
Deterministic and Probabilistic
Complexity of Mean Payoff Games

Abstract. In this thesis, we consider three computational problems on mean payoff games on

weighted digraphs: (1) finding winning positions, (2) computing characteristic values, and (3)

determining optimal strategies. We give a detailed analysis of the relations between (1), (2), and

(3). These three problems are discussed from multiple perspectives following several strategies

to develop faster methods, one of which selects candidate positional strategies and provides

additional edges by means of reachability between cycles. We provide limiting examples for

all methods. Additionally, for a fixed number of vertices, we prove that Zwick and Paterson’s

algorithm to determine the winning positions runs in O(logM) time with error probability going

to zero as M goes to infinity, where M is the maximum of the absolute values of the weights.

Keywords — mean payoff games, reachability games, P vs. NP, parity games, two-player games

University of Groningen

Master Thesis Mathematics

July 13, 2022

Student: Robert Modderman

First supervisor: prof. dr. O. Lorscheid

Second supervisor: prof. dr. D. Grossi

Acknowledgements

A full year of doing a master’s project has come to an end, and finalizing this work also marks the end

of eight wonderful years I’ve had as a student at the University of Groningen. An era which I started off

as a first year student Applied Physics I am now closing off with a master thesis in Mathematics. A vast

amount of people are co-responsible for the completion of this work. Some directly, others more indirectly.

Here, I’d like to take a moment to thank all of those people.

First and foremost, I wish to thank my supervisor, Oliver. I’d like to thank him for coming up

with this fascinating problem that has very intensely kept me busy for the past year. I’d also like to

thank him for both seeing potential in ideas I came up with myself and, at the same time, for seeing the

necessity to get other tasks done as well. Most of my gratitude towards Oliver, however, is due to his

overall guidance of the process of the past year and his patience therein.

I would also like to thank my second supervisor, Davide, for his interest in the topic, for philosophizing

about complexity classes several subproblems might or might not lie in, and for coming up with useful

tools to analyze complexity of algorithms.

Second, I’d like to thank a couple of study friends with whom I’ve been working together in the

final project room for Mathematics on the second floor of the Bernoulliborg for the greatest deal of time

in the year ’21–’22. Specifically, I would like to thank Emile, Jeroen, Manoy, Oscar, Robbert, Ruben,

and Sven. For the interesting discussions we’ve had, for occasionally doing some mathematics on the

whiteboard that sometimes was very serious and sometimes very recreational, for a spare game of chess,

and the like. A special shout-out to Jeroen for coming up with a very practical tool to typeset graphs in

LATEX– you have saved me a lot of time. Another shout-out is to Robbert, for his willingness to proofread

my draft version – even though in the end I never came to send my draft version to him.

Next, I’d like to thank a couple of friends I’ve met at this university, ranging from those whom

I’ve known since the dawn of time in 2014 up to those whom I’ve only met in the past year. Specifically,

I’d like to thank Robbert (once again), Gijsbert, Hans, Pieter, Aoibhin, Vladimir, Oluchi, Diana, and Luca.

Thank you for having made my days of the past years extra bright, and for occasionally – without knowing

– giving me that extra bit of motivation in life in general as well as for completing this thesis.

Furthermore, a sincere thank you to all people who were present at the final presentation of my

thesis. This event marked the end of my time as a student, and I feel grateful towards those who took

the effort to be present and to share that moment.

I wish to thank my family for always being there. Specifically, I wish to thank my parents and

my sister. Finally, I’d like to thank two close friends of mine whom I’ve met outside academic contexts –

Yannick, and Ziad. I’d like to thank both for being good friends.

Dankjulliewel — Robert Modderman, Groningen, Wednesday July 13, 2022

ii

Contents

Acknowledgements ii

Notation v

Introduction 6

1 Preliminaries 9

1.1 Sequences . 9

1.2 Real Analysis . 9

1.3 Complexity Analysis . 11

1.4 Graph Theory . 12

1.5 Reachability . 14

2 Mean Payoff Games 16

2.1 Winning Criterion for Mean Payoff Games . 16

2.2 Positional Strategies . 16

2.3 The Three Main Problems on Mean Payoff Games . 18

2.4 Two Classical Approaches . 18

2.4.1 Approach I: n · 2O(|E|) time . 19

2.4.2 Approach II: O(n3 · |E| ·M) time . 21

2.5 Finite Values . 22

3 Karp’s Algorithm 25

3.1 Three Problems on Cycle Means . 25

3.2 Karp’s Algorithm . 26

4 Complexity Reduction 28

4.1 Edge Deletion . 28

4.2 Finite Values Revisited . 33

4.3 Derived Mean Payoff Games . 34

5 Probabilistic Complexity of Problem (1) 38

5.1 Counting Weighted Digraphs . 38

5.2 The Probabilistic Speed-Up of Algorithm 4 . 39

6 Discussion and Conclusion 43

6.1 Discussion of Results . 43

6.2 Suggestions for Further Research . 43

6.2.1 The Potential of Problem (1) Lying in P . 43

6.2.2 The Potential of Problem (2) Lying in P . 44

6.2.3 Improving Bounds . 44

6.3 More on Probabilistic Complexity Classification . 45

6.4 Conclusion . 45

iii

Appendices 46

A Implementations of Main Algorithms in PARI/GP 47

B Auxiliary Functions in PARI/GP 53

C Various mean payoff games in PARI/GP 58

iv

Notation

Below, we introduce the most important notational conventions.

Logic

[ϕ] for a propositional formula ϕ, [ϕ] = 0 if ϕ is false and [ϕ] = 1 if ϕ is true

[ϕ,A,B] A if ϕ is true and B if ϕ is false, for any objects A,B

¬ϕ the negation of a propositional formula ϕ

Sets and maps

⊂, (, t subset, strict subset, and disjoint union, respectively

|X| the cardinality of a set X

|x | the length of a vector x

A× B the Cartesian product of two sets A and B

Xn the n-fold Cartesian product of the set X with itself

x1 · · · xn short-hand for (x1, . . . , xn) ∈ Xn where X is any set

Y X the set of maps f : X → Y where X, Y are sets

f t g for f : X → Y and g : Z → W with f |X∩Z = g|X∩Z , the map sending

a ∈ X ∪ Z to f (a) if a ∈ X and to g(a) if a ∈ Z
A the set A ∪ {±∞}
R the set of real numbers

N the set of positive integers

[n] the set {i ∈ N : 1 6 i 6 n} where n ∈ N

Real analysis

lim inf, lim sup limit inferior and limit superior, respectively

inf, sup infimum and supremum, respectively

bxc, dxe for x ∈ R, max{n ∈ Z : n 6 x} and min{n ∈ Z : n > x}, respectively

‖x‖p the p-norm of a vector x ∈ Cn: ‖x‖p := (
∑n
i=1 |xi |p)1/p, where p ∈ [1,∞)

‖x‖∞ the infinity norm or maximum norm of x ∈ Cn: max16i6n |xi |
Graphs

V (G), E(G) the vertex- and edge set of a graph G

t(e), h(e) the tail and head of an edge e of a graph, respectively

vS, Sv the sets {vw : w ∈ S} and {uv : u ∈ S} ⊂ V × V , where v ∈ V and S ⊂ V
N−(v), d−(v) the set of in neighbours and the in degree of v ∈ V (G), respectively

N+(v), d+(v) the set of out neighbours and the out degree of v ∈ V (G), respectively

S∗ for S ⊆ V (G) for a graph G, the set {v ∈ S : d+(v) > 0}
R the least nonzero distance to zero of the mean weight of a directed cycle

∆m the least nonzero distance between mean weights of directed cycles

We set a few other conventions. To the empty sum we assign the value zero, and to the empty product

the value one. The maximum of the empty set is max∅ = −∞, and the minimum of the empty set is

min∅ = +∞.

v

Introduction

A mean payoff game on an edge-weighted, finite directed graph (G,µ) where µ : E(G) → R, with par-

tition1 V (G) = V− t V+, is a two-player game on (G,µ) starting at a particular vertex v ∈ V (G). Two

players, Min and Max2, construct a path, where each next edge is determined by the player who owns the

vertex the most recent edge ended in. Here, V− is Min’s collection of vertices and V+ is Max’s collection

of vertices. As a function of these weights, to such paths we can assign scores in a certain way. Min’s

objective is to minimize this score, whereas it is Max’s to maximize.

To any path σ, we assign values χ−(σ) and χ+(σ) as follows:

• if σ is finite, then we set χ−(σ) = χ+(σ) = −p · ∞ if player p owns the final vertex of σ, where

either p = − (Min) or p = + (Max);

• if σ is infinite, then we define

χ−(σ) := lim inf
n→∞

1

n

n∑
i=1

µ(σi) and χ+(σ) := lim sup
n→∞

1

n

n∑
i=1

µ(σi)

where σi is the i-th edge of σ, for i ∈ N.

If a game starts at a vertex v from which a path σ is constructed, then we say that Min wins if χ+(σ) < 0,

that Max wins if χ−(σ) > 0, and that Min and Max achieve a draw if χ−(σ) 6 0 6 χ+(σ). In this thesis,

along with two fundamental papers [8] and [10], we restrict our attention to digraphs with integer weights.

It has been shown in [8] that for every vertex v , there exists a value χ(v) ∈ R := R ∪ {±∞} such

that Min has a strategy ensuring χ+(σ) 6 χ(v) for every path σ following that strategy, irrespective of

Max’s choices of moves, and that Max has a strategy ensuring χ−(σ) > χ(v) in a similar fashion. From

here onward, we always assume that Min and Max play optimally, and hence that χ−(σ) = χ(v) = χ+(σ)

for every optimal path σ starting at v . It was furthermore shown in [8] that Min and Max can ensure

these inequalities using positional strategies: that is, independent of the starting vertex, each next move is

predetermined in a memoryless fashion and hence only dependent on the graph data. Positional strategies

ensuring these inequalities are said to be optimal.

In this setting, three main computational problems on mean payoff games have been formulated and

studied. We list them in ascending order of apparent difficulty:

(1) deciding who wins at which starting vertices: “The Decision Problem”,

(2) computing the values χ(v) for v ∈ V (G): “The Value Finding Problem”,

(3) determining optimal positional strategies for both players.

The fact that a solution to the second problem immediately gives a solution to the first is apparent from

the fact that the situations that Min wins at v , Min and Max achieve a draw at v , and Max wins at v ,

align with the possible outcomes −, 0,+ of the sign of χ(v), respectively. Furthermore, the values χ(v)

1The graph need not be bipartite with respect to this partition
2Alternatively, these players can be called players minus (−) and plus (+), respectively

6

can be efficiently computed from optimal positional strategies. This fact was implicitly agreed upon but

is formally proven in this thesis.

What makes mean payoff games interesting from a complexity-theoretic point of view is that the problem

of finding the winning positions resides in NP∩co− NP [12, Thm 4.2] but is not known to be in P. Hence,

this problem is a candidate to break the P vs. NP conjecture, which asserts that the complexity classes

P and NP coincide: P = NP. This fact has been more than enough reason for many mathematicians

and computer scientists to try to find efficient algorithms to the third problem or to prove that efficient

algorithms to one of the first two (or three) problems do not exist.

The complexity of mean payoff games can be made more precise. There are two main parameters of

interest, namely the number of vertices n and the integer M, which is taken to be the maximum among

the absolute values of the weights and is called the weight size. Worst-case running times are given in

big-O notation O(f (n,M)), where f : N × N → R>0. Occasionally, the number |E| of edges is taken

into consideration in running time analyses. However, as |E| = O(n2) for digraphs for which between two

vertices there are at most two edges (one in the one and one in the other direction, at the very most),

the number |E| is often discarded. The reason lies in the fact that an algorithm on mean payoff games is

seen as polynomial-time whenever it is polynomial in n and logM, and is seen as pseudo-polynomial (in

M) if the running time dependence on M is polynomial in M.

One of the best deterministic algorithm sfor the decision problem stems from [12, Thm. 2.4], and

runs in O(n4 ·M) time, and is fully incorporated in Algorithm 4. In Section 5 we prove that for fixed n,

any function h(M) of M ∈ N satisfying3 h(M) = ω(1) has the property that Algorithm 4 terminates in

O(h(M)) time with probability approaching one as M → ∞. Here, this probability is taken with respect

to selecting mean payoff games on n vertices uniformly at random. A similar result potentially holds for

one of the best known algorithms that compute the values of mean payoff games, as argued in Section 6.

The core observation responsible for this probabilistic result is the following. We let R denote the mini-

mum of the mean weights of all directed cycles with nonzero weights in a weighted digraph. We prove in

Section 2 that Algorithm 4 terminates with absolute certainty in O(h(M)) steps for a mean payoff game

played on a weighted graph whose value of R is at least M/h(M). The observation then is that upon

selecting weighted digraphs on n vertices uniformly at random, the probability that a weighted digraph

has a value of R of at least M/h(M) goes to one as M → ∞. In Section 6 we argue that a similar

probabilistic speed-up potentially holds for the algorithm described in [12, Thm. 2.3] that solves the value

finding problem. For this problem, not the quantity R but the quantity ∆m will likely be relevant, where

∆m is defined to be the least nonzero difference between mean weights of directed cycles.

The hardest problem however, that of finding optimal positional strategies, did not allow for such prob-

abilistic speed-up. The reason that we were able to do these speed-ups for problems (1) and (2) lies in

the fact that Algorithm 4 is an approximation algorithm. Since on a mean payoff game all characteristic

3That is, h(M)→∞ as M →∞

7

values are in a set of the form A = A ∪ {±∞} where A ⊂ Q is finite, [12, Thm. 2.2] (or, phrased

slightly differently, Theorem 2.14) implies that the approximation in the algorithm involved terminates to

succesfully find the exact values. For the problem of finding optimal strategies, which is unlike the other

two problems even exponential in n (but polynomial in logM), no algorithm that might terminate earlier

with some (small) error rate is known.

In Section 4 we discuss some deterministic methods that might have potential in some instances. Specif-

ically, we utilize the concept of derived mean payoff games as defined in Definition 4.13 as a means to

reduce the complexity of the mean payoff game in question (specifically, the numbers n and M) while

keeping winning positions invariant.

Throughout this thesis, the adjective “efficient” is often used to classify algorithms with respect to

running time. This is not a formal definition, yet an algorithm being efficient can be understood as the

algorithm terminating in polynomial running time with respect to all complexity parameters involved.

8

1 Preliminaries

In this section we start with a review of the most important concepts and tools in the analysis of sequences

and real numbers. Next, we briefly review the fundamentals of algorithmic complexity theory. At the end

of this section, since mean payoff games are two-player games on finite weighted directed graphs, we

review the basics of graph theory as well as those of general two-player games on directed graphs.

1.1 Sequences

A sequence is an infinite list of objects x = (x1, x2, x3, . . .), and a vector of length n ∈ Z>0 is a finite

list of objects x = (x1, x2, . . . , xn). We also define the empty vector (), which is taken to be the unique

vector of length zero. Typically, a sequence will be indexed by the set of positive integers N or by a subset

thereof of the form {r, r + 1, . . .} where r ∈ N. A sequence is often seen as function from its indexing set

to (a superset of) the set of its members. Similarly, a vector of length n is often seen as a function from

[n] := {1, . . . , n} to (a superset of) the set of its members.

Given a sequence x and vectors y and z of lengths n,m ∈ N, respectively, we can form the concate-

nations yx and yz , where yx is the sequence defined by (y1, y2, . . . , yn, x1, x2, x3, . . .) and yz is the vector

of length n + m defined by (y1, y2, . . . , yn, z1, z2, . . . , zm). Note that we can always pre-concatenate a

vector with a sequence, but not post-concatenate. Furthermore, two vectors can always be concatenated

with one other in any order, and two sequences cannot be concatenated with one another at all.

Next, we are in place to take a look at two very special types of sequences, called periodic sequences

and eventually periodic sequences. A sequence x is said to be periodic if it is of the form yyy · · · where y

is a vector of length L. The smallest such L is called the period length of x and the vector y is called the

period of x . A sequence is said to be eventually periodic if it is of the form yz where y is a vector and z

is a periodic sequence. The shortest such y is called the tail of yz . The eventual period length and the

eventual period of yz are defined to be the period length and the period of the sequence z , respectively.

