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Abstract

Financial mathematics is a growing field with a lot of scope. The use of differential
equations, stochastic calculus, and probability theory concepts is rife in this field. To delve
further into this interconnected field of theoretical mathematics and finance, we evaluate a
mathematical model known as the Black-Scholes model. The model is derived using concepts
from stochastic calculus as well as through reasoning of financial markets. The Black-Scholes
model is represented by a partial differential equation and this is numerically analyzed
using the finite difference method. A Feynman-Kac approach to find an exact solution
to the differential equation is derived. The discretizations and Feynman-Kac solutions
are numerically simulated and compared with the results of the numerical simulation of the
analytical solution provided by Fischer Black and Myron Scholes. The comparison is carried
out based on computational time, accuracy of results, and the stability of the methods used.
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1 Introduction

Financial mathematics is a growing field that encapsulates the intersection between theoretical
mathematics and the financial world. Billions of (US) dollars worth of stocks and commodities
are traded daily in the Foreign Exchance (stock) market [1]. Financial derivatives are
financial instruments whose value depends on the price of the underlying asset. Options
are a type of financial derivative which are traded on the stock market daily. Financial
derivatives, and by association, options, represent a more risk-averse venture into the trading
world. The evolution of the price of a stock over a period of time can be modelled by a
geometric Brownian motion. It is interesting to observe that the motions governing the price
movements of the stock market are familiar to mathematicians around the world, even with
a lack of pre-existing knowledge of the market itself. In 1973, a financial mathematical
model was developed. This model aids in evaluating the theoretical fair price of an option
contract. This model is known as the Black-Scholes model [2] and is used till this date to
evaluate theoretical prices of options. In this report, we will consider the standard Black-
Scholes model with respect to European options.

This paper will be structured in the following way. Section 2 is composed of the preliminary
knowledge and concepts required for the reader to successfully follow the remainder of the
paper. Crucial concepts from stochastic calculus are discussed briefly. Section 3 introduces
the reader to the Black-Scholes model and the exact solutions. The derivation of the
model from a stochastic ordinary differential equation is briefly discussed. In section 4,
the numerical discretization schemes of the Black-Scholes equation are derived. In section
5, the numerical analysis of the stochastic differential equation that governs the movements
of the stock price is carried out. In section 6 the results of the simulations run for the
analytical solutions and numerical discretizations are discussed. Finally, we conclude this
report in section 7.
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2 Preliminary Knowledge

In order for this report to be self contained and readable without too much extra reading
required, there are several concepts and terms that must be introduced and described.

2.1 Financial terms

The models and equations used in this paper describe the motions of stocks and option
pricing, which are primarily used in the financial industry. This section serves to provide
readers with a brief overview of the financial concepts and markets that will be used in this
report.

2.1.1 Options

The information presented in this subsection can be found in [3].
Options are essentially contracts that enable the holder of an option to either buy or sell
an underlying asset within a given time frame. Whether the holder is entitled to buy
an underlying asset or to sell it is determined by the type of contract they hold or have
purchased. There are several types of options such as American, Asian, Barrier, European
etc. Each type of option has different pricing theories, expiry times, and other factors [4].
For this paper, the focus will be on analyzing partial differential equations and models that
govern the European options. A European option can only be exercised at the time of
expiry, that is, the holder may only choose to buy or sell their option on the expiry date
that was predetermined.

• Strike price: This is a fixed price at which the owner of an option can either sell or
buy the contract at the time of expiry.

Whether the holder of an option has the right to buy or sell the underlying asset is
determined by the type of options contract they purchase. The two contracts that will
be considered here are:

• Call option: The owner of a call has the right, but not the obligation, to buy the
underlying asset at the strike price.

• Put option: The owner of a put has the right, but not the obligation, to sell the
underlying asset at the strike price.

There are multiple ways to determine the value of an option, each depending on different
factors.

The example below is provided to give readers a brief intuition about the workings of
options and why they might be beneficial in comparison to trading directly on the market.
This example was developed using the help of examples provided in [5].

Call option example : Suppose a stock is currently worth $100 and you have reason
to think that the price of the stock will go up within the next 3 months (this results in a
90 day contract which must be set by the seller of the contract). With a call option, the
buyer pays a premium, w for each share, in order to obtain the right to buy the stock at
the strike price. Suppose the premium agreed upon is $2 per share and the buyer purchases
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100 shares. This means that the buyer pays a total premium of $2 · 100 = $200. The strike
price is $100. In the case of European options, the buyer can only choose to exercise their
options at the time of expiry, which is after a period of 90 days in this case. There are now
two possible scenarios for the buyer at the time of expiry.

1. If the price of the stock has increased, for example, to $120 then the buyer chooses to
exercise their right to buy the option at the strike price. This means that they can
buy the underlying stock at $100 per share that was agreed upon at the beginning of
the contract period. The buyer buys 100 shares of the stock at $100, for a total of
$10000. The buyer can then go on to sell them on the market for $12000. The total
profit earned on this option would be $2000− $200 = $1800.

