
Visualising Ray Marching in 3D

Anton Bredenbals, Supervisors: Jiřı́ Kosinka and Steffen Frey

Fig. 1: Visualisation of ray marching in Virtual Ray Tracer.

Abstract—Ray marching is a commonly used technique in rendering digital scenes. Despite its similarities to ray tracing and its easier
implementation in practice, it is not commonly taught in basic computer graphics courses. This may also be due to it being more
challenging to be properly visualised in 3D. Currently, there are existing applications which greatly visualise ray marching in 2D; but in
3D, especially with regards to education, there are no widely available applications. This is why, in this report, I discuss the development
of an extension to the open-source “Virtual Ray Tracer” application, which hosts a number of levels from basic to more advanced ray
tracing visualised in 3D. Now it will be supplemented by a basic and an advanced ray marching level, allowing for real-time interaction
with the ray marching process. The user has multiple different options for visualisation, which can be combined as it suits them. The
“Virtual Ray Tracer” platform already allows the user to interact with the simulation by editing the objects and their materials in various
ways and by editing the ray and camera settings. The goal is to teach the user the differences and similarities between ray tracing and
ray marching in a fun and interactive way.

Index Terms—ray marching, rendering, education, interactive learning

1 INTRODUCTION

Ray marching is an increasingly important rendering technique in com-
puter graphics. Rendering is a wide field with different requirements
from scientific visualisation to real time applications. Since one of its
first mentions in 1989 by K. Perlin [3], ray marching has seen a few
improvements like the inclusion of signed distance functions (SDFs).
These allow to dynamically use the biggest step sizes possible, instead
of constant step sizes. Together with the rising computing power over
the decades this led to modern rendering being able to include ray
marching even for real time applications [11].

Ray marching is intertwined and closely related to ray tracing as they
are both image order rendering techniques. To determine the colour
of each pixel, a ray is cast from the camera through each of the pixels

• Anton Bredenbals is a student at the University of Groningen. E-mail:
a.bredenbals@student.rug.nl. Student number: s4934059.

• Jiřı́ Kosinka and Steffen Frey are with the SVCG Group at the University of
Groningen. E-mail: j.kosinka—s.d.frey@rug.nl.

into the scene. These rays then intersect with objects in the scene and
get reflected, refracted and more rays are cast in directions of the light
source to get all relevant components of colour for that specific pixel.
This procedure is fundamentally the same in both techniques. The main
difference is in the way those intersections are computed. While ray
tracing generally uses implicit object equations to directly compute an
intersection, ray marching follows an iterative approach build on either
set step sizes, or as we will use in this paper, step sizes computed by
the SDFs of the objects in the scene. This makes ray marching more
robust for different object shapes, as implicit equations do not exist for
all shapes of objects. However, ray tracing is usually faster due to its
non-iterative nature.

Because of its rising popularity, ray tracing is a staple in computer
graphics courses at most universities. Despite its similarities, ray march-
ing is less commonly taught. This in turn means that online or especially
learning resources for ray marching are scarce. 3D visualisations of the
iterative process are rare.



Due to this, I decided to look into the virtual learning environment
“Virtual Ray Tracer” (VRT) [7,9,10] and add ray marching functionality
to it. VRT is a 3D learning application created in the game engine
Unity1 [5]. Before, VRT consisted of different levels from basic to
advanced ray tracing that offered visualisation of a scene. A scene
includes a camera from which rays are visually cast into the scene where
they bounce off of the objects they hit. Once a base of understanding for
ray tracing is available, making the student understand the difference
between the methods would only be another rather small step.

My contribution is a level dedicated to ray marching. This includes
most importantly new visuals and animations to make the iterative
process of ray marching as intuitive as possible.

The coming sections include the following: In the next section I
introduce relevant related work. In section 3 I elaborate on the concept
behind the visualization and the individual elements, after introducing
ray marching in more detail. Section 4 includes relevant points about
the practical implementation of the concepts. In section 5 I discuss the
results of developing the ray marching level. Section 6 includes ideas
for future work and in section 7 I conclude my work.

