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Abstract

In this paper we will discuss the group structure of elliptic curves over Q which contain a rational
point of order 3, namely we will use 3-descent to prove that the group of rational points for such a
curve is finitely generated abelian. This shows the methods used to prove the subcase of Mordell’s
theorem for Elliptic Curves with a rational point of order 2 can be adapted to the case at hand.
We shall finish by showing that the methods used in this thesis can provide bounds on the rank
of curves of the form y2 = x3 +A2(ax− b)2 where all coefficients are rational.
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1 Introduction

At the writing of this thesis it is nearly 100 years ago that Louis Mordell [5] proved that for a ternary
homogeneous cubic f the points satisfying f(x, y, z) = 0 can be expressed as rational combinations
of some finite set of points.

In more digestible terminology we turn to Silverman, who phrases this result as the set of rational
points of an elliptic curve

y2 = x3 + ax2 + bx+ c

being a finitely generated abelian group [7, Theorem 4.1]. This is proven through 2-descent. While
the majority of the conditions for 2-descent are fairly elementary to prove in the case of elliptic
curves over Q, the condition that the quotient group E(Q)/mE(Q) is finitely generated requires
sophisticated tools from Galois Cohomology.

Introductory texts like the book of Tate and Silverman [8] get around this problem by proving
only that elliptic curves containing a point of order 2 are finitely generated. Since in this case one is
able to define a curve Ē over Q) and maps φ : Ē(Q) → E(Q), ψ : E(Q) → Ē(Q) such that [2] = φ◦ψ
thus

[E(Q) : 2E(Q)] = [E : φ ◦ ψE(Q)] ≤ [E : φ(Ē(Q))][Ē(Q) : φ(E(Q))].

Then it is possible to find a map α : E(Q) → Q×/Q×2 whose image can be shown to be finite and a
bound for these the index is then given as

[E(Q) : φ(E(Q))] ≤ (# Imα)(# Im ᾱ)

[8, Proposition 3.8]. In our case we will focus on curves which have a point of order 3. This requires
us to use 3-descent rather than 2-Descent, and moreover we will have to map to rings which are less
friendly than Q×/Q×2, so we will require some more number theory than in the case of a point of
order 2.

The first few chapters shall be dedicated to defining elliptic curves and giving examples of points
of finite order. The later chapters will be about the proof of this subcase of Mordell’s theorem and
how it can be used to find bounds for heights, a relation defined in section 5, of certain elliptic curves.
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2 Some Prerequisites

2.1 Cubic Polynomials

In this thesis we will be working a lot with cubic polynomials. The particular flavour we will be
working with are the monic cubics. These are cubics of the form

f(x) = x3 + ax2 + bx+ c

where a, b, c ∈ K where K is a field, generally one of characteristic other than 2. Moreover we want
f separable, that is, having distinct roots.

When we are working with quadratics we have the discriminant given by the famous b2 − 4ac,
which tells us whether a quadratic has distinct roots. For a monic cubic we can similarly define a
discriminant.

Definition 2.1. Let f ∈ K[x], with K a field and for our purposes typically Q, be monic, and let αi
be the roots of f . The discriminant of f is defined as

D :=
∏
i ̸=j

(αi − αj)
2.

Clearly, if the roots of f are distinct, then D ̸= 0, and if they are not distinct then some pair of
indices i ≠ j exists so that αi = αj and therefore D = 0. Importantly, we can express D as in terms
of the coefficients of f .

2.2 Projective Geometry

The following definitions are inspired by [2, Section 3]. Let K be a field. The aim of this section is
to define points at infinity on a curve defined over K, which we will require later in this thesis.

Definition 2.2. Let n ∈ N and u, v ∈ Kn+1 and view Kn+1 as a vector space over K. We define
an equivalence ∼n via u ∼n v if and only if u and v are linearly dependent.

It should be obvious this indeed defines a family of equivalence relations.

Definition 2.3. Let n ∈ N. We define projective n-space over K as

Pn :=
Kn+1 \ {(0, . . . , 0)}

∼n
.

So one way to view Pn is as all lines through (0, . . . , 0). Similarly we have the definition of affine
space.

Definition 2.4. Let n ∈ N, then we define affine n-space as

An(K) := Kn

We take some sets in Pn, namely

Ui := {(x1, . . . xn, xn+1) ∈ Pn : xi ̸= 0} .

We denote an element P ∈ Ui as

P = [x1 : x2 : · · · : xi−1 : 1 : xi+1 : · · · : xn].
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And we have a map φi : An(K) ↪→ Ui via

(x1, . . . xn) 7→ (x1, . . . , xi−1, 1, xi, . . . , xn).

Since clearly

Pn(K) =

n+1⋃
i=1

Ui

we can view Pn as n+ 1 copies of the affine n-space, which are glued together in some way.
Note that P2 is very close to to A2(K), namely,

P2 =
{
(x, y, 1) : (x, y) ∈ A2(K)

}
∪
{
(x, y, 0) : [x : y] ∈ P1

}
but in P1 we are much in the same situation as before, namely

P1 =
{
(x, 1) : x ∈ A1(K)

}
∪ {(1, 0)} .

So we have a point left, which we view as the point at infinity.

Definition 2.5. Let F ∈ K[x, y, z], we call F homogeneous if F (tx, ty, tz) = tdF (x, y, z) for d the
degree of F .

For instance, we can couple a monic cubic with a homogeneous polynomial f(x) = x3+ax2+bx+c
via

f(x) ∼ F (x, y, z) = z2y − (x3 + azx2 + bz2x+ cz3)

and then setting F (x, y, 1) = 0 yields back the original equation. In general we can find a homogeneous
polynomial for every curve defined by the equality of 2 polynomials g(x, y) = f(x, y) we can change
a term xnyk to a term xnykzd−n−k to get such a polynomial. So for a polynomial f(x) we set fh

to be this homogeneous polynomial, for a homogeneous f we set f i(x, y) = f(x, y, 1). This yields a
bijection

{f ∈ K[x1, x2] : deg f = n} ↔
{
homogeneousf ∈K[x, y, z] :f(x, y, z) ̸=zf ′(x, y, z) ∀f ′ ∈ K[x, y, z]

}
.

We call fh the projective closure, that is, the projective polynomial which has affine part f .

Definition 2.6. Let F ∈ K[x1, x2, x3] be homogeneous of degree n. Then we define the set of points

V (F ) :=
{
P ∈ P2 : F (P ) = 0

}
So with the relation we found before, these are all the points on a curve { (x, y) :g(x, y) = f(x, y)}
and we can think of it similarly to the graph{

(x, y, f(x, y)) : (x, y) ∈ Q2
}
.

Example 2.7. Consider the following curve over A2(K)

{(x, y) : f(x, y) = −y2 + x3 + ax2 + bx+ c}

so that
fh(x, y, z) = −zy2 + x3 + azx2 + bz2x+ cz3.

Then we find bijections

V (fh) =
{
P ∈ P2 : fh = 0

}
,

↔
{
(x, y) ∈ A2(K) : f(x, y) = 0

}
∪
{
(x, y, 0) : (x, y) ∈ P1, fh(x, y, 0) = 0

}
.

The first set is just the set of points on the curve, while for the second we find

fh(x, y, 0) = x3

so this set contains just the point (0, 1, 0), we call this the point at infinity. △
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3 Elliptic Curves

The general notion of an elliptic curve shall be the focus for this thesis. For our purposes, a convenient
definition is as follows.

Definition 3.1. Let K be a field of characteristic different from 2 and f(x) ∈ K[x] be a 3rd degree
monic polynomial having distinct roots. An elliptic curve is a curve given by

E : y2 = f(x).

We denote for a given elliptic curve

E(K) :=
{
(x, y) ∈ A2(K) : y2 = f(x)

}
∪ {O},

where O is the point at (0, 1, 0) from example 2.7.

Since we are talking about an Elliptic Curve it is tempting to look at a case where K allows us to
graph a function depicting the points on t he elliptic curve.

Example 3.2. Take K = R, f(x) = x3 + px2 + 1, where we let p ∈ {−2, . . . , 3}. This yields a
sequence of elliptic curves Ep, we used python to depict these curves n [−5, 5]× [−5, 5].

Figure 1: The curves y2 = x3 + px2 + 1 for p ∈ {−2, . . . , 3}.

△

It should be noted that an elliptic curve is not always a curve in the Calculus sense, but may also
consist of a series of seemingly random points, as is illustrated in the following example.

Example 3.3. Take p a prime with p ≡ 3 mod 4 and take the elliptic curve y2 = x3 + nx over Fp
with n ∈ F×

p . To find E(Fp) we aim to find when x3 + nx is a square modulo p. Note that −1 is not
a square, since the Legendre symbol equals(

−1

p

)
= (−1)

p−1
2 = (−1)

3+4k−1
2 = (−1)1+2k = −1.
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Fix some a ∈ Fp which is not a zero of f := x3 + nx, then note f(−a) = −f(a), thus(
f(a)

p

)(
f(−a)
p

)
=

(
f(a)

p

)2(−1

p

)
= −1.

Hence precisely one of f(a) and f(−a) is a square.
When a is a zero of f we know that a(a2 + n) = 0. Since we are working in a field that means

a = 0 or a2+n = 0. So a is not a zero of f unless a = 0 or a = ±n. Since we can only factor x3+nx
into 3 linear factors or a quadratic factor and a linear factor, we have either 1 root (a = 0) or 3 roots.

So for half of all residue classes x which are not roots we can find two points (x,
√
f(±x)) and

(x,−
√
f(±x)) on the curve. Hence we have that there are (p − 1)/2 possible x-coordinates, each

corresponding to two y-coordinates. Along with the root 0 and the point at infinity giving

#E(Fp) = 2(p− 1)/2 + 2 = p+ 1

or we have (p − 3)/2 x-coordinates corresponding to two points on the curve, along with 3 points
corresponding to a root and 1 point at infinity, so

#E(Fp) = 2(p− 3)/2 + 4 = p+ 1.