2. If the price of the stock falls below the strike price, for example, to $80 then the buyer
chooses not to exercise the option. This means that at the date of expiry, they let
the stock expire. If the buyer chose to exercise the option at this stage they would
make a net loss of $2200. By letting the option expire, the buyer has a net loss only
consisting of the total premium paid to purchase the option contracts. Hence the loss
in this case would be $2 · 100 = $200.

Options are frequently used by traders and investors to limit their risk. The buyer could
directly buy 100 shares of a stock at $100 per share. If the price of the stock increases to
$120, and the buyer chooses to sell the shares at this point, then they make a profit of $2000.
If the price of the stock falls down to $80 and the price appears to be on a downward trend,
then they may choose to sell at $80 per share to prevent further losses in the future. This
would result in a total loss of $2000 for the buyer. Comparing this with the net profit and
loss in the case of an options contract, we observe that the profit obtained will be higher
when trading directly without the use of options contracts. However the loss incurred is
significantly higher when trading without the use of options contracts, and more risk-averse
traders may prefer to minimize their losses.

2.2 Mathematical concepts

2.2.1 Classification of partial differential equations

The following information can be found in [6].
A general second order partial differential equation for a function u(t, x) is of the form:

L[u] = a(t, x)utt + b(t, x)utx + c(t, x)uxx + d(t, x)ut + e(t, x)ux + f(t, x)u = g.

Here ux, uxx represent the partial derivative of u with respect to x and the second partial
derivative of u with respect to x respectively. Similar reasoning can be applied for the
remaining terms. It is assumed that atleast one of a(t, x), b(t, x), c(t, x) is not zero. The
type of partial differential equation is determined by the discriminant of the equation, which
is written as:

∆ = b(t, x)2 − 4a(t, x)c(t, x). (1)

At a point (t, x) the second order partial differential equation is called parabolic if ∆(t, x) =
0 but a(t, x)2 + b(t, x)2 + c(t, x)2 ̸= 0.
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2.2.2 Brownian motion

A standard Brownian motion is a stochastic process characterized by a family of random
variables, {Bt|t ∈ [0,∞)}. The Brownian motion must satisfy the following conditions:

• Bt0 = 0.

• Every increment is independent. This means that ∀tu, tv ∈ R, we have that Btu −Btv

is independent of any past values of Btx where tx < tv. For increments to be classified
as independent, we must have that Btu −Btv and Bts −Btr are independent, for any
ts, tr, tu, tv ∈ R with 0 ≤ ts < tr < tu < tv.

• Bt is continuous in time on the interval [0,∞).

• ∀tu > 0, Btu is normally distributed with mean 0 and variance t. [7](p. 640).

Figure 1: Brownian motions of particles

Figure 1 shows the simulated paths of particles following a Brownian motion. On the left
figure, there are two particles being simulated, and on the right figure there are five particles
being simulated. Each color represents a different particle and the path represented by that
color is the motion of the particle. If the simulation is run again, a different graph will be
produced due to the randomness of the particle movements.

2.3 Stochastic Calculus

The movements of the price of a stock can be described using the geometric Brownian
motion, which is a stochastic differential equation [2]. The knowledge of some concepts in
stochastic calculus is required in order to derive an analytical solution for the Black-Scholes
equation.

Definition 1: An n-dimensional Ito process satisfies

dxt = µ(xt, t)dt+ σ(xt, t)dBt,
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where Bt is a Brownian motion. This can also be written as

xt = x0 +

∫ t

0
µ(xs, s)ds+

∫ t

0
σ(xs, s)dBs [8].

Definition 2: A random variable X follows a Brownian motion with drift if it satisfies

dx = a dt+ b dBt.

where Bt is a Brownian motion. [8]

Definition 3: A stochastic process is said to follow a geometric Brownian motion
if it satisfies the following stochastic differential equation:

dst = µstdt+ σstdBt [8]. (2)

Definition 4: Ω is the set of all possible outcomes of an experiment. A set function is a
real-valued function defined on some class of subsets of Ω [7]. A set function Q on a field
F is known as a probability measure if it satisfies the following conditions [7]:

• 0 ≤ P (A) ≤ 1 for A ∈ F .

• P (ϕ) = 0 and P (ϕ) = 1, where ϕ represents the null set.

• If A1, A2, . . . is a disjoint sequence of F-sets and if
⋃∞

k=1Ak ∈ F , then

P

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

P (Ak).