2 RELATED WORK

As mentioned previously, my work is based on VRT developed by van
Wezel and Verschoore de la Houssaije [7,9,10]. VRT is an open source
interactive learning application focused on ray tracing [8]. The user
can choose from a variety of levels, each expanding on the knowledge
acquired in the previous levels.

Each level is a 3D scene consisting of the virtual “raytracer camera”
including a virtual screen, one or more light sources and the objects in
the scene. The first levels restrict the user in freedom by not allowing
creation of new objects and certain variables such as material properties
cannot be edited. This is done so the user can focus on the most
important underlying features. Later levels allow for more and more
customization and there is a sandbox level that has all option unlocked.

The user can interact with the scene in different ways: Objects in
the scene can be rotated, translated and scaled freely and their mate-
rial is editable in colour and other modifiers such as coefficients for
specular, diffuse, etc. The ray tracer can be configured in the depth of
recursion and shadows can be turned off or on. For the camera, the
user can, amongst others, decide how many pixels the virtual screen
has, whether and how the rays are animated, and rotate and translate
the camera. Further, a higher resolution image can be rendered of the
current configuration and point of view of the virtual camera, however
this is not possible in real time.

VRT is implemented using the game engine Unity [5] which comes
with the default scripting language C#. For me, the decision to use
Unity was straightforward, as van Wezel and Verschoore de la Houssaije
created the project in Unity. Their choice was mainly between Unity
and Unreal, which are both very well documented but with Unity being
a bit more beginner friendly, using C# instead of C++ and requiring
less disc space to run. Unity is a widely known and used 3D game
engine. As such it offers a lot of functionality and infrastructure that
is of use in such a project. Creating and designing scenes is very
easy and straightforward, Unity delivers meshes for basic shapes like
spheres, cuboids and cylinders as well. Unity supports C# scripts and
allows intuitive handling for those as the user can apply the scripts
directly to object instances in the scene. For this, Unity provides
the base class MonoBehaviour that can be extended. In the package,
Unity also provides a large set of useful functions for scripting from
GetConponent<> to closestPoint.

Van Wezel [7] and Verschoore de la Houssaije [9] conducted a user
study and lowest scoring was the “user interface and controls”. Based
on that, another project by Peter Jan Blok [1] is ongoing in parallel,
adding updated gamification and improvements to the interface and user
experience in general. In detail, this means replacing the introduction
text of each level, which is currently quite unintuitive as it is one
big window with all information compiled. As can be seen in Figure
2, this is replaced by a step by step tutorialisation that updates semi

1https://unity.com/

(a)

(b)

Fig. 2: The old (a) and new (b) tutorialisation of VRT.

automatically. The user is required to complete the main steps of each
level’s tutorial before the following level can be accessed. The first
level is an introduction to the controls of the program, a “cheat mode”
is available in the options to circumvent this restriction. In the same
step an achievement system that rewards the player with badges, for
example after playing for set amount of time, was introduced and the
render image view now has a loading bar.

Another parallel project by Jesper van der Zwaag [6] extends VRT
to also include distributed ray tracing, sometimes also called stochastic
ray tracing. It introduces different kinds of light sources. The basic
point light are light sources that emit light from a single point equally
in all directions; this was the only light source available before. Spot
lights emit light from a single point as well but have a direction similar
to flash lights. The last type of light sources are area lights which emit
light from a whole area. This is essential for distributed ray tracing as
it allows for the more realistic smooth shadow transitions, the so called
penumbra. Van der Zwaag also introduced more lighting options to
make the light more realistic.

The last current addition to VRT, by Roan Rosema [4], is in the form
of a web and a mobile version of VRT. The web version is quite easy to
set up, as the project is created in Unity. Unity has built-in functionality
to build the project for WebGL, which can directly be supplied to
GitHub pages. The mobile version is currently only available in the
Google Play Store2 and will probably come to iOS in the future. For the
mobile version, all the controls and the interface have been overhauled.

2https://play.google.com/store/apps/details?id=com.RUG.

