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Abstract

This Bachelor Project focuses on the low energy solution to the Helmholtz Equation on a
torus, in particular it focuses on its relation to the solution to the same equation on the
surface of a sphere. The first two chapters provide background information on the field of
scattering and control theory, the Helmholtz Equation (as well as the Maxwell Equations)
and toroidal coordinates. Then a review of topics from partial differential equations is carried
out, with information concerning harmonics functions, the maximum principle, Poisson’s
Formula, and the Sommerfeld Radiation Condition. Finally, the solution on the torus is
carried out by means of an approximation through the Laplacian Equation for the specific
case of a compactly supported solution, and the results show that the first power term of
the solution is non-zero and analogous to that of the solution to the spherical case.
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Chapter 1

Introduction & Background

This Bachelor Project will focus on carrying out computations to analytically solve the
Maxwell and Helmholtz equations on the surface of a torus. In order to achieve this, we
want to calculate the expansions in terms of powers of λ for the solutions by imposing Dirich-
let boundary conditions in toroidal coordinates. Then, through a change of basis, we want
to transform the terms into spherical harmonics, which will result in the first order terms
λ0 and λ1 having form 1/r and 1/r2. These give a solution to the low energy problems in
spherical coordinates when known results from scattering theory are applied, which relates
to the way the waves describing the solutions scatter [18, 16, 17]. In turn, this plays a role
in solving the control theory problem of forcing the solutions to 0 in a finite amount of time
through the implementation of an external control.

We would like to carry out this computation for both cases: the Helmholtz equation and
the Maxwell equations. The desired conclusion using the known literature on scattering
theory has been shown to be that in the solution to the Helmholtz equation, the nontrivial
genus/topology of the torus does not matter for low energy solutions, meaning that both in
the spherical and toroidal case the terms will play the same role. What previous authors
claim is that this is not the case, and the main objective of the thesis project will be to show
they are missing information [7]. On the other hand, the desired result for the solution to
the Maxwell equations would be that these terms have no influence in the spherical case,
whereas they are substantial in the toroidal case [18, 16, 17]. Unfortunately, the goals for
the Maxwell case require technical computations that are beyond the scope of this thesis, so
only the relevant computations for the Helmholtz case will be carried out.

The rest of this chapter will provide a very first introduction to the fields of study con-
cerned with this project, as well as the equations in question and the toroidal coordinate
system. Next, in the second chapter, the reader will find a review of methods and results
of partial differential equations, including Legendre functions, the Maximum Principle, and
more. Then finally the computations will be carried out in the third chapter.

1.1 Scattering and Control Theory

The fields of study concerned with the topics and computations that will be carried out in
this Bachelor Project are scattering theory and control theory, both of which study physical
phenomena that are governed and described by partial differential equations. In particular,
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CHAPTER 1. INTRODUCTION & BACKGROUND 5

scattering theory studies the phenomenon which is obtained when the trajectory of a wave
or of a particle is interrupted and diverted due to its collision with other objects or parti-
cles. This is known as scattering, and is a fundamental phenomenon required to explain and
understand how things such as light, sound, and radiation behave through time in real-life
scenarios. On the other hand, control theory studies how a particular physical system can be
influenced to behave in a desired way through the use of an external control, which influences
the system accordingly depending on its current state and the desired outcome.

Example 1.1.1. Drones and other flying motorized vehicles are usually equipped with
systems that collect a lot of information about the current state of the vehicle (e.g. velocity
in each direction, torque, tilt angle). Given the knowledge of the physical laws that describe
motion, normally given by differential and partial differential equations, these inputs can be
fed through algorithms and calculations to produce an output in the form of a set of actions
to be carried out by the motors [6]. For example, this can be used in order to stabilise
the vehicle, whether it is in motion or attempting to remain in the same position. This
is very clearly an example of control theory, since it involves differential equations and a
predetermined desired solution. In particular, Figure 1.1 shows the performance of a drone
attempting to remain still while hovering in the air. The figure shows that through the
methods of control theory it is possible to keep the vehicle relatively stable, since its dis-
tance from the original stationary point never goes over 40 centimetres, which is comparable
to human assisted results [6].

Figure 1.1: [6]

Example 1.1.2. Another interesting and lesser known real-life application of control theory
concerns earthquakes. Earthquakes are the result of a burst of energy due to the movement
of the tectonic plates, which leads to the release of seismic waves that make the surface of
the Earth shake. Since these seismic waves are described by partial differential equations
wtih multiple variables and inputs, in particular by the diffusion and wave equation, control
theory can be applied to reduce the intensity or risk that they pose [14]. Some researchers
have theorised that fluid injections into the Earth’s surface, as seen in Figure 1.2, could act
as the required external control, so advancements in this field could potentially lead to the
prevention of earthquakes [5].
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Figure 1.2: [5]

1.2 Helmholtz Equation

The equation is named after Hermann von Helmholtz, a German applied mathematician. It
is a partial differential equation useful for a wide variety of applications, most importantly
the solutions for other partial differential equations such as the heat equation, the wave
equation and the Schrödinger equations. The equation is as follows: [12]

−∆u = λ2u,

where ∆ is the Laplacian operator defined as

∆u(x, y, z) =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
.

