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Abstract

Entropy Compression is a technique to show that a random process or algorithm terminates
in finite time. It can be used to prove the existence of certain objects, such as graphs, samples,
strings etc. and to find them using a randomised algorithm. By defining an algorithm that
losslessly compresses some random inputs into a string which records the history of the steps
taken by ur algorithm we can guarantee termination if the bits of entropy read from our
random inputs increases faster than the bits of information stored in our record. In this paper
we examine the strategy behind entropy compression, discuss the mathematical background
and give some examples of it’s use.

1



Contents

1 Introduction 3

2 Preliminaries 4
2.1 Graph Colouring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Acyclic Colouring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Random Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Dyck Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Rooted Plane Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6 Shannon Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Lovasz Local Lemma 5
3.1 Moser and Tardos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Execution Logs and Witness Trees . . . . . . . . . . . . . . . . . . . . . . . 7

4 Acyclic Edge Colouring Using Entropy Compression 11
4.1 Esperet and Parreau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 Entropy Compression Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Determining the Input from R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Bounding |Ft| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Bounds on a′(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Discussion and Conclusion 20

6 Acknowledgements 21

2



1 Introduction

Oftentimes in combinatorics we might try to find an object by taking some other initial object and
defining some procedure to incrementally correct it until we’ve found what we’re looking for. This
usually involves defining an algorithm which iterates over a given object, for example a set, string
or graph, and monotonically improves it until the algorithm terminates, and the desired prop-
erty is attained. To guarantee that our procedure terminates we try to exploit some bounded but
monotonically increasing quantity, so that the algorithm terminates when the bound is reached.[10]

Depending on what is to be proven, there are several options for which quantity we wish to
exploit. Some well known choices include mass increment arguments, where the object is made
“heavier”, or rank reduction arguments, where the rank, dimension or order of our object is re-
duced to some minimum. In 2010, Moser and Tardos [6] introduced a new monotonicity argument,
which came to be known as entropy compression. The argument applies to probabilistic algorithms
which, taking a set of random inputs F , uses elements of F to modify a randomly chosen object
from a distribution A, replacing it at each step t with an improved At and a shorter Ft made up
of whichever elements of F are not satisfactory. The argument relies on keeping a record of each
step and storing it in a string R, such that at each step of the algorithm the original object A and
input F can be reconstructed by the states At, Ft, Rt, in other words, our algorithm compresses
the information content of the original object and input A+ F into At + Ft +Rt, which encodes
all of the courses the algorithm can take in t steps.

The notion of entropy captures the amount of information we expect to gain by sampling from
a random variable. Since our inputs A + F is randomly chosen, and each correction we make is
a random sample from A + F , at each step of the algorithm we are “reading” a certain amount
of entropy, and recording it in R. A random variable like A + F can’t be losslessly compressed
into a string whose expected size is smaller than it’s Shannon entropy (see preliminaries), so if
the amount of information we store in R at each step t is less than the amount we read from
A+ F , that is, if we can find a sufficient lower bound on the entropy of A+ F , and if the size of
At + Ft +Rt is strictly smaller than this bound for large enough t, then there must be a limit on
the amount of times the algorithm can iterate, because eventually we run out of space to store the
information we gain from each iteration. Note that this limit can be randomly distributed and is
not necessarily fixed. Once there is no more room to compress, the algorithm must halt.

Theorem: Entropy Compression Consider an algorithm Φ and an input F of IID uniformly
sampled bits. Let Φ be such that for each step t = 0, 1, 2, ... the following holds

• Φ maintains a string Rt recording it’s history after each step t, such that the random bits
of F read so far can be recovered from Rt

• Rt has length at most r0 + t∆r at time t

• f0 + t∆f bits have been read after time t

If ∆f > ∆r, then the step t at which Φ terminates is at most

r0 − f0
∆f −∆r

This statement gives a formal bound on the runtime in terms of the entropy read per iteration,
however since this is almost never explicitly computed we will decline to prove it, and simply note
that it must halt in principle. Interested readers may refer to the original blog post [8].
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Since we in general consider randomised Las Vegas algorithms, there is a point where the
probability of halting becomes greater than zero, and since our algorithm can only terminate if
the desired object is found, there is a positive probability of finding it which can only be the case
if it exists. Our strategy is thus a type of probabilistic method, common in combinatorics and
popularised by Erdős. These problems are quite easy when the corrections made to our initial
object are independent, however it can become quite complicated when some degree of depen-
dency is allowed. In this case a correction in one area can undo a previous correction, or otherwise
violate some area of our desired object. Then we can have violations stack up faster than they
can be corrected, or get stuck in a loop where our desired property is continuously violated and
corrected. Much of the work then lies in determining how much dependency can be tolerated, and
in mapping these dependencies to find the likelihood of falling into one of these traps.

Since it’s introduction in 2010, the method has seen uses in varied areas of mathematics.
Moser’s original argument gives the first constructive proof of the Lovasz Local Lemma, an impor-
tant tool for probabilistic methods. Moser first deals with a special case involving a k-satisfiability
problem[7], showing relevance to logic, and later proves the theorem in it’s full generality, a prob-
ability problem [6]. Perhaps the most fertile area of research has been combinatorics, with many
applications to graph-colouring problems, an example of which will be dealt with below[4]. In
general I wish to demonstrate the ease and broad applicability of the method, to perhaps inspire
the reader to make use of it in future work. I also hope to give an impression of common problems
in combinatorics and the interesting constructive methods with which they are handled.

Entropy compression is an example of mathematics at it’s best and most beautiful. Moser’s
argument begins with the simple intuition behind the Lovasz Local Lemma; if failure can not
account for all sufficiently independent possibilities, a successful solution must exist. From there,
through careful consideration we can discover complex truths about a variety of concepts and
constructs.

2 Preliminaries

This article aims to be as accessible as possible to those without a strong background in combi-
natorics. Knowledge of basic concepts in probability theory and graph theory are assumed, but
since many of the arguments draw on various areas of mathematics we give some of the necessary
background below.

2.1 Graph Colouring

A graph colouring is an assignment of labels conventionally called colours to the elements of a
graph G, subject to certain constraints. The case where colours are assigned to the edges of a
graph is called an edge colouring, and when colours are assigned to vertices a vertex colouring.
Usually we consider proper colourings, where no two edges (vertices) which share a vertex (edge)
are assigned the same colour. A proper colouring with at most k colours is called a k-colouring.
The chromatic number χ(G) of a graph G is the smallest number of colours required for a proper
colouring. (include section on girth)

2.2 Acyclic Colouring

An acyclic colouring is a colouring in which every cycle contains at least three colours; alternatively,
a colouring for which any subgraph of edges/vertices of only two colours is acyclic.