VirtualRayTracer

https://unity.com/
https://play.google.com/store/apps/details?id=com.RUG.VirtualRayTracer
https://play.google.com/store/apps/details?id=com.RUG.VirtualRayTracer


3 CONCEPT

In this section I introduce the ideas of how to visualise ray marching
and explain the goal of each visualisation. For this I first introduce ray
marching in more detail. Ray marching is a rendering technique and
as such it renders a 2D image, given a 3D scene and a camera position
in it. Ray marching specifically starts off by computing the colour
each pixel should display separately. For this a ray is cast through
each pixel, starting from the camera position; this uniquely determines
their direction. For each ray, the starting point of the first iteration is
the point of the camera. For each iteration, the SDF of each object
with respect to the starting point is evaluated. The smallest of those
distances is then taken and stepped along the direction of the ray to find
the starting point of the next iteration.

The algorithm has different break conditions, namely: If the distance
to travel in one iteration is larger than a certain threshold, 99 in this
case, the starting point is far enough away from every object in the
scene to declare that ray a “no hit ray”. This threshold should be bigger
than any reasonable distance within the scene. In this case it is multiple
times larger than the whole occupied scene. If the distance is smaller
than a very small value ε , 0.001 in this case, the current starting point
is counted as on the surface of the object and thus as an intersection.
After a high number of iterations, in this case 250, the algorithm should
also stop as a safety measure against too long looping times or even
(close to) infinite loops. This case should not come up regularly, but
the closer a ray passes by one or multiple objects, the more iterations
it needs as the step sizes decrease with that distance. Generally it is a
good practice to have such a threshold in place for potentially infinite
loops, in case of unfound bugs or glitches.

If an intersection is found, the algorithm continues in the same
way as ray tracing: The material of the hit object will be considered
to determine transparency, the diffuse and specular coefficients, etc.
The normal of the intersected triangle on the hit object will be used to
compute the reflecting and refracting ray if necessary. More rays are
cast in the directions of each of the light sources. For each of these rays
the procedure lined out above is repeated. Light rays have an additional
stopping criterion, if the light source is reached, the algorithm stops
and determines that the point hit before does not lay in shadow with
respect to that source.

To visualise ray marching and especially its iterative nature, the
visualisation consists of four separate parts. The first option is only
available in the animated case, where rays move further into the scene
over time. This is an expanding sphere around the starting point of the
current iteration. The sphere will disappear as soon as a new iteration
begins, to reduce visual clutter. This concept can be seen in many
2D ray marching visualisations, where it appears as circles around the
starting points, as seen in Figure 3. But it is more difficult to make
it appealing in 3D. It simulates that the distance to the nearest object
equals the size of the circle/sphere and thus, the circle/sphere will
intersect with the nearest object and the point on the ray where the
new iteration begins. The sphere can get quite big and should thus be
transparent to not occlude the rest of the scene.

Two simpler visualisations indicate the starting point and the nearest
object of each iteration with small pointers, spheres in this case. This
should help the user identify the iterations on the ray itself and the
nearest object respectively. To group the starting point with the nearest
object another option is available to draw a line, a thin ray, between
each starting point and the corresponding nearest point on the nearest
object.

Lastly, an option for arcs is available that span a part of a circle
between the nearest object and the starting point of the next iteration.
This is meant to help the user understand the connection between these
two: The next iteration’s starting point is exactly as far away on the ray
as the nearest object’s distance is.

Fig. 3: A typical 2D visualisation of the ray marching process. Taken
from https://youtu.be/Cp5WWtMoeKg

4 REALISATION

Next, I elaborate the important choices made during the implementation
of the concepts, starting with general decisions made and then getting
into details about the concrete different visualisation options.

I made the decision for the code base that most of my ray marching
specific additions should have their own associated classes to not slow
down the application in the other levels with loading unnecessarily
big classes. New classes were created for some of the visualisations,
mainly sphere objects for the spherical visualisations and meshObjects
for the transparent meshes filling the arcs. The general architecture here
was kept similar to the rayObjects with ObjectPools speeding up the ini-
tialisation of a large amount of objects. In some cases it made sense to
create derived classes from their ray tracing focused parents. Examples
are RayMarchingManager and UnityRayMarcher. Both of these classes
have a central role in the program. The UnityRayMarcher extends the
UnityRayTracer and overrides the ray tracing functions with ray march-
ing specific ones as well as adding the RayMarch function itself. The
RayMarchingManager overrides the ray tracing specific visualisation
functions with those that also visualise the extra ray marching infor-
mation. In some cases I decided to add ray marching specific methods
or extensions to the base classes, if they were minor. For example,
RTMesh now has a distanceToPoint function which implements the
SDFs of the respective shapes and a normalRM function to find the
normal of the intersection.