The Helmholtz equation arises in the solutions to multiple partial differential equations
involving a time variable, for example the heat equation

∂u

∂t
= γ∆u

(where in this case the Laplacian operator only concerns the spatial coordinates) undergoes
a first separation of variables through the ansatz

u = e−λt v(x),

where v(x) needs to satisfy the Helmholtz Equation. A similar derivation of the Helmholtz
Equation can be found in the solutions to a wide variety of differential equations. Most
notably the heat, wave, and Schrödinger equations which are of great importance when
studying most physical phenomena (e.g. light, fluid dynamics) [12]. This makes solutions to
the Helmholtz Equation necessary in the study of most physical phenomena, like the ones
mentioned in Example 1.1.1 and in Example 1.1.2.

The solution to this equation can be obtained through further separation of variables, which
results in multiple ordinary differential equations which can be solved in terms of eigen-
solutions. These can be uniquely determined by applying the given boundary conditions.
Depending on the domain, a change of coordinates might need to be applied in order for
the equation to be solved. For example, the Helmholtz equation in polar coordinates is as
follows:

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+ λ2u = 0,
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whereas in spherical coordinates it is

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2
∂2u

∂φ2
+

cosφ

r2 sinφ

∂u

∂φ
+

1

r2 sin2 φ

∂2u

∂θ2
+ λ2u = 0,

with u defined respectively either as u(r, θ) or as u(r, φ, θ). When solved for these cases,
the solutions will be in terms of additional functions such as Bessel functions or spherical
harmonics.

Example 1.2.1. We take the general homogeneous Helmholtz problem

∆u+ λ2u = 0,

in spherical coordinates. Then by forcing the variables in the solution to be separable we
get the simpler form

u(r, θ, φ) = v(r)p(θ)q(φ),

where each function v, p, and q are single valued functions. Then, by plugging in this form
of u into the Helmholtz equation and by manipulating the resulting equation, it is possible
to separate completely each variable, which yields three different ODE’s. In particular, for
the rotationally symmetric case which does not depend on the azimuth angle φ, the final
eigensolutions will be of form

un = r−
1/2[AJn+1/2(λr) +BH

(2)
n+1/2(λr)][CPn(cos θ) +DQn(cos θ)],

where A,B,C and D are uniquely determined through the boundary conditions, and where
the functions Ji are the Bessel function of the first kind and the functions Pi and Qi are
respectively the Legendre polynomials of the first kind and Legendre functions of the second
kind [8]. A brief explanation and introduction to these function will be given at the beginning
of the following chapter. Since these are the polynomials and functions making up spherical,
cylindrical as well as toroidal harmonics, they cannot be overlooked, as they will be present
in most solutions that take place on these surfaces.

1.3 Maxwell Equations

The Maxwell Equations describe the behaviour of magnetic and electrical fields and their
interactions through a system of coupled equations. The equations are governed by the
electric vector field E(t,x) and the magnetic vector fieldB(t,x), but they also include current
J and charges ρ as well as the permeability constant in free space µ0 and the permittivity
constant in free space ϵ0. The equations are as follows [4]:

∇ · E =
ρ

ϵ0
∇ ·B = 0

∇× E = −∂B

∂t

∇×B = µ0J+ µ0ϵ0
∂E

∂t
,
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where ∇ · v is the divergence of a vector field defined as:

∇ · v =
∂v1
∂x

+
∂v2
∂y

+
∂v3
∂z

,

and ∇× v is the curl of a vector field defined as:

∇× v =

∣∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

v1 v2 v3

∣∣∣∣∣∣∣∣∣∣
.

These two operators are commonly found in differential equations that involve vector fields,
and they have a very tangible physical interpretation that clearly explains their importance.
The divergence of a vector field can be seen as a measure of whether a given point of the field
is acting as a source or as a sink for the field, whereas the curl associates every point with a
vector that indicates a measure for the direction and intensity of some rotational behaviour
of the field at a given point (see Figure 1.3 and Figure 1.4 for 2-dimensional simplifications).

Figure 1.3

Figure 1.4

In the context of this thesis, the Maxwell equations that will be discussed are the ones that
would be observed in empty space, which means no currents and charges are included in the
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equations. This results in a more simple and symmetric system of equations [4]:

∇ · E = 0

∇ ·B = 0

∇× E = −∂B

∂t

∇×B = µ0ϵ0
∂E

∂t
.

These can then be rearranged by applying the properties of curl and divergence, resulting in
two standard uncoupled wave equations:

∂2B

∂t2
=

1

µ0ϵ0
∆B

∂2E

∂t2
=

1

µ0ϵ0
∆E,

where if we plug in the permeability constant µ0 and the permittivity constant ϵ0 we get the
standard form of the wave equation with the wave speed c equal to the speed of light:

∂2B

∂t2
= c2∆B

∂2E

∂t2
= c2∆E.

In order to solve these equations in spaces other than R1, we make use of the trick described
above to transform a heat equation into a Helmholtz equation. The same can be done here
for the wave equation by introducing an ansatz. Without loss of generality we take the
ansatz of the first equation concerning the magnetic field:

Bk(t,x) = cos(ωnt) v(x), B̃k(t,x) = sin(ωnt) v(x),

Which once again leads to the Helmholtz equation.