Lemma 1 (Ito’s Lemma): Let xt be an Ito process which satisfies the following stochastic
differential equation (SDE), dst = µ(xt, t)dt + σ(xt, t)dBt. If Bt is a standard Brownian
motion, i.e without any drift, and f(t, x) is a C2 function, then f(t, xt) is also an Ito process
whose differential is given by:

df =

(
∂f

∂t
+

∂f

∂x
µ(xt, t) +

1

2

∂2f

∂x2
σ2(xt, t)

)
dt+ σ(xt, t)

∂f

∂x
dBt [8]. (3)
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3 Black Scholes model

This section primarily uses information that can be found in [2, 8]. The assumptions about
the model, stock price movements, and the analytical solution are all obtained using the
aforementioned papers.
There are several variables that will be used in this section and subsequent sections. The
table below provides an overview of these variables.

Variable Meaning

K Strike price

st Price of stock at time t

p Payoff function

r Interest rate

µ Mean rate of return

σ Volatility of the stock

Table 1: Variables commonly used in the Black-Scholes model.

In financial mathematics, the movement of the price of an underlying asset (stocks, contracts
etc) is governed by the following equation:

dS

S
= µdt+ σdB, (4)

=⇒ dS = µSdt+ σSdB.

where S denotes the price of the stock, µ is the interest rate. σ is the volatility of the stock
price, and B is the Brownian motion which is a stochastic variable.

In the formulation of the model, Black and Scholes made some assumptions about the
conditions of the market that is considered. The assumptions are as follows:

• The interest rate of the market is known and constant through time.

• The stock price follows a random walk in continuous time. The stock price also follows
a lognormal distribution1. The variance of the rate of return on the stock is constant.

• The stock does not pay any dividends.

• The option is of the ”European” type. This means the option can only be exercised
at the time of maturity.

• There are no transaction costs involved in the purchasing and selling of the option.

• Short selling is permitted and does not have penalties 2.

These assumptions ensure that the value of the option only depends on the price of the
underlying asset, in our case this is the stock, and the choice of constants for the known
variables. When we consider an asset with risk free returns, i.e the theoretical rate of return

1For a detailed explanation of the lognormal distribution, please refer to [9]
2For an introduction and in-depth explanation of the mechanics of short selling, please refer to [10]
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of an investment with zero risk, we denote µ as r [8].

The Black-Scholes partial differential equation can be derived from (4). There are various
stochastic and financial methods used in the derivation. We will briefly mention the
structure of the proof without delving into detail. The interested reader can refer to [2, 11, 8]
for a detailed proof. Using Ito’s Lemma, (4) can be written out in a form similar to that of
(3). More precisely,

df =

(
∂f

∂t
+ µst

∂f

∂s
+

1

2
σ2s2t

∂2f

∂s2

)
dt+ σst

∂f

∂s
dBt.

Financial theories such as self-financing portfolios and delta-hedging are used to develop
the dynamics of the options and obtaining a risk-less portfolio. Using these aforementioned
theories the Black-Scholes PDE can be derived.

The Black-Scholes equation can be represented by the following PDE:

∂p

∂t
+ rs

∂p

∂s
+

σ2s2

2

∂2p

∂s2
− rp = 0. (5)

Using knowledge from section 2.2.1, we observe that:

c(t, s) =
σ2s2

2
,

d(t, s) = 1,

e(t, s) = rs,

f(t, s) = −r.

and a(t, s), b(t, s), g are equal to zero. The discriminant of (5) is then equal to:

∆ = 0− 4 · 0 · σ
2s2

2
, and

a2 + b2 + c2 = 0 + 0 +

(
σ2s2

2

)
̸= 0,

when σ and s are not equal to zero. Hence, the Black-Scholes equation for European options
is a parabolic partial differential equation.

3.1 Feynmann-Kac formula

Definition 3: Suppose we have a parabolic partial differential equation of the form:

∂u

∂t
(x, t) + µ(x, t)

∂u

∂x
(x, t) +

1

2
σ2∂

2u

∂x2
− V (x, t)u(x, t) + f(x, t) = 0,

u(x, T ) = ϕ(x, T ),

(6)

which is defined for all x ∈ R and t ∈ [0, T ]. Then the Feynmann-kac formula tells us
that the solution of this equation can be written as:

u(x, t) = EQ
[∫ T

t
e−

∫ r
t V (Xτ ,τ)dτf(Xr, r)dr + e−

∫ T
t V (Xτ ,τ)dτΦ(XT )|Xt = x

]
, (7)
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such that X is an Ito process under the probability measure Q [12].

Looking at (5), one can observe the similarity between that equation and (6). From (6), if
we define x to be s, u to be p, µ(x, t) as rs, σ(x, t) as σ2s2, V (x, t) as r, and f(x, t) as 0,
we obtain (5). It has already been established that the Black-Scholes PDE is a parabolic
equation and hence we can apply the Feynmann-Kac formula. We assume that

p(s, T ) = ϕ(s, T ).

The Feynman-Kac formula then gives us

p(s, t) = e−r(T−t)Es[ϕ(sT )], (8)

where

sT = st +

∫ T

t
rsτ dτ +

∫ T

t
σsτ dWτ .

