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1 Introduction

In this thesis, we will consider what happens to the orbits of black hole binaries when matter
interacts with the black hole. Black holes are objects with such an enormous gravitational pull
that not even light can escape. All the mass is centred in one point, called the singularity, which
is infinitely dense. The movement of particles due to the gravitational pull of the black holes
can be determined using general relativity. When particles coming from all directions interact
within a black hole, the momentum of the black hole is not affected because the effects of par-
ticles coming from the left are cancelled out by the particles coming from the right. However, if
you take two stationary black holes, then this need no longer be the case. The black holes shield
each other from radiation from one side. This produces a net force pushing them together, which
we will call the shadowing force. How does this shadowing force affect the stability of black hole
binaries? Will the shadowing force cause the black holes to orbit closer and closer together and
eventually merge?

In general relativity, particles can take many differing orbits around the two black holes. Parti-
cles can, for example, do figure eights around the two black holes. Such orbits are not possible in
Newtonian gravity. We will first try to find the shadowing force in the case of classical mechanics,
where the particles move under Newtonian gravity. Secondly, we will find the shadowing force
when particles interact with the so-called extremal black holes, where their gravity attraction
and electrostatic repulsion cancel out, and two black holes can remain static relative to each
other. Lastly, we will find the shadowing force in the case of Schwarzschild black holes, which
have no electric charge.

We introduce general relativity, using which we can find the motion of particles due to gravity.
We will discuss black holes with and without electric charge and how this changes things. Then
we will discuss the effects of gravitational waves on black hole binaries. Secondly, we will dis-
cuss scattering theory. Thirdly, we look at the perturbed Kepler problem to figure out how the
shadowing force affects black hole binaries. Finally, we will do simulations of the shadowing force.

Although it is hard to divide the thesis into mathematics and physics parts, sections 2, 3.4,
3.5 and 5 are more physical and sections 2.1-3, 3 and 4 are more mathematical.

1.1 Background

A similar effect is the basis for Le Sage’s theory of gravity. However, the particles move in
straight lines, and by imparting momentum, they produce a force similar to gravity [1]. The
model has been debunked, but it does get the 1

r2 dependence of Newtonian gravity right, which
can be shown using simple geometric arguments. The difficulty we will face is that the particles
move under gravity’s influence, and all possible orbits contribute to the effect.

In plasma physics, dusty plasma is studied, which is plasma with particles with a negative
charge of about 100 − 105e. Paradoxically, these particles sometimes form crystals, implying
an attractive force between them. In [2] it is proposed that the shadowing effect causes this.
However, in this paper and subsequent investigations[3], scattering events involving both centres
are not considered.

Nowadays, it is commonly assumed that every galaxy has a supermassive black hole of 106 −
109M⊙ of solar masses at its centre [4]. When two galaxies merge, the two supermassive black
holes will be brought to within about one parsec (3.3 light-years) through dynamical friction.
As we experience friction when we move through air, a black hole feels friction when moving
through space filled with stars. When the black holes get within 0.01 parsec, energy losses due
to gravitational waves are substantial, and the black holes spiral inwards.

From the low number of observations of binary supermassive black holes, it is assumed that
the merger of these black holes happens at short cosmological timescales. At one parsec sep-
aration, stars scattering off the binary carry energy away, and the binding energies increases.
However, there are not predicted to be enough stars to get the separation to the range where
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gravitational waves cause an inspiral. This is referred to as the final parsec problem. This prob-
lem has similarities to the shadowing force because, in the final parsec problem, interactions
with outside matter bring the black hole binary closer together.
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2 General relativity

General relativity is the current best description of gravity. In 1916, Einstein introduced the
theory to the world. General relativity is an extension of special relativity, which incorporates
gravity. We thus work with spacetime instead of time and space separately. The critical differ-
ence is that spacetime no longer is static. Mass curves spacetime, and curvature in spacetime
determines the movement of mass. In general relativity, gravity is no longer a force but a cur-
vature in spacetime. That means particles close to massive objects are not attracted by a force.
Instead, particles follow ’straight’ lines in these curved spaces. These extensions of straight lines
to curved spacetimes are called geodesics.

Special relativity postulates that the speed of light is the same for all observers. In general
relativity, Einstein postulated the equivalence principle, which states that local experiments
cannot differentiate between objects in accelerating reference frames and objects in a curved
spacetime due to gravity. This section is primarily based on [5].

One of the predictions of general relativity is the existence of black holes, objects with such
an enormous gravitational pull that not even light can escape. All the mass is centred in one
point, called the singularity, which is infinitely dense. Surrounding the singularity is the event
horizon. Nothing inside the event horizon can escape it because the gravitational force is too
large. That means nothing inside the event horizon can interact with the outside except via
curving spacetime. The No-Hair theorem states that black holes can be characterised entirely
by mass, charge, and angular momentum [5]. That makes black holes similar to elementary
particles.

One of the first observational evidence for general relativity is its correct prediction of the pre-
cession of Mercury’s orbit. The point at which Mercury is furthest away from the sun changes,
but Newtonian mechanics could not explain the rate of change. However, general relativity gave
the correct prediction.