1.4 Toroidal Coordinates

This project focuses on solutions to partial differential equations in toroidal coordinates with
particolar boundary conditions on the surface of a torus. A torus is a geometrical surface
which is obtained by rotating a circle around a point outside of it, as can be seen in Figure
1.5. In order to describe tori in a more efficient manner, an appropriate coordinate system
is necessary, which is the toroidal coordinate system. The toroidal coordinate system is the
three-dimensional coordinate system used whenever tori are present, since it allows toroidal
surfaces to be easily expressed by fixing one of the coordinates, similarly to how in spherical
coordinates a sphere is defined simply by fixing the radius of it. In particular, toroidal
coordinates are an extension of bipolar coordinates obtained by applying a rotation about
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Figure 1.5

the y-axis. Bipolar coordinates are the two-dimensional coordinate system described by

α ≥ 0,

−π < β ≤ π,

and a constant a [9]. This constant describes the location of two foci on the x-axis. Given
these two points, the Apollonian Circles are constructed, as seen in Figure 1.6. The Apol-
lonian circles consist of two infinite sets of circles which satisfy a particular condition with
respect to the foci. The first set (shown in blue in the figure) includes infinite circles with
centres on the x-axis, where each circle is represented by a value of α. On the other hand,
the second set (shown in red in the figure) includes infinite circle that pass through both foci
with centres on the y-axis. Each circle in this set is described by a value of β. Therefore,
given an arbitrary point p = (xp, yp) in two-dimensional euclidean space, its representation
in bipolar coordinates can be given by identifying the αp value of the circle from the first set
that passes through the point, and similarly with βp for the second set of circles. Then the
point will be described by (αp, βp). If this two-dimensional system is rotated alongside the
y-axis, we obtain a three-dimensional coordinate system that we call toroidal coordinates.
Similarly to the bipolar case, these coordinates are described by (α, β, φ), accompanied by
a ring of radius a on the xy-plane. The coordinates have the following ranges:

α ≥ 0,

−π < β ≤ π,

0 ≤ φ < 2π.

The azimuth angle φ defines a plane perpendicular to the xy-plane, then we can take any
such plane to be an instance of the bipolar coordinate system, where α and β are obtained
as described above through the construction of the Apollonian Circles. Alternatively, we can
see that any coordinate taken alone defines a surface in the space: φ defines a vertical plane,
α defines a torus that is cut in half by the xy-plane (equivalent to rotating one of the blue
circles in Figure 1.6, and β defines a sphere centered on the z-axis. Then the intersection of
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Figure 1.6: [11]

these three surfaces, which will have coordinates (α, β, φ), will represent a unique point in
3-dimensional space. Toroidal coordinates can be defined in terms of euclidean coordinates
as follows:

x = a
sinhα

coshα− cos β
cosφ,

y = a
sinhα

coshα− cos β
sinφ,

z = a
sin β

coshα− cos β
.

Through these identities it is then possible to transform toroidal coordinates into spherical
polar coordinates (r, θ, φ) as follows:

r = a

√
sinh2 α + sin2 θ

coshα− cos θ
,

θ = arccos
sinφ√

sinh2 α + sin2 θ
,

with the azimuth angle φ being equal across both coordinates systems [10].

If a change of variable to toroidal coordinates is applied to Laplace’s equation, we obtain
the form

∂

∂α

(
sinhα

coshα− cos β

∂u

∂α

)
+

∂

∂β

(
sinhα

coshα− cos β

∂u

∂β

)
+

+
1

(coshα− cos β) sinhα

∂2u

∂φ2
= 0. (1.1)
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This is a particularly hard instance of Laplace’s equation though, since it is not possible to
separate variables as is. Therefore the substitution

v =
1√

2 coshα− 2 cos β
u (1.2)

is used to transform (1.1) into the simpler form

∂2v

∂α2
+

∂2v

∂β2
+ cothα

∂v

∂α
+

1

4
v +

1

sinh2 α

∂2v

∂φ2
= 0, (1.3)

which allows for finding the solution through separation of variables as follows:

v = A(α)B(β)C(φ). (1.4)

Example 1.4.1. We take the case of the Laplacian problem on the exterior/interior of a
torus, particularly in the case of rotational symmetry, meaning that the solution will be
independent of φ. This means that

C(φ) = 1

everywhere, and we will be able to combine (1.3) and (1.4) as follows:

1

A

∂2A

∂α2
+

1

B

∂2B

∂β2
+

cothα

A

∂A

∂α
+

1

4
= 0, (1.5)

from which we can obtain the two ordinary differential equations that make up the final
solution:

∂2B

∂β2
+ λ2B = 0, (1.6)

∂2A

∂α2
+ cothα

∂A

∂α
+ A

(
1

4
− λ2

)
= 0. (1.7)

We know from the separation of variables on wave equations that the solution to (1.6) will
be of form

Bλ = C cosλβ +D cosλβ,

whereas the solutions to (1.7) are given by

Aλ = EPλ−1/2(coshα) + FQλ−1/2(coshα), (1.8)

where Pn−1/2(coshα) and Qn−1/2(coshα) are so called ”toroidal functions”, once again ex-
pressed in terms of Legendre functions. More information on these can be found in the next
chapter.
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By plugging these results into equation (1.4) and applying the inverse substitution used
to obtain (1.2), we get the eigensolutions [8]

uλ =
√
2 coshα− 2 cos β [C cosλβ +D cosλβ]·

· [EPλ−1/2(coshα) + FQλ−1/2(coshα)], (1.9)

where coefficients C, D, E, F depend on the initial and boundary conditions. In particular,
E and F depend on whether the equation is being solved for the interior or exterior of a
torus (with reasonable boundedness conditions). This is because of the behaviour of the
toroidal functions for values of α close to 0 (points at a large distance from the origin) or for
large values of α (points very close to the radial ring). This results in E = 0 for any eigen-
solution to the interior problem, whereas we obtain F = 0 in the case of the exterior problem.