Ray marching requires explicit SDFs for every type of object. This
is not fully realised in VRT yet, only non deformed spheres and non
rotated cuboids have a functioning SDF implemented. However, it
is still good for the user to be able to choose from more kinds of
objects in the level, so for the other options I used the unity function
meshCollider.ClosestPoint to simulate the SDF. The normalRM method
returns the normal of the surface that is closest to the given point.
The normals are calculated in different ways, for spheres the normal
is smooth by default as it is simply taken as the direction from the
sphere center to the given point, which results in smooth/Phong shading.
However, for the other object types the normal of the hit triangle is used
which results in flat shading. The differences can be seen in Figure 4.

I also decided to change the basic layout of the 3D scene to focus on
the differences from ray marching to ray tracing. For this, I decided to
reduce the default pixel number in the level from 9 (3x3) to 1, because
with all the different visualisations on top of the ray animations, the
scene gets crowded by visualisations quickly which in turn will have
a negative effect on understanding. Having one ray as an example
is easier to understand as the visualisations for multiple rays would
interfere with each other to reduce visual clarity. Having too many
objects for visualisation in the scene also reduces the performance
significantly. Further, the concept of the screen with many pixels
and each having their respective ray computations is touched upon in
previous levels a lot and should be clear by this level. However the
level still allows the user to edit the screen resolution to their liking.

https://youtu.be/Cp5WWtMoeKg


Fig. 4: Flat shading on the cylinder vs smooth shading on the spheres.

Fig. 5: The animated visualisation with expanding spheres.

For the expanding spheres visualisation, I decided to only make it
work in the animated setting, as having too many of these spheres in
the scene at the same time detriments from the understanding as they
are occluding big parts of the scene. Having them only available in the
animated mode allows to only show the sphere that corresponds to the
iteration that is currently in the process of being drawn. This can be
seen in Figure 5. The sphere is transparent as bigger iterations steps
result in very large spheres.

For the iteration indicators (indicator dots) on the ray and the nearest
object I decided to use very small spheres; black ones on the ray and
blue ones on the nearest objects.

The indicator lines between each iteration’s starting point and its
respective nearest object are yellow, the same colour and thickness as
the arc indicating the same distances between the nearest object and
the starting point of the next iteration. The arcs are built out of many
small ray segments. How many ray segments are needed is simply
determined by recursively splitting the direct distance between the two
points the arc should connect until each segment is shorter than a set
threshold. To reduce the impact that very big arcs, for example from
no hit rays, would have on the performance, the maximum number of
pieces an arc can have is limited to 100. Additionally, the area enclosed
by the indicator lines and the arcs is filled with a transparent plane, as
can be seen in Figure 6.

Finally I also merged the features implemented by van der Zwaag [6]
and Blok [1] into my version of VRT. For the ray marching level, this is
unfortunately not as straightforward as for most of the other levels. This
is due to the decision to have mostly separate classes for ray marching,
which means most new features need to be edited in separately for
the ray marching level. That said, the additions that are compatible
with the ray marching level are working there as well, for example the
loading bar for the render image page, some extra options options in
the ray tracer menu, including the Fly to virtual camera button. And
the tutorialisation now also works with the new tutorial boxes.

Fig. 6: The visualisation with indicator spheres, lines and arcs turned
on.

5 RESULTS AND EVALUATION

Taking into account the points mentioned before, I developed the ap-
plication capable of the visualisations that can be seen individually in
Figure 7. The first idea for visualisation were the expanding spheres
that can be seen in Figure 7d. The idea was based on the circles used
in most 2D visualisations like in Figure 3. Turning this into a 3D vi-
sualisation that does not take over the whole scene was a difficult task.
Making the spheres transparent is a must and further I decided to only
show one sphere at a time. This came with the decision to have this
option only available in the animated case. I think this option adds a
lot to the visualisation, as it shows the progress of ray marching over
the iterations.