2.3 Random Algorithms

In graph colouring problems it is common to use an algorithm to construct a colouring with the
desired property. For our purposes we are interested in random or randomised algorithms, in
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particular so-called Las Vegas algorithms, wherein the algorithm is guaranteed to complete with
the correct answer, but the runtime is randomly distributed. Compare to Monte Carlo algorithms,
where the run time is fixed, but the algorithm can fail with some probability.

2.4 Dyck Words

To help with a counting problem we will use the concept of Dyck words. A formal language L
over an alphabet A is a subset of words made up of elements belonging to A. An alphabet can
be any set, and a word is a string or sequence of elements from an alphabet. A prefix of a string
w is a substring beginning with the first element of w. A partial Dyck word on {0, 1} is a word
such that every prefix contains at least as many zeroes as ones, and a Dyck word of length 2t is a
partial Dyck word with exactly t zeroes and t ones.[4]

2.5 Rooted Plane Tree

Like Dyck words, these will be used for counting. A tree is a connected graph with no cycles. A
rooted plane tree is a tree, wherein a vertex is designated as the root, and an ordering is assigned
to the children of each vertex. Since the vertices of a rooted plane tree are ordered we can label
them v1, v2, ... and define the generating function as f (add def. of generation)

2.6 Shannon Entropy

Shannon entropy is a measure of how much information we expect to gain by sampling a random
variable and having some event occur. It is equal to the negative log probability of the event.

3 Lovasz Local Lemma

For a sequence of independent events A1, A2, ...An, there is always a chance that no events occur,
provided each event occurs with probability less than one. However if we allow dependence between
events, it is possible that some event A is fully determined by a collection of others, such that
if these events occur, A occurs with probability one. We can take as a simple example a binary
random variable X1 that takes values 1 with probability p, and 0 with probability (1 − p), and
another X2 that equals 1−X1. Then the events X1 = 1 and X2 = 1 can not both occur.
The Lovasz Local Lemma allows us to relax our independence assumption, meaning as long as the
Ais are sufficiently independent, that is if events are only dependent “locally”, we can guarantee
some possibility of no events occurring. The first proof of this statement was given by Lovász and
Erdős in 1975 [3], the statement below is an improved result from Joel Spencer in 1977 [9].

Lovász Local Lemma: Let A = {A1, A2, ...An} be a sequence of random events where each
event has probability at most p, and each event is independent from all others except at most k of
them. If p is small enough that

ep(k + 1) ≤ 1

then the probability that none of the events in A occurs is nonzero.

There also exists an asymmetric version, where p, k are not fixed for all events, but are allowed
to vary. In this case the Lemma becomes

Asymmetric Lovász Local Lemma: Let A be a finite set of events in a probability space. For
A ∈ A let Γ(A) be a subset of A satisfying that A is independent from the collection of events
A \ (A ∪ Γ(A)). If there exists an assignment of reals ψ : A → (0, 1) such that

∀A ∈ A : P(A) ≤ ψ(A)
∏

B∈Γ(A)

(1− ψ(B))
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then the probability of avoiding all events in A is at least
∏
A∈A(1 − ψ(A)) in particular it is

positive
This shows that we can allow more dependencies for an event A, but must accordingly reduce

the probability (or vice versa) in order to preserve the result of the symmetric version.

Moser and Tardos discovered a constructive proof for a special case of the Lemma in 2009 [7],
where they deal with the k-satisfiability problem. The proof in full generality was developed the
following year [6], a feat for which they were awarded the Gödel prize in 2020. Prior to Moser’s
result only nonconstructive proofs existed, the Lemma could only guarantee the existence of an
object and offered no way to explicitly construct one. Moser’s result, sometimes known as the
Algorithmic Lovász Local Lemma, improves the result by providing an algorithm for which desired
object can itself be found. The only extra restrictions for this algorithmic version of the Lemma
are that we consider events determined by a subset of a set of random variables P, and let Γ(A)
be the set of events which depend on one or more of the same random variables as A

Algorithmic Lovász Local Lemma: [6] Let P = {P1, P2, ...Pm} be a set of independent ran-
dom variables, and let A = {A1, A2, ...An} be a sequence of random events determined by these
variables. If there exists an assignment ψ : A → [0, 1) such that

∀A ∈ A,P(A) ≤ ψ(A)
∏

B∈Γ(A)

(1− ψ(B))

then there exists a sampling from the variables in P such that none of the events in A occur.
Moreover, the expected number of steps taken by the algorithm before halting is∑

A∈A

ψ(A)

1− ψ(A)

3.1 Moser and Tardos

We first let P be a finite collection of mutually independent random variables in a probability
space Ω. We consider events A which are determined by P. We call S the unique minimal subset
of random variables P ∈ P which determine A. Since we are looking for the case where some
collection of events do not happen, we say that an evaluation of the variables in S violates A if
A occurs in the evaluation. For each A in a desired set of events A we denote the set of variables
which determine A as vbl(A).

Dependency between events can be modelled by a dependency graph, where each node rep-
resents an event and the edges represent dependency between them. We define the dependency
graph GA as the graph with nodes in A, and where edges exist between events A,B if intersection
of the sets of variables which determine A,B vbl(A)∩vbl(B) = ∅, in other words if there is at
least one random variable in P which determines both A,B. We then denote by Γ(A) the set of
neighbours of A in GA, and by Γ+(A) = Γ(A)∪{A} we denote the inclusive neighbourhood, which
is the set consisting of A together with it’s neighbours. Then A is dependent on the events in
Γ(A), and independent from A\ (Γ(A)∪{A}). Note that this means Γ(A) satisfies the constraints
from the theorem statement.

Moser then defines the algorithm at the heart of the entropy compression method, which will
guarantee the existence of an evaluation which does not violate any A ∈ A, and more importantly
finds such an evaluation. The algorithm works as follows:

1. For each P ∈ P take a random evaluation vP from Ω
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2. For each A ∈ A which is violated, we “resample”, or take a new random evaluation vP for
each P ∈ vbl(A). A can be chosen arbitrarily.