For instance when p = 7 we can find that on the curve y2 = x3 + x we have the points

E(Fp) = {O, (0, 0), (1, 3), (1, 4), (3, 3), (3, 4), (5, 2), (5, 5)} .

△

The main reason we are interested in elliptic curves is that E(K) is an abelian group. In the
case that K = Q there is a geometric interpretation of what this means, which uses only elementary
algebra.

3.1 Elliptic Curves over the Rationals

We take E : y2 = f(x) to be an elliptic curve over Q. As an example of such a curve we take
f(x) = x3 − 6x+ 9. Let us take two points on this curve, say (−3, 0) and (1, 2). Then note we can
draw a line through both of these points and it intersects the curve at a 3rd point (9/4, 21/8).

Figure 2: Two points on y2 = f(x)
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In fact, barring a few exceptions, we can use this method to obtain a 3rd point when we know
two points on the curve.

When we have two distinct points (x1, y1), (x2, y2) ∈ E(Q) with x1 ≠ x2, we can use algebra to
find a line through both, namely the line

y =
y2 − y1
x2 − x1

(x− x1) + y1.

Note that this line does not intersect the curve in a 3rd point in Q when y1 = y2. Barring this case
though, we find via a straightforward computation that

x3 =

[
y2 − y1
x2 − x1

]2
− (x1 + x2), y3 = y1 +

y2 − y1
x2 − x1

(x3 − x1) (1)

is also a point on this curve.
If the points are not distinct, then [8, Chapter 1.4] describes how we can similarly use the tangent

line, which also leads to a point with coordinates in Q.

At this point it is tempting to define a group law by mapping ∗ : ((x1, y1), (x2, y2)) 7→ (x3, y3). Sadly
this is not associative.

Counterexample 3.4. We shall show that taking the 3rd point of intersection as the result of our
operation does not yield an associative operation. Namely we consider the curve 1

E : y2 = x3 + 113.

It is then readily verified that

P = (−4, 7), Q = (2, 11), R = (8, 25)

are points on the curve.
It is moreover verified that

P ∗Q = (22/9, 305/27),

Q ∗R = (−42/9,−116/27),

and thus

(P ∗Q) ∗R = (−109/25,−686/125),

P ∗ (Q ∗R) = (422, 8669).

So indeed ∗ is not associative.

3.1.1 The Group law

Luckily a small modification of ∗ does yield an associative operation, namely when we take the 3rd
point of intersection, and replace y by −y.

1This curve was not picked at random, namely this curve has rank 3, so we can pick 3 distinct elements which have
infinite order with respect to the associative operation we shall define later. We picked this since for points of (small)
finite order ∗ tends to be associative: none of the curves I tried yielded a counterexample.

7
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Figure 3: Depiction of the group law

This still leaves a number of edge cases. For instance, when two points are antipodes there is not
going to be a 3rd point of intersection in Q2. Luckily we have a point at infinity, which we will define
to be the sum of two antipodes.

After this motivation we introduce the following definition, which is used by [8, Section 1.4].

Definition 3.5. Let P = (x1, y1), Q = (x2, y2) be points on an Elliptic curve y2 = x3 + ax2 + bx+ c
other than O, define an operation +E as follows.

1. If P ̸= Q and x1 = x2 then P +E Q = O.

2. If P = Q and y1 = 0 then P +E Q = O

If neither of these are the case we define λ and ν as follows.

1. if P ̸= Q and x1 ̸= x2 then

λ =
y2 − y1
x2 − x1

, ν =
y1x2 − y2x1
x2 − x1

.

2. If P = Q and y1 ̸= 0 then

λ =
3x21 + a

2y1
, ν =

−x31 + ax1 + 2b

2y1

then
P +E Q = (λ2 − x1 − x2,−λ3 + λ(x1 + x2)− ν).

Finally we define P +E O = O +E P = P . When it is clear from context what the curve is, we will
write + instead of +E.

So we have a set, together with a binary operation. This motivates the following theorem.

Theorem 3.6. Let E : y2 = f(x) be an elliptic curve. Then (E(Q),+E ,O) is an abelian group.

8
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Proof. By construction, we have that +E : E(Q)×E(Q) → E(Q) is well defined. Namely, it is clear
from equation (1) that when P,Q ∈ E(Q), then also P ∗Q ∈ E(Q). Consequently, the reflection in
the y-axis is also in E(Q).

Moreover, if we have a line y = ax+ b through P,Q ∈ E(Q), then this yields an equality(
y2 − y1
x2 − x1

(x− x1) + y1

)2

= x3 + px2 + qx+ r

Which yields a root finding problem for f̃(x) = 0. We know that we can factor f̃(x) = (x− x1)(x−
x2)(x−A), for some A. We argue A must be rational, since if A /∈ Q, then we would have

f̃(x) = −Ax1x2 +Ax1x+Ax2x−Ax2 + x1x2x− x1x
2 − x2x

2 + x3

not having rational coefficients. But clearly f̃ must have rational coefficients, so we conclude A is
the x coordinate of a 3rd point of intersection, and moreover there cannot be any more factors, so
there are precisely 3 points of intersection. So indeed +E is well-defined.

It should also be clear that +E is commutative, since P +E Q and Q+E P would yield the same
3rd point of intersection.

Inverses are also straightforward: we think of O of sitting at infinity, so the line through a point
and its antipode (which may be the point itself if we are talking about points like (−3, 0) as in figure
2) will only intersect at infinity.

The proof of +E being associative can be found in [11, Section 2.4]

We shall from now on just denote E(Q) to indicate this group.

3.2 Elliptic Curves Over Other Fields

In an arbitrary field of characteristic other than 2 we can define + analogously to definition 3.5.
While it is possible to have elliptic curves over a field of characteristic 2 this requires a more subtle
definition that we will not go into.

Theorem 3.7. Let K be a field with characteristic different from 2, and E : y2 = f(x) an elliptic
curve over K. Then (E(K),+E ,O) is an abelian group.

We expand on this in the following example.

Example 3.8. Let p be a prime and E : y2 = f(x) an elliptic curve over Fpn . For any finite field Fpn
we surely have E(Fpn) is finite. So by the structure theorem for finitely generated abelian groups [3,
Theorem 2.8] there exist finitely many ai ∈ N0 such that

E(Fpn) ≃ Z/a0Z× · · · × Z/akZ.

In Example 3.3 we found that for p ≡ 3 mod 4 a curve E : y2 = x3 + nx has #E(Fp) = p+ 1.
When p = 43 and n = 1 we have #E(F43) = 44 = 22 · 11. The only two Abelian groups of this

order are Z/11Z × Z/4Z and Z/11Z × Z/2Z × Z/2Z. It can be verified that (27, 42) is a point of
order 4, so

E(F43) ≃ Z/11Z× Z/4Z ≃ Z/44Z.

△

9
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3.3 Isogenies

Since we know that an elliptic curve E : y2 = f(x) over a field K has an associated abelian group
E(K), it is natural to speak about group homomorphisms between these groups. This leads us to
the following definition.

Definition 3.9. Let E1, E2 be elliptic curves over a field K. An isogeny φ : E1(K) → E2(K) is a
group homomorphism that is a rational function in both coordinates, that is

φ(x, y) = (ϕ(x, y), ψ(x, y))

where ϕ and ψ are quotients of polynomials.

The astute reader might notice that this definition is over-engineered, as one can prove that any
rational function φ : E1(K) → E2(K) satisfying φ : O 7→ O would automatically be a group
homomorphism. And this is indeed what Silverman proves in the following theorem [8, Theorem
III.4.8].

Theorem 3.10. Let E1, E2 be elliptic curves over a field K and φ : E1(K) → E2(K) be rational
maps such that φ(O) = O, then φ is a group homomorphism.

Below we shall go into some examples that shall come in useful later.

Example 3.11. Fix some n ∈ N then [n] : P 7→ nP is an isogeny, since it is clearly a rational
function, and it is also a homomorphism of groups as by definition nO = O. And since the group of
rational points on an elliptic curve is abelian

nA+ nB = A+ . . . A+B + . . . B = A+B + · · ·+A+B = n(A+B).

△

The following example is the subject of [10, Chapter 2.2] and will be important later in this thesis.

Example 3.12. Let A,B ∈ Q and Ā = −27A, B̄ = 4A+ 27B

E : y2 = x3 +A(ax−B)2, Ē : η2 = ξ3 + Ā(aξ − B̄)2

so that are elliptic curves, for each pair of parameters A,B we define the map

ΦA,B : (x, y) 7→ (ξ, η),

where

ξ =
9

x2

(
2y2 + 2AB2 − x3 − 2

3
Ax2

)
,

η =
27y

x3
(
−4ABx+ 8AB2 − x3

)
.

If we define ΦA,B : O 7→ O then by theorem 3.10 it follows that ΦA,B is an isogeny. If we apply the
map ΦĀ,B̄ ◦ ΦA,B we obtain the curve

C : y2 = x3 + 36A(ax− 36B)2.

The change of coordinates

(x, y) 7→ (36x, 39y)

10
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gives

318y = 318x2 + 318A(ax−B)2

which is the equation of E multiplied by 318. In conclusion, letting [3] denote the multiplication by
3 map makes the following diagram commute.

E(Q) Ē(Q) C(Q)

[
3
]

ΦA,B ΦĀ,B̄

△

11
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4 Points of Finite Order

We shall introduce the concept of torsion in the context of Abelian groups, after this we will use this
to prove properties of the torsion subgroup of the rational points on an elliptic curve.

Definition 4.1. Let A be an Abelian group. A point of finite order is called a torsion point. We
denote the set of all torsion points in A as Ators.

Theorem 4.2. Ators is a subgroup of A.

Proof. Let (A, e, ∗) be an Abelian group and H = {x ∈ A : |x| <∞}, then H ≤ A since clearly
e ∈ H and when x, y ∈ H then ord(xy−1) = lcm(ord(x), ord(y−1)) = lcm(ord(x), ord(y)) < ∞, so
xy−1 ∈ H.