When this problem is encountered with Dirichlet boundary conditions and continuity condi-
tions at β = −π and β = π, the eigenvalues λ will always be integers. This allows us to write
the final solution as an infinite sum of all the possible eigensolution through superposition:

u(α, β) =
√

2 coshα− 2 cos β
∞∑
n=0

[C cosnβ +D cosnβ]·

· [EPn−1/2(coshα) + FQn−1/2(coshα)]. (1.10)



Chapter 2

Review

The problem with toroidal coordinates, is that it is not possible to construct solutions to
the Helmholtz equation using a coordinate system built around the torus. This is because
the literature on the topic claims that the toroidal coordinate system does not allow for the
separation of variables to be carried out successfully for this equation. For this reason, we
will shift our attention to the Laplace’s equation since we are focusing on the low energy
solutions to the equations at hand. This is because in the case of small values for λ, Laplace’s
equation −∆u = 0 with particular boundary conditions can be seen as a perturbation of the
Helmholtz equation −∆u = λ2u with the same boundary conditions. Therefore, results for
the former can be used as approximations for the latter. As a consequence, this section will
be dedicated to properties and results obtained by studying the Laplacian operator, since it
can provide insight for the objective at hand.

2.1 Harmonics

Harmonics are a large set of families of functions which describe important parts of the
solutions to various differential equations, especially of the partial kind. These families of
equations have infinite elements that depend on one or more parameters, and each family is
obtained according to the problem discussed and its boundary conditions (and shape).

Bessel Functions

Bessel functions arise by solving the second order differential equation known as Bessel’s
differential equation:

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0,

where the arbitrary complex number α is the order of the resulting Bessel function. Depend-
ing on the singularity that the solution obtains, the solution will be described differently. If
a solution is not singular at the origin, it is a Bessel function of the first kind, commonly re-
ferred to as Jα(x). This equation is commonly found when solving Helmholtz and Laplace’s
equations in either cylindrical or spherical coordinates. In particular, one obtains α = n in
the cylindrical case (Figure 2.1), and α = n + 1/2 in the spherical case (Figure 2.2), with
n ∈ N.

14
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A way to generalize a description for Bessel functions of the first kind is through infinite
sums. This sum in particular is a series expansion around the origin [1]:

Jα(x) =
∞∑
n=0

(−1)m

m! Γ(m+ α + 1)

(x
2

)2m+α

.

Figure 2.1

Figure 2.2

The solutions that do have a singularity at the origin are called Bessel functions of the second
kind, and they are referred to by Yα(x) (Figure Figure 2.3). In the case that α is non-integer,
then the following relation holds [3]:

Yα(x) =
Jα(x) cos (αx)− J−α(x)

sin (αx)
.

When instead α is an integer, the expression for Yα is either given by a more complicated
series, or it can be obtained by taking the limit of the previous expression as α tends to the
integer value. Lastly, the complex solutions to the Bessel equations are given by the Bessel
functions of the third kind, commonly known as Hankel functions of the first and second
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Figure 2.3

kind. These are a linear combination of the Bessel functions of first and second kind with
respect to the complex basis {1, i}. The distinction between the first and second kind of
Hankel functions is as follows [1]:

H(1)
α (x) = Jα(x) + iYα(x),

H(2)
α (x) = Jα(x)− iYα(x).

Legendre Functions

Similarly to Bessel functions, Legendre functions are the solutions to the Legendre differential
equation

(1− x2)
d2y

dx2
− 2x

dy

dx
+ n(n+ 1)y = 0.

Once again, we call the solution that attains no singularities a Legendre function of the
first kind, denoted by Pn(x). In the case that n is an integer, then this solution will be a
polynomial of order n (Figure Figure 2.4). The most compact way to explicitly express these
polynomials is given by [1]

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n.



CHAPTER 2. REVIEW 17

Figure 2.4

Additionally, the Legendre polynomials obey a recurrence relation which makes it possible
to iteratively compute the Legendre polynomial of arbitrary order n. This relations is

Pn+1(x) =
(2n+ 1)xPn(x)− nPn−1(x)

n+ 1
. (2.1)

The other possible solution will always have two singularities, namely at x = −1 and at
x = 1. Solutions of this kind are called the Legendre functions of the second kind, and
they’re indicated by Qn(x) (Figure Figure 2.5). Unlike the first kind solutions, these do
not simplify to polynomials when n is an integer. Nevertheless, the recurrence relation (2.1)
described for the first kind solution is maintained for these as well, so the Legendre functions
of the second kind for integer orders can all be obtained from the first two orders [1]

Q0(x) =
1

2
ln

(
1 + x

1− x

)
,

Q1(x) =
x

2
ln

(
1 + x

1− x

)
− 1.

Figure 2.5
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Associated Legendre Functions

Once the Legendre functions are established as solutions to the Legendre differential equa-
tion, we introduce the associated Legendre differential equation, which resembles the first
very closely. In fact, this equation can be seen as a generalization of the first which adds
a component m. When m is set to be equal to 0, we obtain the Legendre equations once
again. This generalized formula ultimately increases the complexity of the solutions, as well
as their usefulness.

(1− x2)
d2y

dx2
− 2x

dy

dx
+

[
n(n+ 1)− m2

1− x2

]
y = 0.

