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Abstract

To look into algebraic relations for zeta values, it is useful to introduce multiple zeta values. Multiple
zeta values can both be represented by a series and by an integral. From this integral representation,
we derive the Duality theorem, which gives equalities between multiple zeta values. Furthermore,
it is possible to compare the multiplication of two multiple zeta values given by the different rep-
resentations. By doing so, the finite double shuffle relation occurs. To generalize this relation, we
introduce the so-called stuffle and shuffle product on a non-commutative polynomial algebra. Fur-
thermore, we explore other linear relations for multiple zeta values. One of them is the integral series
identity, which is conjectured to imply all other linear relations for multiple zeta values. We derive
Hoffman’s relation and the restricted sum formula from this identity to support this conjecture.
Finally, we look into the dimension and basis for the spaces spanned by multiple zeta values for a
fixed weight. The dimension and basis for these spaces are conjectured by Zagier’s conjecture and
Hoffman’s conjecture, respectively. We work out some examples of Brown’s theorem, which partially
proves Hoffman’s conjecture.
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1 Introduction

In 1859 German mathematician Bernard Riemann gave new insights regarding the Riemann
zeta function in his book ”Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse”
[Riemann, 1859]. While the function is named after him, he was not the first person to explore
this function. Swiss mathematician Leonhard Euler wrote about this function before Riemann did.
The formal definition of this function can be written as follows.

Definition 1.1. The Riemann zeta function is defined by the series

ζ(s) =
∑
n≥1

1

ns

and is convergent for R(s) > 1.

Moreover, [Ivic, 2012] proves in Theorem 1.2 that the Riemann zeta function admits an analytic
continuation over the whole complex plane with a simple pole at s = 1 with residue 1. Furthermore,
function evaluations are called (Riemann) zeta values. The zeta values for the even positive integers
were studied by Euler. [Ivic, 2012] proves in Theorem 1.4 an explicit formula for them

ζ(2k) = (−1)(k+1) (2π)
2k

2(2k)!
B2k, k ≥ 1, (1)

where the Bk’s are Bernoulli numbers. [Gould, 1972] gives in equation (1) an explicit formula for
these numbers, namely

Bk =

k∑
i=0

1

i+ 1

i∑
j=0

(−1)j
(
i

j

)
jk, k ≥ 0.

This means that the zeta values for the even positive integers are irrational, since they are a mul-
tiple of π. We might question whether we know something similar for the odd positive integers.
Unfortunately, mathematicians have not found a similar explicit formula for these zeta values. We
do not even know whether they are irrational or not.

When looking at numbers we can categorize them as algebraic and transcendental over Q.

Definition 1.2. A number α is called algebraic over Q if there exists a nonzero polynomial f ∈ Q[x]
such that f(α) = 0. In the other case, α is called transcendental over Q.

German mathematician Ferdinand von Lindemann proved in 1882 that π is transcendental over Q.
Therefore the zeta values for the even positive integers are transcendental as well since they are a
multiple of π. Mathematicians tried to see whether the zeta values for odd positive integers are
transcendental or not, but nothing did succeed. However, a stronger statement is conjectured.

Conjecture 1.3 (Transcendence Conjecture). The set

S := {π, ζ(2n+ 1)|n ≥ 1}

is algebraically independent over Q. This means that for any finite set {α1, . . . , αk} ⊂ S for some
k ≥ 1 there does not exists a nonzero polynomial f ∈ Q[x1, . . . , xk] such that f(α1, . . . , αk) = 0.
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Note that this statement implies that the numbers in the set S are then transcendental, by taking
a singleton. The set S contains the number π such that it also includes all zeta values at the even
positive integers. Exploring this conjecture, it might be helpful to define so-called multiple zeta
values. They are defined by the series

ζ(s1, . . . , sk) =
∑

n1>...>nk≥1

1

ns1
1 . . . nsk

k

,

where in this paper we restrict to the case in which we have integers si ≥ 1 for 2 ≤ i ≤ k and
s1 ≥ 2 (this last condition ensures convergence of the series). The product of two zeta values can be
expressed in terms of a linear combination of multiple zeta values. For example

ζ(s1)ζ(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2).

This identity was already found by Euler before the theory of multiple zeta values was defined. This
identity is the motivation to find linear relations for multiple zeta values. The goal of this paper
is to explore general linear relations for multiple zeta values. An important notion for this is the
integral representation of multiple zeta values

ζ(s1, . . . , sk) =

∫
∆u

η0(t1) . . . η0(ts1−1)η1(ts1)η0(ts1+1) . . . η1(tu),

where u = s1 + . . .+ sk (which is called to weight), ∆u is the simplex given by

∆u = {(t1, . . . , tu) ∈ Ru|0 < tu < . . . < t1 < 1},

and we have the differential forms η0(t) = dt
t and η1(t) = dt

1−t . The different representations of
the multiple zeta values (series and integral) help us in exploring the finite double shuffle relations,
which compares the multiplication of multiple zeta values in these different representations. Another
relation that uses these representations is the integral-series identity, which compares the different
representations directly. It is conjectured that this identity implies all other linear relations for
multiple zeta values. To support this conjecture, we want to derive the Hoffman’s relation

k∑
i=1

ζ(s1, . . . , si−1, si + 1, si+1, . . . , sk) =

k∑
i=1,
si≥2

si−2∑
j=0

ζ(s1, . . . , si−1, si − j, j + 1, si+1, . . . , sk)

for si ≥ 1 for 2 ≤ i ≤ k and s1 ≥ 2. Furthermore we want to derive the restricted sum formula∑
s1+...+sp=k+p−1,

sj≥1

ζ(s1 + s− k − p+ 1, s2, . . . , sp) =
∑

s1+...+sk=s−p,
sj≥1

ζ(s1 + 1, s2, . . . , sk, 1, . . . , 1︸ ︷︷ ︸
p − 1 times

).

To be able to derive these relations from the integral series identity, we need some algebra setup.
Therefore we take the non-commutative algebra H := Q⟨x, y⟩. Computations in H can be translated
to multiple zeta values by the map

xs1−1yxs2−1y . . . xsk−1y 7→ ζ(s1, . . . , sk).

Another main part of this paper is to investigate the Q-subvector space generated by all MZV of
weight s

Zs = ⟨ζ(s1, . . . , sk)|s1 + . . .+ sk = s⟩Q.
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In particular we want to investigate the basis and dimension for these spaces. It is conjectured that
the dimension is given by the recursion formula

ds = ds−2 + ds−3, s ≥ 3,

with initial values d0 = 1, d1 = 0 and d2 = 1 and the basis is given by the set

{ζ(s1, . . . , sk) : si ∈ {2, 3}, 1 ≤ i ≤ k and s1 + . . .+ sk = s}.

Another goal of this paper is to gather enough linear relations to support these conjectures in some
spaces.

Outline

In Section 2 we give a more detailed introduction to multiple zeta values. We see the motivation
to define multiple zeta values and give the formal definition of multiple zeta values. Furthermore,
we prove in which cases the multiple zeta values are convergent. Thereafter, we see how they can
be represented by a series and by an integral. We work out the multiplication of zeta values in
integral representation. To accomplish this, we introduce permutations that respect two disjoint
subsets. Lastly, we see the first theorem about linear relations for multiple zeta values: the Duality
theorem. In Section 2, we see that the different representations give different results when we look
at multiplications of two zeta values. This is the motivation to compare the multiplications of the
two different representations in Section 3. By doing so, we derive an example of the finite double
shuffle relation. In this section, we generalize this relation. Therefore, we introduce the stuffle
and shuffle product on a non-commutative polynomial algebra. We prove that these products are
commutative. Moreover, we create a map from this non-commutative polynomial algebra to multiple
zeta values. We prove that this map is an algebra homomorphism with respect to the shuffle and
stuffle product. This algebra homomorphism proves the finite double shuffle relation. We work out
some examples of the finite double shuffle relation. To explore more linear relations for multiple
zeta values, we investigate the integral-series identity in Section 4. To understand this relation,
we need an introduction to the circled stuffle product, star notation, 2-posets and Hasse diagrams.
Terminology and notation for these concepts are explained by exploring many examples. To simplify
the proof for the integral-series identity, we prove two lemmas, which tell us how we can represent
the identity by a series and an integral. It is conjectured that this integral-series identity implies all
other relations for multiple zeta values. To give some evidence for this conjecture, we derive some
other relations from the integral-series identity. Finally, in Section 5 we explore spaces spanned
by multiple zeta values. We mention Zagier’s and Hoffman’s conjecture, which are related to the
dimension and basis for these spaces, respectively. We prove how Zagier’s and Hoffman’s conjecture
are equivalent. Finally, we support these conjectures using linear relations.

Acknowledgements

Before diving into this material, I would like to thank Dr. M. W. Lüdtke for supervising me in
exploring this topic and writing this thesis. It was great to be able to ask any questions any time
during this period and get excellent answers. Moreover, I appreciate the fact that he suggested
looking into this topic, which lies precisely in my interests. Furthermore, I thank Dr. O. Lorscheid
for being my second supervisor. I would like to thank both supervisors for giving feedback on the
first version of this thesis. The feedback helped improve this thesis massively.
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2 Multiple Zeta Values

This section is mostly based on sections 1.2 and 1.5 of [Gil and Fresán, 2017]. Furthermore, the
notation for the integral representation coincides with the notation from [Zagier, 1994] on page 510.

2.1 Series Representation

When studying Conjecture 1.3, we have to look at the algebraic relations of the zeta values. While
exploring these relations, we might face multiplication of two zeta values. So take s1, s2 ∈ C, then

ζ(s1)ζ(s2) =

∑
n1≥1

1

ns1
1

∑
n2≥1

1

ns2
2


=
∑
n1≥1

∑
n2≥1

1

ns1
1

1

ns2
2

=
∑

n1,n2≥1

1

ns1
1 ns2

2

=
∑

n1>n2≥1

1

ns1
1 ns2

2

+
∑

n2>n1≥1

1

ns1
1 ns2

2

+
∑

n1=n2≥1

1

ns1
1 ns2

2

=
∑

n1>n2≥1

1

ns1
1 ns2

2

+
∑

n2>n1≥1

1

ns1
1 ns2

2

+
∑
n≥1

1

ns1+s2
,

where in the fourth equality we decompose the sum into three parts, when n1 is equal to n2, when
n1 is strictly greater than n2 and vice versa. By doing so, we cover all values n1 and n2 can take.
By looking at these computations it is reasonable to set the following function. For s1, . . . , sk ∈ C
with k ≥ 1, define

ζ(s1, . . . , sk) :=
∑

n1>...>nk≥1

1

ns1
1 . . . nsk

k

. (2)

In that case we can, in the above computation where we have the case k = 2, reduce to the abstract
form

ζ(s1)ζ(s2) =
∑

n1>n2≥1

1

ns1
1 ns2

2

+
∑

n2>n1≥1

1

ns1
1 ns2

2

+
∑
n≥1

1

ns1+s2

= ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2).

Likewise, for the Riemann zeta function, the convergence of this function is not guaranteed. From
now on we restrict to an input of positive integers, i.e. s1, . . . , sk ∈ Z>0. This simplifies the function
and it helps by looking at the convergence.

Definition 2.1. Let s1, . . . , sk ∈ Z, then s := (s1, . . . , sk) is called a multi-index. s is called a
positive multi-index if si ≥ 1 for all 1 ≤ i ≤ k and is called an admissible multi-index if it is positive
and s1 ≥ 2. The weight of a multi-index is defined to be wt(s) := s1 + . . .+ sk and the length to be
l(s) := k. Additionally, wt(∅) = 0 = l(∅), where ∅ denotes the empty multi-index.

Theorem 2.2. If s = (s1, . . . , sk) is an admissible multi-index, then ζ(s) is finite.
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To prove this theorem, we need a result about the logarithm compared to the square root. This
lemma is self-written to improve the proof of Theorem 2.2 that follows the proof of Lemma 1.23 in
[Gil and Fresán, 2017].

Lemma 2.3. For all integers k ≥ 1, there exists an integer N such that (1+ log n)k−1 <
√
n for all

n ≥ N .

Proof. We notice that limn→∞ log n = ∞. So

lim
n→∞

log(1 + log n)

log n
=

∞
∞

.

Therefore we can use L’Hopital’s rule on this limit.

lim
n→∞

log(1 + log n)

log n
= lim

n→∞

d
dn log(1 + log n)

d
dn log n

= lim
n→∞

1
n

1
1+logn

1
n

= lim
n→∞

1

1 + log n

= 0.

Fix k ≥ 1 to be an integer. Then by scalar multiplication we have

0 = 2(k − 1) lim
n→∞

log(1 + log n)

log n

= lim
n→∞

(k − 1) log(1 + log n)
1
2 log n

= lim
n→∞

log((1 + log n)k−1)

log
√
n

,

where we used logarithm rules. By this limit we have that for sufficient big N

log((1 + log n)k−1)

log
√
n

< 1, n ≥ N,

log((1 + log n)k−1) < log
√
n, n ≥ N,

elog((1+logn)k−1) < elog
√
n, n ≥ N,

(1 + log n)k−1 <
√
n, n ≥ N.

Since k was taken arbitrarily, the lemma has been proven.

Proof. (Theorem 2.2) We have for any admissible multi-index s = (s1, . . . , sk) of length k that
the weight (s1+ . . .+sk) is the smallest by taking s = (2, 1, . . . , 1︸ ︷︷ ︸

k − 1 times

) (we need the 2 in the first entry,

because we need an admissible multi-index). In that case we have that the fraction in the series is
the biggest compared to any other multi-index, i.e. for any admissible multi-index s = (s1, . . . , sk)
we have

1

ns1
1 . . . nsk

k

≤ 1

n2
1n2 . . . nk
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for all ni ≥ 1 with 1 ≤ i ≤ k. So

ζ(s1, . . . , sk) =
∑

n1>...>nk≥1

1

ns1
1 . . . nsk

k

≤
∑

n1>...>nk≥1

1

n2
1n2 . . . nk

= ζ(2, 1, . . . , 1︸ ︷︷ ︸
k − 1 times

).

Therefore, it is enough to show that ζ(2, 1, . . . , 1︸ ︷︷ ︸
k − 1 times

) is finite. Therefore notice that

n∑
i=2

1

i
≤
∫ n

1

1

x
dx = log n.