(8) can be interpreted as follows. The payoff value for a given stock price is computed over
a period of time, with the final time being the time of maturity. The only price that we
consider here is the payoff value at the time of maturity. This process is repeated a sufficient
number of times and then the expectation of these values are taken. In our particular case,
this is considered to be the average of all the values of ϕ(sT ) found. The average found is
multiplied by a discounting factor which is dependent on the interest rate. The final payoff
value we obtain, p(s, t), is the expected profit the owner of an option will have at time t.

3.2 Boundary conditions for the model

The formulation of the boundary conditions can be found in [2, 8].
In the following subsection we will replace p(s, t) with C(s, t) when referring to a call option
and with P (s, t) when referring to a put option.
For an option of the ”call” type, we have the following final condition,

C(s, T ) = max{s−K, 0}, (9)

and the following boundary conditions

C(0, t) = 0,

C(send, t) = send −Ke−r(T−t).
(10)

For an option of the ”put” type, we have the following final condition

P (s, T ) = max{K − s, 0}, (11)

and the following boundary conditions

P (0, t) = Ke−r(T−t),

P (send, t) = 0.
(12)
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3.3 Analytical solution

In the case of European options, it is possible to find the exact solution of (5). This has
been done by Black and Scholes in their original paper. From the previous section, it can
be observed that a call option has different boundary conditions when compared to a put
option. Hence there will be two forms of exact solutions, one with respect to the call option,
and one with respect to the put option.
With regards to a call option, the following are defined:

d1 =
ln
(
S
K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

,

d2 =
ln
(
S
K

)
+
(
r − σ2

2

)
(T − t)

σ
√
T − t

.

(13)

In the following equation N(d) represents the cumulative normal density function. The
cumulative normal density function is as follows:

N(z) =
1√
(2π)

∫ z

−∞
exp

(
−y2

2

)
dy.

Using the equations for d1, d2, the exact solution for the call option is found to be:

C(s, t) = SN(d1)−Ke−r(T−t)N(d2). (14)

With regards to a put option, d1, d2 are defined the same as in (13). Using these, the exact
solution for the put option is found to be:

P (s, t) = −SN(−d1) +Ke−rTN(−d2), (15)

where, N(−d) = 1−N(d).
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4 Numerical methods

The following subsection contains brief explanations about the discretization methods that
will be employed in this paper. Throughout the discretization, it is assumed that the grid
points have equidistant spacing.

4.1 Discretization

An in-depth explanation for the derivation of the finite difference schemes can be found in
[13]. Assume that f is a continuous function on a chosen interval. Using Taylor’s expansion,
we have that

f(xi +∆x) = f(xi) + ∆x
df

dx
(xi) +

∆x2

2

d2f

dx2
(xi) + . . .

⇒ df

dx
(xi) =

f(xi +∆x)− f(xi)

∆x
+O(∆x).

(16)

f(xi −∆x) = f(xi)−∆x
df

dx
(xi) +

∆x2

2

d2f

dx2
(xi) + . . .

⇒ df

dx
(xi) =

f(xi)− f(xi −∆x)

∆x
+O(∆x).

(17)

(16) is known as the forward difference scheme, and (17) is known as the backwards
difference scheme. Subtracting (17) from (16) we get a second order accurate discretization
for the first derivative.

df

dx
(xi) =

f(xi +∆x)− f(xi −∆x)

2∆x
+O(∆x2). (18)

(18) is known as the central difference scheme.

4.2 Backward Euler method

We discretize (5) with respect to the Backward Euler method. This is an implicit method.
Recall that we assume the grid points always have equidistant spacing. First, assume that
we split the x-axis, which represents the price of the underlying asset, into M intervals.
Then ∆S = 1

M , and the xthj point can be found by xj = j∆S. We also assume that the

y-axis, which represents time, is split into N intervals, which are equidistant. Then ∆t = 1
N .

The value of xj at time n is represented as xnj .

Note that Pn
j represents P when analyzed at the jth step on the x-axis and the nth time

step.

Pn+1
j − Pn

j

∆t
= rPn

j − σ2(j∆s)2

2

Pn
j+1 − 2Pn

j + Pn
j−1

∆s2
− r(j∆s)

Pn
j+1 − Pn

j−1

2∆s
.

Rearranging this, we get

Pn+1
j = Pn

j +∆t

[
rPj −

σ2(j∆s)2

2

Pn
j+1 − 2Pn

j + Pn
j−1

∆s2
− r(j∆s)

Pn
j+1 − Pn

j−1

2∆s

]
. (19)
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We further rearrange (19) in order to collect the terms with respect to (j + 1), j, (j − 1).