Similarly to how we defined the Legendre functions, we define n as the degree, and similarly to
Bessel’s equation we call m the order. For these functions, we mainly consider the case where
both n and m are integers. Once again, the solution with no singularities is a polynomial,
and when both the order and the degree are positive we have a formula to determine the
associated Legendre polynomial based off of the corresponding Legendre polynomial [1]

Pm
n (x) = (−1)m(1− x2)m/2 dm

dxm
(Pn(x)). (2.2)

Additionally, we have the solutions with singularities (again at |x| = 1 like in the normal
Legendre equation) which are obtained very similarly by

Qm
n (x) = (1− x2)m/2 dm

dxm
(Qn(x)). (2.3)

Spherical and Toroidal Harmonics

By spherical harmonics we refer to the solutions to the angular portion of Laplace’s equation
in spherical coordinates. The solution to this only depends on the two angular coordinates,
and is obtained through separation of variables. We denote spherical harmonics of degree n
and order m by Y m

n , not to be confused with Bessel’s equations of the second kind, and they
are as follows [2]:

Y m
n (θ, φ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cos θ)eimφ,

where the first term within the square root is somewhat of an arbitrary choice, chosen such
that the normalization will allow for some convenient equalities. We can then see the term
Pm
n (cos θ), which is a reparameterization of the associated Legendre polynomials. Therefore

formula (2.2) can be modified as

Pm
n (cos θ) = (− sin )m

dm

d(cos θ)m)
(Pn(cos θ)).

Similarly, by toroidal harmonics we refer to the components of the solutions to Laplace’s
equation in toroidal coordinates that include the coordinate α (the one that when kept fixed
represents a torus). As we’ve previously seen in Example 1.4.1, these consist of the functions

Pn−1/2(coshα) and Qn−1/2(coshα),
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with half-integer degree n − 1/2. But in order to maintain the highest degree of generality
we take the corresponding associated Legendre functions to be the actual toroidal harmonics
[10]:

Pm
n−1/2(coshα) and Qm

n−1/2(coshα).

Similarly to spherical harmonics, we can apply a reparameterization of formula (2.2) and
(2.3) to obtain an explicit expression for toroidal harmonics.

2.2 The Maximum Principle

Definition 2.1.1. Let Ω ⊂ Rn be an open, connected domain. A function u ∈ C2(Ω)∩C(Ω)
is said to be:

• subharmonic if −∆u ≤ 0 in Ω

• superharmonic if −∆u ≥ 0 in Ω

• harmonic if −∆u = 0 in Ω

Theorem 2.1.2 (Weak Maximum Principle). Suppose that Ω ⊂ Rn is an open,
bounded, connected domain and that u ∈ C2(Ω) ∩ C(Ω) is subharmonic in Ω. Then,

max
x∈Ω

u(x) = max
x∈∂Ω

u(x)

Proof. First consider the special case where −∆u < 0 in Ω. We show that u cannot have a
maximum in Ω. Suppose x0 ∈ Ω is a maximum of u. Then by differential calculus

∂xi
u(x0) = 0,

∂2
xi
u(x0) ≤ 0, i = 1, .., n

=⇒ −∆u(x0) ≥ 0,

and this contradicts the fact that −∆u < 0 in Ω. Hence u attains its maximum on Ω on ∂Ω,
so that

max
x∈Ω

u(x) = max
x∈∂Ω

u(x).

Now consider the general case −∆u ≤ 0 in Ω. Define

vϵ(x) = u(x) + ϵ exi

so that

−∆vϵ(x) = −∆u(x)︸ ︷︷ ︸
≤0

− ϵ exi︸ ︷︷ ︸
<0︸ ︷︷ ︸

<0

,

by the first part we have that

max
x∈Ω

vϵ(x) = max
x∈∂Ω

vϵ(x).
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Taking the limit ϵ → 0, so that vϵ(x) → u(x) uniformly on Ω, we have that

max
x∈Ω

u(x) = max
x∈∂Ω

u(x)

□

Corollary 2.1.3 (Weak Minimum Principle). Suppose that Ω ⊂ Rn is an open,
bounded, connected domain and that u ∈ C2(Ω) ∩ C(Ω) is superharmonic in Ω. Then,

min
x∈Ω

u(x) = min
x∈∂Ω

u(x)

Proof. Apply the weak maximum principle to −u. □

Corollary 2.1.4 (Comparison Principle). Suppose that Ω ⊂ Rn is an open, bounded,
connected domain and that u1, u2 ∈ C2(Ω) ∩ C(Ω) satisfy

−∆u1 = f1 in Ω, −∆u2 = f2 in Ω,

u1 = g1 in ∂Ω, u2 = g2 in ∂Ω,

where

f1(x) ≤ f2(x), x ∈ Ω,

g1(x) ≤ g2(x), x ∈ ∂Ω.

Then,
u1(x) ≤ u2(x), x ∈ Ω

Proof. The function w = u1 − u2 satisfies

−∆w = f1 − f2 ≤ 0 in Ω,

w = g1 − g2 ≤ 0 on ∂Ω.

So by the weak maximum principle,

max
x∈Ω

w(x) = max
x∈∂Ω

w(x) ≤ 0

=⇒ w(x) ≤ 0 on Ω

=⇒ u1(x) ≤ u2(x) on Ω.

□

Remark. The previous result explains the use of the term ”subharmonic”. Suppose
u1, u2 ∈ C2(Ω) ∩ C(Ω) satisfy

−∆u1 ≤ 0 in Ω, −∆u2 = 0 in Ω,

u1 = g on ∂Ω, u2 = g on ∂Ω.

Then, by the Comparison Principle u1(x) ≤ u2(x) on Ω. In other words, a subharmonic
function is always less than or wqual to the harmonic function with the same boundary
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values.

Corollary 2.1.5 (Uniqueness). Tbe Dirichlet problem

−∆u = f in Ω,

u = g on ∂Ω.

where Ω ⊂ Rn is an open, bounded, connected domain, has at most one solution u ∈
C2(Ω) ∩ C(Ω).