This holds since the sum on the left is the sum of the rectangles on the interval [1, n] of width 1
and with a height on the right side of the rectangle of 1

i for i ∈ {2, . . . , n}. Therefore the rectangles
fit under the curve 1

x , so the sum of the rectangles are less than the integral on [1, n]. Adding 1 on
both sides, we obtain

n∑
i=1

1

i
≤ 1 + log n. (3)

Then

ζ(2, 1, . . . , 1) =
∑

n>n2>...>nk≥1

1

n2n2 . . . nk

≤
∑

n>n2,...,nk≥1

1

n2n2 . . . nk

=
∑
n≥1

1

n2

 ∑
n>n2,...,nk≥1

1

n2 . . . nk


=
∑
n≥1

1

n2

(
n∑

i=1

1

i

)k−1

≤
∑
n≥1

(1 + log n)k−1

n2
,

where the first inequality follows from the fact that we add extra terms by saying that the ni’s
may be equal, greater or smaller than ni+1 for 2 ≤ i ≤ k − 1. Furthermore, we used rules for
multiplication of (infinite) sums and equation (3). Using Lemma 2.3, there exists an N such that

ζ(2, 1, . . . , 1) ≤
∑

N≥n≥1

(1 + log n)k−1

n2
+

∑
n≥N+1

(1 + log n)k−1

n2

≤
∑

N≥n≥1

(1 + log n)k−1

n2
+

∑
n≥N+1

√
n

n2

=
∑

N≥n≥1

(1 + log n)k−1

n2
+

∑
n≥N+1

1

n
3
2

< ∞.

This is finite since the first term is a finite sum and the second term converges by Definition 1.1.
Hence we proved the theorem.
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Finally, we are ready to define so-called multiple zeta values (abbreviated as MZV).

Definition 2.4. For an admissible multi-index s = (s1, . . . , sk) the MZV are defined as ζ(s) and
in addition ζ(∅) = 1. The weight and length of a MZV is defined to be the weight and length of the
corresponding multi-index, respectively.

Example 1. So we have the relation for (multiple) zeta values

ζ(s1)ζ(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2).

Let us take s1 = s2 = 2, then

ζ(2)2 = ζ(2, 2) + ζ(2, 2) + ζ(4) = 2ζ(2, 2) + ζ(4).

Hence using formula (1) for ζ(2), ζ(4) we get

ζ(2, 2) =
1

2

[
ζ(2)2 − ζ(4)

]
=

1

2

[(
π2

6

)2

− π4

90

]
=

π4

120
.

In terms of infinite sum this means that

π4

120
= ζ(2, 2)

=
∑

n>m≥1

1

n2m2

=

(
1

2212
+

1

3212
+

1

4212
+ . . .

)
+

(
1

3222
+

1

4222
+

1

5222
+ . . .

)
+

(
1

4232
+

1

5232
+

1

6232
+ . . .

)
+ . . . .

■

2.2 Integral Representation

We have seen a series representation for the MZV (see equation (2)). But there is another way to
represent MZV, this is done by an integral representation. Therefore we need some notation. Let
k ≥ 1 be an integer, then we define the simplex

∆k := {(t1, . . . , tk) ∈ Rk|0 < tk < . . . < t1 < 1}.

An integral of a function g : Rk → R over this simplex can be read as follow∫
∆k

g(t1, . . . , tk)dtk . . . dt1 =

∫
0<tk<...<t1<1

g(t1, . . . , tk)dtk . . . dt1

=

∫ 1

0

∫ t1

0

∫ t2

0

. . .

∫ tk−1

0

g(t1, . . . , tk)dtk . . . dt1.

Furthermore, let εi ∈ {0, 1} for 1 ≤ i ≤ k. We define the integral

λ(ε1, . . . , εk) :=

∫
∆k

ηε1(t1) . . . ηεk(tk) =

∫
0<tk<...<t1<1

ηε1(t1) . . . ηεk(tk),
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where we have the differential form

ηε(t) =

{
dt
1−t , ε = 1
dt
t , ε = 0

.

Remark 1. One thing we should mention is that the order of the εi’s in λ determine the order of
the ti’s in the simplex ∆k and vice versa. To justify this we define the following function. For any
permutation σ ∈ Sk, i.e. permutation of the set {1, . . . , k}, we define the function σ̃ : Rk → Rk by
the rule

σ̃(t1, . . . , tk) := (tσ−1(1), . . . , tσ−1(k)). (4)

This means that the function σ̃ can be applied to ∆k for some integer k ≥ 1. Then by construction
of λ, for any permutation σ ∈ Sk we have

λ(εσ(1), . . . , εσ(k)) =

∫
0<tk<...<t1<1

ηεσ(1)
(t1) . . . ηεσ(k)

(tk)

=

∫
0<tσ−1(k)<...<tσ−1(1)<1

ηε1(t1) . . . ηεk(tk)

=

∫
σ̃(∆k)

ηε1(t1) . . . ηεk(tk).

Hence we see that the order of the εi’s in λ determines the order of the ti’s in the simplex ∆k, by
this permutation σ. ♦

[Zagier, 1994] sketches on page 510 the proof of the integral representation, here we work the proof
out.

Theorem 2.5. Let s = (s1, . . . , sk) be an admissible multi-index, then

ζ(s) = λ( 0, . . . , 0︸ ︷︷ ︸
s1 − 1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
s2 − 1 times

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
sk − 1 times

, 1).

Proof. Let S := ( 0, . . . , 0︸ ︷︷ ︸
s1 − 1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
s2 − 1 times

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
sk − 1 times

, 1) and u := wt(s). Then by construction

of the function λ we have

λ(S) =

∫
∆u

(
η0(t1) . . . η0(ts1−1)η1(ts1)

)
. . .
(
η0(tu−sk+1) . . . η0(tu−1)η1(tu)

)
=

∫
∆u

(
dt1
t1

. . .
dts1−1

ts1−1

dts1
1− ts1

)
. . .

(
dtu−sk+1

tu−sk+1
. . .

dtu−1

tu−1

dtu
1− tu

)
.

So by construction of this simplex, we need to determine each integral from the inside to the outside.
So we start with the integral over tu. Since 0 < tu < 1, we can use geometric series and derive that

1

1− tu
=
∑
nk≥1

tnk−1
u

Then ∫ tu−1

0

dtu
1− tu

=
∑
nk≥1

∫ tu−1

0

tnk−1
u dtu =

∑
nk≥1

tnk
u−1

nk
.
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So we are ready to take the integral over tu−1 we get∫ tu−2

0

1

tu−1

(∫ tu−1

0

dtu
1− tu

)
dtu−1 =

∫ tu−2

0

1

tu−1

∑
nk≥1

tnk
u−1

nk

 dtu−1

=
∑
nk≥1

1

nk

∫ tu−2

0

tnk−1
u−1 dtu−1

=
∑
nk≥1

tnk
u−2

n2
k

.

Then we can proceed to the integral over tu−2. But we can reason that we have the same computation
exactly sk − 2 times more, since we have sk − 1 zeros is S and hence the same function for ηεi(ti)
for u− sk + 1 ≤ i ≤ u− 1 (call this step ⋆). Therefore∫

0<tu<...<tu−sk+1<tu−sk

dtu−sk+1

tu−sk+1
. . .

dtu−1

tu−1

dtu
1− tu

=
∑
nk≥1

tnk
u−sk

nsk
k

.

The next integral over tu−sk becomes a bit different, because we come to the point that there is a 1
in S. Then, by using geometric series again∫ tu−sk−1

0

1

1− tu−sk

(∫
0<tu<...<tu−sk+1<tu−sk

dtu−sk+1

tu−sk+1
. . .

dtu−1

tu−1

dtu
1− tu

)
dtu−sk

=

∫ tu−sk−1

0

1

1− tu−sk

∑
nk≥1

tnk
u−sk

nsk
k

 dtu−sk

=

∫ tu−sk−1

0

∑
nk−1≥1

t
nk−1−1
u−sk

∑
nk≥1

tnk
u−sk

nsk
k

 dtu−sk

=

∫ tu−sk−1

0

∑
nk−1,nk≥1

t
nk+nk−1−1
u−sk

nsk
k

dtu−sk

=
∑

nk−1,nk≥1

1

nsk
k

∫ tu−sk−1

0

t
nk+nk−1−1
u−sk

dtu−sk

=
∑

nk−1,nk≥1

t
nk+nk−1

u−sk−1

nsk
k (nk + nk−1)

.

For the following integrals we move back to step ⋆. Then repeating this process again and again and
notice that the last integral has upper bound 1, we see that we end up with something like

λ(S) =
∑

nk,nk−1,...,n1≥1

1

nsk
k (nk + nk−1)sk−1 . . . (nk + . . .+ n1)s1

=
∑

n1>...>nk≥1

1

ns1
1 . . . nsk

k

= ζ(s1, . . . , sk).
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A theorem that follows directly from this integral representation is the Duality theorem, which gives
equalities between MZV. [Zagier, 1994] gives on page 510 a sketch for the proof of this statement.
We work out the proof in more detail.

Theorem 2.6 (Duality Theorem). Let εi ∈ {0, 1} for 1 ≤ i ≤ k, we have

λ(ε1, . . . , εk) = λ(1− εk, . . . , 1− ε1).

Proof. We set the change of variables by 1− t′k+1−i = ti for 1 ≤ i ≤ k. If we write a function

φ(t′1, . . . , t
′
k) = (1− t′k, . . . , 1− t′1).

Then we have
(t1, . . . , tk) = φ(t′1, . . . , t

′
k).

Furthermore, we define the function

γε(t) =

{
1

1−t , ε = 1
1
t , ε = 0

.

Note that by the change of variables we have

γεi(ti) =

{ 1
1−ti

, εi = 1
1
ti
, εi = 0

=

{
1

t′k+1−i
, εi = 1

1
1−t′k+1−i

, εi = 0

= γ1−εi(t
′
k+1−i).

Furthermore, we can write
ηε(t) = γε(t)dt.

So by using this all and by using change of variables we have

λ(ε1, . . . , εk) =

∫
∆k

ηε1(t1) . . . ηεk(tk)

=

∫
0<tk<...<t1<1

γε1(t1) . . . γεk(tk)dt1 . . . dtk

=

∫
0<1−t′1<...<1−t′k<1

γ1−ε1(t
′
k) . . . γ1−εk(t

′
1)
∣∣∣det(Dφ(t′1, . . . , t

′
k)
)∣∣∣ dt′1 . . . dt′k

=

∫
0<t′k<...<t′1<1

γ1−ε1(t
′
k) . . . γ1−εk(t

′
1)
∣∣∣det(Dφ(t′1, . . . , t

′
k)
)∣∣∣ dt′1 . . . dt′k,

where Dφ is the Jacobian matrix of φ, which is needed by such a change of variables. We can
calculate that

Dφ(t′1, . . . , t
′
k) =


0 0 . . . 0 −1
0 0 . . . −1 0
...

...
. . .

...
...

0 −1 . . . 0 0
−1 0 . . . 0 0

 .

Page 12 of 48



So |det(Dφ(t′1, . . . , t
′
k))| = |(−1)k| = 1. Therefore

λ(ε1, . . . , εk) =

∫
0<t′k<...<t′1<1

γ1−ε1(t
′
k) . . . γ1−εk(t

′
1)|Dφ(t′1, . . . , t

′
k)|dt′1 . . . dt′k

=

∫
0<t′k<...<t′1<1

γ1−ε1(t
′
k) . . . γ1−εk(t

′
1)dt

′
1 . . . dt

′
k

=

∫
0<t′k<...<t′1<1

η1−ε1(t
′
k) . . . η1−εk(t

′
1)

= λ(1− εk, . . . , 1− ε1).

Example 2. We have the following equalities between MZV if we use the Duality theorem.

ζ(4, 1) = λ(0, 0, 0, 1, 1) = λ(0, 0, 1, 1, 1) = ζ(3, 1, 1),

ζ(3, 2) = λ(0, 0, 1, 0, 1) = λ(0, 1, 0, 1, 1) = ζ(2, 2, 1),

ζ(2, 3) = λ(0, 1, 0, 0, 1) = λ(0, 1, 1, 0, 1) = ζ(2, 1, 2),

ζ(2, 3, 1) = λ(0, 1, 0, 0, 1, 1) = λ(0, 0, 1, 1, 0, 1) = ζ(3, 1, 2).

■

The next result does not come from any literature but is a useful result in this paper.

Corollary 2.7. Let s = (s1, . . . , sk) be multi-index such that si ≥ 2 for all 1 ≤ i ≤ k, then

ζ(s) = ζ(2, 1, . . . , 1︸ ︷︷ ︸
sk − 2 times

, 2, 1, . . . , 1︸ ︷︷ ︸
s2 − 2 times

, . . . , 2, 1, . . . , 1︸ ︷︷ ︸
s1 − 2 times

).

Proof. We have by the integral representation and by the Duality theorem that

ζ(s) = λ( 0, . . . , 0︸ ︷︷ ︸
s1 − 1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
s2 − 1 times

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
sk − 1 times

, 1)

= λ(0, 1, . . . , 1︸ ︷︷ ︸
sk − 1 times

, 0, 1, . . . , 1︸ ︷︷ ︸
sk−1 − 1 times

, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
s1 − 1 times

)

= λ(0, 1, 1, . . . , 1︸ ︷︷ ︸
sk − 2 times

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
sk−1 − 2 times

, . . . , 0, 1, 1, . . . , 1︸ ︷︷ ︸
s1 − 2 times

)

= ζ(2, 1, . . . , 1︸ ︷︷ ︸
sk − 2 times

, 2, 1, . . . , 1︸ ︷︷ ︸
s2 − 2 times

, . . . , 2, 1, . . . , 1︸ ︷︷ ︸
s1 − 2 times

).

Likewise, for the multiplication of zeta values represented by a series, it might be interesting to look
at the multiplication of two zeta values with this representation at hand. We need some terminology
to accomplish this.
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Definition 2.8. Let s1, s2 ≥ 1, we say that a permutation σ of the set {1, . . . , s1 + s2} is a permu-
tation of type (s1, s2) if

σ(1) < σ(2) < . . . < σ(s1), σ(s1 + 1) < σ(s1 + 2) < . . . < σ(s1 + s2).