Pn+1
j = Pn

j+1

(
−σ2(j∆s)2∆t

2∆s2
− r(j∆s)∆t

2∆s

)
+ Pn

j

(
1 + r∆t+

σ2(j∆s)2∆t

2∆s2

)
+Pn

j−1

(
r(j∆s)∆t

2∆s
− σ2(j∆s)2∆t

2∆s2

)
.

(20)

This can be further simplified as follows:

Pn+1
j = Pn

j+1

(
−σ2j2∆t

2
− rj∆t

2

)
+ Pn

j

(
1 + r∆t+

σ2j2∆t

2

)
+Pn

j−1

(
rj∆t

2
− σ2j2∆t

2

) (21)

The discretization found above can be written in matrix notation. Let

aj =

(
−σ2j2∆t

2
− rj∆t

2

)
, (22)

bj =

(
1 + r∆t+

σ2j2∆t

2

)
, (23)

cj =

(
rj∆t

2
− σ2j2∆t

2

)
. (24)

Using the coefficients above and (21), a matrix notation can be developed for the implicit
discretization.

A =



b1 a1
c2 b2 a2

cj bj aj
. . .

. . .
. . .

. . .
. . .

. . .

cM−2 bM−2 aM−2

cM−1 bM−1


, (25)

Pn =


Pn
1

Pn
2
...

Pn
M−2

Pn
M−1

 . (26)

We need to account for boundary conditions of our model. To do this, we define the following
vector:

bn =


c1P

n
0

0
...
0

aM−1P
n
M

 (27)
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Using these notations, the implicit method discretization can now be written as:

APn = Pn+1 − bn for n = N-1, N-2, . . . , 0. (28)

The implicit method is unconditionally stable [14].

4.3 Forward Euler Method

The assumptions made with respect to equidistant grids in the Backwards Euler section
will be made in this section as well. The finite difference schemes for the spatial derivative
remain similar to that of the implicit scheme.
Note that Pn

j represents P when analyzed at the jth step on the x-axis and the nth time
step.

Pn
j − Pn−1

j

∆t
= rPn

j − r(j∆s)
Pn
j+1 − Pn

j−1

2∆s
− σ2(j∆s)2

2

Pn
j+1 − 2Pn

j + Pn
j−1

∆s2
.

Rearranging this, the following is obtained:

Pn−1
j = Pn

j −∆t

(
rPn

j − r(j∆s)
Pn
j+1 − Pn

j−1

2∆s
− σ2(j∆s)2

2

Pn
j+1 − 2Pn

j + Pn
j−1

∆s2

)
.

The above can be further rearranged and simplified, similar to the simplification step used
in (20), to obtain:

Pn−1
j = Pn

j+1

(
rj∆t

2
+

σ2j2∆t

2

)
+ Pn

j

(
1− r∆t− σ2j2∆t

)
+Pn

j−1

(
σ2j2∆t

2
− rj∆t

2

)
.

(29)

Using the method outlined above, if we consider the discretization at time step (n + 1)
instead of n, we get the following:

Pn
j = Pn+1

j+1

(
rj∆t

2
+

σ2j2∆t

2

)
+ Pn+1

j

(
1− r∆t− σ2j2∆t

)
+Pn+1

j−1

(
σ2j2∆t

2
− rj∆t

2

)
.

(30)

Let

αj =

(
rj∆t

2
+

σ2j2∆t

2

)
, (31)

βj =
(
1− r∆t− σ2j2∆t

)
, (32)

γj =

(
σ2j2∆t

2
− rj∆t

2

)
, (33)
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and let Pn be the same as (26). Using the above information, a matrix notation can be
developed for the explicit discretization.

A =



β1 α1

γ2 β2 α2

γj βj αj

. . .
. . .

. . .
. . .

. . .
. . .

γM−2 βM−2 αM−2

γM−1 βM−1


, (34)

bn+1 =


γ1P

n+1
0

0
...
0

αM−1P
n
M

 . (35)

bn accounts for the boundary conditions of the model.
Using these notations, the explicit method discretization can now be written as:

Pn = APn+1 + bn+1 for n = N-1, N-2, . . . , 0. (36)

4.3.1 Stability analysis of the explicit method

For the forward Euler, a stability analysis must be carried out. Observe that linear operator
for the forward euler method is of the form:

Lh(Pj) = (a+ b)Pj+1 − 2bPj + (b− a)Pj−1, (37)

where,

a =
r

2∆s
(j∆s),

b =
σ2

2∆s2
(j∆s)2.

By plugging in, Pj = eijϕ into (37), also known as the Fourier component, the following is
obtained:

Lh(e
ijϕ) = (a+ b)ei(j+1)ϕ − 2beijϕ + (b− a)ei(j−1)ϕ

= (a+ b)eijϕ+iϕ − 2beijϕ + (b− a)eijϕ−iϕ

= eijϕ((a+ b)eiϕ − 2b+ (b− a)e−iϕ).