A valid point of critique here is that the constantly forward moving
ray and expanding sphere is not how ray marching functions mathe-
matically, as it computes each step and then steps forward. However,
this is the same for ray tracing, where the intersection with an object is
computed immediately. Still, many times in education, ray tracing is
explained with the help of physical rays and those move through space
with a constant speed and with that in mind, I think that the choice to
have animated rays moving though the scene was a good decision for
ray tracing. The logical expansion for ray marching are the growing
spheres.

This leads to the static visualisations included: First, I implemented
the indicator dots and lines, seen in Figure 7a and 7b respectively. These
do a good job at showing the relevant steps within an iteration of the
ray marching algorithm. However the shortcoming was the connection
between the iterations.

Initially I did not have the indicator arcs seen in Figure 7c planned
to be included. However, only looking at the first two static visualisa-
tion techniques, I felt like there was a disconnect between where one
iteration ends and the next one starts. The idea that the distance to the
nearest object is exactly the distance to the start of the next iteration was
not clear. The indicator arcs were introduced for exactly that purpose
and through that the iterative nature of the algorithm becomes clear.

While currently only some shapes have an explicit SDF implemented
in VRT, Unity delivers a workaround, meshCollider.ClosestPoint(x),
which returns the closest point on the mesh in the scene given a starting
point x. However, since this function only works for convex shapes,
all of the shapes in the scene must be converted to convex meshes,
which can lead to unwanted behaviour elsewhere. With this in mind, I
know that this is obviously not the best solution but having all shapes
available in the simulation is definitely an upside worth it.



(a) Indicator dots, the black ones on the ray, represent the starting point of each iteration of
ray marching, the blue dots the nearest point on any mesh in the scene from each starting
point.

(b) The indicator lines connect the starting points and its corresponding nearest point on
any mesh in the scene.

(c) The indicator arcs connect the nearest point on any mesh of the current iteration with
the starting point of the next iteration, visualising that these have the same distance from
the current starting point.

(d) The expanding spheres are only available in the animated mode and grow as the ray
does. Only the sphere of the currently animated iteration is shown to reduce visual clutter.

Fig. 7: The four separate visualisations specific to ray marching.

With this, the biggest difficulties of visualising ray marching in
3D have been tackled. I created a coherent 3D visualisation of ray
marching and a level around it that allows the user to concentrate on
things that make ray marching different from ray tracing. Reducing
the size of the virtual screen and hiding the reflection, refraction and
light rays all contribute to making the scene less crowded and let the
user concentrate on the important parts. This was necessary as the new
visualisation techniques add a lot of objects to the scene. Having a
higher number of rays shown at the same time would heavily reduce
the visual clarity and in turn the user experience. Further, the number
of objects present in the scene for visualisation purposes gets to levels
that strongly reduce the performance of the application. In some cases
the frames per second (FPS) are reduced to single digit numbers even
on better hardware.

The gamification is a great addition which I happily added to my
level as well. The result can be seen in Figure 2b. With this, the user
is not hit by a wall of text at once in the beginning of the level and
all the different options can be introduced one by one. This hopefully
makes interacting with the program more enjoyable, as this was one of
the demanded points of the original user study. Further, I also made a
WebGL version of my project available under https://abredenbals.
github.io/Virtual-Ray-Tracer/ .

With this level in VRT, the differences between ray tracing and ray
marching are shown well and with that the user gets a good basis of
understanding of ray marching after learning about ray tracing already.
This should make for a great addition to VRT as it builds on its solid
base and adds more value to the application. With more concepts added
to VRT, it becomes more and more enticing for lecturers in computer
graphics to learn about VRT and incorporate it into their course. The
other way around, this also makes the access to learning material about
ray marching easier and thus will give more students the opportunity to
learn about ray marching in the first place.

6 FUTURE WORK

With this project, a base was laid out for future projects to expand
upon in different ways. I now outline a few ideas of what can be done.
First, the base could be made more sturdy by introducing SDFs for
more shapes to get rid of the Unity built-in workarounds. This can
go together with performance optimisation, making the ray marching
process itself more efficient but also making the visualisation more
efficient by reducing the number of simple objects in the scene or
finding more efficient ways to render them.