We denote the set of all permutations of type (s1, s2) by S(s1, s2).

In other words, a permutation of type (s1, s2) respects the ordering of two disjoint subsets.

Example 3. Let us determine S(2, 2). We require that

σ(1) < σ(2), σ(3) < σ(4).

This means that 1 has to be sent to a lower number than 2 is, and similarly, 3 must be sent to a
lower number than 4 is. Therefore it can be seen that

S(2, 2) = {id, (123), (23), (13)(24), (243), (1243)}.

■

For σ ∈ S(s1, s2) (see Definition 2.8) we can make sense of σ̃(∆s1+s2) (see equation 4).

Example 4. In Example 3 we have determine S(2, 2), let us determine σ̃(∆4) for each σ ∈ S(2, 2).

• For σ = id we have σ̃(∆4) = (t1, t2, t3, t4).

• For σ = (123) we have σ̃(∆4) = (t3, t1, t2, t4).

• For σ = (23) we have σ̃(∆4) = (t1, t3, t2, t4).

• For σ = (13)(24) we have σ̃(∆4) = (t3, t4, t1, t2).

• For σ = (243) we have σ̃(∆4) = (t1, t3, t4, t2).

• For σ = (1243) we have σ̃(∆4) = (t3, t1, t4, t2).

■

With this in hand we can see how multiplication happens. We follow the proof of Proposition 1.123
in [Gil and Fresán, 2017].

Theorem 2.9. Let s1, s2 ≥ 2, then

ζ(s1)ζ(s2) =
∑

σ∈S(s1,s2)

∫
σ̃(∆s1+s2 )

dt1
t1

. . .
dts1−1

ts1−1

dts1
1− ts1

dts1+1

ts1+1
. . .

dts1+s2−1

ts1+s2−1

dts1+s2

1− ts1+s2

. (5)

Proof. By using the representation of ζ(s1) and ζ(s2) from Theorem 2.5 we have

ζ(s1)ζ(s2) = λ( 0, . . . , 0︸ ︷︷ ︸
s1 − 1 times

, 1)λ( 0, . . . , 0︸ ︷︷ ︸
s2 − 1 times

, 1)

=

(∫
∆s1

dt1
t1

. . .
dts1−1

ts1−1

dts1
1− ts1

)(∫
∆s2

du1

u1
. . .

dus2−1

us2−1

dus2

1− us2

)
=

∫
∆s1×∆s2

dt1
t1

. . .
dts1−1

ts1−1

dts1
1− ts1

du1

u1
. . .

dus2−1

us2−1

dus2

1− us2

,
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where

∆s1 ×∆s2 = {(t1, . . . , ts1) ∈ Rs1 |0 < ts1 < . . . < t1 < 1}
× {(u1, . . . , us2) ∈ Rs2 |0 < us2 < . . . < u1 < 1}.

By renaming ui = ts1+i for 1 ≤ i ≤ s2, we can write this multiplication as all (s1 + s2)−tuples
in which we go from bigger to smaller numbers (similar to ∆k for some integer k ≥ 1) such that
0 < ts1 < . . . < t1 < 1 and 0 < ts1+1 < . . . < ts1+s2 < 1 hold. Denote X to be the set that contains
all the cases in which ti = tj for some 1 ≤ i ≤ s1 and some s1 + 1 ≤ j ≤ s1 + s2. The integral
over the set X can be ignored, because in those cases the simplex is of lower dimension and so the
integral over this simplex is zero. So the remaining (s1 + s2)−tuples in this multiplication are all
(s1 + s2)−tuples such that the inequalities 0 < ts1 < . . . < t1 < 1 and 0 < ts1+1 < . . . < ts1+s2 < 1
hold from these two disjoint sets. Note that this is equivalent as permuting the ti’s for 1 ≤ i ≤ s1+s2
in ∆s1+s2 , but respecting the two disjoint subsets. Therefore by using the definition of σ ∈ S(s1, s2)
and function σ̃ we have

∆s1 ×∆s2 =

 ⋃
σ∈S(s1,s2)

σ̃(∆s1+s2)

 ∪ X . (6)

Hence we obtain exactly equation (5) by using the fact that the integral over X is zero.

Example 5. We see in Theorem 2.9 that if we choose s1 = s2 = 2 in equation (5) and with Example
4 in hand we have

ζ(2)2 =
∑

σ∈S(2,2)

∫
σ̃(∆4)

dt1
t1

dt2
1− t2

dt3
t3

dt4
1− t4

=

(∫
0<t4<t3<t2<t1<1

+

∫
0<t4<t2<t1<t3<1

+

∫
0<t4<t2<t3<t1<1

+

∫
0<t2<t1<t4<t3<1

+

∫
0<t2<t4<t3<t1<1

+

∫
0<t2<t4<t1<t3<1

)
dt1
t1

dt2
1− t2

dt3
t3

dt4
1− t4

= λ(0, 1, 0, 1) + λ(0, 0, 1, 1) + λ(0, 0, 1, 1) + λ(0, 1, 0, 1) + λ(0, 0, 1, 1) + λ(0, 0, 1, 1)

= ζ(2, 2) + ζ(3, 1) + ζ(3, 1) + ζ(2, 2) + ζ(3, 1) + ζ(3, 1)

= 2ζ(2, 2) + 4ζ(3, 1).

Note that we use here that the order of the simplex determines the order of the 0 and 1 in λ as
explained in Remark 1. ■

3 Finite Double Shuffle Relation

In Example 1 we see that
ζ(2)2 = 2ζ(2, 2) + ζ(4). (7)

This product of two zeta values is an example of a so-called stuffle product and this relation of MZV is
called a stuffle relation. The stuffle product generalizes the product of MZV in series representation.
Furthermore, in Example 5 we see that

ζ(2)2 = 2ζ(2, 2) + 4ζ(3, 1). (8)
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This product of two zeta values is an example of a so-called shuffle product and this relation of
MZV is called a shuffle relation. The shuffle product generalizes the product of MZV in integral
representation. We can combine equations (7) and (8), then we get

2ζ(2, 2) + ζ(4) = 2ζ(2, 2) + 4ζ(3, 1),

ζ(4) = 4ζ(3, 1). (9)

This last equation is an example of a so-called finite double shuffle relation. The finite double
shuffle relation occurs when we combine the stuffle and shuffle products, i.e. when we compare the
multiplication of MZV for the different representations. This finite double shuffle relation contains
many linear combinations for MZV. So the question arises of whether we can generalize this concept?

3.1 Algebra Setup

We need some terminology to generalize the finite double shuffle relation. Therefore we make use of
a non-commutative polynomial algebra, some sub-algebras and products. Because it is fundamental
for studying MZV, this algebra setup can be found in many papers about MZV. See Section 4 in
[Zudilin, 2003] or Section 1.6 in [Gil and Fresán, 2017].

Definition 3.1. Let X := {x1, . . . , xn} be a set. We say that the xi’s are letters and X is an
alphabet. We define Q⟨X⟩ to be the non-commutative polynomial algebra. This algebra consists of a
normal addition operator + and a concatenation product · defined as

xi1 . . . xip · xj1 . . . xjq = xi1 . . . xipxj1 . . . xjq , xik , xjl ∈ X for 1 ≤ k ≤ p, 1 ≤ l ≤ q,

where the concatenation product · is non-commutative, i.e. xi · xj ̸= xj · xi for all xi, xj ∈ X.
Elements formed under the concatenation product are called words and 1 is the empty word (unit
element of the algebra). So elements of Q⟨X⟩ can be generalized as linear combination of words, i.e.
any ω ∈ Q⟨X⟩ is of the form

ω =

∞∑
k=0

∑
i1,...,ik∈{1,...,n}

ai1,...,ikxi1 . . . xik ,

where ai1,...,ik ∈ Q for all k ≥ 0.

Remark 2. Note that Q[X] ̸= Q⟨X⟩. When we use the [, ] brackets we talk about a commutative
polynomial algebra. ♦

We define H := Q⟨x, y⟩, i.e. non-commutative polynomial algebra in two letters. Furthermore, we
define

H1 := Q1+ Hy, H0 := Q1+ xHy.

Note that
H0 ⊂ H1 ⊂ H.

Moreover, we include Q1 in the sum such that the empty word is included in H0,H1. By doing
this they become sub-algebras of H. To find a basis for these sub-algebras, define the words zn :=
xn−1y ∈ H for n ≥ 1. By construction, we have that any word in H1 ends with a y and any word in
H0 starts with a x and ends with a y. Then we can reason, as [Li and Qin, 2016] explains in Section
2.1, that the words

zn1
. . . znj

, ni ≥ 1 for 1 ≤ i ≤ j
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form a basis for H1 and the words

zn1 . . . znj , n1 ≥ 2, ni ≥ 1 for 2 ≤ i ≤ j

form a basis for H0.

By the map from words to multi-index defined by

zs1 . . . zsk 7→ (s1, . . . , sk), (10)

we notice that words in H1 and multi-indexes in Zk
>0 for any integer k ≥ 1 are in bijection. This

means we can interchange words H1 and multi-indexes anytime.

Remark 3. Take a word ω = zs1 . . . zsk ∈ H1. We notice that this can be written as

xs1−1y . . . xsk−1y.

For each z we have one y. Therefore the amount of y’s in the word is equal to k because we have k
amount of z’s. We know k is the length of the multi-index, so the number of y in a word determines
the length of the corresponding multi-index. We say the word ω is of length k. Likewise, for each
zsi we have precisely si amount of letters x, y, therefore the amount of letters in the word is equal
to s1 + . . .+ sk. We know this is the weight of the multi-index, so the number of letters in a word
determines the weight of the corresponding multi-index. We say ω is of weight s1 + . . .+ sk. ♦

Since any word zs1 . . . zsk in H1 satisfies that si ≥ 1 for 1 ≤ i ≤ k, we have that the multi-index
(s1, . . . , sk) satisfies the same, i.e. the multi-index is positive. Likewise, any word zs1 . . . zsk in H0

satisfies that si ≥ 1 for 2 ≤ i ≤ k and s1 ≥ 2, we have that the multi-index (s1, . . . , sk) satisfies the
same, i.e. the multi-index is admissible. We say that any word corresponding to an admissible (resp.
positive) multi-index is an admissible (resp. positive) word. Then we can say that H1 consists of the
linear combination of positive words and H0 consists of the linear combination of admissible words.
With this in hand we set the map Z : H0 → R defined on the basis elements we saw above by

Z(zs1 . . . zsk) := ζ(s1, . . . , sk) (11)

and we extend this Q-linearly. In addition we set Z(1) = 1. This additional condition coincides with
the fact that we stated in Definition 2.4 that ζ(∅) = 1. Since the domain is H0, we have admissible
words, and so ζ(s1, . . . , sk) is finite. Furthermore, this function is well-defined since words from H0

and admissible multi-indexes are in bijection.

Remark 4. Take the word ω = zs1 . . . zsk . Then by this function and by the integral representation
from Theorem 2.5 we have that

Z(ω) = ζ(s1, . . . , sk) = λ( 0, . . . , 0︸ ︷︷ ︸
s1 − 1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
s2 − 1 times

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
sk − 1 times

, 1).

Writing the word explicit in Z we have

Z(xs1−1y . . . xsk−1y) = λ( 0, . . . , 0︸ ︷︷ ︸
s1 − 1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
s2 − 1 times

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
sk − 1 times

, 1).

We see that a x and y correspond to a 0 and a 1 in λ, respectively. Therefore the order of the letters
x, y determine the order of the 0, 1. So by Remark 1 the letters also determine the order of the ti’s
in the simplex ∆u and vice versa, where u is the weight. This is important to notice for later. ♦
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3.2 Stuffle Relation

We define an operator on H1 to generalize the stuffle relation. This was firstly done by Hoffman in
[Hoffman, 1997]. Other reference is [Li and Qin, 2018].

Definition 3.2. The stuffle product on H1, denoted by ∗, is the unique distributive operator that
recursively is defined by the following axioms

T1. 1 ∗ ω = ω ∗ 1 = ω, ω ∈ H1,

T2. zkω ∗ zlν = zk(ω ∗ zlν) + zl(zkω ∗ ν) + zk+l(ω ∗ ν), ω, ν ∈ H1, k, l ≥ 1.

We denote the algebra with the stuffle product by H1
∗.

Since H0 ⊂ H1, we have that this stuffle product is defined on H0 as well, we denote it by H0
∗.

Theorem 3.3. The stuffle product is commutative on H1
∗.

Proof. Since the stuffle product satisfies the distributive law (see Definition 3.2), it is enough to show
ω ∗ ν = ν ∗ ω for words ω, ν ∈ H1, which are not linear combinations of words. We define them by
ω = zs1ω

′ and ν = zr1ν
′ for ω′, ν′ ∈ H1 and s1, r1 ≥ 1. We prove it by induction on u := l(s) + l(r),

where s is the multi-index corresponding to ω and r the multi-index corresponding to ν. If u = 0,
then ω = ν = 1 and the equality follows immediately by construction of the stuffle product. For the
induction step we assume that ∗ is commutative for u′ with u′ < u. Then

ω ∗ ν = zs1ω
′ ∗ zr1ν′

= zs1 (ω
′ ∗ zr1ν′) + zr1 (zs1ω

′ ∗ ν′) + zs1+r1 (ω
′ ∗ ν′)

= zs1 (zr1ν
′ ∗ ω′) + zr1 (ν

′ ∗ zs1ω′) + zs1+r1 (ν
′ ∗ ω′)

= zr1ν
′ ∗ zs1ω′

= ν ∗ ω.

We could use the induction hypothesis since the length in the stuffle products ω′ ∗ zr1ν′, zs1ω′ ∗ ν′,
ω′ ∗ ν′ is less than u.

In this way, H1
∗ and H0

∗ become commutative sub-algebras of H. We would like to prove that Z is
an algebra homomorphism with respect to the stuffle product on H0

∗. We follow sections 3 and 4 in
[Hoffman, 1997], but the proofs are written more explicitly.