Definition 4.3. Let (A, e, ∗) be an Abelian group, define

A[n] := {x ∈ A : xn = e} .

Theorem 4.4. A[n] is a subgroup of Ators.

Proof. Note that A[n] is precisely the kernel of f : x 7→ xn, therefore it must be a subgroup, since
clearly e ∈ ker f and moreover x, y ∈ ker f means f(xy−1) = f(x)f(y−1) = f(x)f(y)−1 = e.

Example 4.5. If K is finite then E(K) = E(K)tors follows by Lagrange’s Theorem. △

Example 4.6. A point of order 2 must have a vertical tangent line. Consider the curve y2 =
x3 + 6x2 + 5x over Q, the points with such a tangent line are depicted in figure 4.

Figure 4: Points of order 2 on y2 = x3 + 6x2 + 5x over Q.

There are three such points, so we have

E(Q)[2] = {O, (−5, 0), (−1, 0), (0, 0)} .

In particular this tells us E(Q)[2] ≃ Z/2Z× Z/2Z, since this is a group of 4 elements and all points
besides the identity have order 2. △

A deeper result about points of finite order is the following theorem.

Theorem 4.7. Let E : y2 = f(x) be an elliptic curve over Q with integer coefficients. All torsion
points of E(Q) have integer coordinates. Moreover if (x, y) ∈ E(Q)tors and y = 0 then P has order
2, else y2|D, the discriminant of f .

The proof of this theorem is outside the scope of this thesis and it can be found in [8, Section 2.5].
This theorem shall be useful when we are trying to find points of finite order.

12
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4.1 Points of Order 2

It is immediately obvious that a point of order 2 must be on the x-axis, since this would mean
P = −P thus (x, y) = (x,−y), so this x-coordinate is precisely a root of the corresponding cubic.

Example 4.8. The class of elliptic curves

E : y2 = f(x) = x(x2 + bx+ c)

over Q all have a root x = 0, moreover we can use the quadratic formula to factor this as

y2 = x

(
x− b

2
+

1

2

√
b2 − 4c

)(
x− b

2
− 1

2

√
b2 − 4c

)
.

So in fact we can have two additional points of order 2 if b2 − 4c is a perfect square.
So we can take b = 5 and c = 4 as then b2 − 4c = 25− 42 = 16 giving us 3 points of order 2 on

the curve y2 = x(x2 + 5x+ 4). △

Figure 5: The curve y2 = x(x2 + 5x+ 4)

4.2 Points of Order 3

A point P having order 3 may be phrased as 2P = −P , so this means that the x coordinates of
−P and 2P must be the same. For an elliptic curve y2 = x3 + ax2 + bx+ c one can find that the x
coordinate of 2P is given by

F (x) =
x4 − 2bx2 − 8xcx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
. (2)

So a point of order 3 is a fixed point F (x) = x, so

F (x) = x ⇐⇒ x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
= x

⇐⇒ x4 − 2bx2 − 8xcx+ b2 − 4ac = 4x4 + 4ax3 + 4bx2 + 4cx

⇐⇒ 3x4 + 4ax3 + 6bx2 + 12cx+ 4ac− b2︸ ︷︷ ︸
ψ3

= 0.

Silverman notes that ψ3 = 2f(x)f ′′(x)− f ′(x)2 [8, Section 2.1]. So points of order 3 are roots of this
polynomial.

Theorem 4.9. Let E : y2 = f(x) be an elliptic curve. Then O ≠ P ∈ E(Q) has order 3 if and only
if it is a point of infliction.

13
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This result is an exercise in the book of Tate and Silverman [8, Exercise 2.2].

Proof. We first find the second derivative, using the chain rule

d2y

dx2
=

d2
√
y2

dx2
=

d

dx

[
d2
√
y2

dy2
dy2

dx

]
=

d

dx

[
1

2
√
y2
f ′(x)

]
=

[
d

dx

1

2y

]
f ′(x) +

1

2y
f ′′(x).

Note that

d

dx

1

2y
=

d

dy2
1

2y

dy2

dx
= − 1

4y3
f ′(x).

Putting this all together we obtain

d2y

dx2
= − 1

4y3
f ′(x)2 +

1

2y
f ′′(x) =

2y2

4y3
f ′′(x)− 1

4y3
f ′(x)2 =

2f(x)f ′′(x)− f ′(x)2

4yf(x)
=

ψ3(x)

4yf(x)
,

since y2 = f(x). Since a point (x0, y0) of order 3 has ψ3(x0) = 0, it follows that (x0, y0) is an infliction
point if and only if (x0, y0) has order 3.

So finding a point of order 3 reduces to finding the roots of the quartic polynomial ψ3. From the
fundamental theorem of algebra, it then follows that for every elliptic curve there is a point of order
3 in E(C), but we are interested in rational points. We shall prove several lemmas which lead up to
a result about points of order 3.

Lemma 4.10. ψ3 has distinct roots in C.

This is similar to a result in the book by Tate and Silverman [8, Theorem 2.1]

Proof. Recall ψ3(x) = 2f(x)f ′′(x)− f ′(x)2, so via the product rule

ψ′
3 = 2

[
f ′f ′′ + f ′′′f

]
− 2f ′f ′′.

But f is monic of order 3, so f ′′′ = 6, so ψ′
3 = 12f . Since f cannot share any roots with f ′ it follows

that ψ3 and ψ′
3 do not share any roots. In conclusion, ψ3 has distinct complex roots.

Lemma 4.11. ψ3 has precisely 2 real roots.

This is again an exercise in Tate-Silverman [8, Exercise 2.2b].

Proof. We compute f ′′(x) = 6x+ 2a, this has a root x = −a/3. Since f ′(x) = 3x2 + 2ax+ b we find
f ′(−a/3) = −a2/3− 2a2/3 + b = b− a2. So

ψ3(−a/3) = −(b− a2)2 < 0.

But surely the term 3x4 is going to be much larger than the lower order terms, so at some point
0 ̸= x0 > −a/3 it is the case that ψ3(x0) > 0 and ψ3(−x0) > 0. So by the intermediate value theorem
[9, Theorem 4.35] we get the existence of two real roots.

The coefficients of ψ3 are all real, so we cannot have precisely 3 real roots, as then we could find
x4 /∈ R and so

ψ3 =
4∏
i=1

(x− xi) = x
3∏
i=1

(x− xi)− x4

3∏
i=1

(x− xi) /∈ R[x].

So we can only have 2 or 4 real roots.
Suppose we have x1 < x2 < x3 < x4 real roots, where x1 and x4 are the roots we proved exist.

Then at two points between x1 and x4: ψ
′
3 = 12f must change sign. It follows f ′′(x2) > −a/3. By the

same argument applied to x3 and x4 we find x3 < −a/3 so x2 > x3 which contradicts our ordering.
Rearranging this argument for all possible orderings of the roots can be done similarly.

14
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Theorem 4.12. Let E : y2 = f(x) be an elliptic curve over Q. If E(Q) contains a point of order 3
then E is isogenous to a curve

y2 = x3 +A2(a′x+ b′)2,

for some constants A, a′, b′ ∈ Q.

Proof. Let P = (a, b) have order 3. Without loss of generality we assume a = 0, else we define the
isogeny (x, y) 7→ (x+ a, f(x+ a)). And moreover we get that P = (0,±

√
c).

Consider the tangent line to P . We know this has form

y =
dy

dx
x±

√
c.

From 4.9 we know

dy

dx
=
f ′(x)

2y
.

So we get the tangent line

y =
f ′(0)

2b
x±

√
c =

c

2b
x±

√
c.

Setting this equal to the equation of the curve we obtain[ c
2b
x+

√
c
]2

= x3 + ax2 + bx+ c.

Substituting x = 0 in equation 2 shows that b2 = 4ac, continuing with this we obtain that either
b = 0, in which case we have E : y2 = x3 + c and otherwise we can solve this final equation to find
constants A,B such that our curve has form E : y2 = x3 + A2(x − B)2. In both cases we have a
curve in the promised form.

4.2.1 Examples of Curves with a Point of Order 3

Example 4.13. When a = 0 and c = 0 we get an elliptic curve y2 = x3 + bx and our ψ3 can be
factored easily, since then the famous quadratic formula can be used to find

3x4 + 6bx2 − b2 = 0 ⇐⇒ x2 = −b± 2/3
√
3b ⇐⇒ x = ±

√
−b± 2/3

√
3b.

So such an elliptic curve never has a rational point of order 3 because this x is never rational unless
b = 0, which yields a singular curve and hence not elliptic. △

Example 4.14. Consider the curve E : y2 = x3 + x2 + 2x+ 1 over Q. This gives polynomial

ψ3 = 3x4 + 4x3 + 12x2 + 12x.

Which has a rational root x = 0. Hence the points (0,±1) are of order 3, and moreover these are the
only points of order 3, giving us E(Q)[3] ≃ Z/3Z.
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Figure 6: Points of order 3 on y2 = x3 + x2 + 2x+ 1.

△

For some more general elliptic curves we can find if a point of order 3 exists as follows.

Corollary 4.15. Suppose the coefficients defining our elliptic curve are integers: a, b, c ∈ Z. Then
any point of order 3 has x-coordinate dividing 4ac− b2.

Proof. From the rational root theorem [1, Section 9.4] any rational root of ψ3 has the form x = p/q
where p, q are coprime integers, moreover theorem 4.7 tells us q = 1 so p|4ac − b2. So it follows
immediately from the rational root theorem.