Note that a periodic sequence x can be seen as an eventually periodic sequence ()x .

Finally, we introduce notation regarding to erasing members of vectors and sequences. Given A ⊂ N,

a vector or sequence x can be transformed into another vector or sequence xA by erasing all members

indexed by N\A from x whilst keeping the members indexed by A in order. For sets of the form [n] (n ∈ N)

we set x6n := x [n] and for sets of the form A = {i ∈ N : i > n} (n ∈ N) we set x>n := xA.

1.2 Real Analysis

Here, we study sequences of real numbers x = (x1, x2, x3, . . .) as well as their associated sequences of

mean values x where for n ∈ N we define xn := 1
n

∑n
i=1 xi . For a converging sequence of real numbers x

we write x = lim x = limn→∞ xn.

Take a sequence of real numbers x . The limit inferior of x , denoted by lim infn→∞ xn, is defined to

be the limit of the sequence whose n-th term is given by the infimum of the set {xm : m > n}.

9

Similarly, the limit superior of x , denoted by lim supn→∞ xn, is defined to be the limit of the sequence

whose n-th term is given by the supremum of the set {xm : m > n}. In more concise notation,

lim infn→∞ xn := limn→∞ infm>n xm and lim supn→∞ xn := limn→∞ supm>n xm. We occasionally write

lim inf x = lim infn→∞ xn and lim sup x = lim supn→∞ xn.

We say that x is bounded from above if x viewed as a subset of R is bounded from above. That is,

if there exists a constant c ∈ R such that xn 6 c for all n ∈ N. Similarly, x is said to be bounded from

below if there exists a constant c ∈ R such that xn > c for all n ∈ N. A sequence of real numbers is said

to be bounded if it is both bounded from above and from below.

An important observation at this point is that a bounded sequence x has both its limit inferior and

limit superior. Indeed: the sequence whose n-th term is given by infm>n xm is a sequence of real numbers

(as x is bounded from below), is monotonically increasing, and is bounded from above by sup x ∈ R.

Hence, this sequence convergences (to lim infn→∞ xn) by Theorem 1.1. A similar argument shows that

lim supn→∞ xn exists.

Theorem 1.1 (Monotone Convergence Theorem). Let x be a monotonically increasing sequence. I.e.,

xn 6 xn+1 for every n > 1. If x is bounded from above, then lim x exists and equals sup x . Similarly, if y

is a monotonically decreasing sequence (i.e., yn > yn+1 for every n > 1) and is bounded from below then

lim y exists and equals inf y .

Proof. The first part is proven in [1, Thm. 2.4.2]. The second part can be proven by applying the first

part to the sequence −y given by (−y1,−y2,−y3, . . .).

An elementary example shows that the limit inferior and limit superior of a real sequence might both exist

but not coincide. Let x = (−1, 1,−1, 1, . . .). It is clear that infm>n xm = −1 and supm>n xm = 1 for all

n ∈ N. Hence, lim inf x = −1 < 1 = lim sup x . We also note that x does not converge. It turns out that

a sequence converges if and only if both its limits inferior and superior exist and coincide.

Proposition 1.2. Let x be a sequence of real numbers. If x converges, then lim inf x = lim x = lim sup x .

If lim inf x = lim sup x , then x converges to lim inf x = lim sup x .

Proof. If x converges, then x = lim x exists. Let ε > 0. Since x converges to x , there exists an N ∈ N

such that |x − xn| < ε/2 for all integers n > N. Hence, {xn : n > N} ⊂ (x − ε/2, x + ε/2). It

follows that supm>n xm ∈ (x − ε, x + ε) for all n > N. Since ε > 0 was arbitrary, it must be that the

sequence (supm>n xm)∞n=1 converges to x and hence lim sup x = x . The fact that lim inf x = x is proven

similarly. Now, assume that lim inf x = lim sup x exist. Given n ∈ N, we note that infm>n xm 6 xn 6

supm>n xm. Since the sequences (infm>n xm)∞n=1 and (supm>n xm)∞n=1 are known to converge to the same

limit lim inf x = lim sup x , it follows from lemma 1.3 that x converges with lim inf x = lim x = lim sup x .

Lemma 1.3 (Squeeze Theorem). Let x , y , z be sequences of real numbers such that xn 6 yn 6 zn for all

n ∈ N. If x and z converge to the same limit a ∈ R, then y also converges to a.

Proof. Let ε > 0. Then there exist N,M ∈ N such that |a− xn| < ε for all n > N and |a− zn| < ε for all

n > M. Setting K := max(N,M), it follows that for all n > K we have a− ε < xn 6 yn 6 zn < a+ ε and

hence |a − yn| < ε for all n > K. Conclude that y converges to a as well.

10

We now wish to investigate the behaviour of the sequence of mean values x of a sequence x in terms of

its limits. Before we derive the most important results, we first note that x is bounded from above if x

is, and that x is bounded from below if x is.

Proposition 1.4. Consider the sequence z = xyyy · · · where x and y are vectors of real numbers. Let

y := 1
|y |
∑

a∈y a. I.e., the number y is taken to be the mean weight of the vector y . Then the sequence

of mean values z of z converges to y .

Proof. Write L := |y |. We note that, for n > |x |, we have

nzn = x1 + . . .+ x|x | + b(n − |x |)/Lc(y1 + . . .+ yL) + (y1 + . . .+ yn−|x |−Lb(n−|x |)/Lc).

Note that n − |x | − Lb n−|x |L c < L because bac > a − 1 for every a ∈ R (here, a = n−|x |
L). Hence, the

sequences with n-th terms 1n (x1 + . . .+ x|x |) and 1
n (y1 + . . .+ yn−|x |−Lb(n−|x |)/Lc) converge to zero. Since

y1 + . . .+ yL = Ly , it follows that

lim z = lim
n→∞
b(n − |x |)/Lc(y1 + . . .+ yL)/n = lim

n→∞

L

n
b(n − |x |)/Lcy

so we are done if we can prove that limn→∞
L
n b

n−|x |
L c = 1. Since every a ∈ R satisfies a − 1 < bac 6 a,

we have 1− 1n (|x |+L) < L
n b

n−|x |
L c 6 1− |x |n and the sequences formed by the first and the third numbers

in the latter inequality both converge to one. By lemma 1.3, the result follows.

We often use other basic tools from real analysis that are not defined here. For those notions, we refer

to [1].

We conclude the part on real analysis by an elementary lemma.

Lemma 1.5. Let n ∈ N and let k ∈ [n,∞). Then the maximum value of
∏n
i=1 ai when taking numbers

ai ∈ [1,∞) satisfying
∑n

i=1 ai = k is given by kn/nn and is attained precisely when ai = k/n for each i .

Proof. Suppose that a legitimate choice of a1, . . . , an yields maximal
∏n
i=1 ai . Suppose furthermore that

two of these n numbers are distinct: say, a1 6= a2 without loss of generality. Then the choice of b1 = b2 =

(a1 + a2)/2 and bi = ai for i > 3 yields another choice with
∑n

i=1 bi = k but satisfies
∏n
i=1 ai <

∏n
i=1 bi .

To show the latter, it is sufficient to show that a1a2 < b1b2, or, equivalently, that 4a1a2 < (a1 + a2)
2.

But this is seen through

(a1 + a2)
2 = a21 + 2a1a2 + a22 = (a21 − 2a1a2 + a22) + 4a1a2 = (a1 − a2)2 + 4a1a2 > 4a1a2

as (a1 − a2)2 > 0 because a1 6= a2. So we have shown that
∏n
i=1 ai <

∏n
i=1 bi , which contradicts

maximality of
∏n
i=1 ai . Conclude that no pair of the numbers a1, . . . , an is a pair of distinct numbers.

Hence, ai = k/n for all i and the maximum value of the product we are seeking equals kn/nn.

1.3 Complexity Analysis

In this thesis, the speed analyses and in particular counting the running time of elementary operations in

all algorithms are based upon [6]. Since running times are given in terms of function classes consisting of

real-valued functions in terms of finitely many variables n1, . . . , nk ranging over N, we will formally define

11

the most important ones.

Let f : Nk → R>0. We define a class of functions O(f (n1, . . . , nk)) as follows: we say that g

is in O(f (n1, . . . , nk)), notation g = O(f (n1, . . . , nk)), if there exist C > 0 and N ∈ N such that

N 6 maxi ni implies g(n1, . . . , nk) 6 Cf (n1, . . . , nk). Similarly, we say that g is in Ω(f (n1, . . . , nk))

if there exist C > 0 and N ∈ N such that N 6 maxi ni implies g(n1, . . . , nk) > Cf (n1, . . . , nk). Fi-

nally, the class Θ(f (n1, . . . , nk)) is defined as the intersection of O(f (n1, . . . , nk)) and Ω(f (n1, . . . , nk)):

we say that g(n1, . . . , nk) = Θ(f (n1, . . . , nk)) if and only if g(n1, . . . , nk) = O(f (n1, . . . , nk)) and

g(n1, . . . , nk) = Ω(f (n1, . . . , nk)).

For a more thorough background on complexity analysis (of algorithms), we refer to [6, Ch. 3].

1.4 Graph Theory

In our review of graph theory, we first revisit the definition of directed graphs and fom there onward we

address the basic properties and invariants of directed graphs.

A directed graph, or digraph for short, is a nonempty collection of vertices with a collection of (di-

rected) edges between these vertices. Formally, a digraph G is a pair G = (V, E) with V a nonempty set

called the vertex set of G, and E ⊂ V × V is a set constituting the edges of G. We say that there is an

edge from v ∈ V to w ∈ V precisely when vw ∈ E, where vw is short-hand notation for (v , w). Given an

edge vw , we call v the tail of vw and w the head of vw , and the tail and head of an edge e are denoted

by t(e) and h(e), respectively. For a graph G with possibly unspecified vertex- and edge sets, we write

V (G) and E(G) for these two sets, respectively. The graph G is called finite if V (and hence E) is (are)

finite.

In all definitions that follow, let G = (V, E) be a digraph.

Definition 1.6 (Subgraphs). For a nonempty vertex subset S ⊂ V , we can look at the class G(S) :=

{(S, F) : F ⊂ E ∩ (S × S)} of graphs with vertex set S and edges of G between vertices in S. A graph

in G(S) for some nonempty S ⊂ V is called a subgraph of G. Any G(S) has a maximal element with

respect to set inclusion on edge sets, namely G[S] := (S,E ∩ (S × S)), and the graph G[S] is called the

subgraph of G induced by S.

Definition 1.7 (Graph Connectivity I: vertex neighbours). For v , w ∈ V we call v an in neighbour of w

and w an out neighbour of v if vw ∈ E. We also say that v precedes or is a predecessor of w and that

w succeeds or is a successor of v . We let N−(v) be the collection of all u ∈ V with uv ∈ E, and we let

N+(v) be the collection of all w ∈ V with vw ∈ E. Furthermore, the set cardinalities d−(v) := |N−(v)|
and d+(v) := |N+(v)| are said to be the in degree and out degree of v , respectively. Finally, v is called

a sink if d+(v) = 0, and given a vertex subset S ⊂ V we let S∗ := {v ∈ V : d+(v) > 0} be the collection

of non-sinks in V .

Definition 1.8 (Paths in Graphs). A path in G is a vector or sequence σ of edges in G such that for

every two consecutive edges σi , σi+1 in σ the head of the first edge coincides with the tail of the second:

12

h(σi) = t(σi+1). A finite path σ is said to be closed if the tail of the first edge coincides with the head of

the last edge: t(σ1) = h(σ|σ|). A closed path σ is said to be a cycle if it passes through exactly |σ| distinct

vertices (or, equivalently, if it does not strictly contain other closed paths). An edge e ∈ E can be seen

as a path (e) of length one, and e is said to be a loop if (e) is a cycle (or, equivalently, if t(e) = h(e)).

Finally, two paths σ, τ can be concatenated to another path στ , provided σ is finite, if the head of the

final edge of the first path σ coincides with the tail of the first edge of the second path τ .

Remark 1.9. Alternatively, paths can be characterized as a sequence of vertices. That is, instead of

writing σ = σ1σ2σ3 · · · with each σi ∈ E we could write σ = v1v2v3 · · · with each vivi+1 ∈ E. The length

of σ is always taken to be the number of edges, however, which is the number of vertices minus one.

Definition 1.10 (Graph Connectivity II: strong connectivity). Two vertices v , w ∈ V are said to be

strongly connected if v = w or there are paths from v to w and from w to v in G. The binary relation of

strong connectivity is an equivalence relation on V , and its corresponding equivalence classes are called

the strongly connected components of G. We call G strongly connected if all vertices of G are pairwise

connected, or, equivalently, if V itself is the only strongly connected component of G.

Definition 1.11. Let G = (V, E) be a graph, and x ∈ V . We define Gx as the largest subgraph of G

containing x for which there is a path in Gx from v to x for every v ∈ V (Gx).

The graph Gx can be efficiently computed as follows, where we recall that the maximum and minimum of

the empty set are taken as −∞ and ∞, respectively:

Algorithm 1: Computing Gx from G = (V, E) and x ∈ V
Data: a graph G = (V, E), x ∈ V
Result: Gx

1 Function graphSubx(G = (V, E), x)

2 n ← |V |
3 for v ∈ V do

4 b0(v)← [v = x, 0,−1]

5 end

6 for k = 1, . . . , n do

7 for v ∈ V do

8 bk(v)← max{bk−1(w) : w ∈ N+(v)}
9 end

10 end

11 Vx ← {v ∈ V : max06k6n bk(x) = 0}
12 return (Vx , E ∩ (Vx × Vx))

13 end

Remark 1.12. We can weaken the notion of strong connectivity as follows. Two vertices v , w ∈ V are

said to be (weakly) connected if v = w or there is a nonempty path from v to w in G′, where G′ is the

undirected graph with vertex set V for which there is an edge between two vertices if and only if there is

an edge from one to the other in G (or in both directions in G). The binary relation of (weak) connectivity

is again an equivalence relation, and we obtain notions as (weakly) connected components of G (or simply

13

components) and graphs being (weakly) connected (or not). Note that every component of a digraph is

a disjoint union of strongly connected components.

Remark 1.13. All digraphs on which mean payoff games are played are taken to be finite. Hence, when

using the word “graph” it is implicitly understood that we take a finite directed graph.

Finally, we define the notion of positional strategies below, as the concept of positional strategies plays a

central role in reachability games and hence mean payoff games on finite digraphs.

Definition 1.14 (Positional Strategies). Let G = (V, E) be a graph and let S ⊂ V be a vertex subset.

Then a map of the form f : S∗ → V from the set of non-sinks in S into the vertex set of G satisfying

vf (v) ∈ E for all v ∈ S∗ is said to be a positional strategy on S. When S = V we call f a positional

strategy.

Remark 1.15. A key feature of positional strategies is that they define paths, given a start vertex v ∈ V .

That is, if we pick v ∈ V and a positional strategy f : V ∗ → V then a path σ(f , v) := vf (v)f 2(v) · · · is

formed, where for k ∈ N the map f k = f ◦ . . . ◦ f is the k-th iterate of f . Note that σ(f , v) is infinite

if f k(v) ∈ V ∗ for all k ∈ N ∪ {0} and is finite of length min{k ∈ N ∪ {0} : f k(v) ∈ V \V ∗} otherwise.

We also note that σ(f , v) either ends in a sink or in a cycle hence either forms a vector of edges or an

(eventually) periodic sequence of edges. The path σ(f , v) is said to be the path starting at v following

the positional strategy f .

1.5 Reachability

Since the concept of reachability plays an important role in mean payoff games, let us briefly define its

notion by describing the winning criterion on mean payoff games in the case the play is finite. Given a

graph G = (V, E), we can partition V into two sets V = V0 t V1 to our liking and let two players, player 0

and player 1, play a game on G. We let ε : V → {0, 1} be such that V0 = ε−1(0) and V1 = ε−1(1). All

vertices in V0 are said to belong to player 0, and all vertices in V1 are said to belong to player 1.

The setting of the game is as follows. We choose a start vertex v ∈ V and let player ε(v) decide

the next move. That is, player ε(v) picks a vertex w ∈ V such that vw ∈ E, and next it is the turn

of player ε(w) to move. In this way, a path σ is formed starting at v and σ is said to be a play starting at v .