Define for a word ω = zs1 . . . zsk ∈ H1 and for an integer p ≥ k + 1 > 0 the map

ϕp(ω) =
∑

p≥n1>...>nk≥1

1

ns1
1 . . . nsk

k

and in addition ϕp(1) = 1. Note that ϕp is finite since it is a finite sum. An immediate consequence
is that

lim
p→∞

ϕp(ω) = Z(ω), ω ∈ H0.

This limit exists since we work with admissible words in H0. We prove a result that is useful for the
rest of this section.
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Lemma 3.4. For ω ∈ H1 and integers p, s1 ≥ 1 we have

ϕp(zs1ω) =
∑

p≥n1>1

1

ns1
1

ϕn1−1(ω).

Proof. Write ω := zs2 . . . zsk , then

ϕp(zs1ω) =
∑

p≥n1>...>nk≥1

1

ns1
1 . . . nsk

k

=
∑

p≥n1>1

1

ns1
1

∑
n1>n2>...>nk≥1

1

ns2
2 . . . nsk

k

=
∑

p≥n1>1

1

ns1
1

∑
n1−1≥n2>...>nk≥1

1

ns2
2 . . . nsk

k

=
∑

p≥n1>1

1

ns1
1

ϕn1−1(ω).

[Hoffman, 1997] proves in Theorem 3.2 that ϕp respect the the stuffle product on H1
∗.

Lemma 3.5. For ω, ν ∈ H1
∗ and for integer p ≥ 1 we have

ϕp(ω ∗ ν) = ϕp(ω)ϕp(ν). (12)

Proof. Since the stuffle product satisfies the distributive law (see Definition 3.2), it is enough to
show ϕp(ω ∗ν) = ϕp(ω)ϕp(ν) for words ω, ν ∈ H1

∗ defined by ω = zs1zs2 . . . zsk and ν = zr1zr2 . . . zrh .
We prove it by induction on l(s1, . . . , sk) + l(r1, . . . , rh) = k + h. If k + h = 0, then ω = ν = 1 and
the equality follows immediately by construction of the stuffle product and ϕp. We write ω = zs1ω

′

and ν = zr1ν
′ for words ω′, ν′ ∈ H1

∗ defined by ω′ = zs2 . . . zsk and ν′ = zr2 . . . zrh . For the induction
step we assume that equation (12) holds for all u with u < k + h. Then

ϕp(ω ∗ ν) = ϕp(zs1ω
′ ∗ zr1ν′)

= ϕp (zs1(ω
′ ∗ zr1ν′) + zr1(zs1ω

′ ∗ ν′) + zs1+r1(ω
′ ∗ ν′))

= ϕp(zs1(ω
′ ∗ zr1ν′)) + ϕp(zr1(zs1ω

′ ∗ ν′)) + ϕp(zs1+r1(ω
′ ∗ ν′))

=
∑

p≥n>1

1

ns1
ϕn−1(ω

′ ∗ zr1ν′) +
∑

p≥m>1

1

mr1
ϕm−1(zs1ω

′ ∗ ν′)

+
∑

p≥l>1

1

ls1+r1
ϕl−1(ω

′ ∗ ν′)

=
∑

p≥n>1

1

ns1
ϕn−1(ω

′)ϕn−1(zr1ν
′) +

∑
p≥m>1

1

mr1
ϕm−1(zs1ω

′)ϕm−1(ν
′)

+
∑

p≥l>1

1

ls1+r1
ϕl−1(ω

′)ϕl−1(ν
′),

where we used the stuffle product and Lemma 3.4. Moreover, we could use the induction hypothesis
since the length in the stuffle products ω′ ∗ zr1ν′, zs1ω′ ∗ ν′, ω′ ∗ ν′ is less than k + h.
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On the other side, we have

ϕp(ω)ϕp(ν) = ϕp(zs1 . . . zsk)ϕp(zr1 . . . zrh)

=

 ∑
p≥n>n2>...>nk≥1

1

ns1ns2
2 . . . nsk

k

 ∑
p≥m>m2>...>mh≥1

1

mr1mr2
2 . . .mrh

h



=

 ∑
p≥n>n2>...>nk≥1,
p≥m>m2>...>mh≥1

1

ns1ns2
2 . . . nsk

k mr1mr2
2 . . .mrh

h


=

∑
p≥n>...>m>...>1

1

ns1

1

ns2
2 . . . nsk

k mr1mr2
2 . . .mrh

h

+
∑

p≥m>...n>...>1

1

mr1

1

ns1ns2
2 . . . nsk

k mr2
2 . . .mrh

h

+
∑

p≥l=n=m>...>1

1

ls1+r1

1

ns2
2 . . . nsk

k mr2
2 . . .mrh

h

,

where in the last equation we decomposed the sum into sums where n > m, n < m and n = m. The
other ni for 2 ≤ i ≤ k and mj for 2 ≤ j ≤ h are somewhere on the dots, but stay smaller than n
and m, respectively. Rewriting it further

ϕp(ω)ϕp(ν) =
∑

p≥n>...>m>...>1

1

ns1

1

ns2
2 . . . nsk

k mr1mr2
2 . . .mrh

h

+
∑

p≥m>...n>...>1

1

mr1

1

ns1ns2
2 . . . nsk

k mr2
2 . . .mrh

h

+
∑

p≥l=n=m>...>1

1

ls1+r1

1

ns2
2 . . . nsk

k mr2
2 . . .mrh

h

=
∑

p≥n>1

1

ns1

 ∑
n−1≥n2>...>nk≥1

1

ns2
2 . . . nsk

k

 ∑
n−1≥m>m2>...>mh≥1

1

mr1mr2
2 . . .mrh

h


+

∑
p≥m>1

1

mr1

 ∑
m−1≥n>n2>...>nk≥1

1

ns1ns2
2 . . . nsk

k

 ∑
m−1≥m2>...>mh≥1

1

mr2
2 . . .mrh

h


+
∑

p≥l>1

1

ls1+r1

 ∑
l−1≥n2>...>nk≥1

1

ns2
2 . . . nsk

k

 ∑
l−1≥m2>...>mh≥1

1

mr2
2 . . .mrh

h


=

∑
p≥n>1

1

ns1
ϕn−1(ω

′)ϕn−1(zr1ν
′) +

∑
p≥m>1

1

mr1
ϕm−1(zs1ω

′)ϕm−1(ν
′)

+
∑

p≥l>1

1

ls1+r1
ϕl−1(ω

′)ϕl−1(ν
′),

where we used rules of multiplication of series. Comparing ϕp(ω ∗ ν) and ϕp(ω)ϕp(ν), we see that
we obtain equation (12). Hence we proved the theorem by induction.
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[Hoffman, 1997] proves in Theorem 4.1 that this Lemma can be used to prove that Z is an algebra
homorphism with respect to the stuffle product on H0

∗.

Theorem 3.6. The map Z : H0
∗ → R is an algebra homorphism on the algebra H0

∗, that is

A1 Z(1) = 1,

A2 Z(aω) = aZ(ω), ω ∈ H0
∗, a ∈ Q,

A3 Z(ω + ν) = Z(ω) + Z(ν), ω, ν ∈ H0
∗,

A4 Z(ω ∗ ν) = Z(ω)Z(ν), ω, ν ∈ H0
∗.

Proof. A1 is proved by construction and A2, A3 are true since we extend Z Q-linear on the rule
(11). So we are left with A4. Since the stuffle product satisfies the distributive law (see Definition
3.2), it is enough to show Z(ω ∗ν) = Z(ω)Z(ν) for words ω, ν ∈ H0

∗. Therefore we use the properties
of ϕp.

ϕp(ω ∗ ν) = ϕp(ω)ϕp(ν),

lim
p→∞

ϕp(ω ∗ ν) = lim
p→∞

ϕp(ω)ϕp(ν),

Z(ω ∗ ν) = Z(ω)Z(ν).

Limits are defined since we work with admissible words in H0
∗. Hence we proved the theorem.

We can not say Z is an algebra homomorphism on H1
∗, because we can not take the limit if ω, ν ∈ H1

∗
since the limit might not exist.

3.3 Shuffle Relation

Similarly, we define an operator on H1 to generalize the shuffle relation. For reference see
[Li and Qin, 2017].

Definition 3.7. The shuffle product on H1, denoted by �, is the unique distributive operator that
recursively is defined by the following axioms

H1. 1� ω = ω� 1 = ω, ω ∈ H1,

H2. c1ω� c2ν = c1(ω� c2ν) + c2(c1ω� ν), ω, ν ∈ H1, c1, c2 ∈ {x, y}.

We denote the algebra with the shuffle product by H1
�
.

Since H0 ⊂ H1, we have that this shuffle product is defined on H0 as well, we denote it by H0
�
.

Theorem 3.8. The shuffle product is commutative on H1
�
.

Proof. Since the shuffle product satisfies the distributive law (see Definition 3.7), it is enough to
show ω � ν = ν � ω for words ω, ν ∈ H1

�
, which are not linear combinations of words. We define

them by ω = c1ω
′ and ν = c2ν

′ for c1, c2 ∈ {x, y}. We prove it by induction on u := wt(s) + wt(r),
where s is the multi-index corresponding to ω and r the multi-index corresponding to ν. If u = 0,
then ω = ν = 1 and the equality follows immediately by construction of the shuffle product.
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For the induction step we assume that � is commutative for u′ with u′ < u. Then

ω� ν = c1ω
′
� c2ν

′

= c1 (ω
′
� c2ν

′) + c2 (c1ω
′
� ν′)

= c1 (c2ν
′
� ω′) + c2 (ν

′
� c1ω

′)

= c2ν
′
� c1ω

′

= ν � ω.

We could use the induction hypothesis since the weight in the shuffle products ω′
� c2ν

′, c1ω
′
� ν′,

ω′
� ν′ is less than u.

In this way, H1
�

and H0
�

become commutative sub-algebras of H.

We would like to prove, similar to the stuffle product, that Z is an algebra homomorphism
with respect to the shuffle product on H0

�
. Therefore, let us look closer at the shuffle product.

[Gil and Fresán, 2017] shows in Proposition 1.151 the following result.

Lemma 3.9. Define the two words c1 . . . cp and cp+1 . . . cp+q with ci ∈ {x, y} for 1 ≤ i ≤ p+ q. The
shuffle product of these two words can be written as

c1 . . . cp � cp+1 . . . cp+q =
∑

σ∈S(p,q)

cσ−1(1) . . . cσ−1(p+q). (13)

Proof. We notice by the definition of the shuffle product that if we compute

c1 . . . cp � cp+1 . . . cp+q,

we get a linear combination of words in which we permute the ci’s. Since we take one letter outside
the shuffle product each time, we can say that we have only two conditions on these words:

• the letter ci stands left with respect to the letter ci+1 for 1 ≤ i ≤ p− 1,

• the letter cj stands left with respect to the letter cj+1 for p+ 1 ≤ j ≤ p+ q − 1.

This means that the order of the indexes 1, . . . , p and p + 1, . . . , p + q are respected. With this
being the definition of the permutations of type (p, q) from Definition 2.8, we can see that we obtain
equation (13).

The proof of the following result is self-written. However, another proof can be found in Theorem
4.1 of [Hoffman and Ohno, 2003].

Theorem 3.10. The map Z : H0
�

→ R is an algebra homomorphism on the algebra H0
�
, that is

A1 Z(1) = 1,

A2 Z(aω) = aZ(ω), ω ∈ H0
�
, a ∈ Q,

A3 Z(ω + ν) = Z(ω) + Z(ν), ω, ν ∈ H0
�
,

A4 Z(ω� ν) = Z(ω)Z(ν), ω, ν ∈ H0
�
.
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Proof. A1 is proved by construction and A2,A3 are true since we extend Z Q-linear on the rule
(11). So we are left with A4. This is a generalization of Theorem 2.9. Since the shuffle product
satisfies the distributive law (see Definition 3.7), it is enough to show Z(ω1�ω2) = Z(ω1)Z(ω2) for
words ω1, ω2 ∈ H0

�
, which are not linear combinations of words. By the integral representation from

Theorem 2.5, we can write

Z(ωi) =

∫
∆ui

Ii,

where we use Ii to denote the integrand of the product of all the differential forms ηεi(ti) and ui is
the weight of theb word ωi. Then we have

Z(ω1)Z(ω2) =

∫
∆u1

I1

∫
∆u2

I2

=

∫
∆u1×∆u2

I1I2

=
∑

σ∈S(u1,u2)

∫
σ̃(∆u1+u2 )

I1I2,

where we use the notation from Section 2.2 and equation (6). On the other hand, we can use Lemma
3.9 for the shuffle product. We see that in the shuffle product ω1 � ω2 we permute the x’s and y’s
with all possible permutations of type (u1, u2). By Remark 4 this means we permute the 0’s and 1’s
in λ. By Remark 1 this can be written as the integral over σ̃(∆u1+u2). Taking all permutations, we
can reason that

Z(ω1 � ω2) =
∑

σ∈S(u1,u2)

∫
σ̃(∆u1+u2 )

I1I2

= Z(ω1)Z(ω2).

3.4 Finite Double Shuffle Relation

With these definitions and theorems in hand, we can finally generalize the finite double shuffle
relation. From now on, if we write H1 or H0, the stuffle and shuffle product are defined on them.
[Gil and Fresán, 2017] proves in Theorem 1.160 the following result.

Theorem 3.11 (Finite Double Shuffle Relation). For any words ω, ν ∈ H0 we have

Z(ω ∗ ν) = Z(ω� ν).

Proof. By combining Theorems 3.6 and 3.10 we have

Z(ω ∗ ν) = Z(ω)Z(ν) = Z(ω� ν).

Let us check if we indeed recover the finite double shuffle relation we saw in equation (9). Recall
that zn = xn−1y. We take the words ω = ν = xy, hence ω = ν = z2. Then

ω ∗ ν = z2 ∗ z2
= z2(1 ∗ z2) + z2(z2 ∗ 1) + z4(1 ∗ 1)
= z2z2 + z2z2 + z4

= 2z2z2 + z4,
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and

ω� ν = xy� xy

= x(y� xy) + x(xy� y)

= x
(
y(1� xy) + x(y� y)

)
+ x
(
x(y� y) + y(xy� 1)

)
= 2xyxy + 2x2(y� y)

= 2xyxy + 2x2
(
y(1� y) + y(y� 1)

)
= 2xyxy + 4x2y2

= 2z2z2 + 4z3z1.