Example 4.16. For the elliptic curve y2 = x3 + 3x2 + 3x+ 2 we have that any rational x satisfying
this equality has x|15. By trying all divisors of 15 we find ψ3(−1) = 0 and hence we conclude (0,−1)
is a point of order 3. △

Example 4.17. The elliptic curve y2 = x3 − 9x + 9 has b2 − 4ac = −81, which has divisors
±1,±3,±9,±81. So by trial and error on

ψ3 = 3x4 − 54x2 + 108x− 81.

wE find that ψ(3) = 0. Hence (3,±3) are the points of order 3. △

Example 4.18. The curve y2 = x3 + 1 is quite interesting. Since it contains both a point of order 2
and a point of order 3, clearly −1 is a root of x3 + 1, which corresponds to a point (−1, 0) of order
2, while 0 is a root of ψ3 so (0,±1) are points of order 3. So we multiply a point of order 2 with a
point of order 3 to give us a point of order 6, namely the point (3, 2) has order 6. △

4.3 Higher Orders

As was seen between points of order 2 and 3, the amount of computations needed to determine a
point of order n quickly increases as n increases. While as we saw it was easy to find a point of order
6 as we could simply add a point of order 2 with one of order 3, it would be much harder to find
points whose order has only one prime factor.

A deeper result regarding points of finite order is Mazur’s theorem.

Theorem 4.19. Let E be an elliptic curve over Q. Then E(Q)tors is isomorphic to Z/nZ for
1 ≤ n ≤ 12 with n ̸= 11 or Z/2Z× Z/2nZ for n ∈ {1, 2, 3, 4}.

Sadly this result is not within our reach to prove, and to anyone interested we refer to [4, Theorem 2].
Another way to phrase this theorem is that the only possible finite orders are the integers 1 through
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12 barring 11. We have already seen points of order 2, 3, and 6, so we shall aim to find representatives
for most of the other possible orders.

For this we need to expand our definition of an elliptic curve a bit, before we have only talked
about curves of the form y2 = f(x). But we can proceed identically with curves of the form
y2 + ay + bxy = f(x), though we have not done so because this would only serve to increase the
amount of computations needed while distracting from the main point, the proof of these curves also
forming an abelian group can be found in [7, Chapter III.3].

An integral result needed in computing the order of points is the reduction modulo p theorem.

Theorem 4.20. Let E : y2 = f(x) be an elliptic curve over Q with integer coefficients, take p a
prime and πp : Z → Fp the canonical projection. Let the curve Ep : ȳ

2 = f̄(x̄) be given by applying
πp to both sides of the equation of E. Then unless p|2D, where D is the discriminant, we have that
the homomorphism φ : E(Q) → Ep(Fp) via

φ :

{
(x, y) 7→ (x̄, ȳ),

OQ 7→ OFp ,

induces an isomorphism
E(Q)tors ≃ Imφ ≤ E(Fp).

The proof of this statement can be found in [8, Section 4.3]. A helpful consequence of this theorem
is that for such φ we have that

#E(Q)tors|#E(Fp).

Now we are equipped to find some examples, luckily we need not search far as Tate and Silverman
readily provide us with a list of examples to work out in [8, Exercise 2.12].

Example 4.21. We consider the curve

E : y2 = x3 + 4x.

It is immediately clear that this curve has a point of order 2, as x = 0 is a root of the polynomial in
x.

We note that the curve has discriminant 2, so we are free to conclude that

#E(Q)tors|#E3(F3).

It is easily found that the latter number is 4. So the only remaining possibilities are 2 and 4. We
suspect that the order might be 4, and using a bit of trial and error and remembering points of finite
order have integer coefficients, we do indeed get that (2, 4) has order 4, which immediately tells us
that

E(Q)tors ≃ Z/4Z.

△

Example 4.22. Now we look at
E : y2 − y = x3 − x2.

We reduce modulo 3 and immediately find that #E(Q)tors|5. Using some trial and error we find the
point P = (0, 1) on our curve. And

P = (0, 1),

2P = (1, 0),

4P = (0, 0).

17
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And then it is clear that 5P = O so indeed we found a point of order 5, and as a group of prime
order we have

E(Q)tors ≃ Z/5Z.

△

We have already seen a point of order 6 hence we shall skip this order.

Example 4.23. Now we consider the curve

y2 = x3 − 43x+ 166.

Which has discriminant 219 · 13. So we can safely look at the reduction modulo 5. It is easily found
that #E5(F5) = 7, so the only possible orders of our torsion group are 1 and 7. Using a bit of trial
and error we see that (3, 8) ∈ E(Q). By taking some inspiration from the methods of [8, Chapter
4.3].

1P = (3, 8),

2P = (−5,−16),

4P = (11, 32),

8P = (3, 8).

So 8P = P hence indeed P has order 7 and consequently

E(Q)tors ≃ Z/7Z.

△

18
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5 Mordell’s Theorem

Our main endeavour will be to prove a subcase of the following statement.

Theorem 5.1. For any elliptic curve over the rationals E : y2 = f(x), the group E(Q) is finitely
generated.

This requires results which are beyond the scope of this thesis [7, Section VIII] . We shall prove the
weaker version.

Theorem 5.2. Let E : y2 = f(x) be an elliptic curve over Q. If E(Q) contains a point of order 3,
then E(Q) is finitely generated.

As we discussed in the introduction, our method shall be to that of 3-descent, which is explained in
chapter 5.1.

By use of the structure theorem for finitely generated abelian groups [3, Theorem 8.5] we see
that this theorem says that for any elliptic curve E with a point of order 3 over the rationals there
is some r ∈ Z≥0 such that

E(Q) ≃ Zr ⊕ E(Q)tors.

Which is a fact we shall later use to find bounds on the rank for some curves.

5.1 The 3-descent Theorem

Our main tool for proving Mordell’s Theorem for such curves is the 3-descent theorem, which is as
follows.

Theorem 5.3. Let A be an Abelian group. Suppose there exists a function h : A→ R such that for
all P ∈ A the following holds.

1. Let Q ∈ A there is C1(A,Q) ∈ R such that

h(P +Q) ≤ 2h(P ) + C1(A,Q). (3)

2. There is C2(A) such that
h(3P ) ≥ 9h(P )− C2(A). (4)

3. For every constant C3 the set
{Q ∈ A : h(Q) ≤ C3} (5)

is finite.

4. The quotient group
A/3A (6)

is finite.

Then A is finitely generated.

We call such a function a height function. This theorem is the case m = 3 of the general descent
theorem [7, Theorem 3.1]. After we have this tool, proving theorem 5.2 reduces to proving each of
the conditions. The proof of this mirrors the one given by Silverman for the general descent theorem.
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Proof. Since we assume A/3A is finite, take representatives Q1, . . . , Qn ∈ A as representatives of the
conjugacy classes. In addition, take arbitrary P ∈ A. Our goal will be to show P − h(Q) where Q is
some linear combination of the Q1, . . . , Qn is arbitrarily small, allowing us to conclude the Q1, . . . , Qn
together with the points with smaller height are a generating set for E(Q).

We write P = 3P1 +Qi1 for some 1 ≤ i1 ≤ r. Repeat this for P1 to obtain a sequence

P = 3P1 +Qi1 ,

P1 = 3P2 +Qi2 ,

...

Pr−1 = 3Pr +Qir .

this gives that for any index j:

h(Pj) ≤
1

32
(h(3Pj) + C2)

=
1

32
(
h(Pj−1 −Qij ) + C2

)
≤ 1

32
(2h(Pj−1 +max {−Q1, . . . ,−Qn}︸ ︷︷ ︸

C′
1

+C2))

Now we apply this inequality repeatedly, and note a geometric series

h(Pr) ≤
(

2

32

)r
h(P ) +

[
1

32
+

2

(32)2
+ · · ·+ 2r−1

(32)r
(C ′

1 + C2)

]
<

(
2

32

)r
h(P ) +

C ′
1 + C2

32 − 2

≤ 1

2r
h(p) +

1

2
(C ′

1 + C2)

so for sufficiently large r

h(Pr) ≤ 1 +
1

2
(C ′

1 + C2).

And because P is a linear combination of Pr and the Qi we have

P = 3rPr +
r∑
j=1

3j−1Qij

so any P ∈ A can be written as a linear combination of

{Q1, . . . Qr} ∪
{
Q ∈ A : h(Q) ≤ 1 + 1/2(C ′

1 + C2) :
}

which is assumed to be finite.

5.2 Sketch of the Proof

Now that we have proven the 3-descent theorem we can prove our desired result by finding a function
such that each of the conditions in the descent theorem hold. As we shall shortly see, this function is
not particularly difficult to define and the first 3 of the conditions are fairly straightforward to prove
for elliptic curves over Q in general, see [7, Lemma 4.1]. Where we run into trouble is in the final
condition which does not depend on the height function, the so called Weak Mordell Weil Theorem.
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Lemma 5.4. Let E be an elliptic curve over Q which has a point of order 3. Then E(Q)/3E(Q) is
finite.

This will be the condition for which we will use our assumption that there is a point of order 3 on
our curve, since otherwise we will require non-elementary results from cohomology which are beyond
the scope of this thesis.

Nevertheless, this proof will require some more skill than the other parts of the 3-descent theorem.
We shall have to touch upon some tools relating to algebraic number theory, but no knowledge of
this field is assumed and knowledge of the basics of field theory will be sufficient to follow this proof.

As a final note on the remainder of this thesis, we shall prove properties 1, 2, and 3 of the descent
theorem are true in Sections 6.1, 6.2, and 6.3 respectively. Property 4 will be shown in section 7.
Finally, we shall use the methods from these chapters to discuss some bounds on the ranks of some
curves in Section 8
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6 Finding a Height Function

This chapter will be about finding a height function suitable for E(Q), and then proving the first 3
properties in theorem 5.3 hold for elliptic curves over Q.

We will first discuss a few examples so as to motivate an intuition behind a height function.

Example 6.1. In the case that A = Q we can define a function hQ : Q → R

hQ : p/q 7→ max {|p|, |q|} . (7)

And while it is known Q is not finitely generated as a group, we can still prove one of the properties
from the 3-descent theorem holds. Namely, we know that for fixed m ∈ R there are only finitely
many rational numbers with height bounded by m. If h(p/q) ≤ m then both p, q ≤ m, for which
there are only finitely many possibilities. △
Definition 6.2. (heights on elliptic curves) If E : y2 = f(x) is an elliptic curve over Q, then we
define the height of a point P = (x, y) as h(P ) = lnhQ(x), where hQ is as in equation 7.