Further, one could expand on the number of levels about ray march-
ing, showing off advanced rendering techniques and applications for
ray marching. Ideas for this are SDFs for intersections of shapes, for
example only rendering the shape of the intersection, if a sphere and
cube overlap in this area. The smooth blending of nearby objects is
another option that can be implemented. Both of these require chang-
ing or creating unique min/max functions that replace the usual min
function with which ray marching determines the “jump” distance of
the iteration. Lague [2] has created prototypes and open source code for
this already. Another often shown use of ray marching is the creation
of various kinds of fractal animations. Examples of this are animations
from Auctux3 and Lague4 [2]. Some of these ideas might need real
time capabilities, which are probably out of reach or alternatively video
rendering capabilities to really shine.

Further, a new user study would really help to pick future routes
for improvement. This user study should not be focused on a specific
part but rather span the whole project and all additions made since the
original study. Maybe this could be done after using the application in a
computer graphics course. This would allow for a decently sized sample
group of computer science students at least. Further, also interested
people outside of the computer science studies should be asked.

3https://youtu.be/SdNb7-I1TtA
4https://youtu.be/Cp5WWtMoeKg

https://abredenbals.github.io/Virtual-Ray-Tracer/
https://abredenbals.github.io/Virtual-Ray-Tracer/
https://youtu.be/SdNb7-I1TtA
https://youtu.be/Cp5WWtMoeKg


6.1 Known Bugs
Here is a list of known bugs that do not heavily impact the use of the
application but could not be fixed in the time scope of the project:

• On some machines, the WebGL version can crash when rotating
for periods longer than 5 seconds.

• The “Render Image” button in the ray marching level renders
artifacts (black pixels), if the ray hits a cuboid orthogonal. Some-
times there are further artifacts in a (partial) circles around this.
This is not reproducible in the lower resolution render preview.

• The ObjectPool classes used for the ray marching level have a
memory leak associated with them, as excessive unused objects
are not destroyed but stay in memory. This bug was found by
Jesper van der Zwaag. A fix for the rayObjectPool was imple-
mented by van der Zwaag as well, but the ray marching level as it
currently stands cannot benefit from that fix without some tuning,
as the subclasses for ray marching all need to be reviewed. The
same fix could then be applied for the sphereObjectPool and the
arcMeshObjectPool in a similar way.

7 CONCLUSION

The aim of the project was to integrate a suitable visualisation for ray
marching into Virtual Ray Tracer. The main problem was expected to
be the proper visualisation of the iterative nature. To properly visualise
ray marching, I decided on four separate visualisations: indicator dots,
indicator lines, indicator arcs and the expanding spheres. Together,
these are able to convey the iterative nature of ray marching and visu-
alise how the distance to the objects in the scene determines the step
size. Having separate toggles for all four techniques allows for customi-
sation for the users experience. I think the result is a clear visualisation
for ray marching which focuses on the differences to ray tracing and
the iterative nature. The later introduction of the indicator arcs was
a very helpful addition especially to visualise the iterations. I also
incorporated features from the ongoing parallel projects that extend
VRT in different ways, many of which are aimed to improve the user
experience.

Adding ray marching as another rendering technique to VRT allowed
me to focus on the differences to ray tracing. Further, I could build
the ray marching level into a solid base application that was already
in place. Connecting ray marching this close to ray tracing hopefully
also opens the doors for ray marching to be taught more regularly in
computer graphics courses. This broader education would lead to a
broader knowledge in the field of rendering and in the future bring
more nuanced advancements to the field.

ACKNOWLEDGMENTS

I wish to thank my supervisors Jiřı́ Kosinka and Steffen Frey for their
support. A special thanks to Chris van Wezel and Willard Verschoore de
la Houssaije for developing Virtual Ray Tracer and making it publicly
available.

REFERENCES

[1] P. J. T. Blok. Unpublished manuscript. Bachelor’s thesis, University of
Groningen, The Netherlands, 2022.

[2] S. Lague. Coding adventure: Ray marching (02/04/2019). https://
youtu.be/Cp5WWtMoeKg. YouTube, accessed: 09/07/2022.