Then using Theorem 3.11 we obtain

Z(ω ∗ ν) = Z(ω� ν),

Z(2z2z2 + z4) = Z(2z2z2 + 4z3z1),

2Z(z2z2) + Z(z4) = 2Z(z2z2) + 4Z(z3z1),

Z(z4) = 4Z(z3z1),

ζ(4) = 4ζ(3, 1).

Hence we indeed recover the finite double shuffle relation we saw in equation (9).

Example 6. Let us explore another example in order to see that this finite double shuffle relation
can derive many linear relations for MZV. Take ω = z2z1 = xy2 and ν = z2 = xy. Then it can be
shown by expanding the stuffle and shuffle product, similar as has been done above, that

ω ∗ ν = z2z1z2 + 2z2z2z1 + z2z3 + z4z1,

ω� ν = z2z1z2 + 6z3z1z1 + 3z2z2z1.

Then using Theorem 3.11 we obtain

Z(ω ∗ ν) = Z(ω� ν),

Z(z2z1z2 + 2z2z2z1 + z2z3 + z4z1) = Z(z2z1z2 + 6z3z1z1 + 3z2z2z1),

Z(z2z1z2) + 2Z(z2z2z1) + Z(z2z3) + Z(z4z1) = Z(z2z1z2) + 6Z(z3z1z1) + 3Z(z2z2z1),

ζ(2, 1, 2) + 2ζ(2, 2, 1) + ζ(2, 3) + ζ(4, 1) = ζ(2, 1, 2) + 6ζ(3, 1, 1) + 3ζ(2, 2, 1),

ζ(2, 3) + ζ(4, 1) = 6ζ(3, 1, 1) + ζ(2, 2, 1).

■

The question might be asked why it is called the finite double shuffle relation. The reason for this
is, that while it can derive many linear combinations for MZV, it can not derive all of them. Take
for example the relation

ζ(3) = ζ(2, 1),

which was proved by Euler and it can also be derived from Corollary 2.7. Trying to obtain this from
the finite double shuffle relation, one may argue to take ω = z2 and ν = z1. But this is not allowed
since we need ω, ν ∈ H0. But we have ν ∈ H1\H0. So one could say that we need to enlarge the
domain of the function Z : H0 → R to H1. This can be done by the regularization of the function Z.
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The theory behind this regularization needs a bit more background, which we do not discuss in this
paper. This is explained in more detail in Section 1.7 of [Gil and Fresán, 2017] and another good
reference is Chapter 2 of [Ihara et al., 2006]. The regularization of the finite double shuffle relation
is called the regularized double shuffle relation and its importance can be seen by the following
conjecture.

Conjecture 3.12. All linear relations over Q for MZV are implied by the relation

ZR(ω� ν − ω ∗ ν) = 0, ω ∈ H0, ν ∈ H1,

where ZR : H1 → R is the extension of Z : H0 → R.

Some evidence for this conjecture can be found in [Li and Qin, 2016], where they derive some other
relations from the regularized double shuffle relation. As we said, we do not study this conjecture
in this paper. Luckily, it is conjectured that more relations imply all other relations for MZV. One
of them is the integral-series identity.

4 Integral-Series Identity

In this section, we explore the integral-series identity, which is derived by Masanobu Kaneko and
Shuji Yamamoto [Kaneko and Yamamoto, 2018]. Since this relation is quite new, there are not many
other sources. Therefore this section is based on [Kaneko and Yamamoto, 2018].

4.1 Circled Stuffle Product

We defined the stuffle and shuffle product for the sub-algebra H1. We can define another product
on H1.

Definition 4.1. The circled stuffle product on H1, denoted by ⊛, is the unique distributive operator
that is defined by the following axioms

C1. 1⊛ ω = ω ⊛ 1 = ω, ω ∈ H1,

C2. zkω ⊛ zlν = zk+l(ω ∗ ν), ω, ν ∈ H1, k, l ≥ 1,

where ∗ is the stuffle product on H1.

Remark 5. For two words ω, ν ∈ H1 we have that ω ⊛ ν ∈ H0. Namely, if ω = zs1 . . . zsk and
ν = zr1 . . . zrh then s1, r1 ≥ 1 so s1 + r1 ≥ 2. Therefore

ω ⊛ ν = zs1 . . . zsk ⊛ zr1 . . . zrh = zs1+r1(zs2 . . . zsk ∗ zr2 . . . zrh) ∈ H0

by construction of H0. ♦

Furthermore, for a positive multi-index s = (s1, . . . , sk) let s
⋆ denote the formal sum of the multi-

indexes of the form
(s1 ◦ s2 ◦ . . . ◦ sk),

where we either place ′,′ or ′+′ on the spot of ′◦′. So on every spot we have two options and we have
k − 1 spots. Hence we have 2k−1 elements in the formal sum. As an example we have

(3, 1, 2)⋆ = (3, 1, 2) + (4, 2) + (3, 3) + (6).

In terms of words, using map (10), this is

(z3z1z2)
⋆ = z3z1z2 + z4z2 + z3z3 + z6.
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Example 7. With this ⋆ notation of a multi-index, we can write the formal sum of all positive
multi-indexes of weight s in an abstract form. Namely

(1, . . . , 1︸ ︷︷ ︸
s times

)⋆ =

s∑
k=1

∑
s1+...+sk=s,

si≥1

(s1, . . . , sk),

where the right hand side is the formal sum of all multi-indexes of weight s, because it takes all
lengths k and all possibilities in each length such that the weight is equal to s. To see this equality,
we notice that we have s amount of 1’s in the left hand side, so every element of the formal sum
is of weight s. Moreover, any multi-index (s1, . . . , sj) for 1 ≤ j ≤ k in the right hand side can be
formed from (1, . . . , 1︸ ︷︷ ︸

s times

)⋆ by taking the first s1 amount of 1’s together, then we have place a ′,′ and

then we take s2 amount of 1’s together, and so on. So the equality follows, since we can construct
any multi-index of weight s with length between 1 and k. Hence there exists precisely 2s−1 positive
multi-indexes of weight s since there are that many multi-indexes in the formal sum of (1, . . . , 1︸ ︷︷ ︸

s times

)⋆.

In case of admissible multi-index, we notice the first spot should be a ′+′, otherwise it might be
non-admissible. So we take

(2, 1, . . . , 1︸ ︷︷ ︸
s − 2 times

)⋆.

So have s−2 spots, and have two options for every spot. Hence we have 2s−2 elements in the formal
sum. So there exists 2s−2 admissible multi-indexes of weight s. ■

Lemma 4.2. For ω ∈ H0 written by ω = zs1 . . . zsk , we have

Z(ω⋆) =
∑

n1≥...≥nk≥1

1

ns1
1 . . . nsk

k

.

Proof. The main observation is that we can decompose the summation on the right hand side in
the cases in which ni = ni+1 and ni > ni+1 for each 2 ≤ i ≤ k − 1. In the case ni = ni+1 we get
one variable and can add the powers of ni and ni+1. Therefore this case is equivalent to the case in
which we place a ′+′ on the spot between si and si+1 (the powers) in ω⋆. In the case ni > ni+1 we
still have two variables and do not add the powers of ni and ni+1. Therefore this case is equivalent
to the case in which we place a ′,′ on the spot between si and si+1 (the powers) in ω⋆. Therefore
this equation follows.

Example 8. In the next sections we compute products of the form ω⊛ ν⋆ for ω, ν ∈ H1. Therefore
we give a small example here. Take ω = z3z1 and ν = z1z2. Then

ν⋆ = (z1z2)
∗ = z1z2 + z3.

Then

ω ⊛ ν⋆ = z3z1 ⊛ (z1z2 + z3)

= z3z1 ⊛ z1z2 + z3z1 ⊛ z3

= z4(z1 ∗ z2) + z6(z1 ∗ 1)
= z4 [z1z2 + z2z1 + z3] + z6z1

= z4z1z2 + z4z2z1 + z4z3 + z6z1.

■
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4.2 2-Posets and Hasse Diagrams

Definition 4.3. A partially ordered set (or poset) is a set A and a relation ⪯ such that for all
a, b, c ∈ A

• a ⪯ a (Reflexive),

• a ⪯ b and b ⪯ c, then a ⪯ c (Transitive),

• a ⪯ b and b ⪯ a, then a = b (Anti-Symmetry).

We denote a poset by the pair (A,⪯). We say that a, b ∈ A are comparable if a ⪯ b or a ⪰ b,
otherwise a, b are called incomparable. We write a < b if a ⪯ b and a ̸= b. If A is a finite set
we speak of a finite poset. In addition if A = {a1, . . . , an}, then we say A is totally ordered if
a1 < . . . < an.

Some examples of posets are (R,≤) and (P(R),⊆) where P stands for the power set.

If (A,⪯) is a finite poset then we can visualize the poset with a so-called Hasse diagram. In this
diagram elements are denoted by dots, comparable elements are linked with a line and the difference
in height of two linked dots determines how they are related by the relation ⪯. For example, if
a1 < a2 then the dot of a1 is lower than the dot of a2.

Example 9. Let A = {a1, a2, a3, a4}. Then we get the following Hasse diagram for the different
posets:

a1 < a2 < a4 and a1 < a3 < a4 a1 < a2 < a3 > a4 a1 < a2 < a3 < a4

a1

a3a2

a4

a1

a2

a3

a4

a1

a2

a3

a4

■

From now on we leave out the labeling of the dots. We move on with the convention that the dot
to the left is a1, the dot second from the left is a2, and so on.

Definition 4.4. A 2-poset is a finite poset (A,⪯) with a map δ from A to {x, y}, called the label
map of A. We denote a 2-poset by the pair (A, δ).

We introduce this poset terminology so that we can use this for MZV. Assume we have a 2-poset
(A, δ). For a word ω = zs1 . . . zsk corresponding to the positive multi-index s = (s1, . . . , sk) we
create some notation.
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We write

ω

for the totally ordered Hasse diagram:

sk dots

sk−1 dots

s1 dots

Furthermore, we write ω for the Hasse diagram;

s1 dots

s2 dots

sk dots

where the elements denoted by an empty dot are mapped to y under δ and the elements denoted by
solid dots are mapped to x under δ.

Remark 6. By Remark 3 this means that the total number of dots determines the weight of the
multi-index and the number of empty dots determines the length of the multi-index. ♦

Example 10. Take multi-index (2, 1, 3), equivalently word ω = z2z1z3. Then the Hasse diagram

denoted by

ω

is given by:
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The Hasse diagram denoted by ω is given by:

■

Let us define two functions. For ω, ν ∈ H1 we define

µ(ω, ν) = W

 ω

ν
 ,

where the function W on a 2-poset (or Hasse diagram) is defined by the following 2 rules

• For a totally ordered 2-poset (A, δ), with A = {a1, . . . , an} and a1 < . . . < an we have

W (A) = δ(an) . . . δ(a1). (14)

Remember that the elements denoted by an empty dot are mapped to y and the elements
denoted by solid dots are mapped to x.

• Let (A, δ) be a 2-poset. For two incomparable elements a, b ∈ A, we define

W (A) = W (Ab
a) +W (Aa

b ), (15)

where Ab
a (resp. Aa

b ) is the 2-poset by adjoining the rule a < b (resp. b < a). This is equivalent
to asking what are the possibilities to totally order A with the given relations. Thereafter,
you sum over all totally orders with the given rule for W for totally ordered 2-posets. So for
example if we have the rules a1 < a2 and a2 > a3 < a4, then we can obtain the following
totally orders

1. a3 < a1 < a2 < a4,

2. a1 < a3 < a2 < a4,

3. a1 < a3 < a4 < a2,

4. a3 < a1 < a4 < a2,

5. a3 < a4 < a1 < a2.

Let us explore a more difficult example.

Example 11. Take ω = z3z1 and ν = z1z2. Then

µ(ω, ν) = µ(z3z1, z1z2) = W




.
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We see that some elements in this Hasse diagram are incomparable. So we have to use rule (15) of
the function W . We have the relations a1 < a2 < a3 < a4 < a5 and a5 > a6 < a7. So how many
totally orders are possible?

a6 < a1 < a2 < a3 < a4 < a5 < a7, a6 < a1 < a2 < a3 < a7 < a4 < a5,
a1 < a6 < a2 < a3 < a4 < a5 < a7, a1 < a6 < a2 < a3 < a7 < a4 < a5,
a1 < a2 < a6 < a3 < a4 < a5 < a7, a1 < a2 < a6 < a3 < a7 < a4 < a5,
a1 < a2 < a3 < a6 < a4 < a5 < a7, a1 < a2 < a3 < a6 < a7 < a4 < a5,
a1 < a2 < a3 < a4 < a6 < a5 < a7, a6 < a1 < a2 < a7 < a3 < a4 < a5,
a1 < a2 < a3 < a4 < a5 < a6 < a7, a1 < a6 < a2 < a7 < a3 < a4 < a5,
a6 < a1 < a2 < a3 < a4 < a7 < a5, a1 < a2 < a6 < a7 < a3 < a4 < a5,
a1 < a6 < a2 < a3 < a4 < a7 < a5, a6 < a1 < a7 < a2 < a3 < a4 < a5,
a1 < a2 < a6 < a3 < a4 < a7 < a5, a1 < a6 < a7 < a2 < a3 < a4 < a5,
a1 < a2 < a3 < a6 < a4 < a7 < a5, a6 < a7 < a1 < a2 < a3 < a4 < a5,
a1 < a2 < a3 < a4 < a6 < a7 < a5.

So we get in total 21 totally ordered 2-posets. Taking W of these totally ordered 2-posets, we can
use rule (14). So for example take the first totally ordered 2-poset A = {a6 < a1 < a2 < a3 < a4 <
a5 < a7}, then

W (A) = δ(a7)δ(a5)δ(a4)δ(a3)δ(a2)δ(a1)δ(a6) = xxxxyyy = z5z1z1,

where we looked whether ai is denoted by a solid or an empty dot in the Hasse diagram. Doing this
for all of them and sum them, we find

W




= 12z5z1z1 + 5z4z2z1 + 2z3z3z1 + z2z4z1 + z4z1z2.