The remainder of this section shall be dedicated to proving this notion of height satisfies theorem
5.3.

6.1 Bound on Height

Here we prove the first property of the 3-descent theorem, namely

Lemma 6.3. Let E : y2 = f(x) be an elliptic curve. Then if P ∈ E(Q) then for every Q ∈ E(Q)
there is an integer C1 such that

h(P +Q) ≤ 2h(P ) + C1. (8)

This is found in [8, Section 3.2].

Proof. If Q = O then this is trivial. Suppose Q ̸= O, we prove that for all P except for P ∈
{−Q,Q,O} there is C̃1 such that 8 holds. Then set C1 = max{h(−Q), h(Q), h(O), C̃1}. This allows
us to assume the x coordinates of the points are different.

So write P = (x, y) and Q = (x0, y0). So set P +Q = (ξ, η). From how we defined the group law
on elliptic curve 3.5 we find

ξ =
(y − y0)

2 − (x− x0)
2(x+ x0 + a)

(x− x0)2
.

Where this is the same a as in the definition of an elliptic curve y2 = x3 + ax2 + · · · . Using the
relation of the curve we find there are rational numbers A, . . . , G such that

ξ =
Ay +Bx2 + Cx+D

Ex2 + Fx+G
.

Without loss of generality, these are all integers, else we just multiply with their least common
multiple. So note that when we fix P there is no dependence on the coordinates of Q anymore. So
this shall serve for our constant C1.

Using the substitution x = m/e2, y = n/e3 we simplify

ξ =
Ane+Bm2 + CM2 +De4

Em2 + Fme2 +Ge4
.

So indeed

exphQ(ξ) ≤ max
{
|Ane+Bm2 + Cme2 +De4|, |Em2 + Fme2 +Ge4|

}
.

Applying the triangle inequality tells us

exph(P +Q) = H(ξ) ≤ max {|AK|+ |B|+ |C|+ |D|, |E|+ |F |+ |G|} exph(Q)2

taking the log of both sides yields the desired result.
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6.2 Height of 3P

Now that we have proven the first property, we arrive at the second.

Lemma 6.4. There is a constant C1 such that

h(3P ) ≥ 9h(P )− C1.

The proof of this will consist of proving that this reduces to a special case of a lemma in the book
by Tate and Silverman [8, Lemma 3.6] and then we prove this lemma. Specifically this lemma is

Lemma 6.5. Let ϕ, ψ ∈ Z[x] be coprime polynomials and d = max {deg ϕ, degψ}. Then the following
are true.

1. There is R ∈ N depending only on the choice of ϕ and ψ such that for any m/n ∈ Q

gcd
(
ndϕ(m/n), ndψ(m/n)

)
divides R.

2. There are constants κ1, κ2 depending only on the choice of ϕ and ψ such that whenever m/n ∈ Q
is not a root of ψ we have

dh(m/n)− κ1 ≤ h

(
ϕ(m/n)

ψ(m/n)

)
≤ dh(m/n) + κ2.

Proof. For property a we first note that ndψ(m/n) and ndϕ(m/n) are integers, namely the greatest
possible term is (m/n)d which multiplied with nd is an integer, and the same goes for all other
possible terms. So it does indeed make sense to talk about divisibility.

Without loss of generality we assume d = deg ϕ and e = degψ. For ease of notation let us define

Φ(m,n) := ndϕ(m/n), Ψ(m,n) := ndψ(m/n).

So that we only want to find gcd(Φ(m,n),Ψ(m,n)). Since we assumed ψ, ϕ are coprime we can find
F,G ∈ Q[x] such that

Fϕ+Gψ = 1.

Moreover we can multiply both sides with the greatest common divisor of all denominators of the
coefficients of F and G, which we shall denote as A, to obtain AF,AG ∈ Z[x], this gives us A and
D = gcd(F,G) which is independent of m and n. In particular

AnD+d
(
F
(m
n

)
ϕ
(m
n

)
+Gψ

(m
n

))
= AnD+d,

⇒ nDAF
(m
n

)
ndϕ

(m
n

)
+ nDAG

(m
n

)
ndψ

(m
n

)
= AnD+d,

⇒ nDAF
(m
n

)
Φ(m,n) + nDG

(m
n

)
Ψ(m,n) = AnD+d.

So then the function γ(m,n) := gcd(Φ,Ψ)(m,n) must divide AnD+d.
Since γ|Φ certainly it divides

AnD+d−1Φ(m,n)Aa0m
dnD+d−1 +Aa1m

d−1nD+d + · · ·+Aadn
D+2d−1.

where the ai are the coefficients of Φ. So γ must divide

gcd
(
AnD+d, Aa0m

dnD+d−1
)
.
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By assumption of m/n being a reduced fraction, m and n are coprime, therefore γ|Aa0nD+d−1.
Repeat these steps for Aa0n

D+d−2Φ(m,n) we eventually obtain γ|AaD+d
0 which finished the proof of

the first part of the lemma.

Now for the second part. We start with the lower bound, namely

dh(m/n)− κ1 ≤ h

(
ϕ(m/n)

ψ(m/n)

)
,

for some κ1 depending only on the choice of polynomials and m/n is not a root of ψ. As in lemma
6.3 we can ignore a finite set of points and simply take a maximum. Namely let m/n not be a root
of either polynomial. Note that if m/n ̸= 0 then h(m/n) = h(n/m), so without loss of generality
d = deg ϕ and e = degψ. For ease of notation set

ξ :=
ϕ(m/n)

ψ(m/n)
=
ndϕ(m/n)

ndψ(m/n)
=

Φ(m,n)

Ψ(m,n)
.

Where Φ,Ψ are as before. Note that

h(ξ) = max {|Φ(m,n)|, |Ψ(m,n)|} ,

unless these polynomials have a common factor. Using part a we find that gcd(Φ(m,n),Ψ(m,n))
divides the integer R ≥ 1 we showed existed. Hence using the well known fact that a maximum is at
least the average of its terms

h(ξ) ≥ 1

R
max {|Φ(m,n)| , |Ψ(m,n)|} ≥ nd

2R
(|ϕ(m/n)|+ |ψ(m/n)|) .

So in fact

h(ξ)

h(m/n)d
≥ 1

2R

1

max {|m|d, |n|d}
(|ϕ(m/n)|+ |ψ(m/n)|) ,

=
1

2R

1

max {|m/n|d, 1}
(|ϕ(m/n)|+ |ψ(m/n)|) .

Set

p(t) :=
|ϕ(t)|+ |ψ(t)|
max {|t|d, 1}

.

Which approaches a non-zero limit as |t| → ∞. Using elementary calculus we find that if degψ < d
then p(t) → |a0| and if degψ = d then |a0|+ |b0|, where a0 and b0 are the final coefficients of ϕ and
ψ respectively.

So except for some closed interval I around the points we excluded, p is bounded away from 0.
Inside this closed interval we note that it must assume a maximum and minimum value [9, Corollary
13.19]. As it is a bounded continuous function of a compact interval.

So we conclude the existence of some constant C1 > 0 with p ≥ C1 for all t ∈ R. So

h(ξ) ≥ C1

2R
h(m/n)d

so taking

κ1 = log

(
2R

C1

)
suffices. The proof of the upper bound is nearly identical to lemma 6.3
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Now it remains to be shown this indeed implies lemma 6.4, this is shown in a more general case in
[10, Appendix b].

Proof of Lemma 6.4. Take some P ̸= O on the curve. We can write this in coordinates as nP =
(xn, yn). We claim that

x3 =
ϕ(x1)

ψ(x1)

for some polynomials in Z[x] with gcd {deg ϕ, degψ} = 9. Then the statement of lemma 6.4 follows
immediately by part b of lemma 6.5.

Remember from subsection 4.2 that writing the curve as y2 = f(x) there is a polynomial

ψ3 =
df

dx
+ f

d2f

dx2

for a curve containing a point of order 3. It can be easily shown using the addition formulas we
derived in section 4 that gcd(ϕ, ψ) = 9 and

ϕ = 8f
df

dx
ψ3 + 64f3 + x1ψ

2
3,

ψ = ψ2
3

the full derivation can be found in [10, Appendix b]. This immediately shows our lemma in the case
that ψ and ϕ are coprime. In the remaining case we have f ′(x1)

2 = 2f(x1)f
′′(x1) which means

f ′(x1)
2 = 2f(x1)f

′′(x1) = 0

which contradicts f being a nonsingular polynomial hence this case is not possible.

6.3 Points of Bounded Height

Now for the 3rd property.

Lemma 6.6. For every constant C3 the set

{Q ∈ A : h(Q) ≤ C3}

is finite.

Note that this exact same reasoning also works over Q.

Proof. Recall

h(p/q, y) = lnmax {|p|, |q|}

so for any C1 there are only finitely many options for p and q.

The final property is significantly harder to prove and we will dedicate an entire chapter to it.
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7 The Quotient Group is Finite

Throughout this section it shall be well understood that we are talking about an elliptic curve
E : y2 = f(x) over Q such that E(Q) has a point of order 3. We shall moreover be using shorthand

Γ := E(Q), Γ̄ := Ē(Q).

This section shall be dedicated to proving the final part of theorem 5.3, that is

Theorem 7.1. The index [Γ : 3Γ] is finite.

Recall that we can find maps such that the diagram

E(Q) Ē(Q) 3E(Q)

[
3
]

Ψ Φ

commutes, so that

[Γ : 3Γ] = [Γ : Φ ◦Ψ(Γ)] = [Γ : Φ(Γ̄)][Φ(Γ̄) : Ψ ◦ Φ(Γ)].