Proof. Suppose there are two solutions u1, u2. Then w = u1 − u2 satisfies

−∆w = 0 in Ω,

w = 0 on ∂Ω.

By the weak maximum principle we obtain

max
x∈Ω

w(x) = max
x∈∂Ω

w(x),

and similarly by the weak minimum principle

min
x∈Ω

w(x) = min
x∈∂Ω

w(x).

Hence it follows that

w(x) = 0, x ∈ Ω,

=⇒ u1(x) = u2(x), x ∈ Ω.

□

Remark. As shown in the previous proof, we have that when u ∈ C2(Ω)∩C(Ω) is harmonic
in an open, bounded, connected domain and zero on the boundary of the domain, u will be
zero over the entire closure of the domain.

Theorem 2.1.6 (Strong Maximum Principle). Suppose that Ω ⊂ Rn is an open,
bounded, connected domain and that u ∈ C2(Ω) ∩ C(Ω) is subharmonic in Ω.

Then either:

• u does not achieve its maximum value on Ω at a point of Ω,

• u is constant on Ω.

The proof for this theorem is not given here since it is long and cumbersome.

2.3 Poisson’s Formula

Through formal arguments based upon Green’s functions, the solution to

∆u = 0, x ∈ Ba(0) ⊂ R2,

u = g, x ∈ ∂Ba(0)
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is given by the formula

u(x) =
a2 − |x|2

2πa

∫
|y|=a

g(y)

|x− y|2
dy.

Similarly, the solution to the same problem in a 3-dimensional ball is

u(x) =
a2 − |x|2

4πa

∫
|y|=a

g(y)

|x− y|3
dy.

This result can be generalized for an n-dimensional ball. In fact, if we take an n-dimensional
ball instead of one in R2 or R3, we find that the solution is given by Poisson’s Formula:

u(x) =
a2 − |x|2

nwna

∫
|y|=a

g(y)

|x− y|n
dy,

where wn is the volume of the unit ball in Rn.

We now have this famous representation formula for the ball in the case that the behaviour
on the boundary is radially and axially symmetric (independent of both coordinates θ and
φ). Another well known representation formula is the one for the similar case, but considered
on the exterior of the ball rather than the interior.

2.4 Sommerfeld Radiation Condition

Since scattering and control theory deal with physical phenomena rather than just theoretical
equations, we want to make sure that we restrict the solutions that we obtain to ones that
are physically possible. For this reason we introduce the Sommerfeld Radiation Condition.
This condition was introduced by Arnold Sommerfeld in 1912, and it requires that a given
solution satisfies the condition

lim
r→∞

(
∂u

∂r
− iλ2u

)
= 0. (2.4)

What this condition basically implies, in simple terms, is that the solutions are “out coming”,
meaning that they generate outwards rather than generating at infinity and vanishing at the
origin [12]. If a solution did generate at infinity and vanished at the origin, we would define
that “unphysical”, since such a behaviour is not observed in any physical phenomena. By
observing the form of this condition and focusing on the easier cases, it is important to realise
that if the solution is compactly supported (meaning that it vanishes when sufficiently distant
from the origin) then it will also satisfy this condition, since for sufficiently large r the entire
expression inside of the limit will equal 0 [13].
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Laplace’s Case

At this point, we would like to solve the exterior problem for the torus. Note that if we
give the torus boundary conditions equal to 0, and we assume that the solution is 0 in the
exterior of a large ball, then the overall solution will be the trivial 0 solution. This follows
by the combination of the weak maximum and minimum principles, as was shown above.
Regardless, this is not necessarily the case for Maxwell’s equation, therefore we focus on the
Helmholtz problem. For the reasons specified previously at the beginning of Chapter 2, we
will analyze the Laplacian problem as an approximation of the Helmholtz case. In particular,
we will analyze the problem with the setting detailed by Shushkevich, namely that of a torus
enclosed by a spherical shell in free three-dimensional space [15]. We consider a torus centred
at the origin described by toroidal coordinates with minor radius r and major radius R. We
let the radial constant be c =

√
R2 − r2, then the the torus T is described as follows:

T = {α = α0, 0 ≤ β ≤ 2π, 0 ≤ φ ≤ 2π},

where

α0 = ln

R

r
+

√(
R

r

)2

− 1

 .

We then introduce the spherical shell S as the top part of a sphere centered at the origin
with radius d such that T ⊂ Bd(0). A visualization of the problem at hand can be seen in
Figure 3.1. In particular we focus on the cases where d is very large. The shell is described
in spherical coordinates as follows:

S = {r = d, 0 ≤ θ ≤ θ0, 0 ≤ φ ≤ 2π},

The Laplacian problem is then represented by solving a set of two Laplace’s equations, one
on the exterior of the sphere describing the shell, and one on the interior of it and the exterior
of the torus:

∆U1 = 0 in W1 = E3/Bd(0),

∆U2 = 0 in W2 = E3/(W1 ∪ T ).

We introduce boundary conditions in order to obtain a unique set of solutions. Firstly, we

23
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Figure 3.1: [15]

demand that U1 vanishes at infinity. Then we put in place Dirichlet boundary conditions

U2 = Vs on S, (3.1)

U2 = Vt on T. (3.2)

Additionally, in order to ensure continuity between the two different solutions, we have that

U1 = U2 on ∂Bd(0), (3.3)

∂U1

∂r
=

∂U2

∂r
on ∂Bd(0)/S, (3.4)

where ∂Bd(0)/S is the open part of the spherical shell.