■

Remark 7. For two words ω, ν ∈ H1 we have that µ(ω, ν) ∈ H0. Namely, if ω = zs1 . . . zsk and
ν = zr1 . . . zrh then

µ(ω, ν) = W

 ω

ν
 = W

 ω

r1 dots

r2 dots

rh dots


.

By construction of this function W , we calculate all possible totally orders of the given Hasse
diagram. In all totally orders, we must have one of the red dots as the highest dot.
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Since this dot is solid, it is mapped under δ to x. Therefore any word in the formal sum, when
calculating this function W , begins with the letter x. Therefore all words start with a word zk1

with
k1 ≥ 2. Hence µ(ω, ν) ∈ H0 by construction of H0. ♦

4.3 Integral-Series Identity

With Remark 5 and 7, we can see that for ω, ν ∈ H1 we have ω⊛ ν⋆, µ(ω, ν) ∈ H0. Therefore we can
use the function Z : H0 → R from Section 3.1. We can obtain a representation for Z(ω ⊛ ν⋆) and
Z(µ(ω, ν)). Eventually, we can show that they are actually equal. First we prove the representation
for Z(ω ⊛ ν⋆). [Kaneko and Yamamoto, 2018] gives it in equation 2.4. The proof is self-written to
explain this equation.

Lemma 4.5. Write the non-empty words ω, ν ∈ H1 as ω = zs1 . . . zsk and ν = zr1 . . . zrh . Then

Z(ω ⊛ ν⋆) =
∑

1≤nk<...<n1=m1≥...≥mh≥1

1

ns1
1 . . . nsk

k mr1
1 . . .mrh

h

.

Proof. We notice that we can rewrite the right hand side as∑
1≤nk<...<n1=m1≥...≥mh≥1

1

ns1
1 . . . nsk

k mr1
1 . . .mrh

h

=
∑

1≤nk<...<n≥...≥mh≥1

1

ns2
2 . . . nsk

k mr2
2 . . .mrh

h

1

ns1+r1

=
∑
n≥1

 ∑
1≤nk<...<n≥...≥mh≥1

1

ns2
2 . . . nsk

k mr2
2 . . .mrh

h

 1

ns1+r1

=
∑
n≥1

 ∑
1≤nk<...<n2<n

1

ns2
2 . . . nsk

k

 ∑
n≥m2≥...≥mh≥1

1

mr2
2 . . .mrh

h

 1

ns1+r1
.

We can decompose the summation ∑
n≥m2≥...≥mh≥1

1

mr2
2 . . .mrh

h

.

We do this by taking the cases in which we take the first amount of mi’s equal to n up to some j,
i.e n = mi for 2 ≤ i ≤ j ≤ h. In that case we can rewrite the sum as

∑
n≥m2≥...≥mh≥1

1

mr2
2 . . .mrh

h

=

h∑
j=2

 ∑
n>mj+1≥...≥mh≥1

1

nr2+...+rjm
rj+1

j+1 . . .mrh
h


=

h∑
j=2

 ∑
n>mj+1≥...≥mh≥1

1

m
rj+1

j+1 . . .mrh
h

 1

nr2+...+rj
.

We write ν = zr1+...+rjνj with νj = zrj+1
. . . zrh .
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Then by translating Lemma 4.2 to the function ϕn, which is defined in section 3.2, we can write this
as

∑
n≥m2≥...≥mh≥1

1

mr2
2 . . .mrh

h

=

h∑
j=2

 ∑
n>mj+1≥...≥mh≥1

1

m
rj+1

j+1 . . .mrh
h

 1

nr2+...+rj

=

h∑
j=2

ϕn−1(ν
⋆
j )

1

nr2+...+rj
.

Then writing ω = zs1ω
′ with ω′ = zs2 . . . zsk , we get in the first computations that∑

1≤nk<...<n1=m1≥...≥mh≥1

1

ns1
1 . . . nsk

k mr1
1 . . .mrh

h

=
∑
n≥1

 ∑
1≤nk<...<n2<n

1

ns2
2 . . . nsk

k

 ∑
n≥m2≥...≥mh≥1

1

mr2
2 . . .mrh

h

 1

ns1+r1

=
∑
n≥1

[ϕn−1(ω
′)]

 h∑
j=2

ϕn−1(ν
⋆
j )

1

nr2+...+rj

 1

ns1+r1

=

h∑
j=2

∑
n≥1

[ϕn−1(ω
′)]
[
ϕn−1(ν

⋆
j )
] 1

ns1+r1+...+rj


=

h∑
j=2

∑
n≥1

[
ϕn−1(ω

′ ∗ ν⋆j )
] 1

ns1+r1+...+rj


=

h∑
j=2

 lim
p→∞

∑
p≥n≥1

[
ϕn−1(ω

′ ∗ ν⋆j )
] 1

ns1+r1+...+rj


=

h∑
j=2

(
lim
p→∞

ϕp

(
zs1+r1+...+rj (ω

′ ∗ ν⋆j )
))

= lim
p→∞

ϕp

(
zs1ω

′ ⊛
h∑

j=2

zr1+...+rjν
⋆
j

)
= lim

p→∞
ϕp

(
ω ⊛ ν⋆

)
= Z(ω ⊛ ν⋆),

where in fourth equality we used Lemma 3.5, in sixth equality Lemma 3.4 and seventh equality we
used linearity of ϕp and the circled stuffle product. The limit exists since ω ⊛ ν⋆ ∈ H0 for ω, ν ∈ H1

by Remark 5.
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For ω, ν ∈ H1, we set A(ω, ν) to denote the rules of the 2-poset of the Hasse diagram

ω

ν

. (16)

Example 12. If we take ω = z2 and ν = z1z1z2 we have the Hasse diagram

ω

ν

= .

So we denote the rules a1 < a2 < a3 > a4 > a5 < a6 by A(ω, ν). ■

Note that we have seen that the number of dots is equal to the weight of the multi-index. So we
have u := wt(s) + wt(r) number of dots in the Hasse diagram (16), where s is the multi-index
corresponding to ω and r the multi-index corresponding to ν. If we say that for A(ω, ν) the ai’s
satisfy 0 < ai < 1 for each 1 ≤ i ≤ u, we can say that A(ω, ν) is the subset of Ru containing all
(a1, . . . , au) satisfying the rules of A(ω, ν). Then an integral over A(ω, ν) is equivalent to the sum
of all integrals over all possible totally orders of A(ω, ν). So let Ai for i ∈ I, where I is some index
set, denote a totally order of A(ω, ν), then∫

A(ω,ν)

g(a1, . . . , au)da1 . . . dau =
∑
i∈I

∫
Ai

g(a1, . . . , au)da1 . . . dau, (17)

where g : Ru → R is some function. The following result has been self-written to improve the proof
of the integral-series identity, which we see after this proof.

Lemma 4.6. Write the non-empty words ω, ν ∈ H1 as ω = zs1 . . . zsk and ν = zr1 . . . zrh . Denote
u := wt(s1, . . . , sk) + wt(r1, . . . , rh). Then

Z(µ(ω, ν)) =

∫
A(ω,ν)

η(a1) . . . η(au),

where

η(a) =

{
da
1−a , a is denoted by an empty dot
da
a , a is denoted by a solid dot

.

Proof. We have

Z(µ(ω, ν)) = Z

W

 ω

ν
 .

We have to totally order this Hasse diagram and sum over all possibilities. Therefore we have

Z(µ(ω, ν)) = Z

W

 ω

ν


= Z

(∑
i∈I

W (Ai)

)
.
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We know by the definition of the function W that W (Ai) is a word in H0. Therefore we write it in
terms of the basis of H0, i.e. W (Ai) = zi1 . . . zij with 1 ≤ j ≤ u, where j depends on the totally
order given by Ai.
Then

Z(µ(ω, ν)) = Z

(∑
i∈I

W (Ai)

)
=
∑
i∈I

Z (W (Ai))

=
∑
i∈I

Z(zi1 . . . zij )

=
∑
i∈I

ζ(i1, . . . , ij)

=
∑
i∈I

λ( 0, . . . , 0︸ ︷︷ ︸
i1 − 1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
i2 − 1 times

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
ij − 1 times

, 1).

We can write out this λ in terms of an integral. We have

λ(ε1, . . . , εk) =

∫
∆k

ηε1(t1) . . . ηεk(tk),

where

ηε(t) =

{
dt
1−t , ε = 1
dt
t , ε = 0

.

But we replace ti by ai. In that case we have two changes in the integral denoted by λ.

• We have

ηε(a) =

{
da
1−a , ε = 1
da
a , ε = 0

=

{
da
1−a , a is mapped to y under δ
da
a , a is mapped to x under δ

=

{
da
1−a , a is denoted by an empty dot
da
a , a is denoted by a solid dot

= η(a)

Because ε = 0 if we have a x and ε = 1 if we have a y, see Remark 4.

• We have that ∆u changes to the totally ordered 2-poset Ai. Let us clarify this. By construction
of the function W the elements ai ∈ Ai are mapped to x and y. So the order of the ai’s
determine the order of x and y. By Remark 4 the order of the 0’s and 1’s in λ is determined
by x and y. Therefore, the order of the ai’s determine the order of the 0’s and 1’s in λ. By
Remark 1 we know that the 0’s and 1’s in λ determine the order of the ti’s in ∆k. So the ai’s
must determine the order of the ti’s. Therefore, by replacing ti by ai, ∆

u becomes the totally
order 2-poset Ai.
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Then by these two points we have

λ( 0, . . . , 0︸ ︷︷ ︸
i1 − 1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
i2 − 1 times

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
ij − 1 times

, 1) =

∫
∆k

η0(t1) . . . η1(tu)

=

∫
Ai

η(a1) . . . η(au).

So we get

Z(µ(ω, ν)) =
∑
i∈I

λ( 0, . . . , 0︸ ︷︷ ︸
i1 − 1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
i2 − 1 times

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
ij − 1 times

, 1)

=
∑
i∈I

∫
Ai

η(a1) . . . η(au)

=

∫
A(ω,ν)

η(a1) . . . η(au),

where in the last equality we used rule (17).

We are ready to state the main theorem of this section. [Kaneko and Yamamoto, 2018] proves it by
proof by example in Theorem 4.1, we follow this, but take a different example.

Theorem 4.7 (Integral-Series Identity). For non-empty words ω, ν ∈ H1 we have

Z(ω ⊛ ν⋆) = Z(µ(ω, ν)). (18)

Proof. By Lemmas 4.5 and 4.6 equation (18) is equivalent to showing∑
1≤nk<...<n1=m1≥...≥mh≥1

1

ns1
1 . . . nsk

k mr1
1 . . .mrh

h

=

∫
A(ω,ν)

η(a1) . . . η(au).

This can be done by computing the integral from the inside to the outside and using geometric
series. We have done something similar in the proof of Theorem 2.5. Since the proof works exactly
the same for this theorem, only the boundaries are different, we work out a specific example to show
the computations.

Take ω = z2 and ν = z1z1z2. Then in Example 12 we see that the dots a1, a4, a5 are empty dots
and a2, a3, a6 are solid dots. Hence

η(ai) =

{
dai

1−ai
, for i = 1, 4, 5

dai

a1
, for i = 2, 3, 6

.

In the computation of the integral, we use geometric series. In other words, we use the rules that
for 0 < a < 1 we have ∑

n≥1

an−1 =
1

1− a
,

∑
m≥n≥1

an−1 =
1− am

1− a
.
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So for the integral computation we get

Z(µ(ω, ν)) =

∫
A(ω,ν)

η(a1)η(a2)η(a3)η(a4)η(a5)η(a6)

=

∫
0<a1<a2<a3>a4>a5<a6<1

da1
1− a1

da2
a2

da3
a3

da4
1− a4

da5
1− a5

da6
a6

=

∫ 1

0

∫ a6

0

∫ 1

a5

∫ 1

a4

∫ a3

0

∫ a2

0

da1
1− a1

da2
a2

da3
a3

da4
1− a4

da5
1− a5

da6
a6

=

∫ 1

0

∫ a6

0

∫ 1

a5

∫ 1

a4

∫ a3

0

∫ a2

0

∑
n≥1

an−1
1 da1

 da2
a2

da3
a3

da4
1− a4

da5
1− a5

da6
a6

=

∫ 1

0

∫ a6

0

∫ 1

a5

∫ 1

a4

∫ a3

0

∑
n≥1

an−1
2

n
da2

 da3
a3

da4
1− a4

da5
1− a5

da6
a6

=

∫ 1

0

∫ a6

0

∫ 1

a5

∫ 1

a4

∑
n≥1

an−1
3

n2
da3

 da4
1− a4

da5
1− a5

da6
a6

=

∫ 1

0

∫ a6

0

∫ 1

a5

∑
n≥1

1

n3

(
1− an4
1− a4

)
da4

 da5
1− a5

da6
a6

=

∫ 1

0

∫ a6

0

∫ 1

a5

∑
n≥1

1

n3

 ∑
n≥m≥1

am−1
4

 da4

 da5
1− a5

da6
a6

=

∫ 1

0

∫ a6

0

∑
n≥1

1

n3

∑
n≥m≥1

1

m

(
1− am5
1− a5

)
da5

 da6
a6

=

∫ 1

0

∫ a6

0

∑
n≥1

1

n3

∑
n≥m≥1

1

m

 ∑
m≥l≥1

al−1
5

 da5

 da6
a6

=

∫ 1

0

∑
n≥1

1

n3

∑
n≥m≥1

1

m

∑
m≥l≥1

al−1
6

l
da6

=
∑
n≥1

1

n3

∑
n≥m≥1

1

m

∑
m≥l≥1

1

l2

=
∑

1≤n≥m≥l≥1

1

n3ml2

=
∑

1≤n1=m1≥m2≥m3≥1

1

n2
1m1m2m2

3

= Z(ω ⊛ ν⋆).

Hence we showed equation 18 for a special case, the general case follows by computing the integrals
in exactly the same way.
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Therefore we see why the identity is called the integral-series identity since the left hand side of
equation (18) can be expressed as a series and the right hand side as an integral.

Example 13. For ω = z3z1 and ν = z1z2 we found in examples 8 and 11 that

ω ⊛ ν⋆ = z4z1z2 + z4z2z1 + z4z3 + z6z1,

µ(ω, ν) = 12z5z1z1 + 5z4z2z1 + 2z3z3z1 + z2z4z1 + z4z1z2.