3. When we have reached an evaluation v = (vP )P∈P such that no event A is violated, we are
done.

By construction the algorithm creates an evaluation for which no A occurs. What remains to
be seen is that the algorithm terminates in finite time. It could be the case that each resampling
violates some other clause, and the violations stack up faster than they can be resolved. Moser
shows that the algorithm terminates in finite times, in fact for each A the expected number of
times A is resampled is

ψ(A)

1− ψ(A)

meaning the total runtime is ∑
A∈A

ψ(A)

1− ψ(A)

3.1.1 Execution Logs and Witness Trees

First we fix a procedure for selecting which A to correct at each step. This can be chosen arbi-
trarily, deterministic or random, and the specific procedure does not matter to the result. Our
argument relies on keeping a log of each step of the algorithm. We therefore let C : N → A
record which event has been chosen for resampling at each step, and call this the log. If event A is
resampled at time t then C(t) = A. Note that if the sampling is random, C is a random variable
determined by the random sampling of P

We can use C to define a witness tree τ = (T, σT ) which will help us limit the runtime of our
algorithm. This consists of a finite, rooted tree T along with a labelling σT : V (T ) → A assigning
each vertex of the tree to an event A. The map is chosen such that for each u, the children of u is
labelled with events in the inclusive neighbourhood of u. We obtain τ from C as follows: At step t

of the algorithm let τ
(t)
C having label C(t) be the root of our tree. We then work backwards through

C(t). For i = t−1, t−2, ...1 we build our tree as follows. If there is a vertex v ∈ τCT
(i+1), such that

C(i) ∈ Γ+(v), we choose the farthest such v from the root and attach a vertex labelled C(i) to it.

If there are more than one v at equal distances we can choose arbitrarily. Finally let τ
(
Ct) = τ

(1)
C (t).

As an example, let:

• C = (A1, A2, A3, A4, A5)

• Γ+(A1) = {A1, A3, A4}

• Γ+(A2) = {A2, A3, A5}

• Γ+(A3) = {A1, A2, A3, A5}

• Γ+(A4) = {A1, A4}

• Γ+(A5) = {A2, A3, A5}
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Then the witness tree for the 5th step of our algorithm will be

τ
(1)
C

A5

A3

A2 A1

The witness tree τC(t) gives all the reasons C(t) might have been resampled, that is all of
the evaluations that may have violated C(t). If the witness tree contains only the root, it can
only have been violated by the initial sampling, all other nodes represent resamplings between 1, t
which may have violated C(t). For some tree τ, we say τ occurs in our record C if there is some t
with τC(t) = τ . Most importantly for our argument, each resampling of an event A corresponds to
a distinct witness tree τ , in particular, the number of times an event A is sampled is equal to the
number of witness trees with root labelled A. Moreover the probability of A being resampled is is
equal to the probability of some witness tree occurring in C. We can therefore bound the expected
number of resamplings of A, which we call NA, by determining the probability of a witness tree
occurring in C.

To do this we will need to analyse these witness trees further, then come up with a way of
probabilistically generating them. We call a tree proper if each distinct child of a vertex receives
a distinct label. In the following Lemma we show that witness trees as defined above are proper,
and bound the probability of a given tree occuring in C.

Lemma 2.1 Let τ be a fixed witness tree and C be the (random) log produced by the algorithm.

1. If τ occurs in C, then τ is proper

2. The probability that τ occurs in C is at most
∏
v∈V (τ) P(v)

Proof: Suppose the τ occurs in C. Then τ = τC(t) for some t. For any vertex v ∈ τ we call
the distance from the root the depth and denote it by d(v). We then denote by q(v) the step of
the algorithm at which v was added. Since our procedure for constructing witness trees counts

backwards from t, this is the largest tree τ
(q)
C (t) containing v. Note that if u, v are dependent, and

if u was added later than v (q(u) < q(v)), then u must be further from the root, (d(u) > d(v)),
because u is either attached to v, or attached to another vertex of equal or greater depth, since our
procedure specifies we attach it to the furthest desired vertex from the root. This means any two
vertices of the same depth must be mutually independent, so any two children of a given vertex
must have different labels. We conclude that τ is proper.

To prove our second claim we need to define a so-called τ−check. This is a breadth first
search, which starts from the last generation and visits each vertex at this depth, before moving
back a generation and visiting the vertices, and so on until the root. At each vertex we sample
the event with which it is labelled, and check if it is violated. If all events are violated we say the
τ−check passes. Of course, the probability that the t−check passes is equal to the product of the
probability of each event being violated, that is

∏
v ∈ V (τ)P(v). To bound the probability of a

witness tree occurring in C we must show that any witness tree passes a τ−check. Intuitively this
is simple. For τ to be a witness tree it must record vertexes which are resampled, and vertices are
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only resampled if they are violated.

Let v be a vertex in V (τ) for some witness tree τ . Since v is resampled at step q(v), meaning v
was violated before this sampling, so when the τ−check arrives at v it must find it to be violated.
This holds for all v, meaning any witness tree passes a τ−check. This means the set of trees
occuring in C is contained in the set of trees which pass a τ−check. Furthermore, the probability
of a tree τ occuring in C is less than or equal to the probability that τ passes a τ−check. This
proves our second claim. For a more rigorous treatment refer to [6].

We have now obtained a bound on the probability of a witness tree occuring in our algorithm.
We can now use this to bound the expected number of times an arbitrary event is sampled. To
do this we will define a stochastic process to randomly generate witness trees. In particular we
will be using a Galton-Watson process. For those unfamiliar with stochastic processes, this is a
collection of random variables which can be used to characterise a tree. Usually we consider the
random variables Zn which denotes the number of vertices in the nth generation, and variable
Xn,i which determines the number of children of the ith vertex in the nth generation. The process
works by progressing through the vertices and adding children to them according to some random
distribution. In order to generate witness trees having som event A ∈ A as a root,.we define a
Galton-Watson branching process where chidren are added to each vertex as follows. In the first
round we consider the root labelled A, then for each dependent event B ∈ Γ+(A) we add a vertex
labelled B with probability ψ(B), and skip it with probability 1− ψ(B). These choices are taken
independently. Depending on the probabilities in question the process can go extinct because no
new children are born.

We are now ready to find the probability that a given witness tree occurs is generated by our
Galton Watson process. Let ψ′(B) = ψ(B)

∏
C∈Γ(B)(1 − ψ(C)). This is the probability that a

vertex labelled with event B is added to vertex A, and that none of the other events dependent
on A are added, that is to say it is the probability that B in particular is chosen. Note this is in
the assumption from the original theorem statement.