If during the construction of σ a sink s ∈ V \V ∗ is hit, then σ will be finite with end vertex s and

player ε(s) is said to lose the game. If no sink is hit during the construction of σ then σ is infinite. In that

case, we need another criterion to decide which player wins. In the case of parity games, to each vertex

an integer was assigned and the parity of the largest integer occurring infinitely often would determine the

winner: player 0 would win if that parity is even, and player 1 would win if that parity is odd. For mean

payoff games we introduce another winning criterion for plays of infinite length, and we do so in definition

2.4.

Remark 1.16. In most literature, graphs on which reachability games are played are taken such that

V = V ∗, i.e. such that the graph in question does not have sinks. In this thesis, however, we consider any

finite directed graph, possibly with sinks, as will be apparent in definition 4.1.

14

The concept that is relevant for all two-player games on digraphs, however, is the notion of reachability

and we define the most fundamental construct of reachability below.

Definition 1.17 (Reachability). Let (G, ε) be the data of a two-player game on a finite digraph. That is,

we let G = (V, E) be a finite digraph and we let ε : V → {0, 1} define the partition V = ε−1(0) t ε−1(1)

of V . Let v ∈ V . For p ∈ {0, 1}, we let Rp(v) ⊂ V be the set of all w ∈ V for which, if a play starts at

w , player p can force the play to pass through v irrespective of the decisions of the other player along the

way. It is often said that Rp(v) consists of the vertices from which player p can reach the vertex v .

Note that if s ∈ V \V ∗ is a sink then player 1− ε(s) can force a win if we let a game start at any vertex

in R1−ε(s)(s).

Remark 1.18. We can generalize the notion of Rp(v) as follows. Given S ⊂ V and p ∈ {0, 1}, we let

Rp(S) =
⋃
{Rp(v) : v ∈ S} be the set of all w ∈ V from which player p can reach a vertex in S.

Algorithms running in time O(|E|) are known to compute the sets of the form Rp(S). We give one below,

based on [2, Algorithm 5], and we implement it in Listing 1. We recall that for a propositional formula

ϕ and objects A and B, the object [ϕ,A,B] has value A if ϕ is true and B otherwise. We furthermore

recall that for a graph G = (V, E) and a vertex v ∈ V , the set N−(v) is the collection of all u ∈ V with

uv ∈ E and the set N+(v) is the collection of all w ∈ V with vw ∈ E. For v ∈ V and S ⊂ V we write

vS := {vw : w ∈ S} and Sv := {uv : u ∈ S} which are subsets of V × V . The routine ReachOne only

finds the vertices that are within a path of length one from S, but Reach repeatedly utilizes ReachOne to

determine the full set Rp(S).

Algorithm 2: Computing the set from which a player can reach a given vertex subset

Data: a graph G, ε : V (G)→ {0, 1}, S ⊂ V (G), p ∈ {0, 1}
Result: R = Rp(S)

1 Function Reach(G, ε, S, p)

2 R← S, R′ ← S

3 R← ReachOne (G, ε,R′, p)

4 while R′ (R do

5 R′ ← R, R← ReachOne (G, ε,R′, p)

6 end

7 return R

8 end

1 Function ReachOne(G, ε, S, p)

2 T ← S

3 for v ∈ S do

4 for u ∈ N−(v)\S do

5 T ← [ε(u) = p or N+(u) ⊂ S, T ∪ {u}, T]

6 end

7 end

8 return T

9 end

15

2 Mean Payoff Games

Mean Payoff Games have been introduced by Ehrenfeucht and Mycielski in 1979 in [8]. However, only

mean payoff games on bipartite graphs were studied in [8]. Many other variants and generalizations have

been studied, of which [12] is an important work taking a central position in this thesis. We shall, in this

thesis, only lay the focus on mean payoff games on finite directed graphs where the edges have integer

weights.

Other notable works on mean payoff games include [4], [5], and [7].

2.1 Winning Criterion for Mean Payoff Games

Definition 2.1 (Mean Payoff Game). The data of a mean payoff game is as follows. We choose a triple

(G, ε, µ). Here G = (V, E) is a graph, and ε : V → {±} is a map defining a partition of V into sets

V = V− t V+ where V− := ε−1(−) and V+ := ε−1(+). The vertices of V− are said to belong to player

P− or player Min, and the vertices of V+ are said to belong to player P+ or player Max. The function

µ : E → Z is a weight function attaching to every edge of the graph G an integer weight.

Remark 2.2. In equations, for convenience we often identify + with 1 and − with −1.

The setting of a mean payoff game (G, ε, µ) is partially inherited by the reachability game (G, ε) for two

players. This means that if a play ends in a sink, the player who does not own that sink wins. We still

have not decided yet who wins in case a path of infinite length is formed, but we do so in terms of the

weight function µ and with that we automatically introduce the concept of mean payoff.

Definition 2.3 (Mean Payoff). Suppose that σ is an infinite play on a mean payoff game (G, ε, µ).

This gives rise to a sequence of integers µ(σ) = (µ(σ1), µ(σ2), µ(σ3), . . .). In particular, µ(σ) has an

associated sequence of mean values µ(σ) whose n-th term is given by µ(σ)n = 1
n

∑n
i=1 µ(σi). Then we

can define two characteristic values χ−(σ) and χ+(σ) of the play σ by taking

χ−(σ) := lim inf µ(σ) and χ+(σ) := lim supµ(σ).

The values χ−(σ) and χ+(σ) are guaranteed to exist, because both are limits of monotone sequences

that are bounded (bounded from above by ‖µ‖∞ and from below by −‖µ‖∞ if we regard µ as a vector

indexed by the finite set E with values in R). Note, furthermore, that χ−(σ) 6 χ+(σ).

Definition 2.4 (Winning Criterion for Infinite Plays). In the context of Definition 2.1, an infinite play σ

is said to be won by player Min if χ+(σ) < 0, is said to be won by player Max if χ−(σ) > 0, and is said

to be a draw otherwise (i.e., if χ−(σ) 6 0 6 χ+(σ)).

2.2 Positional Strategies

In this thesis, we thoroughly study mean payoff games with the additional requirement that each game

is played along positional strategies. That is, player Min chooses a positional strategy f− : V ∗− → V

and player Max chooses a positional strategy f+ : V ∗+ → V . Then choosing a start vertex v ∈ V and

16

forming the function f := f− t f+ : V ∗ → V we obtain the play σ(f , v) where σ(f , v) is defined in

Remark 1.15. It has been the subject of many studies to construct efficient algorithms to find optimal

positional strategies for both players, as outlined in [12]. The reason lies in the fact that it was shown in

[8] that positional strategies f−, f+ exist, independent of starting vertex, such that for any v ∈ V we have

χ−(σ(f , v)) 6 χ(v) 6 χ+(σ(f , v)). In the argumentation in [8], each mean payoff game (G, ε, µ) was

assumed to be bipartite with respect to the partition V = V− t V+. The authors of [12], however, pointed

out that the additional requirement that the mean payoff game in question is bipartite is not necessary to

derive these results.

For completeness, we define the subclass of bipartite mean payoff games.

Definition 2.5. A mean payoff game (G, ε, µ) is said to be bipartite if the graph on which the game is

played is bipartite with respect to the partition V = V− t V+: if E ∩ ((V− × V+) ∪ (V+ × V−)) = ∅.

Next, we outline in more detail how values of a mean payoff game can always be achieved using positional

strategies. Ehrenfeucht and Mycielski showed the following in [8, Thm. 1]. Choose a (bipartite) mean

payoff game (G, ε, µ), and a starting vertex v ∈ V . Then there exists a value χ(v) such that:

(−) Min has an optimal positional strategy f− ensuring that any path σ start in v and following f−

has the property that χ−(σ) 6 χ(v) independent of Max’s choices of moves (Max may play via a

positional strategy or not), and

(+) Max has an optimal positional strategy f+ ensuring that any path σ starting in v and following f+

has the property that χ+(σ) > χ(v) independent of Min’s choices of moves.

Next, since we know that infinite paths following positional strategies are eventually periodic (as outlined

in Remark 1.15), it must be that the sequence of mean values µ(σ(f , v)) is eventually periodic as well if

f− and f+ are positional strategies for Min and Max, respectively. It follows, upon combining Propositions

1.2 and 1.4, that χ−(σ) = χ+(σ) for all paths σ following positional strategies. Hence, given a start

vertex v ∈ V , we have χ(v) = χ−(σ(f , v)) = χ+(σ(f , v)) (whenever f−, f+ are optimal) and χ(v) either

equals the mean weight4 m(C) of the terminal cycle C a play following optimal positional strategies will

end up in or equals −ε(s) · ∞ if σ(f , v) ends in a sink s ∈ V \V ∗.

Remark 2.6. At this point it deserves to be noted that we have been taking values χ−(σ), χ+(σ) of

infinite paths σ. This is because in [8] and [12] only graphs without sinks are considered. We, however,

do not exclude the possible occurence of sinks. If a finite play σ ends in a sink belonging to Min, then

we consider this play optimal for Max and we set χ(σ) = +∞. Likewise, if a finite play σ ends in a sink

belonging to Max, then we set χ(σ) = −∞. In this way, the results of Ehrenfeucht and Mycielski as

outlined in [8] do not only extend to non-bipartite mean payoff games but also to mean payoff games with

sinks.

It deserves to be noted that χ can be thought of as a function V → R := R∪{±∞}. On a graph without

sinks we obtain a function χ : V → R. Given v ∈ V , we call χ(v) the characteristic value of v . The

information of the function χ can be reduced to a function γ : V
χ−→ R

sign−−→ {−, 0,+} which assigns to

4The mean weight of a cycle C in a weighted digraph is taken as the sum of the weights of the edges of C

altogether divided by the length of C

17

each vertex v the sign of χ(v) ∈ R. The function γ is said to be the decision function associated with

the mean payoff game (G, ε, µ).

2.3 The Three Main Problems on Mean Payoff Games

In essence, the decision problem of mean payoff games is a computational problem and is not known to

be polynomial [12]. We also consider two seemingly harder problems: computing characteristic values and

finding optimal positional strategies. The first problem is known to be in NP ∩ co− NP [12, Thm. 4.2]

hence is a candidate to break the conjecture that the complexity classes P and NP coincide.

Definition 2.7 (Decision Problem of Mean Payoff Games). Let (G, ε, µ) be the data of a mean payoff

game. The decision problem on (G, ε, µ) is the computational task to, for each v ∈ V , determine the

value γ(v) := sign(χ(v)). That is, for each v ∈ V it is required to determine whether Min wins at v

(γ(v) = −), whether Max wins at v (γ(v) = +), or v is a draw position (γ(v) = 0).

In other words, given a mean payoff game, we assume that the players play according to optimal positional

strategies and we wish to determine which starting vertices fall into the set γ−1(−) of winning vertices

for Min, which fall into the set γ−1(+) of winning vertices for Max, and which fall into the set γ−1(0)

of draw positions. The process of determining these winning positions is called solving the mean payoff

game. Once again, we stress that the mean payoff game in question does not have to be bipartite with

respect to the partition V = V− t V+ and additionally is allowed to contain sinks.

Remark 2.8. To say that a player wins at a vertex v ∈ V might be confusing at first hand in the following

sense. Namely, an optimal play starting at v does not necessarily end in v or end up in a cycle containing

v . All it means for a player to win at a vertex v or to draw against the other player is that the play starting

at v will be winning for a player or will lead to a draw.

Remark 2.9. Three fundamental problems on mean payoff games have been studied:

(1) the decision problem on mean payoff games (definition 2.7);

(2) the computational problem of finding values χ(v);

(3) the computational problem of finding optimal strategies f−, f+.

A solution to (3) would immediately be a solution to problem (2) as argued in Corollary 4.6. Additionally,

a solution to problem (2) would immediately be a solution to problem (1): given that v ∈ V has value

χ(v), we at once decide who wins at v by taking γ(v) := sign(χ(v)). If follows that problems (1), (2)

and (3) are successive generalizations. As outlined in [12], it is an open problem whether problem (3) is

deducible from problem (2).

2.4 Two Classical Approaches

Since the first complexity classification of the problem of mean payoff games in 1996 by Zwick and Paterson

[12], three parameters have been of highest priority in determining the speed of (decision) algorithms on

mean payoff games: the numbers n, M, and |E|. Here, n := |V | is reserved to denote the number of

vertices of the graph G = (V, E) the game is played on, M is the size of the weight function µ : E → Z

18

defined by M := ‖µ‖∞ = maxe∈E |µ(e)| and |E| is the number of edges of the graph G. In [12] two

algorithms were presented to solve mean payoff games, be it that they do not take into account the

existence of sinks. One runs in O(n3 · |E| ·M) time, and one runs in n · 2O(|E|) time or in 2O(|E|) time if we

store positional strategies efficiently. Both can be generalized to mean payoff games in which sinks may

occur. In fact, the first algorithm was exhibited in [2] and generalized there. We start by exhibiting the

second algorithm, as it is more simplistic in nature whence it will be able to serve as a proper algorithmic

introduction.

2.4.1 Approach I: n · 2O(|E|) time

As usual, let (G, ε, µ) be the data of a mean payoff game. The observation which led to the algorithm

to solve (2) by solving (3) we present here has been the following. As outlined in subsection 2.2, both

players have optimal positional strategies at their disposal independent of starting vertex. This observation,

together with [9, Equation (1)] implies that the collection of optimal strategies f = f− t f+ is precisely

given by all pairs f−, f+ such that χ(v) = χ(σ(f , v)) and furthermore that whenever f−, f+ achieve the

optimizations

χ(v) = max
g+

min
g−
χ(σ(g, v)) = min

g−
max
g+

χ(σ(g, v)) (2.1)

for all v ∈ V (where we use the notation g = g− t g+), both strategies f−, f+ are optimal. In principle,

(2.1) can already be seen as an algorithm on itself to find the characteristic values — we go over all

positional strategies g−, g+ and for each one we determine the value χ(σ(g, v)). We, however, wish

to present one on a lower level, in such a way that the running time will become apparent. We give a

recursive variation, with the urgent disclaimer that V needs to be ordered in such a way that the signs of

the instances a vertex is taken on line 15 do not alternate; i.e., when listing these signs as the algorithm

progresses, one should obtain a list of the form p, . . . , p,−p, . . . ,−p where p ∈ {±}.

19

Algorithm 3: Solving a mean payoff game by exhausting positional strategies

Data: a graph G, ε : V (G)→ {±}, µ : E(G)→ R

Result: γ : V → {−, 0,+}

1 Function solveFromPosStr(G, ε, µ)

2 (V, E)← G

3 for v ∈ V do

4 γ(v)← sign(solveVertex(G, ε, µ, v))

5 end

6 return γ

7 end

8 Function solveVertex(G, ε, µ, v)

9 (V, E)← G

10 V ∗ ← {v ∈ V : d+(v) > 1}
11 V2 ← {v ∈ V : d+(v) > 2}
12 if |V2| = 0 then

13 χ← χ(σ(V ∗ 3 v∗ 7→ w
!
∈ N+(v∗), v))

14 else

15 Take v2 ∈ V2
16 for w ∈ N+(v2) do

17 Ew ← E\(v2N+(v2)\{v2w})
18 end

19 if ε(v2) = 1 then

20 χ← max{solveVertex((V, Ew), ε, µ|Ew , v) : w ∈ N+(v2)}
21 else

22 χ← min{solveVertex((V, Ew), ε, µ|Ew , v) : w ∈ N+(v2)}
23 end

24 end

25 return χ

26 end

Here, on line 13 there is only one positional strategy V ∗ → V as no vertex with respect to the inputted

graph on line 8 has multiple out neighbours once we are past the if-condition on line 12. The path is

uniquely determined by the graph G and start vertex v . On line 17, once an out neighbour w of v2 is

selected, we obtain Ew by removing all edges from E with tail v2 except for the edge v2w .