Hence by the integral-series identity we have

Z(ω ⊛ ν⋆) = Z(µ(ω, ν)),

Z(z4z1z2 + z4z2z1 + z4z3 + z6z1) = Z(12z5z1z1 + 5z4z2z1 + 2z3z3z1 + z2z4z1 + z4z1z2),

ζ(4, 1, 2) + ζ(4, 2, 1) + ζ(4, 3) + ζ(6, 1) = 12ζ(5, 1, 1) + 5ζ(4, 2, 1) + 2ζ(3, 3, 1) + ζ(2, 4, 1) + ζ(4, 1, 2),

ζ(4, 3) + ζ(6, 1) = 12ζ(5, 1, 1) + 4ζ(4, 2, 1) + 2ζ(3, 3, 1) + ζ(2, 4, 1).

■

4.4 Relations derived from Integral-Series Identity

We explored the integral-series identity, because likewise as for the regularized double shuffle relation,
we have the following conjecture.

Conjecture 4.8. All linear relations over Q for MZV are implied by the integral-series identity.

This means that we should be able to derive any relation by filling in some ω and ν. We give
some evidence for this conjecture in this section. Firstly we derive Hoffman’s relation, which was
proven by Theorem 5.1 in [Hoffman, 1992]. The proof is self-written, only the values that we take
are confirmed to work by Remark 7.3 in [Kaneko and Yamamoto, 2018].

Theorem 4.9 (Hoffman’s Relation). Let s = (s1, . . . , sk) be an admissible multi-index, then

k∑
i=1

ζ(s1, . . . , si−1, si + 1, si+1, . . . , sk) =

k∑
i=1,
si≥2

si−2∑
j=0

ζ(s1, . . . , si−1, si − j, j + 1, si+1, . . . , sk). (19)

Proof. Take ω = zs1−1zs2 . . . zsk and ν = z1z1 in Theorem 4.7. Firstly,

ω ⊛ ν⋆ = zs1−1zs2 . . . zsk ⊛ (z1z1)
⋆

= zs1−1zs2 . . . zsk ⊛ (z1z1 + z2)

= zs1−1zs2 . . . zsk ⊛ z1z1 + zs1−1zs2 . . . zsk ⊛ z2

= zs1(zs2 . . . zsk ∗ z1) + zs1+1(zs2 . . . zsk ∗ 1)
= zs1(zs2 . . . zsk ∗ z1) + zs1+1zs2 . . . zsk .
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Then computing the stuffle product we get

zs2 . . . zsk ∗ z1 = z1zs2 . . . zsk + zs2(zs3 . . . zsk ∗ z1) + zs2+1zs3 . . . zsk
= z1zs2 . . . zsk + zs2z1zs3 . . . zsk + zs2zs3(zs4 . . . zsk ∗ z1)

+ zs2zs3+1zs4 . . . zsk + zs2+1zs3 . . . zsk
...

=

(
k∑

i=2

zs2 . . . zsi−1
z1zsi . . . zsk

)
+ zs2 . . . zskz1

+

k∑
j=2

zs2 . . . zsj−1
zsj+1zsj+1

. . . zsk .

Hence

ω ⊛ ν⋆ = zs1(zs2 . . . zsk ∗ z1) + zs1+1zs2 . . . zsk

= zs1

( k∑
i=2

zs2 . . . zsi−1z1zsi . . . zsk

)
+ zs2 . . . zskz1 +

k∑
j=2

zs2 . . . zsj−1zsj+1zsj+1 . . . zsk


+ zs1+1zs2 . . . zsk

=

(
k∑

i=2

zs1zs2 . . . zsi−1
z1zsi . . . zsk + zs1zs2 . . . zskz1

)

+

 k∑
j=2

zs1zs2 . . . zsj−1
zsj+1zsj+1

. . . zsk + zs1+1zs2 . . . zsk


=

k∑
i=1

zs1 . . . zsiz1zsi+1
. . . zsk +

k∑
j=1

zs1 . . . zsj−1
zsj+1zsj+1

. . . zsk ,

where the single terms could be included in the sum by changing the starting point to i = 1 and
changing the order of z1 in the first sum and the starting point to j = 1 in the second sum. On the
other hand

µ(ω, ν) = W

 sk dots

sk−1 dots

s1 − 1 dots



,
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where we have s1 − 1 dots since this equals the subscript of the first z in ω. We have to see which
possibilities we have to total order this Hasse diagram. We can do this by placing the most right
empty dot between any other 2 dots in the left array. Working this out we see that we get the
general formula

µ(ω, ν) = 2

k∑
i=1

zs1 . . . zsiz1zsi+1
. . . zsk +

k∑
i=1,
si≥3

si−2∑
j=1

zs1 . . . zsi−1
zsi−jzj+1zsi+1

. . . zsk .

The first summation appears when we place the empty dot next to an empty dot. In this case we
get z1. We have a coefficient of 2 in the first sum, because if you swap two non-empty dots, nothing
changes. The double summation appears when you place between two solid dots. In that case, the
empty dot we place splits the zsi in zsi−j and zj+1. Furthermore, the double sum is only for si ≥ 3,
since for si ∈ {1, 2} it is included in the first sum. Then we have

µ(ω, ν)− ω ⊛ ν⋆ =

2

k∑
i=1

zs1 . . . zsiz1zsi+1 . . . zsk +

k∑
i=1,
si≥3

si−2∑
j=1

zs1 . . . zsi−1zsi−jzj+1zsi+1 . . . zsk


−

 k∑
i=1

zs1 . . . zsiz1zsi+1
. . . zsk +

k∑
j=1

zs1 . . . zsj−1
zsj+1zsj+1

. . . zsk


=

k∑
i=1

zs1 . . . zsiz1zsi+1
. . . zsk +

k∑
i=1,
si≥3

si−2∑
j=1

zs1 . . . zsi−1
zsi−jzj+1zsi+1

. . . zsk

−
k∑

j=1

zs1 . . . zsj−1zsj+1zsj+1 . . . zsk

=

k∑
i=1,
si≥2

si−2∑
j=0

zs1 . . . zsi−1
zsi−jzj+1zsi+1

. . . zsk −
k∑

j=1

zs1 . . . zsj−1
zsj+1zsj+1

. . . zsk ,

where in the last equality we could add the first sum to the second sum, by which the starting point
becomes j = 0 and we can take si ≥ 2. By the integral-series identity we have

Z(µ(ω, ν)− ω ⊛ ν⋆) = 0.

So the expression we derived is under Z also equal to zero, in that way we obtain exactly equation
(19).

The second relation we derive is the restricted sum formula. [Kaneko and Yamamoto, 2018] proves
it in Proposition 7.1. We follow the proof but explain some reasoning in more detail.

Theorem 4.10 (Restricted Sum Formula). For positive integers s, k, p such that s ≥ k+ p we have∑
s1+...+sp=k+p−1,

sj≥1

ζ(s1 + s− k − p+ 1, s2, . . . , sp) =
∑

s1+...+sk=s−p,
sj≥1

ζ(s1 + 1, s2, . . . , sk, 1, . . . , 1︸ ︷︷ ︸
p − 1 times

).
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Proof. Let X (s, k, p) denote the left hand side and Y(s, k, p) the right hand side. So we want to
prove X (s, k, p) = Y(s, k, p) for all integers s, k, p such that s ≥ k + p. Let m := s − k − p + 1 and
take ω = zm z1 . . . z1︸ ︷︷ ︸

p − 1 times

and ν = z1 . . . z1︸ ︷︷ ︸
k times

in Theorem 4.7. Firstly, from Example 7 we have

(z1 . . . z1︸ ︷︷ ︸
k times

)⋆ =

k∑
i=1

∑
s1+...+si=k,

sj≥1

zs1 . . . zsi

=

k−1∑
i=0

∑
s1+...+si+1=k,

sj≥1

zs1 . . . zsi+1 ,

where we started the summation at i = 0 because it is useful for the rest of the proof. So then

ω ⊛ ν⋆ = zm z1 . . . z1︸ ︷︷ ︸
p − 1 times

⊛(z1 . . . z1︸ ︷︷ ︸
k times

)⋆

= zm z1 . . . z1︸ ︷︷ ︸
p − 1 times

⊛

k−1∑
i=0

∑
s1+...+si+1=k,

sj≥1

zs1 . . . zsi+1


=

k−1∑
i=0

∑
s1+...+si+1=k,

sj≥1

zs1+m

(
z1 . . . z1︸ ︷︷ ︸
p − 1 times

∗zs2 . . . zsi+1

)
.

Then without computing this stuffle product explicit, we can reason that any word in this formal
sum must satisfy 3 things:

• The first z must have a subscript greater than m, because the first subscript is s1 +m with
s1 ≥ 1.

• The weight of the word is equal to s. Because summing over all subscripts of the z’s we have
s1 + . . .+ si+1︸ ︷︷ ︸

= k

+m+ p− 1 = s.

• The length of the word is equal to h where p ≤ h ≤ k + p− 1. This follows from the fact that
from zs1 . . . zsi+1

we can have at most length k and at least 1, since 0 ≤ i ≤ k−1. Furthermore,
from z1 . . . z1︸ ︷︷ ︸

p − 1 times

we have always length p− 1. Therefore together, under the stuffle product, we

have length p ≤ h ≤ k + p− 1.

We count how many times a word that satisfies these three conditions appears in the formal sum.
This is equivalent to asking how many times the word can be constructed from ω ⊛ ν⋆. Write such
a word as zr1 . . . zrh . Since r1 is uniquely determined by s1 in m + s1, we only have to look how
zr2 . . . zrh is constructed from the stuffle product

z1 . . . z1︸ ︷︷ ︸
p − 1 times

∗zs2 . . . zsi+1 .
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If we recall the construction of the stuffle product

zkω ∗ zlν = zk(ω ∗ zlν) + zl(zkω ∗ ν) + zk+l(ω ∗ ν), ω, ν ∈ H1, k, l ≥ 1,

we can reason that the numbers rl for 2 ≤ l ≤ h in zr2 . . . zrh are constructed by the numbers
s2, . . . , si+1 and p− 1 amount of 1. We are allowed to create any rl by a single number of by adding
1 with a sj for 1 ≤ j ≤ i+ 1. Since every rl is at least one, we can always place the 1’s. After that,
the rl’s are uniquely determined by the si’s. Meaning, we can look at the possibilities of the position
of the z1’s in zr2 . . . zrh , because after these possibilities zr2 . . . zrh is uniquely determined by the
values s1, . . . , si+1. Since we have p− 1 amount of z1’s and j− 1 positions for them in zr2 . . . zrh , we
get

(
j−1
p−1

)
choices. So this is how many times a word, that satisfies the three conditions, appears in

the formal sum. So under Z we can reason, with these three conditions and the counting argument,
that

Z(ω ⊛ ν⋆) =

k+p−1∑
j=p

(
j − 1

p− 1

) ∑
s1+...+sj=p+q−1,

sl≥1

ζ(s1 +m, s2, . . . , sj)

=

k+p−1∑
j=p

(
j − 1

p− 1

) ∑
s1+...+sj=p+q−1,

sl≥1

ζ(s1 + s− k − p+ 1, s2, . . . , sj)

=

k+p−1∑
j=p

(
j − 1

p− 1

)
X (s, k + p− j, j)

=

k−1∑
i=0

(
p+ i− 1

p− 1

)
X (s, k − i, p+ i),

where we used the change of variables j = p+ i in the last equation. On the other hand

µ(ω, ν) = W

 p− 1 dots

m dots

k − 1 dots


.

To compute this, we must find all possible totally orders of this Hasse diagram. Therefore we can
place the right array of empty dots along the left array. To be more precise, first we place i amount
of empty dots from the right array of k − 1 empty dots among the p − 1 empty dots in the left
array (below the red empty dot). If we count how many possibilities we have for this, we notice
that we have in total p− 1+ i empty dots, and have to place i empty dots among them. So we have(
p−1+i

i

)
=
(
p−1+i
p−1

)
choices. Secondly, we are left with k− 1− i empty dots from the right array. We

have to place them among the m solid dots (above the red empty dot). This forms all admissible
words of length k− i (because we have k− 1− i empty dots, plus the red empty dot) and of weight
s− p− i+ 1 (because we have in total m+ k − i = s− p− i+ 1 dots). See also Remark 6.
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Hence with this all we can reason that by summing over i from 0 to k − 1 we have

µ(ω, ν) =

k−1∑
i=0

(
p+ i− 1

p− 1

) ∑
s1+...+sk−i=s−p−i+1,

sj≥1,s1≥2

zs1zs2 . . . zsk−i
z1 . . . z1︸ ︷︷ ︸

p + i − 1 times

=

k−1∑
i=0

(
p+ i− 1

p− 1

) ∑
s1+...+sk−i=s−p−i,

sj≥1

zs1+1zs2 . . . zsk−i
z1 . . . z1︸ ︷︷ ︸

p + i − 1 times

,

where the p + i − 1 amount of z1’s come from the p + i − 1 empty dots at the end of the array.
Furthermore, in the last equation we could remove +1 from the weight and add it to the first entry.
Then we have

Z(µ(ω, ν)) = Z

k−1∑
i=0

(
p+ i− 1

p− 1

) ∑
s1+...+sk−i=s−p−i,

sj≥1

zs1+1zs2 . . . zsk−i
z1 . . . z1︸ ︷︷ ︸

p + i − 1 times


=

k−1∑
i=0

(
p+ i− 1

p− 1

) ∑
s1+...+sk−i=s−p−i,

sj≥1

ζ(s1 + 1, s2 . . . , sk−i, 1, . . . , 1︸ ︷︷ ︸
p + i − 1 times

)

=

k−1∑
i=0

(
p+ i− 1

p− 1

)
Y(s, k − i, p+ i).