Lemma 3.1 Let τ a fixed proper witness tree with its root vertex labelled A. The probability pτ
that the Galton-Watson process described above yields exactly the tree τ is

pτ =
1− ψ(A)

ψ(A)

∏
v∈V (τ)

ψ′(v)

Proof: For our process to arrive at τ , we must have that every vertex v ∈ V (τ) is added and
every other potential vertex is avoided. We take an arbitrary v ∈ V (τ) with label A and denote by
Wv ⊆ Γ+(v) be the set of events dependent on v which do not occur in τ, that is to say, the vertices
we wish to avoid. Then to obtain the probability of τ occuring pτ we multiply the probability
of each v ∈ V (τ) being added, and the probability of each dependent event being avoided. This
gives us

pτ =
1

ψ(A)

∏
v∈V (τ)

(
ψ(v)

∏
u∈Wv

(1− ψ(u))

)

This can be rewritten by multiplying by 1 = 1−ψ(v)
1−ψ(v) for each v to obtain

pτ =
1

ψ(A)

∏
v∈V (τ)

 ψ(v)

1− ψ(v)

∏
u∈Γ+(v)

(1− ψ(u))
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We recognise ψ′(B) as defined above, and the equation becomes

pτ =
1

ψ(A)

∏
v∈V (τ)

ψ′(v)

Proving the Lemma.

We now approach the end of our proof. Recall that we can count the number of times an event
A is resampled by counting the number of witness trees with root A in the log C of steps taken in
the entropy compression algorithm. We denote by TA the set of all such witness trees. The event
is resampled if and only if there is a corresponding witness tree occurring in the log C. This means
the number of resamplings of A is equal to the number of trees in TA in C and the expectation
becomes

E(NA) =
∑

τ∈T (A)

E 1{τ occurs in C} =
∑

τ∈T (A)

p{τ occurs in C}

From Lemma 2.1 we obtain

E(NA) =
∑

τ∈T (A)

p{τ occurs in C} ≤
∑

τ∈T (A)

∏
v∈V (τ)

P(v)

By assumption from our theorem this becomes

E(NA) ≤
∑

τ∈T (A)

∏
v∈V (τ)

P(v) ≤
∑

τ∈T (A)

∏
v∈V (τ)

ψ′(v)

Now we can use the result from lemma 3.1 to obtain

E(NA) ≤
∑

τ∈T (A)

∏
v∈V (τ)

ψ′(v) =
ψ(A)

1− ψ(A)

∑
τ∈T (A)

pτ

and finally since the galton-watson process produces a single tree, and each tree in T (A) is only
one possibility, their probabilities sum to less than or equal to one (inequality is strict when there
is a possibility the tree is infinite, in this case the process produces a tree that is not in TA).

E(NA) ≤
ψ(A)

1− ψ(A)

∑
τ∈T (A)

pτ ≤ ψ(A)

1− ψ(A)

So for each A the expected number of resamplings is finite, and the expected runtime of the
algorithm is the sum of each NA ∑

A∈A

ψ(A)

1− ψ(A)

which is finite. In particular this guarantees the algorithm terminates with positive probability.
Since termination of the algorithm means we have found a sample which does not violate our set
of events, the algorithm has a positive probability of finding such a solution, which guarantees it’s
existence. We have therefore proven the desired result.
You might note that we never compute or even discuss entropy in the proof. Indeed we don’t need
to, although it’s clear that as our algorithm is generating a witness tree at each step and as the
probability of one of these trees being generated gets smaller and smaller, the entropy accordingly
gets larger. Recall that the entropy of an event is equal to the negative log probability of the event
and is monotonically increasing as the probability decreases. While the amount of entropy read
by our algorithm is therefore increasing, we are storing the steps of the algorithm in our record
according to a fixed procedure, and the information stored per step doesn’t increase accordingly,
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and so the algorithm halts. Usually when using the method we will not need to explicitly compute
the entropy, and the idea of entropy compression mostly shows what’s going on “under the hood”,
a more theoretical motivation than whichever explicit argument is used in a particular proof.

Moser’s paper goes into further detail about the Local Lemma, defines a parallel algorithm to
the same effect and also offers a non-deterministic alternative to the random procedure hereabove.
Rather than repeat the process for the non-deterministic case we will instead demonstrate by
giving an example of the non-deterministic algorithm applied to a completely different problem;
the task of finding an acyclic graph colouring for an arbitrary graph.

4 Acyclic Edge Colouring Using Entropy Compression

In this section we relate and compare the findings of Esperet and Parreau(2013)[4], wherein the
deterministic variant of Moser’s entropy compression argument is used to establish a bounds on
the acyclic chromatic index, or the smallest possible number of colours in an acyclic edge colouring,
and to guarantee the existence of such a colouring.

4.1 Esperet and Parreau

As early as 1991 [1], the Lovasz Local Lemma has been used to impose bounds on the acyclic
chromatic index. Here however, the aim is to apply Moser’s entropy compression strategy directly
to the problem rather than using the lemma itself, in order to show the strength and versatility
of this argument, how it works, and how it can be adapted to a wide range of graph colouring
problems.

In this instance, the broad strategy is as follows; We define a randomised (deterministic but
with random inputs) algorithm which terminates when an acyclic edge colouring is attained. The
algorithm is equipped with a set of records which log each step i of the algorithm and which,
together with the state of the colouring step i, is enough to uniquely determine the input. By
showing that, for some stopping time t sufficiently large, the number of possible combinations of
records and partial graph colourings is strictly larger than the number of possible inputs such that
the algorithm does not terminate, we conclude that there exists some input for which the algorithm
does terminate. Since our inputs are randomly chosen, this implies the algorithm terminates by
time t with positive probability. Finally, since the chances of selecting an input that guarantees
an acyclic colouring is positive, such a colouring must exist. Our algorithm includes a parameter
γ which determines the number of colours in our colouring, and by bounding this parameter we
can bound the acyclic chromatic index.

The bulk of the work in this argument consists essentially of counting problems, as we need
to bound the set of inputs and records. This is tricky to do directly but fortunately, for large
enough t the bounds are quite forgiving and by showing equivalencies between our set of records
and other objects which are easier to count, (namely Dyck words and rooted plane trees) we can
at last attain our desired bounds. Now that we have an overview of the argument we are ready
to get into the details.

We’ll begin with some notation. Let a′(G) denote the acyclic chromatic index, i.e. the smallest
number required for an acyclic colouring of an arbitrary graph G. Let ∆ be the maximum degree
of the vertices in G. Recall that a proper edge colouring requires at least ∆−1 colours, so we take
a parameter γ greater than 1, and we take K = ⌈(γ + 2)(∆− 1)⌉. We claim that for γ, therefore
K large enough, there exists an acyclic edge colouring on G with at most K colours.