Set Ψ(Γ) = H so that 3Γ = Φ(H). From the isomorphism theorems it follows

Φ(Γ̄)

Φ(H)
≃ Γ̄

H + kerΦ
≃ Γ̄/H

(H + kerΦ)/H
≃ Γ̄/H

kerΦ/(kerΦ ∩H)
.

Thus the index is given as

[Φ(Γ̄) : Φ(H)] =
[Γ̄ : H]

[kerΦ : (kerΦ ∩H)]
.

So in conclusion there is some integer N ∈ Q≥0 such that

[Γ : 3Γ] = N [Γ : Φ(Γ̄)][Γ̄ : Ψ(Γ)].

So showing these two indices are finite is sufficient.
This will be achieved by describing two homomorphisms α : Γ → Q×/Q×3 and ᾱ : Γ̄ →

Q(
√
−3)×/Q(

√
−3)×3 such that ker ᾱ = Ψ(Γ) and kerα = Φ(Γ̄), in other words

[Γ : 3Γ] ≤ (# Imα)(# Im ᾱ).

So it is sufficient to show each of these images is finite. In this chapter we shall be justifying we can
indeed define these maps and showing that they have finite image.

7.1 The Rationals Modulo the 3rd Powers

A group which we will need to discuss is Q×/Q×3. We can write a typical element x ∈ Q× as

x = ±
∞∏
i=1

pdii

where pi is the ithe prime, di ∈ Z and only finitely many di are nonzero.
Consider the ith generator

ei := (0̄, . . . , 0̄, 1̄, 0̄, 0̄, . . . ) ∈
∞⊕
i=1

Z/3Z.
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Set ι : Q×3 ↪→ Q× to be the inclusion. We find the following sequence is exact.

±
∏∞
i=1 p

di
i

∑
i diei

0 Q×3 Q× ⊕
primes(Z/3Z) 0.

f

ι f

So from the first isomorphism theorem it follows

Q×/Q×3 ≃
⊕

primes

Z/3Z.

So without loss of generality, we can assume x is an integer times a coset, otherwise we just add 3
to the multiplicity of p−d until we have a positive multiplicity. Moreover, since −1 is a cube we can
assume x can be represented as a positive integer.

7.2 Mapping into the Rationals Modulo the Cubes

We define an elliptic curve

E : y2 = x3 + a2(x− b)2.

moreover define a map α : E(Q) → Q×/Q×3 by

α(P ) =


Q×3 if P = O,
(2ab)−1Q×3 if P = (0, ab),

(y + a(x− b))Q×3 otherwise.

We shall prove this map is a group homomorphism. This map shall be important because we will
prove that the image of α is finite.

7.2.1 Proof of Homomorphism Property

We will now show that α is a homomorphism. We shall require two more lemmas.

Lemma 7.2. α(−P ) = α(P )−1.

Proof. This is obvious if P = O and if P = (0,±ab). So take P = (x, y) with x ̸= 0, then

α(x, y)α(x,−y) = (y + a(x− b))Q×3(−y + a(x− b))Q,×3

= (−y2 + a2(x− b)2)Q×3,

= (−x3 − a2(x− b)2 + a2(x− b2))Q×3,

= Q×3,

which completes the proof.

The second lemma is as follows.

Lemma 7.3. Take Pi ∈ Γ, if P1 + P2 + P3 = O then α(P1)α(P2)α(P3) = Q×3.

The proof is a simpler case of [10, lemma 5].
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Proof. If we have a O among the Pi then this is trivial. The case that one of the Pi equals (0, ab)
is somewhat simpler than the remaining, general case which we now consider. If P1 + P2 + P3 = O
then the Pi are on a line. Call this y = λx+ η for some λ, η ∈ Q, this yields

(λx+ η)2 = x3 + a2(x− b)2,

so that
x3 + (a2 − λ2)x2 − (2a2b− 2λη)x+ (a2b2 − η2) = 0.

Write Pi = (xi, yi), then the equation above has the xi as roots so

x3 + (a2 − λ2)x2 − (2a2b− 2λη)x+ (a2b2 − η2) = 0 =
3∏
i=1

(x− xi).

Comparing coefficients shows 
x2x3 + x1x2 + x1x3 = −2(a2b+ λη),

x1 + x2 + x3 = λ2 − a2,

x1x2x3 = η2 − a2b2.

(9)

And since yi = λxi + η, we get

α(P1)α(P2)α(P3) =

3∏
i=1

((λxi + η) + a2(xi − b))Q×3.

Since this is going to be a very long equation, we will split it up into the part that has factors a4 and
the part that has not. Starting with the former

(λx2 + η)(λx3 + η)(x1 − b) + (λx1 + η)(λx2 + η)(x3 − b)

+(λx1 + η)(λx3)(x2 − b) + a2(x1 − b)(x2 − b)(x3 − b).

By help of a computer, we rewrite this as

3λ2x1x2x3 + 2λη(x1x3 + x2x3 + x1x2) + η2(x1 + x2 + x3)− λ2b(x1x3 + x2x3 + x1x2)

−2ληb(x1 + x2 + x3)− 3bη3 + a2(x1x2x3 − b(x1x3 + x2x3 + x1x2) + b2(x1 + x2 + x3)− b3).

Substitute our system of equations we find this simplifies to be −3bη2 − a2b3.
For the other part, we obtain similarly

λ3x1x2x3 + λ2η(x1x2 + x2x3 + x1x3) + λη2(x1 + x2 + x3) + η3 + 3a2x1x2x3

+a2(η − 2λb)(x1x2 + x2x3 + x1x3) + a2(λb2 − 2bη)(x1 + x2 + x3) + 3ηb2.

Substituting our system of equations this simplifies to η3 + 3ηa2b2

Adding these parts together yields a perfect cube.

Lemma 7.4. α is a homomorphism.

Proof. Using the previous 2 lemmas we find that when P1 + P2 + P3 = O we have P1 + P2 = −P3,
hence

α(P1 + P2) = α(−P3) = α(P3)
−1.

But on the other hand

α(P1)α(P2) = (α(P1)α(P2)α(P3))α(P3)
−1 = α(P3)

−1.

So α(P1 + P2) = α(P1)α(P2)
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7.2.2 Proof of Finite Image

Now that we can be sure α is a homomorphism we will set out to prove our desired result.

Lemma 7.5. α(E(Q)) is finite.

For this we shall require a number of lemmas, the first of which is.

Lemma 7.6. A point (x, y) on an elliptic curve E : y2 = x3+a2(x−b)2 can be written as (m/e2, n/e3)
for some m,n, e ∈ Z with e coprime to m and n.

Proof. We take an arbitrary rational point (p/q, y) on E with p, q coprime integers and y ∈ Q. Then
we should have

y2 =
p3

q3
+ a2

(
p

q
− b

)2

,

⇒ y2 =
p3

q3
+ a2

(
p2

q2
− 2b

p

q
+ b2

)
,

⇒ y2 =
p3

q3
+ a2

p2 − 2bpq + b2q2

q2
,

⇒ y2 =
p3 + a2(p2q − 2bpq + bq3)

q3
.

This tells us that q3 is a square and that the denominator of y2 is a cube, and q3 must equal the
denominator of y2, so the two are equal, allowing us to find the desired integers e,m, n.

Now we can further expand on this observation, similarly to [10, Section 4.1]. Considering
(m/e2, n/e3) ∈ E as above, one obtains

n2 = m3 + a2m2e2 − 2a2mbe4 + a2b2e6, (10)

and therefore
m3 = (n+ ame− abe3)(n− ame+ abe3). (11)

So if m ̸= 0 then a small calculation shows that our image under α is given as

α(m/e2, n/e2) = (n+ ame− abe3)Q×3.

Note that if n+ ame− abe3 and n− ame+ abe3 are coprime then (11) shows that both are perfect
cubes and therefore (m/e2, n/e3) is contained in kerα.

Now assume n±(ame−abe3) do have prime factors in common. Write this as n+ame−abe3 = dp
where p is coprime to n − ame+ abe3 and d = gcd(n+ ame − abe3, n − ame+ abe3). Now we can
follow [10, Section 4.1] to prove a stronger condition from which α having finite image is an easy
corollary.

Lemma 7.7. There is a finite set of primes depending only on a and b such that for any point
(m/e2, n/e3) with m ̸= 0 on the curve, d = gcd(n+ ame− abe3, n− ame+ abe3) has prime factors
only from this set.

Proof. By a standard application of the euclidean algorithm we find

d = gcd(n+ ame− abe3, n− (ame− abe3)),

= gcd(n+ ame− abe3,−2ame+ 2abe3),

= gcd(n+ ae(m− be2),−2ae(m− be2)).
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Recall that gcd(n, e) = 1. Since we only wish to show finitely many prime factors exist we can ignore
−2a and simply add these factors to our finite set, so we take

d′ := gcd(n+ ae(m− be2),m− be2),

and show it has a finite number of prime factors. Note that we can continue to apply the Euclidean
Algorithm to arrive at d′ = gcd(n,m− be2). So we can find s, t ∈ Z such that

d′ = p1 . . . pi,

n = p1 . . . pis,

m− be2 = p1 . . . pit.

So from equation (10) we obtain that

p21 . . . p
2
i s

2 = m3 + a2m2e2 − a2bme4 − a2be4p1 . . . pit,

⇒ p1 . . . pi(p1 . . . pis
2 + a2be4t) = m3 + a2me2(m− be2),

⇒ p1 . . . pi(p1 . . . pis
2 + a2be4t− a2me2t) = m3.

In other words d′|m3 hence each of the pk divides m. Looking again at equation (10) we find that

n2 −m3 − a2m2e2 + 2a2bme4 = a2b2e6.

So since any pk divides both m and n it must divide e or ab. Recalling the definition of e we conclude
that the former isn’t possible, so the only prime factors are those in the set

{prime p : p|ab} .

Adding back the factors of d we ignored before we can take our finite set to be

{prime p : p|2ab} .