3.1 General solutions

The general solution for unspecified boundary conditions is as follows. The solutions de-
pend on multiple unknown coefficients bn, an, Mn and Nn. These are then determined by
specifying the Dirichlet boundary conditions (3.1) and (3.2).

U1(r, θ) =
∞∑
n=0

bn

(
d

r

)n+1

Pn(cos θ) in W1, (3.5)

U2 = U
(1)
2 (r, θ) + U

(2)
2 (α, β) in W2, (3.6)

where

U
(1)
2 (r, θ) =

∞∑
n=0

an

(r
d

)n
Pn(cos θ). (3.7)

U
(2)
2 (α, β) =

√
2(coshα− cos β)

∞∑
n=0

(Mn cosnβ +Nn sinnβ)
Pn− 1

2
(coshα)

Pn− 1
2
(coshα0)

. (3.8)
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Here we have made the assumption that since the solution approaches 0 as we go to infinity,
the torus will be compactly supported, meaning the solution will be equal to 0 everywhere
outside of a large ball. We do this because since we already have that the solution vanishes
at infinity, assuming that the solution will be compactly supported is a great approxima-
tion. The toroidal component U

(2)
2 can be rewritten in complex form by replacing the sum

contained in it by
∞∑

n=−∞

xn

Pn− 1
2
(coshα)

Pn− 1
2
(coshα0)

einβ,

where xn = 1
2
(Mn ∓ iNn) such that xn = x−n.

Since the solution U2 is composed of a function in spherical coordinates and a function
in toroidal coordinates, we introduce different variable changes to turn U2 into a function of
one coordinate system. These changes are as follows.

U
(1)
2 (α, β) =

√
2(coshα− cos β)

2π
·

∞∑
n=−∞

(
∞∑
p=0

( c
d

)p
apD

n
p

)
Qn− 1

2
(coshα) einβ, (3.9)

U
(2)
2 (r, θ) =

∞∑
n=0

(−1)n
(c
r

)n+1
(

∞∑
s=−∞

xsD
s
n

Ps− 1
2
(coshα0)

)
Pn(cos θ). (3.10)

If we let

fn = (−1)n

(
∞∑

s=−∞

xsD
s
n

Ps− 1
2
(coshα0)

)
, (3.11)

we get that (3.7) and (3.10) can be combined to be

U2(r, θ) =
∞∑
n=0

(
an

(r
d

)n
+ fn

(c
r

)n+1
)
Pn(cos θ), (3.12)

which together with condition (3.3) and the orthogonality of the Legendre polynomials gives

bn = an + fn

( c
d

)n+1

(3.13)

3.2 Vs = 0

Now that we have given expressions for the general solutions to this problem, we focus on
the particular case that is of interest to us. Namely we look at the case where we set Vs

from condition (3.1) to be equal to 0. As a consequence of (3.3) we get that the solution on
the spherical shell must be equal to 0 for both equations Ui. Therefore, in order to satisfy
(3.3) we have that

U2 = 0 on ∂Bd(0),

which results in bn = 0 for n ∈ {0, 1, 2, . . . }. Therefore from (3.5) we get that the solution
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U1 is zero on its entire domain W1. What this means is that the union of U1 and U2 on
the entire space will be compactly supported, as it will be zero outside of the sphere. Then,
as described at the end of the previous chapter, any of the solutions obtained from this
particular case will satisfy the Sommerfeld Radiation Condition, meaning that the results
will be able to be used as a representation of natural phenomena. With this result for the
coefficients bn, from (3.13) we get that

an = −fn

( c
d

)n+1

, (3.14)

which gives

U2(r, θ) =
∞∑
n=0

an

((r
d

)n
−
(
d

r

)n+1
)
Pn(cos θ). (3.15)

An explicit form for the coefficients an can then be determined through the evaluation of
the following integral:

an =

∫ θ0

0

ϕ(x) cos

((
n+

1

2

)
x

)
dx, (3.16)

where in the case that the radius d of the shell is much larger than the radial constant c,
ϕ(x) can be approximated by

ϕ(x) = ϕ0(x) + µϕ1(x) + µ2ϕ2(x) + µ3ϕ3(x) + . . . , (3.17)

where µ = c/d, and the functions ϕi(x) up to i = 3 are given by Shushkevich through
more complicated computations. Since we are in the situation where the value of d is much
larger than that of c, we decide to arbitrarely ignore values of i larger than 2 for the sake of
simplicity, since increasing powers of µ will quickly go to zero. Through direct computation
we obtain:

a0 ≈ µ
Vt T0

π2
(θ0 + sin θ0) +

+ µ2

[
2α00 Vt T0R00

2π3
(θ0 + sin θ0) +

Vt T1

π2
sin θ0(cos θ0 + 1)

]
. (3.18)

The different coefficients introduced above follow from a series of calculations, and their
values depend on the choice of the radii for the torus as well as on the constant Vt. In the
case that Vt > 0, all these coefficients are positive, meaning that a0 will be non-zero. What
this implies is that the eigen-solution at n = 0

U2, n=0(r, θ) = a0

(
1− d

r

)

depends on a factor of 1/r. This is meaningful since we have that the first order term of an
eigensolution to Laplace’s problem in spherical coordinates is

u0(r) = ã
1

r
,

which is very similar to the result obtained in the toroidal case just observed.
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Conclusions

What can be concluded from the results obtained in the previous chapter is that in the case
of the Helmholtz equation, there are terms which are of the form 1/r (analogous to those
on the surface of a sphere) that arise for zero boundary conditions on domains which are
enclosed by arbitrarily large balls that entirely support the solutions. Importantly, these
terms can be proven to be non-zero. These have been shown to be present when there are
non-zero boundary conditions on the torus. Regardless, the opposite case where there is no
charge on the surface of the torus rather than on the sphere (zero boundary conditions on
the torus and non-zero boundary conditions on the sphere) has not been carried out in this
project, therefore no conclusions can be made about it. This is one of the many possible
variations of this research that could be investigated, and since these variations are many, I
will discuss those separately in the following section.