(38)

To obtain the eigenvalue of the operators, the expression within the brackets must be solved.

((a+ b)eiϕ − 2b+ (b− a)e−iϕ) = aeiϕ + b(eiϕ − 2 + eiϕ)− ae−iϕ

= a(eiϕ − e−iϕ)− 4b · sin2
(
ϕ

2

)
= 2i · a · sin(ϕ)− 4b · sin2

(
ϕ

2

)
.

(39)
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Hence (39) then becomes,

Lh(e
ijϕ) = eijϕ

(
2i · a · sin(ϕ)− 4b · sin2

(
ϕ

2

))
. (40)

This implies that the eigenvalue, λ, of the operator is the final expression obtained in (39).
The forward euler method is defined by

Pn+1
j = Pn

j +∆tf(Pn
j , tn) where

dP

dt
= f(P, t).

Using the eigenvalues for the given f , it is known that for a general wj :

wj+1 = wj +∆tλwj = (1 +∆tλ)wj .

In order for stability to be satisfied, one must have that |1 + ∆tλ| < 1.

|1 + ∆tλ| =
∣∣∣∣1 + ∆t

(
−4b · sin2

(
ϕ

2

)
+ i · 2a · sin(ϕ)

)∣∣∣∣ < 1. (41)

Let,

x = 1− 4b(∆t) · sin2
(
ϕ

2

)
,

y = 2a(∆t) · sin(ϕ).

Substituting these variables into (41), it can be rewritten as:

|x+ iy| < 1. (42)

Recall that for complex numbers,

|x+ iy| =
√

x2 + y2.

x2 =

(
1− 4b(∆t) · sin2

(
ϕ

2

))2

= 1− 8b(∆t)sin2
(
ϕ

2

)
+ 16b2(∆t)2sin4

(
ϕ

2

)
,

y2 = (2a(∆t) · sin(ϕ))2 = 4a2(∆t)2sin2(ϕ).

Substituting the above expansions into (42),

√
x2 + y2 =

[
1− 8b(∆t)sin2

(
ϕ

2

)
+ 16b2(∆t)2sin4

(
ϕ

2

)
+ 4a2(∆t)2sin2(ϕ)

] 1
2

< 1, (43)

√
x2 + y2 < 1 ⇒ x2 + y2 < 1.

The case of x2+y2 < −1 is disregarded here because in our case |·| represents the magnitude
of a number, which cannot be negative. Going back to (43), we find

1− 8b(∆t)sin2
(
ϕ

2

)
+ 16b2(∆t)2sin4

(
ϕ

2

)
+ 4a2(∆t)2sin2(ϕ) < 1,

⇒ −8b(∆t)sin2
(
ϕ

2

)
+ 16b2(∆t)2sin4

(
ϕ

2

)
+ 4a2(∆t)2sin2(ϕ) < 0.

(44)
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Looking at (44), it can be deduced that the only way this expression is less than zero is if
the first term is greater than the second and third terms combined. This is because a and b
are defined to be positive, sin2, sin4, and (∆t)2 are positive as well. Hence,

16b2(∆t)2sin4
(
ϕ

2

)
+ 4a2(∆t)2sin2(ϕ) < 8b(∆t)sin2

(
ϕ

2

)
,

⇒ 4b2(∆t)sin4
(
ϕ

2

)
+ (∆t)a2sin2(ϕ) < 2bsin2

(
ϕ

2

)
,

⇒ (∆t)

(
4b2sin4

(
ϕ

2

)
+ a2sin2(ϕ)

)
< 2bsin2

(
ϕ

2

)
,

⇒ ∆t <
2bsin2

(
ϕ
2

)
4b2sin4

(
ϕ
2

)
+ a2sin2(ϕ)

,

=
2bsin2

(
ϕ
2

)
4b2sin4

(
ϕ
2

)
+ 4a2sin2

(
ϕ
2

)
cos2

(
ϕ
2

) ,
=

b

2b2sin2
(
ϕ
2

)
+ 2a2cos2

(
ϕ
2

) ,
=

b

2a2 + 2(b2 − a2)sin2
(
ϕ
2

) .

(45)

Hence we conclude that if a < b, then

∆t ≤ 1

2b
,

and if b < a, then

∆t ≤ b

2a2
.
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5 Stochastic ODE model

Another worthwhile analysis to carry out is that of the stochastic differential equation. This
analysis can help give some insight as to why people are more prone to use the Black-Scholes
model or the binomial option pricing method [15]. As shown in Section 3, the Black-Scholes
model is derived from the following ODE:

dS = µSdt+ σSdB (46)

The discrete time version of this equation can be respresented using the following information
that can be deduced from previous knowledge.

dS = Si+1 − Si

dt = ti+1 − ti = ∆t

dB = Z
√
∆t

where Z is a normally distributed random variable with mean 0 and variance 1. The
discretization of the Brownian motion is found in [16, 17].