4.1.1 Entropy Compression Algorithm

We define a randomised (Las Vegas) algorithm on the edge set E of G. The basic idea is to order
the edges of E as e1, e2, ...em, where m = |G|, and starting with the e1 assign each successive edge
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ej with some “colour” from {1, 2, ...K} that is not already assigned to an edge adjacent to ej , and
if a 2-coloured cycle is created we recolour it and all other edges (except two, as we will explain
later). This guarantees a proper colouring, since edges are chosen excluding adjacent colours, and
an acyclic colouring, since 2-cycles are recoloured. What remains to be seen is that this algorithm
terminates in finite time, it could be the case that cycles are recoloured faster than the graph than
be coloured. To show that the algorithm terminates we will need to analyse the algorithm fully.
The analysis uses a similar entropy compression argument to that developed by Moser, and relies
on keeping a record of each step.

We are interested in a randomised algorithm running on a deterministic instance. To achieve
this we define a deterministic algorithm where the input is a vector randomly chosen from our
randomly chosen entries. We take for our set of colours {1, 2, 3, ...K}.

Let t be large and consider the vector of randomly chosen entries

F = (f1, f2, ...ft)

where, at step i of our algorithm, fi is used to colour an edge ej as follows. Let ej = uv. and let
S be the set of free colours, that is S = {1, 2, ...K} \ S′, where S′ is the set of colours assigned to
edges xy ̸= uv such that

• x = u or x = v

• edges ux and vy exist and have the same colour.

This first condition prevents adjacent colours and the second prevents 4-cycles.

The set of “taken” colours S′ has cardinality |S′| ≤ 2(∆ − 1) elements, because each edge ej
has two vertices which have at most ∆− 1 edges excluding ej . So the set of “free” colours S will
be at least

K − 2(∆− 1) = ⌈(γ + 2)(∆− 1)⌉ − 2(∆− 1)

= ⌈γ(∆− 1)⌉

This means that entries of F will be in {1, 2, ...⌈γ(∆ − 1)⌉}. We use F to colour G by taking at
each step i the fith smallest element of S and applying it to our next uncoloured edge ej . As men-
tioned, choosing our colours in this manner guarantees our colouring is proper and no 2-coloured
4−cycle (cycle of length 4) is created. Cycles of odd length are of no concern, since they can not
be properly coloured with only 2 colours and will never be cyclic. Now, in case our colouring
produces a 2−coloured cycle of length 6 or greater, say ei1 , ei2 , ...ei2k , with ei1 = ej we uncolour
all edges except 2 edges, say ei2 , ei3 , which will be used for our record. Since ej is uncoloured, and
all earlier coloured edges contain no cycles, our colouring remains acyclic.

To show that the algorithm terminates, we must keep a record such that at each step i, the
record until step i together with the partial colouring ϕi is enough to uniquely determine the first
i entries f1, f2, ..fi of our randomly chosen input vector F . We define for our record a vector R
having t entries, one added at each step of our algorithm as follows. If, at step i, an edge ej was
coloured without issue and no cycle was created, the record Ri is left empty. In the case that
a cycle was created we record the cycle as follows. Suppose a cycle of length 2k was created,
C = ei1 , ei−2, ...ei2k , ei1 , with ei1 = ej . Since there is a finite number of cycles of length 2k con-
taining ej , (at most (∆−1)2k−2)), we can fix an order on these cycles C1, C2, ...Cs. If our coloured
cycle is, say, Cl for 1 ≤ l ≤ s we enter it in our record vector as the pair (k, l): the lth cycle of
length 2k according to our ordering.

Our record R will be used to determine our input F . Below we show that this is valid, i.e.
that F can be determined using R
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4.2 Determining the Input from R

We will now show that the pair (R,Φt) consisting of the record vector and the partial colouring
at time t are enough to uniquely determine the input vector F .

Lemma 1: At each step i, the set of uncoloured edges is uniquely determined by the R1, R2, ...Ri

Proof: Let Xi be the set of uncoloured edges after step i. We prove the lemma by induction on
i

1. Base Case: X1 is simply the set of all edges except e1, so X1 can be determined from R1

2. Induction Hypothesis: We suppose Xi−1 is uniquely determined by R1, R2, ...Ri−1

3. Induction Step By induction, Xi−1 is determined, and since edges are coloured in order of
their index, Xi−1 = {ej , ej+1,...em} for some j. If our record for this step, Ri is empty, then
ej is coloured and Xi = Xi−1 \ ej . Otherwise Ri = (k, l), and we know the lth cycle Cl of
length 2k containing ej was uncoloured (except for two edges which are determined by our
algorithm). So Xi = Xi−1

⋃
(Cl \{ei2 , ei3}). In either case the set X is uniquely determined.

Lemma 2: At each step i the application defined by our algorithm, i.e. the application that
assigns to each input (Fj)j≤i to the outputs ((Rj)j≤i,Φi) is injective. Alternatively, our input F
is uniquely determined by the pair (ΦR).

Proof: We again use induction on i. Let Φi, (Rj)j≤i

1. Base Case: For i = 1, only one edge is coloured, so the colour on this edge is the first entry
f1.

2. Induction Hypothesis: Assume (Fj)j≤i uniquely determined by ((Rj)j≤i,Φi).

3. Induction step: By Lemma 1 we can determine sets of uncoloured edges Xi and Xi−1,
from which we obtain the particular edge ej which is coloured at step i. First assume Ri is
empty. Then from Φi we simply uncolour ej to obtain Φi−1. Then since we know (Rj)j≤i−1

and Φi, by our induction hypothesis we can determine (fj)j≤i−1, and we need only find
fi. Let c ∈ 1, 2, ...K be the colour assigned to ej in Φi, and a be the number of colours
disallowed by our algorithm at step i which are smaller than c, i.e. the number of elements
#{s ∈ S′|s < c}. We obtain our colour c by taking the fith free colour, that is starting
at i and counting fi steps, skipping all taken colours, we have c = f1 + a. Since c and
a are known, we can find f1 = c − a. So (fj)j≤i is determined. Now assume Ri is (k, l).
Then from our record know the exact cycle uncoloured at step i, Cl = (ei1 , ei2 , ...ei2k), with
ej = ei1 . Since Cl is two coloured, we know every odd indexed edge ei5 , ei7 , ...ei2k−1

, was
previously coloured with the same colour as ei3 which we recall was left coloured, and every
even indexed edge ei4 , ei6 , ...ei2k was previously coloured with the same colour as ei2 . So, to
obtain ϕi−1 we simply recolour these edges. By our induction hypothesis we can determine
(fj)j≤i. We also know that ej received the same colour as the odd edges, as in our cycle
ej = ei1 , so we can obtain fi = c−a as above. In both cases we have determine (fj)j≤i from
(Φi, (Rj)j≤i), and we can conclude our assignment is injective.