The worst-case running time of Algorithm 3 is n · 2O(|E|). This is seen as line 4 calls n times the exact

same number of positional strategies, of which there are
∏
v∈V max(1, d+(v)). The fact that the running

time of Algorithm 3 is in n · 2O(|E|) is established once we verify that
∑

v∈V log(max(1, d+(v))) = O(|E|),

20

which is seen through

1

|E|
∑
v∈V

log
(

max(1, d+(v))
)

=
1

|E|
∑
v∈V ∗

log
(
d+(v)

)
=

1

|E| log

(∏
v∈V ∗

d+(v)

)

6
1

|E| log

((∑
v∈V ∗ d

+(v)

|V ∗|

)|V ∗|)
(by Lemma 1.5)

=
1

|E| log

((
|E|
|V ∗|

)|V ∗|)

=
log
(
|E|
|V ∗|

)
(
|E|
|V ∗|

)
which has an absolute upper bound given by the global maximum5 of the positive-valued function x 7→
1
x log x on (1,∞), which is applicable as |E| =

∑
v∈V ∗ d

+(v) >
∑

v∈V ∗ 1 = |V ∗|. We can also show that

n ·2O(|E|) is the sharpest upper running time bound of Algorithm 3. We take the following family of graphs

G = (Vn, En) indexed by and given in terms of increasing n ∈ N: let Vn = Z/nZ and En =
⋃
v∈Vn{(v , v +

1), (v , v + 2)}. Then d+(v) = 2 for every v ∈ Vn and |En| = 2n, so log
(∏

v∈V max(1, d+(v))
)

= n =

Θ(2n) = Θ(|En|).

Remark 2.10. Algorithm 3 could be made significantly faster by the following observation, which has not

been pointed out in the original paper [12]. Namely, it was established in [8] that positional strategies

exist that simultaneously serve as optimal for every start vertex. This implies in particular that, once the

value χ(v) of a first vertex v ∈ V is found, we can keep track of all positional strategies f for which

χ(σ(f , v)) 6= χ(v) and exclude those when we take another vertex v ′ ∈ V \{v} to determine the value

χ(v ′) of.

2.4.2 Approach II: O(n3 · |E| ·M) time

It has been the same mathematicians Zwick and Paterson in the very same paper [12] who managed to

construct a mean payoff game solving algorithm6 whose running time only depends polynomially on n, but

does linearly depend on M: their Algorithm [12, Thm. 2.3] runs in O(n3 · |E| ·M) time. Since |E| = O(n2)

we are guaranteed that [12, Thm. 2.3] runs in O(n5M) time which has polynomial dependence on n but

has linear dependence on M — or, exponential dependence on logM. The algorithm has already been

implemented at lower level in [2, Algorithm 4] which is in addition able to solve on (smaller) strongly

connected components of the graph. Here, we give a simplification of [2, Algorithm 4] as to reflect [12,

Thm. 2.3] in its purest and most classical form.

Algorithm 4 utilizes the fact that for each v ∈ V we have limk→∞ ηk(v)/k = χ(v), as will be apparent in

Theorem 2.14. We prove correctness of Algorithm 4 in Proposition 2.15.

Remark 2.11. Essentially, Algorithm 4 runs in O(n3 · |E| · M) time, but the decision problem whether

χ(v) > 0, χ(v) = 0, or χ(v) < 0 for all vertices v ∈ V can be solved in O(n2 · |E| ·M) [12, Thm. 2.4].

5One computes that this maximum is 1/(e · ln 2) = 0.5307 . . .
6As to solve problem (2)

21

Algorithm 4: Solving a mean payoff game by computing finite values

Data: a graph G, ε : V (G)→ {±}, µ : E(G)→ Z

Result: γ : V → {−, 0,+}

1 Function solveFromFinVals(G, ε, µ)

2 (V, E)← G

3 n ← |V |, M ← maxe∈E |µ(e)|
4 for v ∈ V do

5 η0(v)← 0, γ(v)← 0

6 end

7 for k = 1, . . . , 4n2M + 1 do

8 for v ∈ V do

9 if ε(v) = 1 then

10 ηk(v)← max{µ(v , w) + ηk−1(w) : w ∈ N+(v)}
11 else

12 ηk(v)← min{µ(v , w) + ηk−1(w) : w ∈ N+(v)}
13 end

14 γ(v)← [ηk(v) > 2nM, 1, [ηk(v) < −2nM,−1, γ(v)]]

15 end

16 end

17 return γ

18 end

This slight polynomial improvement in n has not been incorporated in Algorithm 4. This is because our

greatest concern with Algorithm 4 is the linear dependence on M.

Remark 2.12. Algorithm 4 is limited to graphs without sinks, since it was assumed in [12, p. 1] that

every vertex has at least one out neighbour. In case sinks are present, we initialize each value η0(v) as

zero if v is not a sink and as −ε(v) · ∞ if v is a sink. Furthermore, we replace E by V × V and extend µ

to V × V by µ(v , w) = −ε(v) · ∞ for each vw ∈ V × V that was originally not an edge.

2.5 Finite Values

The values ηk(v) as computed in Algorithm 4 can appear in a broader context than just this algorithm, as

they are solely induced by the mean payoff game data (G, ε, µ). For v ∈ V and k ∈ N the number ηk(v)/k

is said to be the finite value of (G, ε, µ) at vertex v for plays of length k . This nomenclature is justified

by the following: if a play starts at a vertex but is beforehand given to end whenever it has reached length

k instead of being infinite, then the average value of the k weights encountered when an optimal path is

formed is equal to ηk(v)/k . This fact has already been established in [12], but easily extends to mean

payoff games on graphs with sinks. In the same paper, it is shown that χ(v) = limk→∞ ηk(v)/k , but

ηk(v)/k oftentimes approaches χ(v) at a disadvantageous rate. Due to the importance of finite values

we redefine them, along with stating a fundamental result on finite values.

Definition 2.13. Let (G, ε, µ) be the data of a mean payoff game, with G = (V, E). For all v ∈ V and

k ∈ Z>0, we define a value ηk(v) as follows. We set η0(v) = 0 for all v ∈ V . Then for k = 1, 2, 3, . . . we

22

inductively set

ηk(v) :=

max{µ(v , w) + ηk−1(w) : w ∈ N+(v)}, if ε(v) = +,

min{µ(v , w) + ηk−1(w) : w ∈ N+(v)}, if ε(v) = −,
(2.2)

with the conventions min∅ = +∞ and max∅ = −∞.

Next, we restate a fundamental result on finite values.

Theorem 2.14. For v ∈ V and k ∈ N, we have the following estimate for χ(v) around ηk(v)/k :∣∣∣∣χ(v)−
ηk(v)

k

∣∣∣∣ 6 2nM

k
. (2.3)

Proof. This is [12, Thm. 2.2].

The fact that limk→∞ ηk(v)/k = χ(v) is an immediate consequence of Theorem 2.14.

Proposition 2.15. Algorithm 4 terminates and outputs the correct γ : V → {−, 0,+}.

Proof. The fact that algoritm 4 terminates is immediate from the facts that |V | is a finite set and the

number 4n2M+1 is finite. Now, considering line 14 in Algorithm 4 we readily see that if ηk(v) > 2nM then

ηk(v)/k > 2nM/k so that (2.3) implies that χ(v) > 0, and if ηk(v) < −2nM then ηk(v)/k < −2nM/k

so that (2.3) implies that χ(v) < 0. If χ(v) = 0 then (2.3) implies that |ηk(v)/k | 6 2nM/k for all

k ∈ N and hence γ(v) will never be assigned a nonzero value on line 14. We are left to show that the

sign of a nonzero χ(v) will never be falsely detected as zero or as −sign(χ(v)). First, suppose that we

have a vertex v ∈ V for which χ(v) > 0 and such that χ(v) is not detected as positive in Algorithm

4. Then for all k = 1, . . . , 4n2M + 1 we have ηk(v)/k 6 2nM/k . In particular, this holds if we take

k = 4n2M + 1. For this k we have k > 4n2M and hence ηk(v)/k 6 2nM/k < 2nM/(4n2M) = 1/(2n).

However, 2nM/k < 1/(2n) and (2.3) imply for this k that |χ(v) − ηk(v)/k | < 1/(2n) as well. Invoking

the triangle inequality yields

|χ(v)| 6
∣∣∣∣χ(v)−

ηk(v)

k

∣∣∣∣+

∣∣∣∣ηk(v)

k

∣∣∣∣ < 1

2n
+

1

2n
=

1

n

and hence, as χ(v) was assumed positive, we have 0 < χ(v) < 1/n. In particular, χ(v) is finite and hence

equals the mean weight of a cycle of length l with 1 6 l 6 n. But since all edges have integer weights,

the denominator of the fraction χ(v) in lowest terms is a positive integer not bigger than n. Since χ(v)

is positive, it must be that χ(v) > 1/n which contradicts the relation 0 < χ(v) < 1/n we have derived

earlier. Similarly, the sign of no negative characteristic value will be falsely detected as zero or as +, and

the proof is complete.

Theorem 2.16. Algorithm 4 successfully terminates if k runs from 1 to b4nM/Rc + 1 where R is the

minimum among the absolute values of the mean weights of all directed cycles that have nonzero mean

weight.

Proof. Whenever the main loop of Algorithm 4 runs from k = 1 to a value of k bigger than 4nM/R, then

for this k we would have 2nM/k < R/2 so that a nonzero χ(v) falsely detected as zero or of the opposite

sign would satisfy

|χ(v)| 6
∣∣∣∣χ(v)−

ηk(v)

k

∣∣∣∣+

∣∣∣∣ηk(v)

k

∣∣∣∣ < R

2
+
R

2
= R,

23

which is impossible because if χ(v) ∈ R is nonzero then χ(v) = m(C) for some cycle C of nonzero mean

weight which by definition of R satisfies |m(C)| > R.

Now that we have introduced mean payoff games along with the two first significant contributions in

solving them, we introduce a tool to efficiently compute the minimum cycle mean of a weighted directed

graph in O(n · |E|) time. This algorithm has been of major importance in the contributions to the problem

in [2], but was initially used in Zwick’s and Paterson’s paper [12] in 1996 to prove that the decision problem

of mean payoff games lies in both NP and in co− NP. The first method to efficiently (polynomial time

in n) to compute the minimum cycle mean of a weighted digraph was presented by Richard Karp in [10]

in 1978 — just one year before Ehrenfeucht’s and Mycielski’s introduction of mean payoff games in 1979

— and is often referred to as Karp’s algorithm. We introduce their methods in Section 3.

24

3 Karp’s Algorithm

Before we state a proper version of Karp’s Algorithm [10], we first formulate the minimum cycle mean

problem on weighted directed graphs along with two generalizations. One of those generalizations will be

responsible for a big class of mean payoff games of which the decision problem can be solved in purely

polynomial time. At the end we state Karp’s algorithm and we mention why problem (1) resides in

NP ∩ co− NP.

3.1 Three Problems on Cycle Means

Given a weighted digraph (G = (V, E), µ : E → R) and a cycle C in G, we again write m(C) for the mean

weight of the cycle C. That is, m(C) is the sum of the weights given by the weight function µ, altogether

divided by the length of the cycle C. Occasionally, we use the term cycle mean of a cycle to refer to

its mean weight. We are in place to pose three computational problems on mean weights of cycles in

weighted digraphs. Similarly to the three problems as enumerated in Remark 2.9 we can order these three

problems with respect to successive generality, and we do so before formally defining them: on weighted

digraphs, we consider the problems of

(C1) finding the minimum or maximum cycle mean;

(C2) finding the minimum among the absolute values of the nonzero cycle means;

(C3) finding the minimum positive cycle mean or the maximum negative cycle mean.

Definition 3.1 (Minimum Cycle Mean Problem). The minimum cycle mean problem on (G,µ) is the

computational problem to determine the associated minimum cycle mean minC m(C) where C runs over

all directed cycles in G.

Remark 3.2. Completely analogous to the problem statement in definition 3.1, one can compute the max-

imum cycle mean maxC m(C) associated to (G,µ). Both problems have exactly the same computational

complexity, as either is immediately derived from the other by additively inverting the weight function and

switching from minimizing to maximizing or the other way around. For example, the maximum cycle mean

of (G,µ) would be the additive inverse of the minimum cycle mean of (G,−µ).

Now that we have defined problem (C1), we can formulate problem (C2)

Definition 3.3 (Minimum Absolute Nonzero Cycle Mean Problem). The minimum absolute nonzero cycle

mean problem on (G,µ) is the computational problem to determine the associated minimum absolute

nonzero cycle mean R := min{|m(C)| : m(C) 6= 0} where C runs over all directed cycles in G with

nonzero mean weight.

The relevance of (C2), namely that of computing the value R as defined in Definition 3.3, is immediate

from Theorem 2.16.

Remark 3.4. The fact that a solution to problem (C2) is also a solution to problem (C1) is seen as

follows. Along with (G,µ), consider the weighted digraph (G,µ+ δ) obtained from (G,µ) by shifting the

weight function µ by the constant δ := 1 − mine∈E µ(e). Then µ + δ : V → [1,∞) so the minimum

absolute nonzero cycle mean R of (G,µ+δ) coincides with the minimum cycle mean m′ of (G,µ+δ). But

25

shifting a weight function by a constant will shift the mean weights of all cycles by that same constant,

so the minimum cycle mean m of (G,µ) is related to m′ and R by m = m′ − δ = R − δ.

Next, we formulate problem (C3).

Definition 3.5 (Minimum Positive Cycle Mean Problem). The minimum positive cycle mean problem on

(G,µ) is the computational problem to determine the associated minimum positive cycle mean min{m(C) :

m(C) > 0} where C runs over all directed cycles in G with positive mean weight.

Remark 3.6. Similar to the fact that the problem statement in definition 3.1 has an additive dual version

as pointed out in Remark 3.2, so has the problem statement in definition 3.5. This dual version would

be to compute the maximum negative cycle mean max{m(C) : m(C) < 0} associated to (G,µ). One

sees that the minimum positive cycle mean of (G,µ) equals the additive inverse of the maximum negative

cycle mean of (G,−µ), and that the maximum negative cycle mean of (G,µ) equals the additive inverse

of the minimum positive cycle mean of (G,−µ).

At this point, we can show how problem (C3) is a generalization of problem (C2) We observe that on a

weighted digraph (G,µ), we have the relation

min
C:m(C) 6=0

|m(C)| = min

{
min

C:m(C)>0
m(C),− max

C:m(C)<0
m(C)

}
.

It follows that the left-hand side, which is the quantity we look for in (C2), is deduced at once from two

quantities on the right-hand side and those in turn are computed by a solution to (C3)

Until now, no efficient methods to solve problems (C2) and (C3) are known. The first problem, (C1),

however, does admit a known polynomial time solution which was proposed by Richard Karp in 1978 in

[10]. It turns out that a polynomial time solution to problem (C1) is sufficent to determine that (1) lies

fully in NP ∩ co− NP [12].

3.2 Karp’s Algorithm

In 1978, Richard Karp proposed an efficient method in [10] to compute the minimum cycle mean of

a weighted digraph (G,µ). We state his algorithm in its most classical form. We note however that

Karp assumes in [10] each graph to be strongly connected. However, Karp also notes in [10] that both

determining whether a graph is strongly connected and determining the (multiple) strongly connected

components of a graph in case the graph is not strongly connected can be done in O(n+ |E|) steps. Then

determining the minimum cycle mean would be reduced to determining the minimum cycle means of the

individual strongly connected components and then taking the minimum of those. This stems from the

graph-theoretic fact that cycles are always fully contained within one strongly connected component.

Karp’s proves in [10] that the minimum cycle mean of a weighted graph (G,µ) is given by

min
v∈V

max
06k<n

Fn(v)− Fk(v)

n − k (3.1)

26

where the quantities Fk(v) for k = 0, . . . , n and v ∈ V are defined through F0(s) = 0 and F0(v) 6= 0 for

all v 6= s, and for k > 1 through Fk(v) = minu∈N−(v) Fk−1(u) + µ(u, v) where s is any start vertex whose

exact choice is irrelevant for the correctness of (3.1).

