hamiltonian system
21 " " "
22 g = 9 . 8 1
23

24 x1 = y [ 0 ]
25 x2 = y [ 1 ]
26

27 d = paras [ 'd ' ] . value # damping
28 m = paras [ 'm' ] . value # mass
29 l = paras [ ' l ' ] . value # length
30 a = paras [ ' a ' ] . value # coupling
31

32 # S t a t e s x =[q , p ] Angle & Gen momentum
33 f1 = x2 /(m* l * * 2 ) # q
34 f0 = − m* g * l *np . s i n ( x1 ) − d* x2 /(m* l * * 2 ) + a * 1 . 7 5 #p
35 re turn [ f1 , f0 ]
36

37 def g ( t , x0 , paras ) :
38 " " "
39 Get the so lut inon f o r ODE
40 " " "
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41 x = odeint ( f , x0 , t , args =( paras , ) )
42 re turn x
43

44 def r e s i d u a l ( paras , t , data ) :
45 " " "
46 Compute the r e s i d u a l
47 " " "
48 x0 = [ data [ 0 ] , 0 ]
49 model = g ( t , x0 , paras )
50 x2_model = model [ : , 0 ]
51 re turn ( x2_model − data ) . r a v e l ( )
52

53 # i n i t i a l condi t ions
54 x10 = 0
55 x20 = 0
56 y0 = [ x10 , x20 ]
57

58 # Set the boundaries f o r parameters ( c o n s t r a i n t s are based on measurements )
59 params = Parameters ( )
60 params . add ( ' l ' , value =0 .208 , min =0 .104 , max=0.3 ) # vary=Fa l se
61 params . add ( 'm' , value =0 .042 , vary =Fa l se )
62 params . add ( 'd ' , value =0 .01 , min = 0 . 0 , max=2)
63 params . add ( ' a ' , value =0 .03 , min = 0 ,max=5)
64

65 # Model f i t t i n g
66 r e s u l t = minimize ( res idual , params , args =( t , y ) , method= ' l e a s t s q ' )
67 x0 = [ y [ 0 ] , 0 ]
68 x = g ( t , x0 , r e s u l t . params )
69

70 # P l o t f i t t e d data over Measured
71 p l t . p l o t ( t , x [ : , 0 ] , l a b e l = ' F i t t e d dat ' )
72 p l t . x l a b e l ( ' time [ s ] ' )
73 p l t . y l a b e l ( ' Angle [ rad ] ' )
74 p l t . legend ( )
75

76 d = round ( r e s u l t . params [ 'd ' ] . value , 3 )
77 m = round ( r e s u l t . params [ 'm' ] . value , 3 )
78 l = round ( r e s u l t . params [ ' l ' ] . value , 3 )
79 a = round ( r e s u l t . params [ ' a ' ] . value , 3 )
80

81 # P r i n t the r e s u l t s
82 p r i n t ( f " mass = {m} , length = { l } , damping = { d } , coupling ={ a } " )
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D SIMULINK simulation models

Figure 19: Simulink model for analytical solution

Figure 20: Simulink model for analytical solution: port-Hamiltonian plant
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Figure 21: Simulink model for Neural IDA-PBC: port-Hamiltonian plant
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