We now define the set F as the set of all possible inputs. As noted before, the elements of f
are in {1, 2, ...⌈γ(∆ − 1)⌉}, so the number of all choices for F is |F = |⌈γ(∆ − 1)⌉t. We denote
by Ft the set of all inputs such that our algorithm fails to terminate by time t, that is the set of
inputs such that the graph is not coloured by time t. By definition, we have Ft ≤ F , meaning

Ft ≤ ⌈γ(∆− 1)⌉t
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If we can prove that the number of records is o(⌈γ(∆ − 1)⌉t), that is if our set of all possible
records R is such that

lim
t

→ ∞ |Ft|
⌈γ(∆− 1)⌉t

→ 0 as t→ ∞

Then there must initial vector F such that the algorithm does terminate, for t large enough, in
other words, that an acyclic colouring exists.

4.3 Bounding |Ft|
Now we let Rt be the set of all possible records up to time t. As we have just proven, any F can
be uniquely determined from Φ and Rt. This means that |Ft| is less than the number of possible
colourings times the number of possible records by time t. An obvious upper bound for the number
of possible partial colourings using K colours is (K + 1)m: m edges with (K + 1) choices for each
edge, K colours and an option for uncoloured. This proves our next lemma.

Lemma 3: |Ft| ≤ (K + 1)m|Rt|

Since (K + 1)m does not depend on t, it is enough to find a sufficient bound for |Rt| to show
that |Ft| ≤ |F|. To do this we will need a few tricks, namely to translate our record vectors into
Dyck words, and then rooted trees, for which a bound is available.

Our non-empty record entries (k, l) refer to a unique cycle of length 2k containing ej , which
is the uncoloured edge of smallest index at step i. Since ∆ is the maximum vertex degree, so for
each consecutive edge in the cycle there will be at most ∆− 1 choices for the next edge, and since
the first edge is determined as ej , and the last edge must be whichever leads from the second-last
edge to ej , we have at most 2k − 2 such choices. This gives us an upper bound on the number of
cycles of length 2k containing ej , and our cycle is Cl for l ≤ (∆− 1)2k−2. We will now attempt to
find an injection between Rt and Dyck words of length 2t.

We consider our cycles as a word w = w1, w2, ...w2k−2 of length 2k − 2 on the alphabet
A = {1, 2, ...∆− 1}, where each wj represents the jth edge in a cycle, and define the function

θk(w) = 1 +

2k−2∑
i=1

(wi − 1)(∆− 1)

This function has range in {1, 2, ...(∆− 1)2k−2} and establishes a bijection between these integers
and the words of length 2k − 2. Note any bijection will do, this one is chosen for simplicity. In
particular, we can take a number l in 1, 2, ...2k−2 and by taking the inverse θ−1(l) we can find the
word that produces it, so using θ−1 we can use the index of our cycle Cl to find the the deleted
edges.

Now let’s take a record R ∈ Rt. Define the following sequence of words R∗ = (R∗
i )i≤t on the

alphabet A∗{0, 1, 2, ...∆ − 1}. If Ri is empty, R∗
i = 0,. If Ri − (k, l) then R∗

i is zero followed
by θ−1(l). A zero represents an edge coloured, and a positive integer represents an edge being
uncoloured, so every word in the sequence begins with a zero, since an edge must be coloured to
complete a cycle before the cycle is uncoloured. We then concatenate the sequence of words R∗

into a single word R•, and finally convert this to a word R◦ on {0, 1} by setting R◦
i = 0 if R•

i = 0
and R◦

i = 1 if R•
i is a positive integer. Taking for example ∆ = 4 and t = 10, this should look like
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the following

R = (∅, ∅, ∅, ∅, ∅, (3, 4), ∅, ∅, ∅, (3, 15))
R∗ = (0, 0, 0, 0, 0, 01211, 0, 0, 0, 03221)

R• = (000000121100003221)

R◦ = (000000111100001111)

Now we have that R→ R∗ is a bijection since θ−1 is bijective, and R∗ → R• is injective, because
each word in R∗ begins with a zero and has no other zeroes. Then R → R• must also be an
injection.

Recall that a partial Dyck word is a word w on {0, 1} such that any prefix, that is a subword
w′ = w1, ..wk consisting of the first k letters in w,, has at least as many zeroes as ones. A Dyck
word of length 2t is a partial Dyck word with exactly t zeroes and ones, and a descent in a Dyck
word is a maximal sequence of consecutive ones. Our next lemma shows that R◦ is a partial Dyck
word.

Lemma 4: For any R ∈ Rt, the word R◦ as defined above is a partial Dyck word with t zeroes
and t− r ones, where r is the number of coloured edges after step t. Moreover, all descents in R◦

and if every cycle in G has length at least 2l+1 for some l ≥ 1 then all descents in R◦ have length
at least max{4, 2l}

Proof: Reading from left to right, every zero in R◦ represents an edge being coloured and every
one represents an edge being uncoloured. In fact, since we uncolour all edges of a cycle except
2, each uncolouring event uncolours 2k − 2, meaning each word in R∗

i is either zero or becomes a
subword zero followed by 2k − 2 ones, meaning it can be written 012k−2 for k ≥ 1, where k = 1
means the edge was coloured without issue and k > 1 means 2k−2 edges where uncoloured. Since
of course we can not uncolour more edges than were originally coloured, any prefix must contain
more zeroes than ones, meaning R◦ is a Dyck word. Assume now that all cycles in G have length
at least 2l + 1. Then all even cycles have length at least 2l + 2. Since our algorithm forces even
cycles to be even and have length at least 6, it follows that every descent in our Dyck word has
length at least max(4, 2l).
Recall that R → R• as defined above is injective and each element in R• takes a value R•

i ∈
{1, 2, ...∆ − 1}. This means any R◦ with t − r ones is the image of at most (∆ − 1)t−r record
vectors R, in other words the preimage of R◦ under R → R◦ has at most (∆ − 1)t−r vectors R.
Let R◦

t = {R◦|R ∈ Rt} be the set of partial Dyck words attainable from records R ∈ Rt under
R→ R◦. So each R◦ has at most (∆− 1)t−r choices for R, and using this and the fact that R◦ is
a partial Dyck word with no more ones than zeroes, we know that

|Rt| ≤ (∆− 1)t|R◦
t |

Subbing this into our bound in lemma 3 then gives us our next lemma

Lemma 5: |Ft| ≤ (K + 1)m(∆− 1)t|R◦
t |

This means bounding |Ft| becomes the more manageable problem of bounding the number of
partial Dyck words |R◦

t |. In fact we can make this easier, since we can show that Dyck words and
partial Dyck words are almost equivalent as long as the difference r between ones and zeroes in
the partial Dyck words is not too large (Note the similarity to Lovasz). As will be shown later,
the difference r can be at most m−1 where m is the number of edges in G, since only m−1 edges
can be coloured without terminating the algorithm.
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Since “true” Dyck words are easier to count, we use the following lemma to bound the number
of partial Dyck words by the number of Dyck words of a slight longer length.