So then by the integral-series identity we have

Z(ω ⊛ ν⋆) = Z(µ(ω, ν)),

k−1∑
i=0

(
p+ i− 1

p− 1

)
X (s, k − i, p+ i) =

k−1∑
i=0

(
p+ i− 1

p− 1

)
Y(s, k − i, p+ i). (20)

Remember that we had to show that X (s, k, p) = Y(s, k, p). By using equation (20), we show this
by induction on k. Since k is a positive integer, we start the base-case on k = 1. So we need

X (s, 1, p) = Y(s, 1, p),

this follows immediate by choosing k = 1 in equation (20). Hence the equation holds for k = 1. Now
by the induction hypothesis assume that the equation X (s, k′, p) = Y(s, k′, p) holds for all s, k′, p with
k′ < k. We need to show that it holds for k, i.e. X (s, k, p) = Y(s, k, p). By the induction hypothesis
we have that X (s, k − i, p + i) = Y(s, k − i, p + i) for 1 ≤ i ≤ k − 1. Therefore in equation (20)
everything cancels and we are left with the case when i = 0. Hence

(
p−1
p−1

)
X (s, k, p) =

(
p−1
p−1

)
Y(s, k, p).

Hence by induction we proved that X (s, k, p) = Y(s, k, p) for all integers s, k, p such that s ≥ k + p.

An immediate consequence of the restricted sum formula is the sum formula,
[Kaneko and Yamamoto, 2018] proves it in Corollary 7.2.

Corollary 4.11 (Sum Formula). Let s, k be positive integers such that s ≥ k + 1 then

ζ(s) =
∑

s1+...+sk=s,
sj≥,s1≥2

ζ(s1, . . . , sk).
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Proof. By taking p = 1 in the restricted sum formula we obtain the sum formula. Namely∑
s1=k

ζ(s1 + s− k) =
∑

s1+...+sk=s−1,
sj≥1

ζ(s1 + 1, s2, . . . , sk, )

ζ(s) =
∑

s1+...+sk=s,
sj≥1,s1≥2

ζ(s1, s2, . . . , sk, ),

where we could remove the +1 from the first entry and add it to the total weight.

In order words, the sum formula describes that ζ(s) is equal to all MZV with admissible multi-
indexes of weight s and a fixed length k. We derive one more relation. [Gil and Fresán, 2017] proves
in Corollary 1.57 the Euler sum formula. We derive it in a different way.

Corollary 4.12 (Euler’s Sum Formula). If s ≥ 3, then

ζ(s) =

s−2∑
j=1

ζ(s− j, j).

Proof. To see this, we take the length to be k = 2 in the sum formula and see that for s ≥ 3 we have

ζ(s) =
∑

s1+s2=s,
s1≥2,s2≥1

ζ(s1, s2)

=
∑

s1=s−s2,
s1≥2,s2≥1

ζ(s1, s2)

=
∑

s−s2≥2,s2≥1

ζ(s− s2, s2)

=
∑

1≤j≤s−2

ζ(s− j, j).

We could also have taken s = s in Hoffman’s relation.

Example 14. By the Euler’s sum formula we can see that we have

ζ(4) = ζ(3, 1) + ζ(2, 2),

ζ(5) = ζ(4, 1) + ζ(3, 2) + ζ(2, 3).

■

So in this section we have seen that:

Integral-Series Identity

Restricted Sum Formula Sum Formula

Hoffman’s Relations Euler’s Sum Formula

Which gives some evidence for Conjecture 4.8. Other important relations for MZV can be found in
the poster of Henrik Bachmann, see [Bachmann, 2018]. In this poster relations that can be derived
from each other are linked with an arrow. Furthermore, all relations that are conjectured to imply
all other relations are marked in red.
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5 Zagier’s and Hoffman’s Conjecture

Throughout this paper, we have seen many relations for MZV: Duality theorem, finite double shuffle
relation, integral-series identity, Hoffman’s relation, restricted sum formula, sum formula and Euler’s
sum formula. But why are they useful and what can we achieve with them? To see this, it is
interesting to explore the spaces spanned by MZV. This section is based on Section 1.2 and 1.4 of
[Gil and Fresán, 2017].

Definition 5.1. The Q-subvector space of R generated by all MZV is denoted by Z, i.e.

Z := ⟨ζ(s)|s admissible multi-index⟩Q.

Moreover, Zs denotes the Q-subvector space generated by all MZV of weight s, i.e.

Zs := ⟨ζ(s)|s admissible multi-index and wt(s) = s⟩Q.

In particular Z0 = Q and Z1 = {0}.

Note that Zs contains exactly 2s−2 generators. This follows from Example 7. So we have that
2s−2 MZV span the space Zs. Do the generators also form a basis for Zs and would we have
dimQ Zs = 2s−2? Therefore the generators need to be linearly independent. Now we see the
importance of exploring linear relations for MZV. Because of all these linear relations for MZV we
have seen, we can say that they are not linearly independent at all. Therefore the dimension is also
smaller than 2s−2. But what is the basis and dimension for Zs then? This is not solved yet. But
we can give the nowadays conjectures.

Conjecture 5.2 (Zagier’s Conjecture). Define the recursion formula

ds = ds−2 + ds−3, s ≥ 3,

with initial values d0 = 1, d1 = 0 and d2 = 1. Then the equality dimQ Zs = ds holds.

Conjecture 5.3 (Hoffman’s Conjecture). Let s = (s1, . . . , sk). The set

{ζ(s) : si ∈ {2, 3}, 1 ≤ i ≤ k and wt(s) = s}

is a basis for Zs.

Progress toward Hoffman’s conjecture was made by Francis Brown in 2012. [Brown, 2012] proves
in Theorem 1.1 that the Hoffman Conjecture for so-called motivic MZV holds. Without explaining
and discussing the proof of Brown’s theorem in this paper. We can use this to our advantage.
[Gil and Fresán, 2017] explains in Corollary 5.94 how this can be translated to normal MZV.

Corollary 5.4. Every MZV can be written as a linear combination of MZV with entries 2, 3.

Remark 8. In terms of the Hoffman Conjecture this means that the set

{ζ(s) : si ∈ {2, 3}, 1 ≤ i ≤ k and wt(s) = s}

spans the space Zs, where s = (s1, . . . , sk). Hoffman’s conjecture states that they are linearly
independent as well. ♦

The following result is an observation made in this paper.

Page 44 of 48



Theorem 5.5. Hoffman’s conjecture holds if and only if Zagier’s conjecture holds.

Proof. ′ =⇒′ Assume that Hoffman’s conjecture holds. Since Z0 = Q, Z1 = {0} and Z2 = ⟨ζ(2)⟩Q
we have dimQ Z0 = 1, dimQ Z1 = 0 and dimQ Z2 = 1. Therefore it coincides with the initial values
d0 = 1, d1 = 0 and d2 = 1 from Zagier’s conjecture. By Hoffman’s conjecture we are given a basis
for Zs. Then we can compute the dimension of Zs by counting the number of basis elements. In
other words, count the possible MZV of weight s with entries 2 and 3. We can separate this in the
cases that MZV end on a 2 and end on a 3. But then we reduce 2 and 3 in weight and count the
number of basis elements of the spaces Zs−2 and Zs−3. In other words, we look at the dimension
for Zs−2 and Zs−3. In mathematical reasoning this looks like

dimQ Zs = #{ζ(s1, . . . , sk) : si ∈ {2, 3}, 1 ≤ i ≤ k and wt(s1, . . . , sk) = s}
= #{ζ(s1, . . . , sk−1, 2) : si ∈ {2, 3}, 1 ≤ i ≤ k − 1 and wt(s1, . . . , sk−1, 2) = s}

+#{ζ(s1, . . . , sk−1, 3) : si ∈ {2, 3}, 1 ≤ i ≤ k − 1 and wt(s1, . . . , sk−1, 3) = s}
= #{ζ(s1, . . . , sk−1) : si ∈ {2, 3}, 1 ≤ i ≤ k − 1 and wt(s1, . . . , sk−1) = s− 2}

+#{ζ(s1, . . . , sk−1) : si ∈ {2, 3}, 1 ≤ i ≤ k − 1 and wt(s1, . . . , sk−1) = s− 3}
= dimQ Zs−2 + dimQ Zs−3.

Hence setting ds := dimQ Zs, we indeed obtain the recursion formula from Zagier’s conjecture.

′ ⇐=′ Assume Zagier’s conjecture holds. In that case, we know the dimension of Zs for all s ≥ 0.
We need to show that

{ζ(s) : si ∈ {2, 3}, 1 ≤ i ≤ k and wt(s) = s}

is the basis of Zs. We know by the above computation that the cardinality of this set is equal to
the dimension. By Corollary 5.4 we have that the set spans Zs. Now we only need to show they are
linearly independent. Say for the matter of contradiction that they are linearly dependent. In that
case, we can remove some MZV from the set, such that they are linearly independent. Then this set
would still span the space. In that case, we have a basis. But that would mean that we have a basis
with fewer elements than the set initially had. Therefore the dimension has to be reduced, which is
a contradiction with the assumption that Zagier’s conjecture holds. Hence we prove that they are
linearly independent, i.e. form a basis.

We try to make Corollary 5.4 explicit for a couple of weights.

Weight is 3
By Corollary 5.4 we should have

Z3 = ⟨ζ(3)⟩Q.

But we have by definition
Z3 = ⟨ζ(3), ζ(2, 1)⟩Q.

This means we should be able to express ζ(2, 1) in terms of ζ(3). By Corollary 2.7, we have exactly
ζ(3) = ζ(2, 1).

Weight is 4
By Corollary 5.4 we should have

Z4 = ⟨ζ(2, 2)⟩Q. (21)

But we have by definition
Z4 = ⟨ζ(4), ζ(2, 2), ζ(3, 1), ζ(2, 1, 1)⟩Q.

Page 45 of 48



This means we should be able to express ζ(4), ζ(3, 1), ζ(2, 1, 1) in terms of ζ(2, 2). We have ζ(4) = ζ(2, 1, 1), Corollary 2.7,
ζ(4) = 4ζ(3, 1), Equation (9),
ζ(4) = ζ(3, 1) + ζ(2, 2), Example 14.

Trying to express every MZV of weight 4 in terms of ζ(2, 2), we obtain

ζ(2, 2) =
3

4
ζ(4) =

3

4
ζ(2, 1, 1) = 3ζ(3, 1).

Therefore we have indeed that equality (21) holds.

Weight is 5
By Corollary 5.4 we should have

Z5 = ⟨ζ(3, 2), ζ(2, 3)⟩Q. (22)

But we have by definition

Z5 = ⟨ζ(5), ζ(4, 1), ζ(3, 2), ζ(2, 3), ζ(3, 1, 1), ζ(2, 2, 1), ζ(2, 1, 2), ζ(2, 1, 1, 1)⟩Q.

This means we should be able to express ζ(5), ζ(4, 1), ζ(3, 1, 1), ζ(2, 2, 1), ζ(2, 1, 2), ζ(2, 1, 1, 1) in
terms of ζ(3, 2), z(2, 3). We have

ζ(5) = ζ(2, 1, 1, 1), Corollary 2.7,
ζ(4, 1) = ζ(3, 1, 1), Example 2,
ζ(3, 2) = ζ(2, 2, 1), Example 2,
ζ(2, 3) = ζ(2, 1, 2), Example 2,
ζ(2, 3) + ζ(4, 1) = 6ζ(3, 1, 1) + ζ(2, 2, 1), Example 6,
ζ(5) = ζ(4, 1) + ζ(3, 2) + ζ(2, 3), Example 14.

Trying to express every MZV of weight 5 in terms of ζ(3, 2), ζ(2, 3), we obtain
ζ(5)
ζ(4, 1)
ζ(3, 1, 1)
ζ(2, 2, 1)
ζ(2, 1, 2)
ζ(2, 1, 1, 1)

 =



4
5

6
5

− 1
5

1
5

− 1
5

1
5

1 0
0 1
4
5

6
5


(

ζ(3, 2)
ζ(2, 3)

)
.

Therefore we have indeed that equality (22) holds.

In weights 3 and 4 we prove that ζ(3) and ζ(2, 2) span Z3 and Z4, respectively. Since a single
nonzero element is also linearly independent, we can say that it forms a basis for Z3 and Z4 as
well. Hence Hoffman’s conjecture holds in these weights. However, we can not say that Hoffman’s
conjecture holds in weight 5. We know that ζ(3, 2), ζ(2, 3) span Z5 as we just showed. But they
might be linearly dependent, i.e. there exists a r ∈ Q such that ζ(3, 2) = rζ(2, 3). In that case, it
does not form a basis, but only one of them forms a basis for Z5, which means that both Zagier’s
conjecture and Hoffman’s conjecture would fail. Moreover, there does not exist a single s for which
we know that dimQ Zs ≥ 1. There might always exist linear combinations that we do not know,
which can lower the dimension.
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There has also been a progression toward Zagier’s conjecture. [Terasoma, 2001] proves in Theorem
1.2 that the dimension of Zs is bounded from above by ds, which is given by the recursion formula
in Zagier’s conjecture, i.e.

dimQ Zs ≤ ds.

We can also see this from the fact that the set

{ζ(s) : si ∈ {2, 3}, 1 ≤ i ≤ k and wt(s) = s}

span the space Zs (see Corollary 5.4). So the dimension is at least lower or equal to the number of
elements in this set. In Theorem 5.5 we have seen that this number is equal to ds. Hence we notice
this upper bound. Proving that ds is also a lower bound, would prove Zagier’s conjecture.

Conclusion

But where has this all been good for? Let us summarize what we did in this paper. In the intro-
duction, we questioned the values of the Riemann zeta function at the odd integers. We do not
know much about them, but we conjecture them to be algebraically independent over the rationals,
see the Transcendence conjecture. It could help to look at algebraic relations of zeta values, for
example multiplication of zeta values. MZV arose naturally by doing this. This was the motivation
to explore MZV and their relations. After seeing so many linear relations, it was time to look into
the spaces spanned by MZV. Zagier’s and Hoffman’s conjecture gives the dimension and the basis
for these spaces. [Gil and Fresán, 2017] shows in Corollary 5.106 how important this all was in
terms of the zeta values at odd integers. It states that Zagier’s conjecture, equivalent to Hoffman’s
conjecture (see Theorem 5.5), implies the Transcendence conjecture. So now we have at least a way
of proving the Transcendence conjecture. So to conclude this paper, we see how important it can be
by questioning new problems and investigating these new problems. Because eventually, they can
answer the main question.
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