Note that this set depends only on the curve and not on which point we picked on the curve. We
deduce Lemma 7.5 from it as follows. Suppose P = (m/e2, n/e3) ∈ E(Q) with m ̸= 0. If a prime p
divides n + ame − abe3 and p ∤ 2ab, then the previous argument shows p ∤ n − ame + abe3, hence
the multiplicity of p in n + ame − abe3 is a multiple of 3. So p does not contribute to α(P ). As a
consequence, only primes dividing 2ab can contribute to α(Γ). This shows lemma 7.5.

7.3 Our Second Homomorphism

Now that we are done with α, we shall need to do something similar for our associated curve Ē. Note
that we cannot in general map into Q×, since we get a term ā = −27a so we cannot just map to

√
ā

since this is not necessarily a rational number. This however can be fixed by working in Q(
√
−3),

which as we shall see is fairly nicely behaved.

7.3.1 The Eisenstein Integers

We would like to talk about the decomposition in irreducibles of elements of Z[
√
−3], as then we can

mirror what we did for Q earlier. However, Z[
√
−3] turns out to not have unique factorisation, since

4 = 22 = (1−
√
−3)(1 +

√
−3).
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However, we can look at a slightly different ring and still proceed as we wanted. We begin by noting

that Q(
√
−3) is the field of fractions of Z

[
−1+

√
−3

2

]
= Z

[
e2iπ/3

]
, which are known as the Eisenstein

Integers. In this section we shall show that all the algebra we used to prove that α has a finite image
is also valid to show ᾱ has a finite image. For this we shall need to go into some of the properties of
the Eisenstein Integers.

Lemma 7.8. The ring Z
[
−1+

√
−3

2

]
is a Euclidean Domain.

Proof. For ease of notation set ξ to be a 3rd root of unity. So that it satisfies the 3rd cyclotomic
polynomial

ξ2 − ξ + 1 = 0.

Then it follows
ξξ̄ = 1, and ξ + ξ̄ = 1.

We take the norm
g : a+ bξ 7→ a2 + b2 + ab,

so g(x) = xx̄ = |x|2. Given nonzero β, ψ ∈ Z[ξ] we wish to find δ, ϱ ∈ Z[ξ] with β = δγ + ϱ and
g(ϱ) < g(γ).

We look at a more general field. Namely we take

β/γ ∈ Q(ξ) = Q+Qξ.

So that
β/γ = r + sξ, r, s ∈ Q.

Then we can find n,m ∈ Z such that

|r − n| ≤ 1/2, |s−m| ≤ 1/2.

And then we set δ = n+mξ, since

g(β/γ − δ) = g(r − n+ (s−m)ξ),

= (r − n+ (s−m)ξ)(r − n+ (s−m)ξ̄),

= (r − n)2 + (s− n)(s−m) (ξ̄ + ξ)

1

+(s−m)2 ξξ̄

1

.

So this can be bounded from above by 3/4. Lastly we set ϱ := β − γδ so that

g(ϱ) = g(γ(β/γ − δ)) = |γ|2|β/γ − δ|2 ≤ 3/4g(γ).

Completing the proof.

Since being a Euclidean domain implies being a unique factorisation domain, we can approach finding
the image of ᾱ the same way as we found the image of α, except now we talk about ideals. Note
however that Z[ξ] contains nontrivial units namely the 6 points on the unit circle. So the argument
we will give in this case will be more intricate than the one we gave for Q×/Q×3.

Lemma 7.9. The group of units in the Eisenstein integers is

Z[ξ]× =
{
±eikπ/3 : k ∈ {0, 1, 2}

}
.
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Proof. Take two elements x+yξ and z+wξ in Z[ξ] and suppose (x+yξ)−1 = z+wξ, then we should
have that the norm function g has

g(x+ yξ)g(z + wξ) = g((x+ yξ)(z + w)ξ) = 1.

We defined the norm as an integer so either both norms are 1 or both are -1. However this norm is
the square of the euclidean norm, which is non-negative, hence both must be 1.

This means x+ yξ and z + wξ must lie on the unit circle, so the only possibilities are the points

{±1,±ξ,±ξ2}.

This leaves the question what the irreducible elements are.

Lemma 7.10. The irreducible elements in Z[ξ] are

1. A product of a unit and a prime congruent to 2 mod 3,

2. the elements of norm n where n is a prime which is either 3 or congruent to 1 mod 3.

Proof. First note that the norm of an irreducible element must be a prime, unless the element itself
is a prime times an element on the unit circle. Otherwise we find there are (non-unit) integers x, y

g(a) = xy = g(x)g(y),

so g(a) = g(xy). So there is some unit ω such that a = xyω. So we can get away with only looking
at the primes in Z.

Fix p ∈ Z a prime and suppose p is irreducible. Then

Z[ξ]/pZ[ξ] = Z[X]/(p, x2 − x+ 1) = Fp[X]/(x2 − x+ 1).

This p is irreducible, which means the right hand expression is a field. Which shows that 2 is
irreducible, but 3 is not since 3 = −1 ·

√
−3 ·

√
−3. For p > 3 we have that any zero n of x2 − x+ 1

satisfies n6 = 1, n3 = −1 and n2 ̸= 1. This means it must be of order 6. Moreover using the
factorisation

x6 − 1 = (x2 − 1)(x2 + x+ 1)(x2 − x+ 1),

shows any element of order 6 is such a zero. So 6|(p− 1). So for p ≡ 5 mod 6 there is no problem
and these elements are irreducible. While for p ≡ 1 mod 6 we have that x2 − x+ 1 factorises into
two irreducible linear factors.

So p is not irreducible, that means p = b · c, where we are forced to have g(b) = g(c) = p and b, c
are irreducible. Moreover note that b ̸= ωc for a unit ω, since then b mod p would be nilpotent in
Z[ξ]/(p) which is not possible as by the chinese remainder theorem

Fp[x]/(x2 − x+ 1) ≃ F2
p.

And following by the irreducibility we have found all such elements. As for any irreducible d we have
that dZ[ξ] is prime, but this contains the ideal dZ thus d|p in Z[ξ].
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7.3.2 Finite Image of the Second Map

So take an elliptic curve E : y2 = x3 + a2(x+ b)2 over Q, and take Ē to be the corresponding curve
obtained using example 3.11. Recalling what Ē was defined as, we can move constants inside the
curve to obtain

Ē : y2 = x3 − 3(9ax+ 9a(4a+ 27)b)2.

So if we set ā = 9a and b̄ = 9a(4a2 + 27b) then we can write the associated curve as

Ē : x3 − 3(āx+ b̄)2.

so we take some points y = n/e3, x = m/e2 and compute( n
e3

)2
=

(m
e2

)3
− 3

(
ā
m

e2
− b̄

)2
,

⇒ n2 = m3 − 3
(
āme− b̄e3

)2
,

⇒ m3 = n2 − (−3)
(
āme− b̄e3

)2
,

⇒ m3 =
(
n+ e(ām− b̄e2)

√
−3

) (
n− e(ām− b̄e2)

√
−3

)
.

So we can connect any point on a curve to an ideal

I =
(
n+ e(ām− b̄e2)

√
−3

)
.

Note that this ideal can be factored into prime ideals, so we can proceed similarly to how we proved
the image of α could only contain finitely many prime factors.

This leads us to defining ᾱ as we did α but into cosets zQ(
√
−3)×3 rather than zQ×3

The proof of ᾱ being a homomorphism is similar to that of α being a homomorphism, and it can
be found in [10, Section 3.2].

Lemma 7.11. For a given curve having a point of order 3, there is a finite set of irreducible elements
such that all prime ideals in a factorisation of(

n+ e(ām− b̄e2)
√
−3

)
are contained in this set for all values of n, e,m that can occur.

Proof. Since we have found that Q(
√
−3) is the field of fractions of a Euclidean domain, we can

proceed similarly as when we were working over Q. Namely, we will show that the image can only
contain a finite number of irreducible elements.

Since in a Euclidean domain we are able to use the same language as in Z, we can use the exact
same reasoning as in lemma 7.7 to conclude the set

{
p : p irreducible, p|2āb̄

}
suffices.

7.4 Putting Everything Together

So now we have all the ingredients to prove that [Γ : 3Γ] is finite. The last thing we shall be needing
is the following lemma.

Lemma 7.12. The sequences

Γ̃ Γ Q×/Q×3

Γ Γ̃ Q(
√
−3)×/Q(

√
−3)×3

Φ α

Ψ ᾱ

are exact.
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Proof. We give the proof for ᾱ and then the proof for α will be similar. And element is in the kernel
of ᾱ precisely if it is O or y + a

√
−3(x− b) is a cube. We recall that Φ ◦Ψ = [3] so all the points in

ImΦ are automatically in ker ᾱ.
Take some P = (x, y) ∈ Γ with (ξ, η) = Ψ(P ) is a point in Ψ(Γ). Since the case that x = 0 can

be settled with a straightforward calculation, we consider the remaining situation and take

δ = −3y/x, ε = 1− 3b/x,

then it is clear that
ᾱ(ξ, η) = (δ + ε

√
−3)3 = Q(

√
−3)×3.

Which is indeed in ker ᾱ.
The proof of the other inclusion can be found in [10, lemma 7].

So now we have properly justified everything we need to prove the index being finite.

Theorem 7.13. Let Γ = E(Q) be the group of points on an elliptic curve over Q which has a point
of order 3. Then

[Γ : 3Γ]

is finite.

Proof. As we justified at the start of this chapter and in the preceding lemma we can find some
N ≥ 0 so that

[Γ : 3Γ] = N(# Imα)(# Im ᾱ)

where α is defined in section 7.2 and ᾱ in 7.3.2. We showed in lemmas 7.5 and 7.11 that these images
are finite.