Lemma 6: Let t and r ≤ t be integers, and let E ̸= {1} be a nonempty set of positive integers.
Denote by Ct,r,E be the number of partial Dyck words having t zeroes, t − r ones and descents
having lengths in E. Similarly denote by Ct,E the number of Dyck words having t zeroes and ones
and lengths in E. Then Ct,r,E ≤ Ct+r(s−1), where s = min{E \ {1}}.

Proof: We can define an injective function from the set Dt,r,E of partial Dyck words with t
zeroes and t − r ones to Dt+r(s−1),E of Dyck words with t + r(s − 1) ones and zeroes. Define
ψ : Dt,r,E → Dt+r(s−1),E as follows; for each word in Dt,r,E we add r(s− 1) zeroes followed by rs
ones. Then we are left with a Dyck word of length 2(t+ r(s− 1)). Since ψ is an injection, we have
|Dt,r,E | ≤ |Dt+r(s−1),E |, or in other words Ct,r,E ≤ Ct+r(s−1).
Now we are left with the much easier problem of determining asymptotics for Ct,E , since we are
interested in how the sequence (Ct,E)t grows in t. We can do this by finding a bijection between
Dyck words and better-known structures. Our next lemma gives a bijection between Dyck words
and Rooted Plane Trees.

Lemma 7: The number Ct,E of Dyck words of legnth 2t and all descents in E is equal to the
number of rooted plane trees on t+ 1 vertices such that the degree of each vertex is in E.

Proof: We show that there exists a bijection between the following three objects

1. Rooted plane trees on t+ 1 vertices such that the degree of each vertex is in E ∪ {0};

2. Dyck words of length 2t, in which the length of any maximal consecutive sequence is in E;

3. Dyck words of length 2t such that the length of each descent is in E.

First we show there is a bijection between 1 and 2. By definition of a rooted plane tree, there is
one vertex designated as the root, and each vertex is given an index (i, j) where i is the depth, de-
noting the “generation” or distance from the root, and j is the jth vertex in the given generation,
according to some ordering. A depth-first search is an algorithm that runs over the vertices by
following each path to its end before moving on to another. That is, it begins at the root (0, 0),
progresses through (i, 0) until the end, say k, then moves on to (k − 1, 1) etc. moving backwards
up the subtrees of each branch beforing moving on to the next, as shown below (show diagram).
We take a tree T as in 1. and through a Depth First search and define a word w as follows: For
every vertex in T with i children we encounter we add i zeroes followed by a 1, ignoring the very
last vertex in our search. This algorithm assigns a one and a zero to each vertex except the last
so w has exactly t zeroes and t ones, and since it is a depth first search each vertex that is not at
the end of a path is followed by one of its children, and because zero is assigned to a vertex when
it’s parent is encountered the zeroes are assigned first, meaning every prefix will have more zeroes
than ones. We conlude w is a Dyck word and since the algorithm runs on all t + 1 vertices save
the last, it is a Dyck word of length 2t. Moreover, since the degrees of T are in E, each maximal
sequence of consecutive zeroes is in E.

Now we show that there is a bijection between 2. and 3.. We simply take the mirror of the
word, that is reorder the elements from last to first, and then switch all the zeroes to ones. What
remains is a Dyck word with all sequences of consecutive ones in E, i.e. with all descents in E.

Now that we have shown the above correspondence, we estimate Ct,E by counting on rooted
trees. In Esperet and Parreau’s paper, this is done using a method from [2]. For more detail on
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this method we recommend this paper along with [5]. First, we denote by XE(z) the ordinary
generating function associated with trees on t + 1 vertices such that the degree of each vertex is
in E ∪ {0}. As defined in 4 the ordinary generating function for the number set P is

P (x) =

∞∑
n=0

pnx
n

Where pn denotes the number of such trees on n nodes. By our previous lemma the number of
trees with vertex degrees in E ∪ {0} on t + 1 nodes is Ct,E for each t . So using our generating
function as defined above this becomes

XE(z) =

∞∑
t=0

Ct,Ez
t+1 = z

∞∑
t=0

Ct,Ez
t

However, a rooted tree as described above must be either the root, or the root together with a
sequence of i smaller rooted plane trees, each with vertex degrees in E. The generating function
above can then be written as a sum of generating functions of these smaller trees as follows

XE(z) =

∞∑
t=0

Ct,Ez
t+1 = z

∞∑
t=0

Ct,Ez
t = z(1 +

∑
i∈E

XE(z)
i)

If we let ϕE(x) = 1 +
∑
i∈E x

i this becomes

XE(z) = zϕE(XE(z))

We now use a theorem 5 from [2]:

Theorem 5, Drmota: Let R denote the radius of convergence of ϕ(t) and suppose there exists
τ with 0 < τ < R that satisfies τϕ′(τ) = ϕ(τ). Set d = gcd{j > 0|ϕj > 0}. Then

yn = d

√
ϕ(τ)

2ϕ′′(τ)

ϕ′(τ)n

n
3
2

(1 +O(n−1)) if (n ≡ 1 mod d)

and yn = 0 if n ̸≡ 1 mod d.

Here yn denotes a weighted number of trees on n vertices. We can use this result to bound Ct,E .
First we observe that for any nonempty set E ̸= {1}, all the coefficients of ϕE are nonnegative
and ϕE(x) is not linear in x. Our next lemma is a corollary of the theorem given above.

Lemma 8: Let E ̸= 1 be a nonempty set of nonnegative integers such that the equation ϕE(x) =
xϕ′(x) has a solution x = τ with 0 < τ < R where R is the radius of convergence of ϕE. Then τ
is the unique solution of the equation in the open interval (0, R). Moreover there is a constant cE
such that

Ct,E ≤ cEγ
tt−

3
2

where γ = ϕ′E(τ) =
ϕE(τ)
τ

We have at last obtained a bound on Ct,E and therefore on |Ft|, and we can now show the
main result.
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Theorem 1: Let l ≥ 1 be a fixed integer and let k = max(2, l). Then the polynomial P (x) =
(2k−3)x2k+2+(1−2k)x2k+x4−2x2+1 has a unique root τ in the open interval (0, 1). Moreover
every graph with maximum degree ∆ and girth at least 2l + 1 has an acyclic edge colouring with

at most ⌈(2 + γ)(∆− 1)⌉ colours, where γ = (τk−τ2+1)
τ−τ3

Proof: Recall E represents the length of descents, therefore the lengths of uncoloured cycles,
and these must be even and have length at least max(4, 2l) (see Lemma 4), so we first let let
E = 2N+ 2k. Then for ϕ defined as above we use the formula for the geometric series,