[3] K. Perlin and E. M. Hoffert. Hypertexture. SIGGRAPH Comput. Graph.,
23(3):253–262, jul 1989. doi: 10.1145/74334.74359

[4] R. Rosema. Unpublished manuscript. Bachelor’s thesis, University of
Groningen, The Netherlands, 2022.

[5] Unity Technologies. Unity Engine Manual, 2019. accessed: 09/07/2022.
[6] J. R. van der Zwaag. Unpublished manuscript. Bachelor’s thesis, Univer-

sity of Groningen, The Netherlands, 2022.
[7] C. van Wezel. A virtual ray tracer. Bachelor’s thesis, University of

Groningen, The Netherlands, 2021.
[8] C. van Wezel and W. Verschoore. Virtual-Ray-Tracer. https://github.
com/wezel/Virtual-Ray-Tracer, 3 2022. GitHub, MIT license.

[9] W. A. Verschoore de la Houssaije. A virtual ray tracer. Bachelor’s thesis,
University of Groningen, The Netherlands, 2021.

[10] W. A. Verschoore de la Houssaije, C. S. v. Wezel, S. Frey, and J. Kosinka.
Virtual Ray Tracer. In J.-J. Bourdin and E. Paquette, eds., Eurographics
2022 - Education Papers. The Eurographics Association, 2022. doi: 10.
2312/eged.20221045

[11] K. Zhou, Z. Ren, S. Lin, H. Bao, B. Guo, and H.-Y. Shum. Real-time
smoke rendering using compensated ray marching. In ACM SIGGRAPH
2008 papers, pp. 1–12. 2008.

https://youtu.be/Cp5WWtMoeKg
https://youtu.be/Cp5WWtMoeKg
https://youtu.be/Cp5WWtMoeKg
https://youtu.be/Cp5WWtMoeKg
https://youtu.be/Cp5WWtMoeKg
https://youtu.be/Cp5WWtMoeKg
https://youtu.be/Cp5WWtMoeKg
https://doi.org/10.1145/74334.74359
https://doi.org/10.1145/74334.74359
https://doi.org/10.1145/74334.74359
https://doi.org/10.1145/74334.74359
https://doi.org/10.1145/74334.74359
https://doi.org/10.1145/74334.74359
docs.unity3d.com
docs.unity3d.com
docs.unity3d.com
docs.unity3d.com
https://fse.studenttheses.ub.rug.nl/26455/
https://fse.studenttheses.ub.rug.nl/26455/
https://fse.studenttheses.ub.rug.nl/26455/
https://fse.studenttheses.ub.rug.nl/26455/
https://fse.studenttheses.ub.rug.nl/26455/
https://fse.studenttheses.ub.rug.nl/26455/
https://fse.studenttheses.ub.rug.nl/26455/
https://github.com/wezel/Virtual-Ray-Tracer
https://github.com/wezel/Virtual-Ray-Tracer
https://github.com/wezel/Virtual-Ray-Tracer
https://github.com/wezel/Virtual-Ray-Tracer
https://github.com/wezel/Virtual-Ray-Tracer
https://github.com/wezel/Virtual-Ray-Tracer
https://github.com/wezel/Virtual-Ray-Tracer
https://github.com/wezel/Virtual-Ray-Tracer
https://fse.studenttheses.ub.rug.nl/24859/
https://fse.studenttheses.ub.rug.nl/24859/
https://fse.studenttheses.ub.rug.nl/24859/
https://fse.studenttheses.ub.rug.nl/24859/
https://fse.studenttheses.ub.rug.nl/24859/
https://fse.studenttheses.ub.rug.nl/24859/
https://doi.org/10.2312/eged.20221045
https://doi.org/10.2312/eged.20221045
https://doi.org/10.2312/eged.20221045
https://doi.org/10.2312/eged.20221045
https://doi.org/10.2312/eged.20221045
https://doi.org/10.2312/eged.20221045
https://doi.org/10.2312/eged.20221045
https://doi.org/10.2312/eged.20221045

	Introduction
	Related Work
	Concept
	Realisation
	Results and Evaluation
	Future Work
	Known Bugs

	Conclusion