Algorithm 5: Computing the minimum cycle mean of a strongly connected digraph

Data: a strongly connected graph G = (V, E), µ : E → R, a vertex a ∈ V
Result: the minimum cycle mean m of (G,µ)

1 Function Karp(G,µ, a)

2 n ← |V |
3 for v ∈ V do

4 F0(v)← [v = a, 0,∞]

5 end

6 for k = 1, . . . , n do

7 for v ∈ V do

8 Fk(v)← min{Fk−1(u) + µ(u, v) : u ∈ N−(v)}
9 end

10 end

11 for k = 0, . . . , n − 1 do

12 for v ∈ V do

13 mk(v)← (Fn(v)− Fk(v))/(n − k)

14 end

15 end

16 for v ∈ V do

17 m(v)← max{mk(v) : k = 0, . . . , n − 1}
18 end

19 m ← min{m(v) : v ∈ V }
20 return m

21 end

Karp argued in [10] that his algorithm determines the minimum cycle mean independent of the start ver-

tex a ∈ V . The primary reason why Algorithm 5 is this efficient is the fact that, given any two vertices

v , w ∈ V , any path σ with mean weight m(σ) strictly bigger than the minimum mean weight of a path

from v to w does not have to be considered. This guarantees that problem (C1) is solved efficiently by

Karp’s algorithm. For problem (C2), for example, we cannot leave paths that are minimal in weight out

of consideration: a cycle C attaining the minimum absolute nonzero cycle mean R may contain paths σ

that are not minimal over the collection of paths between its endpoints.

A crucial use of Karp’s algorithm is notable in the argumentation of [12, Thm. 4.2] as to why the

decision problem on mean payoff games resides in NP ∩ co− NP.

27

4 Complexity Reduction

One of the most natural ways to come up with faster methods than those exhibited in 2.4 is to think of

methods that reduce the complexity7 of the mean payoff game in question yet keeping the signs of the

characteristic values and with that the winning positions invariant. An example would be to double all

the edge weights: with this operation, all characteristic values will double as well but their signs will not

change. From the perspective of Algorithm 4, however, this would be slowing down the running time as

it would double the worst case running time of Algorithm 4.

In the ideal case, one would reduce the size M = maxe∈E |µ(e)| of the weight function µ : E → Z

of the graph G = (V, E) in question. Since this problem is very hard without edge deletion (e.g., the

integer weights might be pairwise coprime), from the perspective of Algorithm 3 it would be natural to

think of ways to delete edges whilst avoiding the effect that γ : V → {−, 0,+} changes. We present two

different types of edges that can be omitted from the graph without changing the winning positions; one

type is due to [2], and one type is introduced in this document which has been implicitly understood in

previous work but was nowhere formally stated or proven. Again, n = |V | is the number of vertices.

4.1 Edge Deletion

Given a mean payoff game, we look for methods to reduce the edge set of the graph to a smaller set

such that the decision function of the new mean payoff game coincides with that of the first mean payoff

game. In this part, we consider two types D ⊂ E and S ⊂ E of edges that can all be removed whilst not

changing the decision function. The first type, D, is due to [2]. The second type, S, is due to previous

work.

Definition 4.1 (Dispensable Edges [2]). Let k ∈ N. Then an edge vw ∈ E played by player p = ε(v)

is said to be k-dispensable in determining the decision function γ : V → {−, 0,+} if one or both of the

following hold:

1. player −p can, starting from w , reach a sink s ∈ Vp\V ∗p such that every path σ from w to s over

which player −p reaches s from w has length at most k − 2, or

2. player −p can reach v from w such that every path σ from w to v over which player −p reaches

v from w has length at most k − 1 and satisfies the property that the mean weight of the formed

closed path (vw)σ has sign −p.

Furthermore, vw is called dispensable if it is n-dispensable.

Theorem 4.2. Deleting any subset of D from E leaves γ invariant.

Proof. This is [2, Prop. B].

A more natural type of edges whose potential removal would not change the winning positions is the

collection of all edges that are not chosen in optimal positional strategies.

7That is, reducing n, |E| and M

28

Definition 4.3 (Suboptimal Edges). An edge vw ∈ E played by player ε(v) is called suboptimal if there

does not exist an optimal positional strategy fε(v) : V ∗ε(v) → V for player ε(v) such that w = fε(v)(v). Let

S denote the set of such edges vw , associated to (G, ε, µ).

In what follows, for a positional strategy f : V ∗ → V let Ef be all edges that are selected by f : Ef :=

{vf (v) : v ∈ V ∗}, and let F be the collection of optimal positional strategies V ∗ → V .

Theorem 4.4. Let f ∈ F . Then deleting any subset of E\Ef from E leaves χ invariant.

Proof. Let T ⊆ E\Ef , and let v ∈ V . Write f = f− t f+. Let G denote the old mean payoff game, and

let G ′ denote the mean payoff game obtained from G after removing T from E. Since we keep all of Ef

in G ′, it must be that f− and f+ are positional strategies in G ′ for Min and Max, respectively. Now, pick

optimal positional strategies f ′− and f ′+ in G ′. Note that these are also positional strategies in G, as the

edge set of G contains the edge set of G ′. Hence, f−, f+, f
′
−, f

′
+ are positional strategies in both games.

Denoting by χ(v) and χ′(v) the values of v in G and G ′, respectively, we derive

χ(v) 6 χ(σ(f ′− t f+, v)) (f+ is optimal for Max in G)

6 χ′(v) (f ′− is optimal for Min in G′)

6 χ(σ(f− t f ′+, v)) (f ′+ is optimal for Max in G′)

6 χ(v) (f− is optimal for Min in G)

so χ(v) = χ′(v), completing the proof.

Corollary 4.5. Deleting any subset of S from E leaves χ invariant.

Proof. This is seen as S = E\
⋃
f ∈F Ef , so any subset of S is a subset of a set of the form E\Ef for

some f ∈ F . Invoking Theorem 4.4 completes the argument.

Corollary 4.6. Problem (2) can be derived from (3) in polynomial time.

Proof. Consider our general mean payoff game G along with known optimal positional strategies f =

f− t f+. Obtain G ′ from G by deleting E\Ef from E, or, equivalently, by only keeping the edges that

are in Ef . By Theorem 4.4, the values of G ′ coincide with the values of G, but are easily found: due to

the nature of Ef , the vertex set of G ′ is partitioned into several components each of which has either

one cycle or one sink. Within each component, the cycle or sink is efficiently found and the values of the

vertices in that component coincide and equal the mean weight of the cycle if a cycle is present or they

equal −ε(s) · ∞ if a sink s is present.

We visualize this result in the following example.

29

Example 4.7. Consider the following mean payoff game:

+++ −−−
v1 v3

0

+++

−−−

v4

v5

−−−v2

+++ v6

−−−
v7

+++
v8

−−− v9

+++

−−−

v10

v110

0

0

0 0

0

1

1

1

1

−1

1

−1

1

Figure 1: A mean payoff game on 11 vertices

In the above graph, there are precisely five vertices — namely, v1, v2, v3, v6, v8 — that have more than

one out neighbor, and all of those have precisely two out neighbors. It turns out that each of those has a

suboptimal outgoing edge. We visualize those suboptimal edges below, where all optimal edges are colored

but all suboptimal edges are not.

+++ −−−
v1 v3

0

+++

−−−

v4

v5

−−−v2

+++ v6

−−−
v7

+++
v8

−−− v9

+++

−−−

v10

v110

0

0

0 0

0

1

1

1

1

−1

1

−1

1

Figure 2: A mean payoff game on 11 vertices: optimal positional strategies visualized

As a final step, we discard all suboptimal edges, divide the graph into components, and read off the

characteristic values per component based on the unique cycle or unique sink present:

30

+++ −−−
v1 v3

0

+++

−−−

v4

v5

−−−v2

+++ v6

−−−
v7

+++
v8

−−− v9

+++

−−−

v10

v110

0

0

0

1
−1

1

−1

1

χ = −12

χ = +12 χ = +∞

Figure 3: A mean payoff game on 11 vertices: reading off χ : V → R

Another way of seeing the result of the previous corollary is through he following result.

Corollary 4.8. Optimal strategies preserve characteristic values. That is, given f ∈ F and v ∈ V ∗, we

have χ(v) = χ(f (v)).

Proof. Reduce the mean payoff game G to G ′ by removing E\Ef from E. Then we have χ(v) = χ′(v) =

χ′(f (v)) = χ(f (v)), where the first and third equality are due to Theorem 4.4 and the second is due to

the fact that v and f (v) reside within the same component of G ′.

The converse of this statement, namely the statement that a positional strategy f : V ∗ → V with

χ(v) = χ(f (v)) for all v ∈ V ∗ is always optimal, is false, as the following example demonstrates.

31

Example 4.9. Consider the following mean payoff game on 8 vertices:

+++

+++

+++−−− −−−

−−−

−−−

+++

−1

−1

−1

−1

1

1

1

1

0

0

0

0

v1

v2

v3

v4

v5

v6

v7

v8

Figure 4: A bipartite mean payoff game on 8 vertices — “allValsAre0”

Since there are no sinks present, for each i ∈ [8] the value χ(vi) equals the mean weight of a cycle.

Max can ensure that each value is strictly greater than −1 by choosing a positional strategy f+ for which

f+(v1) = v5 or f+(v3) = v7 as to avoid ending up in the cycle v1v2v3v4v1. Similarly, Min can avoid ending

up in the cycle v5v6v7v8v5 hence can ensure that each value is strictly less than 1. This means that

χ(vi) = 0 for all i = 1, . . . , 8. Yet, if Max chooses to play from v1 to v2 and from v3 to v4, then Max’s

strategy preserves characteristic values but will not be optimal as Min now can ensure all vertices to have

value −1.

There is more to observe about the mean payoff game depicted in Figure 4. The associated sets O and

S of dispensable and suboptimal edges, respectively, are empty for instance. The path σ = v1v2v3v4,

however, would ensure Min to obtain value −1 on all vertices v1, v2, v3, v4 if Max would choose to play

along σ. Since Max is in full control of playing along σ — as all vertices belonging to Min on that path

have out-degree one — one could say that σ as a forced path by Max is dispensable, as Min can force to

close the cycle with negative payoff. This leads to the following generalization of Definition 4.1.

Definition 4.10 (Dispensable Forced Paths). Let k ∈ N, let σ be a path of length l 6 k starting at a

vertex v ∈ V and ending in a vertex w ∈ V such that σ is forced by player p ∈ {±}. That is, for every

vertex v ′ on σ strictly between the end points of σ that belongs to player −p, we have d+(v ′) = 1 and

the unique out-neighbour of v ′ is the next vertex in the path σ. Then σ is said to be a dispensable forced

path if one or both of the following hold:

1. player −p can, starting from w , reach a sink s ∈ Vp\V ∗p such that every path τ from w to s over

which player −p reaches s from w has length at most k − l − 1, or

2. player −p can reach v from w such that every path τ from w to v over which player −p reaches

v from w has length at most k − l and satisfies the property that the mean weight of the formed

closed path στ has sign −p.

Furthermore, σ is called dispensable if it is n-dispensable.

Indeed, a k-dispensable edge is a k-dispensable forced path of length one. However, the player for which

an edge is dispensable is always specified, whereas this is not the case for general dispensable forced paths.

32

4.2 Finite Values Revisited

Consider Definition 2.13 in which the finite values ηk(v) for mean payoff games are defined. Given k > 1

and v ∈ V , we consider the collection N+k (v) = {w ∈ N+(v) : ηk(v) = µ(v , w) + ηk−1(w)} of out

neighbours of v responsible for attaining the optimization (2.2). A natural quantity of v to consider along

the way would be the size d+k (v) = |N+k (v)| of the collection N+k (v).

Given a mean payoff game (G, ε, µ), and given an integer k > 1, we consider the collection Fk := {f :

V ∗ → V : f (v) ∈ N+k (v) for all v ∈ V ∗}. We notice that Fk has size
∏
v∈V ∗ d

+
k (v) and hence has size 1 if

and only if for every v ∈ V ∗ there exists a unique w ∈ V such that vw ∈ E and ηk(v) = µ(v , w)+ηk−1(w).

Since we have limk→∞ ηk(v)/k = χ(v) for every v ∈ V , one would expect that the sequence F1,F2, . . .
would stabilize into F ; that is, there exists N ∈ N such that for every integer k ∈ N the collection Fk
coincides with the collection F of optimal positional strategies. This turns out to be false, as the following

example demonstrates.

Example 4.11. Consider the following mean payoff game on the vertex set V = {v1, v2}:

−−− +++
v1 v2

0

11 −1

Figure 5: A mean payoff game on K2

Using the very definition of finite values as given in Definition 2.13, we compute the first finite values of

the game:

k 0 1 2 3 4 5

ηk(v1) 0 0 1 1 2 2

ηk(v2) 0 1 1 2 2 3

Table 1: The first 6 finite values of the mean payoff game in Figure 5

Clearly, Min has a positional strategy to avoid ending up in the cycle v1v1 which has (highest) mean

weight 1, and Max has a positional strategy to avoid ending up in the cycle v2v2 which has (lowest) mean

weight −1. As such, the only optimal positional strategy is the strategy that maps v1 to v2 and vice versa:

F = {vi 7→ v3−i}. Yet, for even k > 2, we have ηk(v1) = µ(v1, v1) + ηk−1(v1) = µ(v1, v2) + ηk−1(v2)

hence N+k (v1) = {v1, v2}. One also establishes that N+k (v2) = {v1} for all k > 1. Hence, for k > 1 we

have

Fk =

{vi 7→ v3−i}, k is odd,

{vi 7→ v3−i , vi 7→ v1} k is even,

so for this mean payoff game it is not the case that F = Fk for sufficiently large k . Namely, we see

33

that the sequence of Fk alternates between two fixed sets, and hence in every other instance contains

strictly more than all optimal positional strategies. This example shows that, despite Theorem 2.14, local

optimizations are not guaranteed to have a say in the determination of optimal positional strategies.

We expand the definition of finite values ηk(v) (Definition 2.13) to that of finite values ηk(v , w) that are

taken along paths that are supposed to end in a chosen end vertex w ∈ V .

Definition 4.12 (Finite Values with Fixed End Points). Let (G, ε, µ) be the data of a mean payoff game,

with G = (V, E), and let x ∈ V be a vertex which we will call the end point. For all v ∈ V and

k ∈ Z>0, we define a value ηk(v , x) as follows. We compute Gx as defined in Definition 1.11 and now

take Gx = (Vx , Ex) as ambient graph. We set η0(x, x) = 0 and η0(v , x) = −ε(v) · ∞ for all v ∈ Vx\{x}.
Then for k = 1, 2, 3, . . . we inductively set

ηk(v , x) :=

max{µ(v , w) + ηk−1(w, x) : w ∈ N+(v)}, if ε(v) = +,

min{µ(v , w) + ηk−1(w, x) : w ∈ N+(v)}, if ε(v) = −,

where each out-neighborhood of v is taken with respect to Gx , and with the conventions max∅ = −∞
and min∅ = +∞.

4.3 Derived Mean Payoff Games

For a graph G = (V, E) and positional strategy8 f : V ∗ → V , we set Ef := {vf (v) : v ∈ V ∗} as before.

We look at the class of mean payoff games (G, ε, µ) on n vertices for which |Fn| = 1. Then there exists

a unique positional strategy f : V → V ∗ such that ηn(v) = µ(v , f (v)) + ηn−1(f (v)) for all v ∈ V ∗.

Taking the data of a mean payoff game (G, ε, µ) with the additional assumption that |Fn| = 1, i.e.,

Fn = {f }, we construct a graph G(1) as follows. We let E
(1)
C be all edges of (V, Ef) that lie on a cycle in

(V, Ef). We now let E
(1)
R be the smallest subset of E\E(1)C such that, for vertices v , v ′ lying on distinct

cycles C,C′ in (V, Ef), we include an edge vv ′ ∈ E(1)R if and only if in (G, ε, µ), v ∈ Rε(v)(v ′) (9) and

ε(v) · (m(C′) − m(C)) > 0. We set E(1) := E
(1)
C t E

(1)
R , let V (1) consist of all vertices in V that lie on

edges in E(1), set G(1) := (V (1), E(1)), ε(1) := ε|V (1) , and finally define µ(1) := µ|
E
(1)
C

t (E
(1)
R 3 e 7→ 0).