ϕE(x) = 1 +
∑
i∈E

xi

= 1 +

∞∑
i=k

x2i

= 1 +
x2k

1− x2

noting the radius of convergence is 1
The derivative is then

ϕ′E(x) =
2kx2k−1 − (2k − 2)x2k+1

(1− x2)2

and the characteristic equation is

ϕE(x)− xϕ′E(x) = 0

1 +
x2k

1− x2
− x

2kx2k−1 − (2k − 2)x2k+1

(1− x2)2
= 0

which reduces to

(2k − 3)x2k+2 + (1− 2k)x2k + x4 − 2x2 + 1 = 0

We recognise this is P (x) = 0. ϕE is (0, 1) because we used the geometric series, and since P (0) = 1
and P (1) = −2 the polynomial has a root τ in the open interval (0, 1). This is the unique root in
(0, 1) as outlined in Lemma 8.

Lemma 8 also gives us a constant cE which we can use to bound the number of rooted plane
trees Ct,E , and gives us an expression for γ in terms of τ

Ct,E ≤ cEγ
tt−

3
2

where

γ = ϕ′E()t =
ϕ′E(τ)

τ
=

(τ2k − τ2 + 1)

τ − τ3

Remember to prove the theorem we are trying to show that there exists an input vector
F ∈ {1, 2, ...γ(∆ − 1)t} such that the algorithm terminates by time t, in which case an acyclic
colouring has been found. This can be proven by showing that for t large enough the number of
inputs which fail to terminate is strictly less than the number of inputs in total,

|Ft| < |F|

Now, for a graph onm edges, Lemma 5 states that the number of inputs is bounded by the number
of possible colourings on m edges, times the number of partial Dyck words obtainable from our
records as described in lemma 4.

|Ft| ≤ (⌈(γ + 2)(∆− 1)⌉+ 1)m(∆− 1)t|R◦
t |
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Now we note that for any records R1, R2 ∈ Rt, the number of zeroes and ones in each prefix of
R◦

1, R
◦
2 differ by at most m − 1, because there are m edges in the graph so at most m − 1 edges

can be coloured at each step of the algorithm. Now by Lemma 4, any record R is transformed by
Rt → R◦

t into a partial Dyck word with t zeroes and t− r ones. Lemma 6 states that the number
of these can be bounded by the number of dyck words as follows

Ct,r,E ≤ Ct+r(s−1), where s = min{E \ {1}}

Now, recall that E = 2N + 2k, so s = minE \ 1 = 2k. moreover since r can take values only up
to m− 1, we can sum over the above bound for each r to conclude

|R◦
t | ≤

m−1∑
r=1

Ct+r(2k−1),E

Using Lemma 8 this becomes

|R◦
t | ≤

m−1∑
r=1

cEγ
t+r(2k−1)(t+ r(2k − 1))−

3
2

If we take c′E = cE/(γ
2k−1 − 1), after some work this reduces to

|R◦
t | ≤ c′Eγ

t+m(2k−1)(t)−
3
2

Subbing this into our bound for Ft we have

|Ft| ≤ (⌈(γ + 2)(∆− 1)⌉+ 1)m(∆− 1)tc′Eγ
t+m(2k−1)t−

3
2

We can now consolidate terms that are constant in t into a single constant M

|Ft| ≤M(∆− 1)tγtt−
3
2

and note that the ceiling function gives us ⌈γ(∆− 1)⌉ ≥ γ(∆− 1), so we have

|Ft|
⌈γ(∆− 1)⌉t

≤ Mγt(∆− 1)tγtt−
3
2

⌈γ(∆− 1)⌉t

Observe that the expression on the right is decreasing in t this means that asymptotically we have

lim
t→∞

|Ft|
⌈γ(∆− 1)⌉t

= 0

So there is some t′ such that for all t > t′ we have

|Ft| < ⌈γ(∆− 1)⌉t

Now recall that our input F is in {1, 2, ...⌈γ(∆− 1)⌉}t, so there are ⌈γ(∆− 1)⌉t choices for F , and

|Ft| < |F|

We conclude that the set of input vectors such that our algorithm fails to find an acyclic
colouring less than the set of all possible inputs, which directly implies there is an input which
achieves a colouring in K = ⌈(γ + 2)(∆− 1)⌉ colours.
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4.4 Bounds on a′(G)

As a final corollary we show that the acyclic chromatic number a′(G) can be bounded above by
4(∆ − 1). Note that the minimum girth of a graph of interest is three, since this is the shortest
possible cycle length. For a graph of this type k = max(2, l) = 2, so E becomes 2N+ 4. Subbing
k = 2 characteristic polynomial

P (x) = (2k − 3)x2k+2 + (1− 2k)x2k + x4 − 2x2 + 1

= x6 − 2x4 − 2x2 + 1

The unique root of P (x) = 0 in the radius of convergence (0, 1) is then

τ =

√
5− 1

2

and using the formula for γ we find

γ =
(τ4 − τ2 + 1)

τ − τ3

= 2

subbing this into K we find

K = ⌈(γ + 2)(∆− 1)⌉
= 4(∆− 1)

and since any graph has girth at least three, this holds for all G. Note that if the girth is known
this bound can be improved.

5 Discussion and Conclusion

The method is versatile, being applicable to any case where the local lemma applies, as well as
offering a strategy for Las Vegas algorithms in general. As we hope our examples have shown,
this versatility extends not only as far as applications but in the strategies themselves. Comput-
ing the entropy itself is rarely necessary (or possible!) and the heart of the method lies in the
objects which are randomly encountered as, at each step, our algorithm makes a new choice. The
method encourages us to think abut the true nature of the dependencies we are mapping without
being bound to whichever representation we use at first, and to nimbly switch between different
structures which encode the same information. For example, in the proof of the local lemma we
used randomly generated witness trees to limit the expected runtime, in our treatment of acyclic
colouring we defined Dyck words using the record to bound the size of non-successful histories, and
other papers have even more varied tricks to find how much entropy we read from our algorithm.
Indeed, each application requires a unique solution and requires us to think about the problem in
terms of the steps our algorithm can take. Using objects in this context helps to gain a stronger
intuition about the relationships they represent.

This technical breadth is matched by a theoretical depth afforded by the idea of entropy
compression itself. All of these varied processes produce a flow of information as a byproduct,
and even when it is not explicitly read it can be a determinant of the process itself. As in many
particularly elegant results in mathematics, the immediate is determined by the abstract.
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