Using the discretizations that we have obtained above, we created two possible solutions to
model the evolution of (46). For the two figures, the time grid was divided into equidistant
intervals of varying sizes.

Figure 2: Some solutions of the stochastic differential equation.
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6 Results and discussion

The following subsections contain results from a numerical analysis of the analytical solutions
and finite difference method discretizations described previously in the report.
For the numerical experiments, we assume that the time to maturity is one month, i.e,
T = 1. We also assume that the constant rate of interest is 20%, i.e r = 0.2, and the strike
price agreed upon is $50, i.e K = 50. The values for σ will be varied. Similarly, the value
for ∆t must be varied for the Forward Euler scheme when we vary σ because a change in
the latter will result in an appropriate change required in ∆t due to the results found from
the stability analysis. We divide the grid for the stock price into 100 equidistant intervals,
hence ∆S will be taken as:

∆S =
Maximum value of S on the grid

Number of intervals
=

Smax

100

6.1 Analytical solution

We introduced two different analytical solutions in Section 3. One was derived in the Black-
Scholes paper [2] and the other was obtained using the Feynman-Kac formula (8). In this
subsection we present the results obtained by numerically analyzing both of these solutions
and comparing the results.
The following graphs have been obtained using a numerical analysis of the analytical solution
presented in [2].

(a) Call solution when σ = 0.2. (b) Call solution when σ = 0.5.

Figure 3: Analytical solutions of the European call option.
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(a) Put solution when σ = 0.2. (b) Put solution when σ = 0.5.

Figure 4: Analytical solutions of the European put option.

The graphs in Figure 3 and Figure 4 each contain three different lines. These lines represent
the value of the payoff at different times. The line labelled as 0.5T shows what the value of
the payoff of an option would theoretically be if we exercised the option at the halfway point
of our time period. For example, if the maturity time is set as one month, then the line
for 0.5T represents the theoretical payoff value expected in half a month. Similar reasoning
can be applied for the case of 0.25T. In the case of European options, we are only interested
in the value of the payoff at the time of maturity. In our case, this is when we take time to
be equal to T. This is represented by the line labelled Time = T.

As volatility increases, the probability that the stock price will rise or fall increases, which
in response will also increase the value of both call and put options. This is because the
volatility represents the standard deviation of the return on the stocks. If there is a higher
standard deviation, then there is a greater chance for the holder of the option to make a
profit. We observe that while this also leads to an increase in the potential loss, in the case
of options, the holder of the option can just choose to let the option expire. Hence, if we
increase the volatility term, the σ2 term in our discretization results in a larger possible
payoff.

A numerical program was also developed to evaluate the solution found in (8) using the
Feynman-Kac method. The following graphs have been obtained using the Feynman-kac
formula, (8).
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(a) Feynman-Kac call solution when σ = 0.2. (b) Feynman-Kac call solution when σ = 0.5.

Figure 5: Analytical solutions of the European call option using the Feynman-Kac formula.

The final solution obtained at the time of expiry when σ = 0.2 was then compared with the
solution obtained using the analytical solution given by Black and Scholes.

(a) Comparison for the call option solution. (b) Comparison for the put option solution.

Figure 6: Comparing the solutions obtained when using the Feynman-Kac approach and
the analytical approach highlighted in section 3.3.
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Figure 7: Error between the Feynman-Kac approach and the analytical approach highlighted
in section 3.3.

6.2 Backward Euler

In this subsection we divide the grid for the time into 500 equidistant intervals, hence ∆t
will be taken as:

∆t =
Time to maturity - beginning time

500
=

T

500
.

We will always take the beginning time, i.e. the time that the two parties officially enter
into an options contract, to be 0. The following graphs have been obtained using the
discretization found in (28).

(a) Put solution when σ = 0.2. (b) Put solution when σ = 0.5.

Figure 8: Backward Euler solutions of the European put option with varying volatilities.

In this case, T = 0 represents the time of maturity. The mesh represents the value of the
payoff at varying time steps and varying stock prices. While we are only concerned with
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the value of the payoff at the time of maturity, it is interesting to observe the evolution of
the solution over time.
The final solution obtained at the time of expiry for both σ’s were compared with the
solution obtained using the analytical solution in Section 3.3.

(a) Comparison of put solution when σ = 0.2. (b) Error of the put solution when σ = 0.2.

Figure 9: Comparison of the solution of a put option, obtained using the Backward Euler
method and the analytical solution.

(a) Comparison of put solution when σ = 0.5. (b) Error of the put solution when σ = 0.5.

Figure 10: Comparison of the solution of a put option, obtained using the Backward Euler
method and the analytical solution.

6.3 Forward Euler

We begin this subsection by evaluating the solution for σ = 0.2 first. In this case, ∆t will
remain the same as in Section 6.2. However when we evaluate the solution for σ = 0.5, the
stability analysis requires changes to the value of ∆t. That will be shown further in this
subsection.
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The following graphs have been obtained using the discretization found in (36).