Definition 4.13 (Derived Mean Payoff Game). Given a mean payoff game G = (G, ε, µ), the mean payoff

game G(1) = (G(1), ε(1), µ(1)) is called the first derived mean payoff game of G. We define the derived

series G(0),G(1),G(2), . . . by G(0) := G and G(k) := (G(k−1))(1) for k ∈ N.

Calculating the first derived mean payoff game of a mean payoff game can be done efficiently, as the

following algorithm shows.

8That is, a map f : V ∗ → V satisfying vf (v) ∈ E for all v ∈ V ∗
9That is, player ε(v) can reach v ′ in G from v

34

Algorithm 6: Computing the derived mean payoff game

Data: a graph G = (V, E), µ : E → R, ε : V → {±}, encoded in G = (G, ε, µ), with

|F|V || = 1

Result: the first derived mean payoff game G(1) = (G(1), ε(1), µ(1))

1 Function derivedMPG(G, ε, µ)

2 n ← |V |
3 for k = 1, . . . , n do

4 for v ∈ V do

5 if ε(v) = 1 then

6 ηk(v)← max{µ(v , w) + ηk−1(w) : w ∈ N+(v)}
7 else

8 ηk(v)← min{µ(v , w) + ηk−1(w) : w ∈ N+(v)}
9 end

10 end

11 end

12 for v ∈ V ∗ do

13 for w ∈ N+(v) do

14 if ηn(v) = µ(v , w) + ηn−1(w) then

15 f (v)← w

16 end

17 end

18 end

19 Ef ← {vf (v) : v ∈ V ∗}
20 for v ∈ V do

21 l(v)← min{i ∈ {0, . . . , n} : f i(v) ∈ V \V ∗}
22 c(v) = [v ∈ {f i(v) : 1 6 i 6 l(v)}, 1, 0]

23 end

24 V (1) ← c−1(1), E
(1)
C ← Ef ∩ (V (1) × V (1))

25 for v ∈ V (1) do

26 L(v)← min{i ∈ {1, . . . , n} : f i(v) = v}
27 m(v)← 1

L(v)

∑L(v)−1
i=0 µ(f i(v), f i+1(v))

28 end

29 E
(1)
R ← {}

30 for v , v ′ ∈ V (1) with v ′ /∈ {f i(v) : i = 0, . . . , L(v)} do

31 E
(1)
R ← [v ∈ Reach(G, ε, {v ′}, ε(v)) and ε(v) · (m(v ′)−m(v)) >

0, E
(1)
R ∪ {vv

′}, E(1)R]

32 end

33 µ(1) ← µ|
E
(1)
C

t (E
(1)
R 3 e 7→ 0), E(1) ← E

(1)
C ∪ E

(1)
R

34 ε(1) ← ε|V (1) , G(1) ← (V (1), E(1))

35 return (G(1), ε(1), µ(1))

36 end

Here, it is understood that the function Reach from Algorithm 2 is taken with the choices for p in {±}
instead of in {0, 1}. The following example indicates the procedure of deriving a mean payoff game in this

fashion.

35

Example 4.14. Consider the following mean payoff game on the vertex set V = {v1, . . . , v6}, along with

the effect of computing its first derived game:

+++

−−− +++

−−−

+++ −−−

v1

v2

v3

v4

v5v6

0

3
M

0
1

−M−M
0

2

+++

−−− +++

−−−

+++ −−−

v1

v2

v3

v4

v5v6

0

3
0

0
1

00
0

2

0

(·)(1), M > 3

0

Figure 6: Computing the first derived game of a mean payoff game

As is apparent in the above figure, we have E
(1)
C = {v1v2, v2v1, v3v4, v4v3, v5v6, v6v5}. Writing C1, C2, C3

for the cycles formed by the vertices {v1, v2}, {v3, v4}, and {v5, v6}, respectively, we see that the mean

weights of these cycles satisfy m(C1) > m(C3) > m(C2). Now, player Min can force a play from v2 ∈ C1
to v4 ∈ C2, thus from a cycle to another cycle with mean weight that is better from the perspective of

Min. Hence, an edge v2v4 ∈ E(1)R of weight zero is included. Furthermore, Max can reach C3 from a

vertex in C2, Max can reach C1 from a vertex in C3, and since Min does not have an escape from C3 it

follows that Max also can reach C1 from C2. Hence, more edges with weight zero are included in E
(1)
R ,

eventually leading to the graph on the right in figure 6.

The characteristic values of the game on the left in figure 6 are all equal to 1 as one can check — implying

that every play following optimal positional strategies has terminal cycle C3. The characteristic values on

the right, however, are all equal to 1 as well. Yet, for the derived graph, the weight size is always equal to

3 and hence Algorithm 4 to compute the values of the mean payoff game on the left terminates in O(1)

time when applied to its derived game.

Given a mean payoff game G, it is not always the case that the operation (·)(1) keeps the winning

positions invariant, even in the case none of the initial vertices becomes isolated. This is illustrated by the

following example.

36

Example 4.15. Consider the following mean payoff game on K3, along with its derived graph:

−−−

+++ +++ v2

v3

v1

−1

−2

−1

1

1

0

−−−

+++ +++ v2

v3

v1
−2

1 0

(·)(1)

Figure 7: A mean payoff game on K3

Max can avoid ending up in a cycle with negative weight, and Min can avoid ending up in a cycle with

positive weight. As such, all three vertices in the mean payoff game on the left in Figure 7 are draw

positions. Deriving the game, however, yields C3 with negative weight and thus all positions are winning

for Min in that game.

37

5 Probabilistic Complexity of Problem (1)

In this section, we prove that for every n ∈ N and every function h(M) of M ∈ N satisfying h(M)→∞ as

M →∞, the probability that Algorithm 4 operating on mean payoff games on n vertices with weight size

M terminates correctly in O(h(M)) time10 converges to 1 as M →∞. Here, the probability of success is

taken with respect to selecting mean payoff games on n vertices with weight size M uniformly at random.

The result follows by considering and properly estimating the number R := minC:m(C) 6=0 |m(C)| where C

runs over all directed cycles of the graph with nonzero mean weight. Before we state the result, we first

classify how we count mean payoff games on n vertices with weight size M. Since the result does not

depend on the partition V = V− t V+ of the vertices, it will be sufficient to only come up with a method

to count weighted digraphs.

5.1 Counting Weighted Digraphs

Given n ∈ N and M ∈ N, one can take a look at the class G (n,M) of all weighted graphs (G,µ) with

V (G) = [n] and ‖µ‖∞ = M. One readily notes that the members of the class G (n,M) can be counted as

(where we use Newton’s Binomial Theorem)

|G (n,M)| =

n2∑
k=0

∑
E⊂[n]×[n]:
|E|=k

|{µ : E → {−M, . . . ,M} : ‖µ‖∞ = M}|

=

n2∑
k=0

(
n2

k

)
· |{f : [k]→ {−M, . . . ,M} : ‖f ‖∞ = M}|

=

n2∑
k=0

(
n2

k

)
·
(∣∣∣{−M, . . . ,M}[k]∣∣∣− |{f : [k]→ {−M, . . . ,M} : ‖f ‖∞ < M}|

)

=

n2∑
k=0

(
n2

k

)
·
(

(2M + 1)k − (2M − 1)k
)

=

n2∑
k=0

(
n2

k

)
· (2M + 1)k · 1n2−k −

n2∑
k=0

(
n2

k

)
· (2M − 1)k · 1n2−k

= (2M + 2)n
2 − (2M)n

2

= 2n
2 ·
(

(M + 1)n
2 −Mn2

)
.

Given a property P on G (n,M), we can define the probability that a weighted graph (G,µ) from G (n,M)

when uniformly randomly selected satisfies P as

Pn,M((G,µ) satisfies P) :=
|(G,µ) ∈ G (n,M) : (G,µ) satisfies P |

|G (n,M)| .

More generally, for any finite class G of weighted digraphs (G,µ) and property P on G one can write the

probability that a weighted digraph drawn uniformly at random satisfies P as

PG ((G,µ) satisfies P) :=
|(G,µ) ∈ G : (G,µ) satisfies P |

|G |
10We do not include n as n is fixed beforehand

38

and one notices that we have Pn,M = PG (n,M) for short. Given two properties P,Q on a finite class G of

weighted graphs, we also have the conditional probability

PG ((G,µ) satisfies P | (G,µ) satisfies Q) :=
PG ((G,µ) ∈ G : (G,µ) satisfies P and Q)

PG ((G,µ) ∈ G : (G,µ) satisfies Q)

=
|(G,µ) ∈ G : (G,µ) satisfies P and Q|
|(G,µ) ∈ G : (G,µ) satisfies Q|

.

Remark 5.1. An alternative method to count G (n,M) is by viewing a weighted graph (G,µ) ∈ G (n,M)

as a matrix A ∈ (([−M,M]∩Z)∪{∞})n×n, where Avw = µ(v , w) if vw ∈ E(G) and Awv =∞ otherwise.

We see that G (n,M) is characterized as

([−M,M] ∩ Z) ∪ {∞})n×n\([−(M − 1),M − 1] ∩ Z) ∪ {∞})n×n (5.1)

and the above collection contains precisely (2M + 2)n
2 − (2M)n

2
elements.

5.2 The Probabilistic Speed-Up of Algorithm 4

For a weighted graph (G,µ), let R(G,µ) be the quantity min{|m(C)| : m(C) 6= 0}, where C runs over all

directed cycles in (G,µ) with nonzero mean weight, as defined in Definition 3.3.

Theorem 5.2. Let n ∈ N, and let h : N → R be a function of M ∈ N satisfying h(M) = ω(1), i.e.

h(M)→∞ as M →∞. Then we have

lim
M→∞

Pn,M

(
R(G,µ) >

M

h(M)

)
= 1. (5.2)

The proof of Theorem 5.2 is surprisingly elementary, and we utilize the counting method as presented in

Remark 5.1 to deduce (5.2). We first prove an auxiliary result, that in turn relies on a technical lemma

— Lemma 5.7 — that we prove independently at the very end of this section.

Definition 5.3. Construct, for all k ∈ [n], the property Pk on G (n,M) as follows: we say that (G,µ) ∈
G (n,M) satisfies Pk precisely when for each selection of k distinct edges e1, . . . , ek ∈ E(G) we have

M
h(M) 6

∣∣∣ 1k ∑k
i=1 µ(ei)

∣∣∣, and we denote this by Pk(G,µ).

Lemma 5.4. Let n and h be as in Theorem 5.2, and let k ∈ [n]. Then we have

lim
M→∞

Pn,M(Pk(G,µ)) = 1. (5.3)

Proof. In the proof, we drop the subscripts indicating n,M whence we write P(·) instead of Pn,M(·). We

modify Pk to the property P ′k where we say that (G,µ) satisfies P ′k precisely when for each k-tuple of

edges e1, . . . , ek ∈ E(G) we have M
h(M) 6

∣∣∣ 1k ∑k
i=1 µ(ei)

∣∣∣. Then we have P(Pk(G,µ)) > P(P ′k(G,µ)) as

P ′k(G,µ) implies Pk(G,µ). Now, we have

P(P ′k(G,µ)) =

n2∑
k=0

P(P ′k(G,µ)||E(G)| = k) · P(|E(G)| = k)

> min
06k6n2

P(P ′k(G,µ)||E(G)| = k)

(5.4)

39

as the middle term is a convex combination in the quantities P(P ′k(G,µ)||E(G)| = k) (where k =

0, . . . , n2), with coefficients P(|E(G)| = k) for k = 0, . . . , n2. Clearly, the minimum in (5.4) is attained

precisely for k = n2, and we have

P(P ′k(G,µ)) > P(P ′k(G,µ)||E(G)| = n2).

We invoke Lemma 5.7 (given at the end of this subsection) by identifying the collection of weighted,

complete digraphs with maximum absolute weight M with [n2,M]′ (where [·, ·]′ is defined in Lemma 5.7)

to deduce that

lim
M→∞

P(P ′k(G,µ)||E(G)| = n2) = 1,

and from this we obtain (5.3).

Proof of Theorem 5.2. In this proof, we again drop the subscripts indicating n,M whence we write P(·)
instead of Pn,M(·). We observe that if (G,µ) satisfies Pk for all k ∈ [n], then certainly R(G,µ) > M

h(M) .

It follows that, given M, we have

P

(
R(G,µ) >

M

h(M)

)
> P (Pk(G,µ) for all k ∈ [n])

= 1− P(∃k ∈ [n] : ¬Pk(G,µ))

> 1−
n∑
k=1

P(¬Pk(G,µ))

= 1− n +

n∑
k=1

P(Pk(G,µ))

and we obtain (5.2) from Lemma 5.4.

An immediate consequence of Theorem 5.2 becomes apparent once we combine it with Theorem 2.16 in

which it was stated that Algorithm 4 correctly terminates in 4nM/R+1 steps. Here, R again indicates the

minimum among the absolute values of the mean weights of the directed cycles of the weighted graphs

that have nonzero mean weight. Upon combining these results we derive the central result of this thesis.

Theorem 5.5 (Probabilistic Speed-Up of Algorithm 4). Let n ∈ N, and let h : N → R be a function of

M ∈ N satisfying h(M) = ω(1), i.e. h(M)→∞ as M →∞. Consider mean payoff games on n vertices,

with weight functions with maximum absolute value equal to M, selected uniformly at random. Then the

probability that Algorithm 4 correctly terminates upon running the loop starting at line 7 from k = 1 to

k = b4n · h(M)c+ 1, instead of from k = 1 to k = 4n2M + 1, converges to 1 when M →∞.

Proof. All mean payoff games on n vertices with weight size M satisfying R > M/h(M) ensure Algorithm

4 to terminate with success probability 1 if we let k run to at least 4nM/R+ 1 6 4nM/(M/h(M)) + 1 =

4n ·h(M) + 1, where the minimum of 4nM/R+ 1 steps was derived in Theorem 2.16. Since the proportion

of such mean payoff games relative to the collection of mean payoff games on n vertices with weight size

M goes to unity as M goes to infinity (this follows by combining Theorem 5.2 with the observation that

the weights are independent of the partition of the vertex set), it must be that upon selecting mean payoff

games on n vertices with weight size M uniformly at random, the probability that Algorithm 4 terminates

correctly in this way converges to 1 as M goes to infinity.

40

Despite the fact that for fixed n the proportion of mean payoff games to which are assigned the correct

signs of the characteristic values goes to 1 as M →∞, this proportion never coincides with 1 for sufficiently

large M in the case n > 3. This is demonstrated by the following example, for n = 3, and thus extends

to every finite graph on at least three vertices as we can add isolated vertices indefinitely to this graph to

obtain families of examples in terms of increasing M and increasing n > 3.

Example 5.6. Consider the following mean payoff game on 3 vertices:

+++ −−−+++

0
v1 v2 v3

1

−M

0

The only choice a player has is the choice Max has at v2, and when playing optimally, Max will play from v2

to v1 and hence χ(v1) = χ(v2) = 1/2 and χ(v3) = 0 in this case. However, upon considering Algorithm

4, the first value of k for which ηk(v2) > 2nM occurs at k = 4nM + 1, which for fixed n is in Ω(M).

Considering that the occurrence of a k satisfying ηk(v2) > 2nM is needed to establish that γ(v2) = 1,

this example proves that the probability in Theorem 5.5 never attains 1, for whatever choice of n > 3 and

h(M) = ω(1) and h(M) = o(M).

Finally, we prove the technical result needed to establish Lemma 5.4. We do not give a counting argument,

but we give a probabilistic reasoning instead.