4.1 Further Research

As I have briefly mentioned in the introduction to this paper, the original intention for this
Bachelor Project was to cover this topic for both the Helmholtz and Maxwell equations,
but due to lack of time and a much higher complexity for the latter case, this paper only
addresses the former. Therefore, there is a chance for further research and computations to
be carried out for the Maxwell equations, which might also give interesting results.

As I mentioned at the end of the previous section, variations in the boundary conditions
for the Helmholtz case can lead to a difference in results. Additionally, for the case that
we have considered, we have only achieved a conclusion for the very first order term, but
it might be possible to achieve comparable results and more insightful analogies with the
spherical case if higher order terms are computed. In the future, a progression of this project
would aim to show that these terms of the form 1/r affect the rates at which waves disperse.
In particular, if there are no such terms, the waves would be observed to disperse faster when
the λ = 0 expansion is used to approximate solutions of the Helmholtz equation. Lastly, in
order to easily satisfy the Sommerfeld Radiation Condition, we limited our scope to solutions
that assume compact support in order compute these terms. Nevertheless, by studying the
Sommerfeld Radiation Condition more carefully there must be ways to compute the solutions
when the exterior is genuinely an infinite space and we do not assume compact support.
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Appendix

The following is the Python code used to obtain the figures displayed in section 2.1.

# Packages

import numpy as np

import matplotlib.pyplot as plt

import scipy.special as ss

# Bessel Functions of the First Kind

ioi=101

#A = list(map(float, input().split())) # for personalized inputs

#B = list(map(int, input().split())) # for personalized inputs

A = np.array([0, 1, 2, 3])

x = np.linspace(0,15,ioi)

plt.figure(dpi=300)

plt.plot(x,np.zeros(ioi),’k:’,markersize=2)

for i in range(len(A)):

a = A[i]

plt.plot(x,ss.jv(a,x),label=’$J_{%3.0f}(x)$’%A[i])

plt.legend(loc=’upper right’, fontsize=8)

plt.xticks(fontsize=8)

plt.yticks(fontsize=8)

A = np.array([0.5, 1.5, 2.5, 3.5])

B = np.array([0, 1, 2, 3])

x = np.linspace(0,15,ioi)

plt.figure(dpi=300)

plt.plot(x,np.zeros(ioi),’k:’,markersize=2)

for i in range(len(A)):

a = A[i]

plt.plot(x,ss.jv(a,x),label=’$J_{%3.0f + 1/2}(x)$’%B[i])

plt.legend(loc=’upper right’, fontsize=8)

plt.xticks(fontsize=8)

plt.yticks(fontsize=8)

# Bessel Functions of the First Kind
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#A = list(map(float, input().split())) # for personalized inputs

A = np.array([0, 0.5, 1, 1.5])

x = np.linspace(1,15,ioi)

plt.figure(dpi=300)

plt.plot(x,np.zeros(ioi),’k:’,markersize=2)

for i in range(len(A)):

a = A[i]

if (a - 0.5) % 1 == 0:

atemp = int(a - 0.5)

plt.plot(x,ss.yv(a,x),label=’$Y_{%3.0f + 1/2}(x)$’%atemp)

else:

plt.plot(x,ss.yv(a,x),label=’$Y_{%3.0f}(x)$’%A[i])

plt.legend(loc=’lower1 right’, fontsize=8)

plt.xticks(fontsize=8)

plt.yticks(fontsize=8)

# Legendre Polynomials of the First Kind

#N = list(map(int, input().split())) # for personalized inputs

N = np.array([0, 1, 2, 3, 4, 5])

x = np.linspace(-1,1,ioi)

plt.figure(dpi=300)

for i in range(len(N)):

n = N[i]

plt.plot(x,ss.eval_legendre(n,x),label=’$P_{%3.0f}(x)$’%N[i])

plt.legend(loc=’lower right’, fontsize=8)

plt.xticks(fontsize=8)

plt.yticks(fontsize=8)

# Legendre Functions of the Second Kind

def relation(Ppre,P,n):

P_post = lambda x: ((2*n+1)*x*P(x)-n*Ppre(x))/(n+1)

return P_post

def Qn(N):

Q0 = lambda x: (np.log((1+x)/(1-x)))/2

Q1 = lambda x: (np.log((1+x)/(1-x)))*x/2 - 1

if N == 0:

Pnew = Q0

if N == 1:

Pnew = Q1

else:

Pold=Q0
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Pcurr=Q1

for i in range(1,N):

Pnew = relation(Pold,Pcurr,i)

Pold = Pcurr

Pcurr = Pnew

return Pnew

#N = list(map(int, input().split())) # for personalized inputs

N = np.array([0, 1, 2, 3, 4, 5])

x = np.linspace(-0.999,0.999,ioi)

plt.figure(dpi=300)

for i in range(len(N)):

n = N[i]

plt.plot(x,Qn(n)(x),label=’$Q_{%3.0f}(x)$’%N[i])

plt.legend(loc=’lower right’, fontsize=8)

plt.xticks(fontsize=8)

plt.yticks(fontsize=8)

plt.ylim([-1.1, 1.1])
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