This moreover concludes the proof of our subcase of Mordell’s theorem, since we showed in section
6 that the first 3 conditions of the 3-descent theorem are satisfied for Elliptic Curves, and in the
preceding theorem we showed condition 4.
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8 Explicit Computation of the Mordell-Weil group

Now that we know the Mordell-Weil group of certain elliptic curves is finitely generated we can
expand on the methods we used to find bounds for the rank of such an elliptic curve. Namely, reuse
the terminology from the previous chapter, where we found

[Γ : 3Γ] =
(# Imα)(# Im ᾱ)

[kerΦ : (kerΨ ∩ ImΦ)]
.

But on the other hand, we know from the structure theorem that

Γ

3Γ
≃ Zr ⊕ Γtors

3(Zr ⊕ Γtors)

now consider each of the parts of the torsion subgroup

Z/nZ
3(Z/nZ)

which is a nontrivial if and only if 3 divides n, since Z/nZ being a subgroup implies 3 must divide n,
call the number such subgroup p then

Γ

3Γ
≃

(
Z
3Z

)r+p
so then we know

3r+p =
(# Imα)(# Im ᾱ)

[kerΨ : (kerΨ ∩ ImΦ)]

Note that kerΨ corresponds precisely to the points O and (0,±ab). A further analysis shows in our
situation

r = log3
(# Imα)(# Im ᾱ)

3
.

Example 8.1. We take the elliptic curve

E : y2 = x3 + 4(x− 2)2 = x3 + 4x2 − 16x+ 16

over Q. We shall try to find E(Q) explicitly. We will first find E(Q)tors. Recall that the points
of order 2 are the roots of this polynomial. From the rational root theorem we know that any
rational solution p/q satisfies p|16 and q|1, so the possible rational roots are {±1,±2,±4,±16},
straightforward computations show none of these suffice, hence no rational point has order 2.

Similarly, we proved in corollary 4.15 that any rational solution must be an integer p dividing
4 · 4 · 16− 256 = 0. Using the tools we derived, we find that indeed 0 is indeed a root of

ψ3 = 3x4 + 16x3 + 96x2 − 192x

and by the rational root theorem, no other rational roots exist. Hence the points (0,±2) have order
3.

To exclude any other points of finite order we use [8, Theorem 4.4], which states that for any p
other than 2, 5, 7 there are injective homomorphisms

φp : E(Q)tors ↪→ Ẽ(Fp)

where Ẽ is the curve given by applying the canonical projection π : Z → Z/pZ on the coefficients of
E and considering it as a curve over Fp. By taking p = 3 we find

Ẽ : y2 = x3 + x2 + 2̄x+ 1̄

35



Bachelor Thesis Levi Moes

it is then straightforward to confirm

Ẽ(F3) = {O, (0̄, 1̄), (0̄, 2̄)} ≃ Z/3Z

This gives us an isomorphism E(Q)tors ≃ Z/3Z, which excludes the existence of any other points of
finite order. Hence we have that E(Q) ≃ Zr ⊕ Z/3Z for some r ∈ Z≥0.

To now determine r we look at the images in α and ᾱ. First recall from theorem 7.7 that the
only possible prime factors of an element in the image of α are the factors of 2 · 4 · 16, so only 2
is a possible prime factor. So at most Imα =

{
1, 2, 22

}
, which is indeed the case, since the point

P = (0, 4) yields a common divisor d as in theorem 7.7 of 4, then α(2P ) = α(P )2 = 42Q×3 = 2Q×3,
so indeed Imα = {Q×3, 2Q×3, 4Q×3}.

This means that

r = log3
#Im ᾱ

3
.

We find the equation of the associated curve to be

Ẽ : η2 = ξ3 − 108(ξ − 70)2

Using the same methods as before we find that Ẽ(Q)tors = Ẽ(Q)[3], and we have the points

{O, (0, 1), (0,−1)}

so ᾱ becomes
(ξ, η) 7→ η + 6

√
−3(ξ − 70)Q(

√
−3)×3.

We require that r is an integer, hence we should find at least 3 points. And indeed

ᾱ(0, 1) = (1 + 6
√
−3(−69)) = 1− 414

√
−3 = 1− 2 · 32 · 23

√
−3

Now we also need to bound the rank from above. We have found # Imα exactly, so we shall be
bounding # Im ᾱ. Namely, take a point P = (t/n2, s/n3) in Ē(Q). Then

s2

n6
=
t3

n6
− 108

(
t

n2
− 70

)2

⇒ s2 = t3 − 108n2(t− 70n2)2

Thus we get that
P 7→ (s+ 6

√
−3n(t− 70n2))Q(

√
−3)×3

So we get that if P 7→ 0 then s = 0. Therefore, such P correspond to a zero of x3 − 108(x− 70)2.
But this polynomial is irreducible, since we can reduce it modulo 2, 3, 5 and 7 to get that a zero

must be congruent to: 0 mod 3 and 0 mod 2. So a zero is of the form x = 6z. Then we wish to find
a solution for

63z3 − 108(6z − 70)2 = 0 ⇒ z3 − 2(z − 35)2 = 0.

But this final polynomial is Eisenstein for 2, and hence irreducible. So no P 7→ 0Q(
√
−3)×.

Now lets look at which irreducibles can appear in the factorisation of this ideal. Let us look at a
factorisation

s+ 6
√
−3n(t− 70n2) = ωπm1

1 . . . πmk
k

with mi ∈ Z, πi irreducible, and ω a unit. Then consider its conjugate

s− 6
√
−3n(t− 70n2) = ω̄π̄m1

i . . . π̄m1
1 . . . πmk

k ) = N(ω)N(πm1
1 ) . . . N(πmk

k ).

So using unique factorisation in Z we should have that each πi has norm a prime ≡ 1 mod 3, or
equal to 3.
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So, let N(π) = p ≡ 1 mod 3. Then

p|s+ 6
√
−3n(t− 70n2)

so
p|s, p|n(t− 60n2)

since we assumes s and n are coprime we can moreover conclude

p|t− 60n2.

In section 7.3.2 we found that the irreducibles which can appear in this image are in the set

{q|2ab}

in our case we know a and b and we can even drop the 2, thus we should have

p|108 · 70 = 23 · 33 · 5 · 7

where only 7 ≡ 1 mod 3. And we can easily see that 7 = N(1/2± 3/2
√
−3), since the units are up

to -1 (which is a 3rd power) generated by powers of ξ = (1/2 + 1/2
√
−3), so then something in this

image is

s+ 6
√
−3n(t− 70n2) = ξA

(
1

2
+

3

2

√
−3

)B (
1

2
− 3

2

√
−3

)C
where A,B,C ∈ {0, 1, 2}, and moreover if since the norm of the product of irreducibles should be 7,
we find that C is determined by B. This gives us 9 choices in total, so # Im ᾱ ≤ 9 and in conclusion
the rank is at most 2.

△

Example 8.2. Take the curve
E : y2 = x3 + (x− 1)2

over Q. As before the existence of a point of order 2 is quickly excluded by using the rational root
theorem on

x3 + x2 − 2x+ 1

namely, ±1 are not zeroes.
We easily find points of order 3 using our ψ3, namely

3x4 + 4x3 − 12x2 + 12x

has a root 0. Using the same theorem as before, we find that

Ē(F3) ≃ Z/6Z

We find that the point
(−2, 1) 7→ (4̄, 1̄)

which has order 6, and using Mazur’s theorem [8, Theorem 2.7] and Sagemath it is easy to find (−2, 1)
is not a torsion point. This excludes the existence of any other torsion points. Before we found that
the point (−2, 1) has infinite order, and this point gets send to

(−2, 1) 7→ (−2 + (1− 1)) = (−2) =
{
Q×3,−2Q×3, 4Q×3

}
The associated curve is given as

η2 = ξ3 + 27(ξ − 23)2
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and we can find a point of infinite order (69, 621). This gives 3 points in Im ᾱ.
So we have the lower bound

r ≥ log3
3 · 3
3

= 1.

And thus there are infinitely many rational solutions to

y2 = x3 + (x− 1)2.

△
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9 Conclusion

To conclude this thesis we shall discuss possible generalisations of this proof. Namely, are there any
other classes of elliptic curves for which we can use these methods to prove the quotient group is
finite?

As we saw, we only really need to find maps α and ᾱ which map into Euclidean Domains. So
we would only need to have that for an elliptic curve y2 = x3 + a(x− b)2 and the associated curve
y2 = x3 − 27a(x− b̄) the rings Q(

√
a) and Q(

√
−3a) are the fields of fractions of Euclidean Domains.

While as seen in [10] it is possible to prove the quotient group is finite for other curves, these proofs
are far from elementary.

For instance it can be found in [1, Chapter 8] , the Gaussian Integers Z[i] form a Euclidean
Domain, as does Z[(1 +

√
3)/2], so we would expect these methods to work just as well for curves

E : y2 = x3 − a2(x− b)2.

With maps α : E(Q) → Q(i)×/Q(i)×3

α(P ) =


Q(i)×3 if P = O,
(2ab)−1Q(i)×3 if P = (0, |y|),
2abQ(i)×3 if P = (0,−|y|),
(y + ia(x− b))Q(i)×3 else.

And ᾱ : Ē(Q) → Q(
√
3)×/Q(

√
3)×3 by

ᾱ(P ) =


Q(

√
3)×3 if P = O,

(2ab)−1Q(
√
3)×3 if P = (0, |y|),

2abQ(
√
3)×3 if P = (0,−|y|),

(y +
√
3a(x− b))Q(

√
3)×3 else

In fact, from [6, Page 293] we find known integers for which Q(
√
d) has the desired properties, namely

d ∈ {−1,−2,−3,−7,−11, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73} .

Or equivalently, such that either Z[
√
d] or Z[(1+

√
d)/2] is a Euclidean domain. A quick search shows

that the d for which the squarefree part of −3d is also in this set are

d ∈ {−1,−2,−7,−11, 3, 6, 21, 33}

so likely for any d in that set we can prove using that same methods that the curves

y2 = x2 + da2(x− b)2

have finitely generated groups of points. A new feature in these cases would be that one encounters
situations where the group of units of the Euclidean domain is not finite.
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