Lemma 5.7. Let h be as in Theorem 5.2, let N ∈ N, and let k ∈ [N]. For M ∈ N, write [N,M] :=

([−M,M] ∩ Z)N and [N,M]′ := [N,M]\[N,M − 1]. Then we have

lim
M→∞

∣∣∣{v ∈ [N,M]′ : M
h(M) 6

∣∣∣ 1k ∑k
i=1 vxi

∣∣∣ ∀ x1, . . . , xk ∈ [N]
}∣∣∣

|[N,M]′| = 1. (5.5)

Proof. We prove that one minus the quantity in (5.5) the limit is taken of goes to zero as M goes to

infinity. To this end, we first derive

1−

∣∣∣{v ∈ [N,M]′ : M
h(M) 6

∣∣∣ 1k ∑k
i=1 vxi

∣∣∣ ∀ x1, . . . , xk ∈ [N]
}∣∣∣

|[N,M]′|

=

∣∣∣{v ∈ [N,M]′ : ∃x1, . . . , xk ∈ [N] :
∣∣∣ 1k ∑k

i=1 vxi

∣∣∣ < M
h(M)

}∣∣∣
|[N,M]′|

=
1

|[N,M]′|

∣∣∣∣∣∣
⋃

(x1,...,xk)∈[N]k

{
v ∈ [N,M]′ :

∣∣∣∣∣1k
k∑
i=1

vxi

∣∣∣∣∣ < M

h(M)

}∣∣∣∣∣∣
6

∑
(x1,...,xk)∈[N]k

∣∣∣{v ∈ [N,M]′ :
∣∣∣ 1k ∑k

i=1 vxi

∣∣∣ < M
h(M)

}∣∣∣
|[N,M]′|

(5.6)

so we obtain (5.5) if we can show that all Nk summands in the final expression in the above go to zero

as M goes to infinity. To this end, take x1, . . . , xk ∈ [N]. We select v uniformly at random from [N,M]′.

For x, y ∈ [N], we set δxy := 1 if x = y and δxy := 0 otherwise. Due to the additive symmetry of [N,M]

41

and hence [N,M]′, we have

E

[
1

k

k∑
i=1

vxi

]
= 0. (5.7)

Next, we compute a lower bound of the expectation value of the square of 1k
∑k

i=1 vxi and show that it is

in Ω(M2):

E

(1

k

k∑
i=1

vxi

)2 =
1

k2

k∑
i=1

E[v2xi] +
1

k2

∑
i 6=j

δxixjE[vxi vxj]

>
1

k2

k∑
i=1

E[v2xi]

>
1

k2
· k · E[v2x1]

=
1

k
·

1

2M + 1
·

M∑
j=−M

j2

=
1

k
·

1

2M + 1
· 2 ·

M∑
j=1

j2

=
1

k
·

1

2M + 1
· 2 ·

M(M + 1)(2M + 1)

6

=
1

3k
M(M + 1) >

(
M√
3k

)2
.

(5.8)

The first equality in (5.8) follows as for distinct x, y ∈ [N] we have E[vxvy] = 0, due to the additive

symmetry of [N,M]′. The first inequality in (5.8) follows as whenever xi = xj , we have E[vxi vxj] =

E[v2xi] > 0. The second inequality in (5.8) follows because before the inequality, the values vxi were still

coupled to v , and [N,M]′ has on average wider spacing than [N,M], whereas the value vx1 was understood

to be taken independently from [−M,M] ∩ Z from that point on. Let σM be the standard deviation of

1
k

∑k
i=1 vxi upon selecting v uniformly at random from [N,M]′. Combining (5.7) and (5.8) gives σM > M√

3k

hence σM = Ω(M). Then it is immediate that (M/h(M))/σM
M→∞−−−−→ 0. Spelled out,

M/h(M)

σM
<
M/h(M)

M/
√

3k
=

√
3k

h(M)

M→∞−−−−→ 0

as h(M)
M→∞−−−−→ ∞. Since we have been selecting v uniformly at random from [N,M]′ and the standard

deviation of 1k
∑k

i=1 vxi compared toM/h(M) approaches infinity asM →∞, it must be that the proportion

of v ∈ [N,M]′ satisfying
∣∣∣ 1k ∑k

i=1 vxi

∣∣∣ < M/h(M) approaches zero as M → ∞. As x1, . . . , xk ∈ [N] were

selected arbitrarily, each summand in the final expression in (5.6) goes to zero as M →∞, and we obtain

(5.5).

42

6 Discussion and Conclusion

Before we state our final conclusions, we discuss our results and suggest how to improve on those, as well

as mention a few other ideas for further research.

6.1 Discussion of Results

In this thesis we have kept a global picture in sight instead of purely focusing on subclasses of mean payoff

games. The central result in this thesis (Theorem 5.5) was found by keeping this view, whilst exploiting a

very small subtlety in the proof of correctness of Algorithm 4. This subtlety came down to observing that

the minimum R of the absolute values of the cycle means of cycles with nonzero mean is always at least

1/n where n is the number of vertices, and subsequently noting that R is statistically sufficiently larger to

derive the main result.

We indicate however that the convergence rate of the probability in Theorem 5.5 deserves its own analysis.

Specifically, we consider it very likely that the convergence rate is heavily negatively affected if we let n

increase. The result of Theorem 5.5 still stands of course, yet at a questionable rate of convergence.

6.2 Suggestions for Further Research

Here, we discuss suggestions for further research and potential further improvements.

6.2.1 The Potential of Problem (1) Lying in P

Given that Zwick and Paterson conjecture in [12, Section 8] that the decision problem of mean payoff

games lies in P, and given Theorem 5.5, we would like to emphasize that we now have even more reason

to believe that the decision problem lies in P. A potential solution could be as follows. The key idea

is to come up with a function h(M) = ω(1) simultaneously residing in O((logM)d) for some d ∈ N

that separates mean payoff games into two subclasses MPGR>M/h(M) and MPGR<M/h(M) upon comparing

M/h(M) to the minimum absolute nonzero cycle mean R, and then to hybridize Algorithm 4 with a new

algorithm with pre-condition R < M/h(M).

Since in a hybride algorithm we cannot avoid the running time of a potential check on a pre-condition, we

must come up with an efficient method to distinguish between the classes MPGR>M/h(M) and MPGR<M/h(M).

The most natural check would be an algorithm that solves problem (C2), i.e. the problem of finding the

minimum among the absolute values of the means of the cycles that have nonzero cycle mean. Despite

the apparent similarity of this problem to the minimum (or maximum) cycle mean problem for which Karp

gave an efficient algorithm in [10], we have not found an efficient solution to problem (C2) yet. However,

an efficient method to determine whether the minimum absolute nonzero cycle mean R lies in an interval

of the form [−α,α] with α ∈ R (or in Q or even in Z) ought to be sufficient for the pre-condition to

separate games into the classes MPGR>M/h(M) and MPGR<M/h(M). The reason that we can relax α to be

an integer lies in the fact that, as M goes to infinity, so will M/h(M) if we choose h(M) = ω(1). A very

tangible approach to keep the running time polynomial in logM would be to select h(M) = (logM)d for

43

some d ∈ N.

Once we have the efficient pre-condition check, a second ingredient will be the most challenging as it

will require an efficient algorithm to determine the winning positions. However, it may assume that

R < M/(logM)d . From that point onward, one might want to look for methods to efficiently solve the

decision problem that assumes this pre-condition. On the other hand, in case problem (1) does not admit

a polynomial-time solution, then one has to come up with a grid of mean payoff games (Gn,M)(n,M)∈N×N

for which R(Gn,M) < M/h(M) for large enough M for any h(M) = ω(1), and such grids lie sparse in the

collection of all mean payoff games, as Theorem 5.2 suggests but does not guarantee.

Again, such hybdridization is only possible if we have an efficient check to distinguish between weighted

digraphs with R < M/h(M) and those with R > M/h(M). This calls for further research on finding an

efficient solution to the minimum absolute nonzero cycle mean problem on weighted digraphs.11

6.2.2 The Potential of Problem (2) Lying in P

Since the probabilistic speed-up of an algorithm solving the decision problem was based on mapping how

far away from zero the mean weights of the cycles with nonzero mean weight are situated, Zwick’s and

Paterson’s value finding algorithm might admit a similar probabilistic speed-up. Instead of looking at the

quantity R for weighted digraphs, we look at the quantity ∆m, defined by

∆m := min
(C,C′):m(C) 6=m(C′)

|m(C)−m(C′)|

where (C,C′) runs over all pairs of directed cycles of the weighted digraph in question such that the mean

weights of the two cycles in the pair are not the same. We believe that, for fixed n ∈ N and h(M) = ω(1),

the proportion of weighted digraphs with ∆m > M/h(M) approaches 1 if M goes to infinity. This would

be similar to the proportion of weighted digraphs with R > M/h(M) approaching 1 if M goes to infinity,

as proven in Theorem 5.2. Then if we can show by re-analyzing the proof of the best-known method to

the value finding problem [12, Thm. 2.3] that it is sufficient to compute the first O(h(M)) collections of

finite values (ηk(v)/k)v∈V for k 6 O(h(M)) to correctly give all exact values χ(v), we have extended the

result in Section 5 to problem (2).

Should this be possible, then there is a higher likelihood that problem (2) as well resides in P. Again,

in this case one could come up with a hybrid algorithm of which the second half considers mean payoff

games with the precondition that ∆m is small.

6.2.3 Improving Bounds

The initial running times O(n4 ·M) and O(n3 ·M) of the (ideas of the) algorithms Zwick and Paterson

proposed in [12] followed from two estimations. The first is [12, Thm. 2.2] (or, equivalently, Theorem

2.14, the second is the fact that R > 1/n for every weighted digraph on n vertices with at least one

11Due to the nature of mean payoff games considered here, one can restrict to integer-weighted digraphs, as

opposed to Karp who considered general real-weighted digraphs

44

nonzero weight. We believe that both inequalities can be improved. However, the second was improved

probabilistically and does not allow for a deterministic improvement, as [2, Figure 3] illustrates, where we

have R = O(1n ·M
0) (12). The first inequality assumes the worst-case scenario, but we also believe this

inequality cannot be deterministically improved as well, as there are plenty of weighted digraphs for which

the absolute weight of each edge is in Ω(M) yet there are cycles with mean weight very close to 1/n in

absolute value.

A similar suggestion for further research is to investigate the convergence rate of (5.2) as a function

of n. We have reason to believe that the rate of convergence is highly dependend on n, but not in what

particular fashion.

6.3 More on Probabilistic Complexity Classification

The probabilistic speed-up of Zwick and Paterson’s algorithm to determine the winning positions might

allow for the following classification. Given ε > 0, there might exist K,C, d > 0 (depending on ε) only

such that whenever a mean payoff game on n vertices with weight size M satisfies max(n,M) > K, Zwick

and Paterson’s algorithm runs in time at most C · n3 · (logM)d with error probability at most ε. Should

this be the case, then the class of mean payoff games might be part of one of the randomized complexity

classes as described in [3].

6.4 Conclusion

In this thesis, we have formulated the three main problems on mean payoff games on integer-weighted

digraphs. We first gave an overview of existing methods in Section 2. It proved hard to find families of

mean payoff games on which there are algorithms solving the decision problem that terminate in purely

polynomial time. On the other hand, a small subtlety (Theorem 2.14 and Theorem 2.16) allowed us to see

that for large weights, the proportion of mean payoff games that allow for a decision algorithm terminating

in purely polynomial time goes to one. Since there are always very particular classes of mean payoff games

to find that admit polynomial time solutions, a more global result might have been refreshing. Particularly,

Theorem 5.5 might be seen as support of Zwick and Paterson’s conjecture that the decision problem of

mean payoff games lies in P. We have seen that trying to look at computational problems in both a local

and a global way is benificial to gain new insights in problems of this nature �

12We include M in this notation as to indicate that we do not pre-fix M

45

Appendices

As appendices, we include implementations in PARI/GP [11] of the main algorithms in this thesis, along

with auxiliary functions. A great deal of these scripts have been used to come up with concrete examples

throughout this thesis. Before displaying the actual scripts, we give an overview of the most important

algorithms and functions.

Name Implementing Description

addInf — addition on R ∪ {±∞}
decide Algorithm 4 deciding the winning positions

derMPG Algorithm 6 computing the derived MPG

finVals Definition 2.13 computing finite values

isSubset — check if A ⊆ B
multInf — multiplication on R ∪ {±∞}
posStr2Vals — compute values from strategy

Reach Algorithm 2 reachability on (G, ε)

ReachOne Algorithm 2 one-step reachability on (G, ε)

solveVertex Algorithm 3 compute characteristic value

strFromVals — compute strategy from values

underlyingGraph — MPG to underlying graph

46

A Implementations of Main Algorithms in PARI/GP

Below, we give implementations in PARI/GP of the main algorithms in this thesis. Quite some of them use

auxiliary functions, and those are given in Appendix B. Mean Payoff Games (G, ε, µ) on n ∈ N vertices are

inputted as a pair [A, eps], in such a way that (G,µ) is encoded in A. Then we can view [n] = {1, . . . , n}
as the vertex set. Here, A is an n × n matrix containing values from Z ∪ {±∞}, and eps is a vector of

length n with entries in {±1}, indicating which player owns which vertex. Then the element A[i, j]

equals the weight of i j if i j is an edge, and if i j is not an edge then A[i , j] equals +∞ if vertex i belongs

to Min and −∞ if vertex i belongs to Max. Note that in this fashion ε is reflected in A if the graph is

not complete but only deducible from A if none of the n sets of out-neighbours coincides with the entire

vertex set. Positional strategies are given as vectors of length n with entries in {0} ∪ [n], where all values

of such vector equal to zero are indexed precisely by all integers in [n] representing sinks. Such matrix A

can be translated to its underlying (unweighted) graph G. Unweighted graphs G are represented as n × n
matrices, where G[i, j] equals 1 if there is an edge from i to j and zero otherwise.

Listing 1. Below we implement the two-player reachability algorithm (Algorithm 2) in PARI/GP, but not

for p ranging over {0, 1} but for p ranging over {±1}.

1 Reach = ((G, eps , S, p) -¿ “

2 R = S; R2 = S; “

3 R = ReachOne(G, eps , R2, p); “

4 while (R2 != R, “

5 R2 = R; “

6 R = ReachOne(G, eps , R2, p); “

7); “

8 R; “

9);

10

11 ReachOne = ((G, eps , S, p) -¿ “

12 n = matsize(G)[1]; “

13 T = S; “

14 for (v = 1, n, “

15 if (S[v], “

16 for (u = 1, n, “

17 if (G[u, v] && !S[u], “

18 if(eps[u] == p —— isSubset(G[u,], S), T[u] = 1); “

19); “

20); “

21); “

22); “

23 T; “

24);

Listing 1: Reachability for two players {−,+} in PARI/GP

47

Listing 2. Here, we implement an algorithm that finds a strategy given the outcomes of the characteristic

values of the mean payoff game. The approach is brute-force, and we note that the method in [12, Thm.

3.1] is much faster.

1 strFromVals = ((MPG , vals) -¿ “

2 [A, eps] = MPG; “

3 n = matsize(A)[1]; “

4 G = underlyingGraph(A); “

5 deg = vector(n, v, vecsum(G[v,]));“

6 f = vector(n); “

7 ind = vector(n); “

8 finalInd = vector(n); “

9 for (v = 1, n, “

10 if (deg[v] ¿ 0, “

11 for (w = 1, n, “

12 ind[v] = if(ind[v] == 0 && G[v, w], w, ind[v]); “

13 finalInd[v] = if(G[v, w], w, finalInd[v]); “

14); “

15); “

16); “

17 terminate = 0; “

18 while (!terminate , “

19 f = vector(n, v, if(deg[v] ¿ 0, ind[v], 0)); “

20 valsf = posStr2Vals(MPG , f); “

21 if (vals == valsf , break); “

22 terminate = 1; “

23 success = 0; “

24 for (v = 1, n, “

25 if (deg[v] ¿ 0, “

26 if(ind[v] ¡ finalInd[v], “

27 for(w = ind[v] + 1, n, “

28 if(G[v, w], “

29 ind[v] = w; success = 1; “

30 terminate = 0; break; “

31); “

32); “

33); “

34); “

35 if (success , break); “

36); “

37); “

38 f; “

48

39);

Listing 2: Computing a strategy from values in PARI/GP

Listing 3. Here, we implement (2.1) to find the value of a given vertex v.