(a) Call solution when σ = 0.2. (b) Call solution when σ = 0.5.

Figure 11: Forward Euler solutions of the European call option.

When σ = 0.5, we encounter errors if we keep ∆t the same as in the calculations for σ = 0.2.
This can be attributed to the results of the stability analysis conducted previously. When
increasing σ, the number of intervals to be considered for time must also be increased. In
this case, we take ∆t = T

2300 .

In Figure 12 we highlight the behaviour of the solution if we don’t comply with the conditions
required for stability.

Figure 12: Solution for σ = 0.5 using Forward Euler when we use 2200 intervals.

The final solution obtained at the time of expiry for both σ’s were compared with the
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solution obtained using the analytical solution in Section 3.3.

(a) Comparison of call solution when σ = 0.2 (b) Error of the call solution when σ = 0.2

Figure 13: Comparison of the solution of a European call option, obtained using the Forward
Euler method and the analytical solution.

(a) Comparison of call solution when σ = 0.5 (b) Error of the call solution when σ = 0.5

Figure 14: Comparison of the solution of a European call option, obtained using the Forward
Euler method and the analytical solution.

6.4 Discussion

The table below shows the computational time required by each method for varying sigmas.
In order for a fair comparison in the case of σ = 0.5, the time grid for the Backward Euler
method was divided into 2300 intervals, despite the unconditional stability of this method.
The time grid for the analytical solution was also divided into 2300 intervals. All other
variables were kept constant throughout these experiments.
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FE Computational time BE Computational time Analytical solution

σ = 0.2 0.012179s 0.034740s 0.872303s

σ = 0.5 0.016074s 0.070330s 3.381104s

Table 2: Computational times for the two numerical methods and the analytical solution.

From the computation times we observe that the Forward Euler method is the quickest
method. The Backward Euler method takes longer than the Forward Euler which is to
be expected because it is solving an implicit equation [18]. The analytical solution takes
significantly longer to compute in comparison to the finite difference methods used. This
could be due to the fact that we are evaluating this in the syms environment or evaluating
a stochastic process at every interval.

While we have only focused on varying sigma in our experiments, from the graphs given
in the previous subsections and some theory we can deduce that varying other factors will
also affect the value of our payoff. In the case of call options, higher stock prices lead to
higher payoff values whereas for put options a higher stock price leads to lower payoff values.
Similarly, a different choice for the strike price will affect our final payoff value solutions.
Increasing the interest leads to a higher payoff values for call options and lower payoff values
for put options. Figure 15 shows the analytical solution when we consider the interest rate to
be 0.5 and σ = 0.2. All other variables remain the same. Comparing this graph with the one
in Figure 3, we observe that we obtain higher payoff values when the interest rate is higher.

Figure 15: Analytical solution for European call option when r = 0.5 and σ = 0.2

We observe that the error for the put solution when σ = 0.2 is less than the error for
the call solution when σ = 0.2. When σ = 0.5, the errors for the Backward Euler method
and the Forward Euler method are both similar. In the error graphs for the Backward and
Forward Euler methods we notice that towards Smax the error appears to be increasing
rapidly. This can be attributed to the fact that there is no boundary condition limitation
imposed on the analytical solution but we have boundary conditions imposed in the finite
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difference methods. This means that as we increase our grid, the error on the boundary
can grow larger.

In the model presented in this report, we assumed ideal model conditions with a constant
interest rate and constant volatility. Realistically, volatility and rate of return on assets
do not stay constant. [19] is a graph showcasing the variation in the expectation of the
volatility in the market. Analyzing the Black-Scholes model for changing variables will be
more complicated when using the Forward Euler method because the stability of the time
step is dependent on some of these variables. Section 6.9 in [8] concerns the introduction of
jump diffusion models which account for changing volatility’s and also volatility’s that are
a function of the price of the underlying stock at a given time.
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7 Conclusion

In this report we have analysed numerical methods pertaining to the analytical solution of
the Black Scholes equation and further considered the finite difference method. We obtained
the computational times and errors of each of these mechanisms and were directly compared
with the analytical scheme.

In the discussion of results we clearly observed that solving the equation analytically
takes significantly longer than using the finite difference method. However, the two finite
difference schemes that were discussed are not without their drawbacks. We noticed that
Forward Euler scheme is computationally superior to other methods but the method is
unstable. We can utilise the Backward Euler method to counteract this instability as the
scheme is unconditionally stable. There is a trade-off as the Backward Euler scheme takes
computationally longer but we believe it to be a worthwhile compromise due to the added
overall stability. Thus, the Backward Euler is the recommended scheme if we choose to
analyse the Black-Scholes Model for European options, or account for constantly changing
volatility and interest rates.
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