1 /* Pre -condition: MPG [2] is of the form

2 [p, ..., p, -p, ..., -p] where p is in –-1, 1˝

3 */

4 solveVertex = ((MPG , v) -¿ “

5 [A, eps] = MPG; “

6 n = matsize(A)[1]; “

7 G = underlyingGraph(A); “

8 V1 = vector(n, w, vecsum(G[w,]) ¿= 1); “

9 V2 = vector(n, w, vecsum(G[w,]) ¿= 2); “

10 f = vector(n); “

11 if (vecsum(V2) == 0, “

12 for (w = 1, n, “

13 if (V1[w], “

14 for (x = 1, n, “

15 if (G[w, x], f[w] = x); “

16); “

17); “

18); “

19 chi = posStr2Val(MPG , v, f); “

20); “

21 if (vecsum(V2) ¿ 0, “

22 for (v1 = 1, n, “

23 if (V2[v1], “

24 v2 = v1; break; “

25); “

26); “

27 E = vector(n); “

28 for (w = 1, n, “

29 if (G[v2 , w], “

30 E0 = A; “

31 for (x = 1, n, “

32 if (x != w && G[v2 , x], “

33 E0[v2 , x] = if(eps[v2] == 1, -oo , +oo); “

34); “

35); “

36 E[w] = E0; “

37); “

49

38); “

39 if (eps[v2] == 1, “

40 chiVec = vector(n, w, if(G[v2 , w], “

41 solveVertex ([E[w], eps], v)[1], -oo)); “

42 chi = vecmax(chiVec); “

43); “

44 if (eps[v2] == -1, “

45 chiVec = vector(n, w, if(G[v2 , w], “

46 solveVertex ([E[w], eps], v)[1], +oo)); “

47 chi = vecmin(chiVec); “

48); “

49); “

50 [chi , G]; “

51);

Listing 3: Finding the value of a vertex using (2.1), in PARI/GP

Listing 4. Next, we implement a function that computes the first derived mean payoff game, according

to Definition 4.13.

1 derMPG = ((MPG , reduce) -¿ “

2 [A, eps] = MPG; “

3 n = matsize(A)[1]; “

4 G = underlyingGraph(A); “

5 deg = vector(n, v, vecsum(G[v,])); “

6 f = finVals(MPG , n)[1]; “

7 Ef = matrix(n, n, i, j, multInf(-eps[i], +oo)); “

8 for (i = 1, n, “

9 if (f[i] ¿ 0, Ef[i, f[i]] = A[i, f[i]]); “

10); “

11 l = vector(n); “

12 c = vector(n); “

13 for (v = 1, n, “

14 w = v; “

15 while (deg[w] ¿ 0 && l[v] ¡ n, “

16 w = f[w]; l[v]++; “

17 if (v == w, c[v] = 1); “

18); “

19); “

20 V1 = vector(n, v, c[v]); “

21 EC1 = Ef; “

22 for (v = 1, n, “

23 for (w = 1, n, “

50

24 if (!V1[v] —— !V1[w], “

25 EC1[v, w] = if(eps[v] == 1, -oo , +oo); “

26); “

27); “

28); “

29 L = vector(n); “

30 m = vector(n); “

31 for (v = 1, n, “

32 if (V1[v], “

33 w = f[v]; “

34 L[v]++; “

35 while (w != v, w = f[w]; L[v]++); “

36 w = v; “

37 for (i = 1, L[v], “

38 w0 = w; w = f[w]; “

39 m[v] += A[w0, w]; “

40); “

41 m[v] /= L[v]; “

42); “

43); “

44 ER1 = matrix(n, n, v, w, if(eps[v] == 1, -oo , +oo)); “

45 for (v = 1, n, for(v2 = 1, n, “

46 goOn = 1; “

47 w = v; “

48 for (i = 0, L[v], “

49 if (v2 == w, goOn = 0; break); “

50 if (i ¡ L[v], w = f[w]); “

51); “

52 if (goOn , “

53 if (multInf(eps[v], m[v2]) ¿= multInf(eps[v], m[v]), “

54 if (Reach(G, eps , vector(n, w, w == v2), eps[v])[v], “

55 ER1[v, v2] = 0; “

56); “

57); “

58); “

59); “

60); “

61 E1 = matrix(n, n, v, w, “

62 if(EC1[v, w] ¿ -oo && EC1[v, w] ¡ +oo , EC1[v,w], “

63 if(ER1[v, w] ¿ -oo && ER1[v, w] ¡ +oo , ER1[v,w], “

64 if(eps[v] == 1, -oo , +oo)))); “

65 eps1 = vector(n, v, if(V1[v], eps[v], 0)); “

51

66 if(reduce , reduceMPG ([E1, eps1]), [E1 , eps1]); “

67)

Listing 4: Deriving mean payoff games in PARI/GP

52

B Auxiliary Functions in PARI/GP

Below, we give all auxiliary functions in PARI/GP that algorithms in Appendix A make use of.

Listing 5. Below, we implement the most basic auxiliary functions in PARI/GP.

1 addInf = ((a, b) -¿ if(a ¡ +oo && b ¡ +oo && a ¿ -oo && b ¿ -oo , “

2 a + b, if (a ¡ +oo && b ¡ +oo, -oo, +oo)));

3 multInf = ((a, b) -¿ if(a ¡ +oo && b ¡ +oo && a ¿ -oo && b ¿ -oo , “

4 a * b, if(a ¡ 0, if(b ¡ 0, +oo, -oo), “

5 if(b ¡ 0, -oo , +oo))));

6

7 isSubset = ((A, B) -¿ vector (#A, i, A[i] —— B[i]) == B);

8

9 underlyingGraph = (A -¿ “

10 n = matsize(A)[1]; “

11 matrix(n, n, i, j, A[i, j] ¿ -oo && A[i, j] ¡ +oo); “

12);

13

14 permuteMPG = ((MPG , perm) -¿ “

15 [A, eps] = MPG; “

16 n = matsize(A)[1]; “

17 A2 = matrix(n, n, v, w, A[perm[v], perm[w]]); “

18 eps2 = vector(n, v, eps[perm[v]]); “

19 [A2, eps2]; “

20); “

21

22 reduceMPG = (MPG -¿ “

23 [A, eps] = MPG; “

24 n = matsize(A)[1]; “

25 V = []; “

26 for (v = 1, n, if(eps[v] != 0, V = concat(V, v))); “

27 A2 = vecextract(vecextract(A, V)˜, V˜)˜; “

28 eps2 = vecextract(eps , V); “

29 [[A2, eps2], V]; “

30);

Listing 5: The most basic auxiliary functions in PARI/GP

Listing 6. Below, we implement in PARI/GP an auxiliary algorithm that computes the values of a mean

payoff game induced by a given positional strategy. On n vertex, the object f is a vector of length n such

that f[v] = w if a vertex v as an integer in [n] is mapped to a vertex w, and f[v] equals zero if and only

if v represents a sink. We also include an algorithm that computes the value of just a single vertex v.

53

1 posStr2Vals = ((MPG , f) -¿ “

2 [A, eps] = MPG; “

3 n = matsize(A)[1]; “

4 G = underlyingGraph(A); “

5 V1 = vector(n, v, vecsum(G[v,]) ¿= 1); “

6 l = vector(n); “

7 chi = vector(n); “

8 for (v = 1, n, “

9 w = v; “

10 while (V1[w] && l[v] ¡ n, “

11 w = f[w]; l[v]++; “

12); “

13); “

14 for (v = 1, n, “

15 if (l[v] ¡ n, “

16 w = v; “

17 for (i = 1, l[v], “

18 w = f[w]; “

19); “

20 chi[v] = if(eps[w] == 1, -oo , +oo); “

21); “

22 if (l[v] == n, “

23 path = vector(n + 1); “

24 w = v; “

25 for (i = 1, n + 1, “

26 path[i] = w; “

27 w = f[w]; “

28); “

29 cycleSum = 0; “

30 i = n + 1; “

31 cycleSum += A[path[i-1], path[i]]; “

32 i--; “

33 while(path[i] != path[n + 1], “

34 cycleSum += A[path[i-1], path[i]]; “

35 i--; “

36); “

37 chi[v] = cycleSum / (n + 1 - i); “

38); “

39); “

40 chi; “

41);

42

54

43 posStr2Val = ((MPG , v, f) -¿ “

44 [A, eps] = MPG; “

45 n = matsize(A)[1]; “

46 G = underlyingGraph(A); “

47 V1 = vector(n, v, vecsum(G[v,]) ¿= 1); “

48 l = 0; “

49 w = v; “

50 while (V1[w] && l ¡ n, “

51 w = f[w]; l++; “

52); “

53 if (l ¡ n, “

54 w = v; “

55 for (i = 1, l, “

56 w = f[w]; “

57); “

58 chi = if(eps[w] == 1, -oo , +oo); “

59); “

60 if (l == n, “

61 path = vector(n + 1); “

62 w = v; “

63 for (i = 1, n + 1, “

64 path[i] = w; “

65 w = f[w]; “

66); “

67 cycleSum = 0; “

68 i = n + 1; “

69 cycleSum += A[path[i-1], path[i]]; “

70 i--; “

71 while(path[i] != path[n + 1], “

72 cycleSum += A[path[i-1], path[i]]; “

73 i--; “

74); “

75 chi = cycleSum / (n + 1 - i); “

76); “

77 chi; “

78);

Listing 6: Deriving characteristic values from a positional strategy in PARI/GP

Listing 7. Here, we implement the finite values of mean payoff games as defined in Definition 2.13. The

input is a mean payoff game and a positive integer k, and the algorithm outputs a pair [f, et]. Here,

et is the vector of k-th finite values, and f is the unique vector of length equal to the number of vertices

55

such that f[i] is zero whenever i represents a sink, and f[i] is the smallest positive integer representing

a vertex for which the optimization in computing the k-th finite value of i was attained. Along with it,

we also implement a function decide that determines the signs of the characteristic values.

1 decide = (MPG -¿ “

2 [A, eps] = MPG; “

3 n = matsize(A)[1]; “

4 G = underlyingGraph(A); “

5 M = 0; “

6 for (v = 1, n, “

7 for (w = 1, n, “

8 if (G[v, w], “

9 M = max(M, abs(A[v, w])); “

10); “

11); “

12); “

13 k = 4*nˆ2*M+1; “

14 vals = finVals(MPG , 4*nˆ2*M+1) [2]; “

15 k = 4*nˆ2*M+1; “

16 gam = vector(n); “

17 for (v = 1, n, “

18 if (vals[v] ¿ 2 * n * M, gam[v] = 1); “

19 if (vals[v] ¡ -2 * n * M, gam[v] = -1); “

20); “

21 gam; “

22);

23

24 finVals = ((MPG , k) -¿ “

25 [A, eps] = MPG; “

26 n = matsize(A)[1]; “

27 G = underlyingGraph(A); “

28 f = vector(n); “

29 et = vector(n); “

30 newet = vector(n); “

31 while (k ¿ 0, “

32 for (v = 1, n, “

33 locVals = []; “

34 for (w = 1, n, “

35 if(G[v, w], locVals = concat(locVals , addInf(A[v, w], et[w])))

; “

36); “

37 if (locVals != [], “

56

38 newet[v] = if(eps[v] == 1, vecmax(locVals), vecmin(locVals));

“

39); “

40 if (locVals == [], “

41 newet[v] = if(eps[v] == 1, -oo, +oo); “

42); “

43); “

44 if (k == 1, “

45 for (v = 1, n, “

46 for (w = 1, n, “

47 if (A[v, w] ¿ -oo && A[v, w] ¡ +oo , “

48 if (addInf(A[v, w], et[w]) == newet[v], “

49 f[v] = w; “

50 break; “

51); “

52); “

53); “

54); “

55); “

56 et = newet; “

57 k--; “

58); “

59 [f, et]; “

60);

Listing 7: Deciding algorithm and finite values algorithm in PARI/GP

57

C Various mean payoff games in PARI/GP

Listing 8. Below, we entered various mean payoff games into PARI/GP, all in one file.

1 ZPmod = ((N, M) -¿ “

2 n = 2*N + 1; “

3 eps = vector(n, v, 1); “

4 eps [1] = -1; “

5 A = matrix(n, n, v, w, if(eps[v] == 1, -oo, +oo)); “

6 for (v = 1, N, A[v, v+1] = M); “

7 A[N+1, N+1] = 0; “

8 A[1, N+2] = 0; “

9 A[N+2, N+3] = 1; “

10 for (v = N+3, 2*N, A[v, v+1] = 0); “

11 A[2*N+1, N+2] = 0; “

12 [A, eps]; “

13);

14

15 fun = (M -¿ “

16 [[-oo, 0, -oo; 1, -oo , -M; +oo , +oo , 0], [1,+1,-1]]; “

17);

18

19 allValsAre0 = “

20 [[-oo, -1, -oo , -oo , 0, -oo , -oo , -oo; “

21 +oo, +oo, -1, +oo, +oo, +oo, +oo, +oo; “

22 -oo, -oo, -oo, -1, -oo, -oo , 0, -oo; “

23 -1, +oo , +oo , +oo , +oo , +oo , +oo , +oo; “

24 0, +oo, +oo, +oo, +oo, 1, +oo, +oo; “

25 -oo, -oo, -oo, -oo, -oo, -oo , 1, -oo; “

26 +oo, +oo, 0, +oo, +oo, +oo, +oo, 1; “

27 -oo, -oo, -oo, -oo, 1, -oo, -oo , -oo], “

28 [1, -1, 1, -1, -1, 1, -1, 1]]; “

29

30 fourCycles = (M -¿ “

31 [[-oo, 3, -oo , -oo , -oo , -oo; “

32 0, +oo, +oo, M, +oo, +oo; “

33 +oo, +oo, +oo, 1, +oo, +oo; “

34 -oo, -oo, 0, -oo, -M, -oo; “

35 +oo, +oo, +oo, +oo, +oo, 2; “

36 -oo, -M, -oo, -oo, 0, -oo], “

37 [1, -1, -1, 1, -1, 1]] “

38); “

58

Listing 8: MPGs— Implementing various mean payoff games in PARI/GP

59

References

[1] S. Abbott. Understanding Analysis. Springer, second edition, 2015.

[2] M. Akian, S. Gaubert, O. Lorscheid, and M. Mnich. Mean payoff games with the signature of a

potential. 2022. https://oliver.impa.br/paper/meanpayoff.pdf.

[3] S. Arora and B. Barak. Computational Complexity. Cambridge University Press, 2009.

[4] H. Björklund and S. Vorobyov. A combinatorial strongly subexponential strategy improvement algo-

rithm for mean payoff games. Discrete Applied Mathematics, 155:210–229, 2007.

[5] K. Chatterjee, M. Henzinger, and A. Svozil. Faster algorithms for mean-payoff parity games.

arXiv:1706.06139v1, 2017.

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press,

third edition, 2009.

[7] L. Daviaud, M. Jurdziński, and R. Lazić. A pseudo-quasi-polynomial algorithm for mean-payoff parity

games. arXiv:1803.04756v3, 2018.

[8] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. 8:109–113, 1979.

[9] V.A. Gurvich, A.V. Karzanov, and L.G. Khachivan. Cyclic games and an algorithm to find minimax

cycle means in directed graphs. 28:85–91, 1988.

[10] R.M. Karp. A characterization of the minimum cycle mean in a digraph. 23:309–311, 1978.

[11] The PARI Group, Univ. Bordeaux. PARI/GP version 2.11.0, 2018. Available from http://pari.

math.u-bordeaux.fr/.

[12] U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. 158:343–359, 1996.

60

https://oliver.impa.br/paper/meanpayoff.pdf
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

	Acknowledgements
	Notation
	Introduction
	Preliminaries
	Sequences
	Real Analysis
	Complexity Analysis
	Graph Theory
	Reachability

	Mean Payoff Games
	Winning Criterion for Mean Payoff Games
	Positional Strategies
	The Three Main Problems on Mean Payoff Games
	Two Classical Approaches
	Approach I: TEXT time
	Approach II: TEXT time

	Finite Values

	Karp's Algorithm
	Three Problems on Cycle Means
	Karp's Algorithm

	Complexity Reduction
	Edge Deletion
	Finite Values Revisited
	Derived Mean Payoff Games

	Probabilistic Complexity of Problem (1)
	Counting Weighted Digraphs
	The Probabilistic Speed-Up of Algorithm 4

	Discussion and Conclusion
	Discussion of Results
	Suggestions for Further Research
	The Potential of Problem (1) Lying in P
	The Potential of Problem (2) Lying in P
	Improving Bounds

	More on Probabilistic Complexity Classification
	Conclusion

	Appendices
	Implementations of Main Algorithms in PARI/GP
	Auxiliary Functions in PARI/GP
	Various mean payoff games in PARI/GP