We will start by discussing the basics of general relativity required to get started. Then we
will discuss the Schwarzschild spacetime, which is the spacetime for any neutral non-spinning
spherical mass distribution. Then we will consider Reissner-Nordström black holes, which are
black holes with charge. Additionally, we will discuss the Majumdar-Papetrou solution for static
spacetimes with multiple charged black holes. Lastly, we will discuss gravitational waves and
how their emission impacts black hole binaries.

2.1 Introduction

In special relativity, we deal with the Minkowski metric ηµν = diag(−1, 1, 1, 1), here we use a
positive signature, because then spatial distances are positive. In general relativity, the metric
is allowed to vary in spacetime. The most general form of a metric is:

ds2 = gµν(x)dx
µdxν . (1)

However, the metric and the mass-energy distribution must also satisfy Einstein’s equations,
which we will not cover. Often the spacetimes we will consider will contain a finite amount of
mass, so far away from that mass, there is no curvature, so the spacetime is called asymptotically
flat.

In special relativity, the proper time ∆τ between two timelike events is the time interval mea-
sured by an observer present at both events whilst in an inertial reference frame. In general
relativity, we compute the proper time experienced by a particle in the same way. If we pick a
reference frame where the particle remains at the origin, then the metric has only the dt2 term
in that reference frame.

ds2 = −dτ2 = g00dt
2. (2)

We get a minus sign in front of the dτ2 because we use the positive signature. This equation
can be rewritten into:

dτ

dt
=
√

−g00(x). (3)
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This gives the ratio between the proper time dτ and the outside observer measuring a time dt
and the particle at spacetime coordinates x, so if dτ

dt is smaller than one, time dilation happens,
as one second passes for the outside observer, less than one second passes for the particle.

To keep the equations in general relativity as elegant as the intuition behind it, physicists often
set c = G = 1, such that they can be removed from equations. In special relativity, setting
c = 1 means that length has dimensions of time, and one unit length equals one light-second.
Alternatively, we can of course say that time has units of length. Adding G = 1 means that
mass now has dimensions of length 1.

Now we will consider how we can find the equations of motion for a particle in curved spacetime,
we will modify the classical Hamiltonian and Lagrangian to work in curved spacetimes. The
action in classical mechanics is:

S =

∫
dt

m

2
gij(x)ẋ

iẋj . (4)

The classical Lagrangian for a free particle is:

L =
m

2

[(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
]
. (5)

Since we do not have absolute time in general relativity, we let the time t measured by a faraway
but stationary observer become another variable, just like the spatial variable x, y and z. We
differentiate using the proper time τ of the test particle, which is coordinate independent. Let
ḟ = df

dτ . Following [5], we declare the general relativistic action to be:

S =

∫
dτgµν(x)ẋ

µẋν . (6)

Additionally, we have the constraint that for massive particles,

gµν ẋ
µẋν = −1. (7)

and for massless particles, like photons, which follow so-called null geodesics, we have the con-
straint

gµν ẋ
µẋν = 0. (8)

For massive particles, this implies that the particle can’t stand still in a flat spacetime, if the
particle is spatially stationary, then g00ṫ

2 = −1, thus ṫ = 1, like we want. As an obvious
extension of the classical Lagrangian, we have:

L =
m

2
gµν ẋ

µẋν = cst. (9)

Remembering the geodesic constraints, we see that the Lagrangian itself is also constant. Al-
ternatively we can say that because gravity curves spacetime and is not a force itself, we don’t
need to add a potential term. Since we have no potential term, we have that L = T − V = H =
T + V = cst, we find that is indeed the case:

H = ẋµ ∂L
∂ẋµ

− L = L. (10)

Now we are ready to find the equations of motion in any spacetime metric.

2.2 Schwarzschild Metric

The Schwarzschild metric is the metric outside a spherical mass with zero electric charge and
angular momentum. A black hole has all its mass concentrated at one point.

ds2 = −
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1

dr2 + r2
(
dθ2 + sin2(θ)dφ2

)
, (11)

1consider V (r) = −GMm/r. Dimensionally, this is: M2L−1 = ML2T−2 = M , so M = L.

5



The Schwarzschild metric is only valid outside the Schwarzschild radius rs = 2GM
c2 = 2M , the

radius at which the curvature is so strong that even light cannot escape. This corresponds to
the event horizon of a neutral non-spinning black hole. The singularity in the dr2 term at r = rs
is caused by our reference frame. Nothing special happens to an infalling particle crossing the
event horizon. It keeps falling into the singularity. However, due to time dilation, this singularity
does have a special meaning to outside observers. As r → rs, we have that dτ

dt → 0, meaning
that as time passes for an outside observer, the infalling particle experiences less and less time.
This means that an outside observer never sees the particle crossing the event horizon.

2.2.1 Equations of Motion for Schwarzschild Metric

We now want to compute the equations of motion for a test particle travelling through a
Schwarzschild spacetime. This section is based on chapter 20 of [6]. Since the metric is spheri-
cally symmetrical, we use the spherical coordinates: (t, r, θ, φ):

x = r cosφ sin θ,

y = r sinφ sin θ,

z = r cos θ.

(12)

For the Schwarzschild metric, using equation (9), we get the Lagrangian of a particle with unit
mass:

L =
1

2

[
−
(
1− 2M

r

)
ṫ2 +

1

1− 2M/r
ṙ2 + r2φ̇2

]
. (13)

From this we can compute the canonical momenta.

pt = −∂L
∂ṫ

=

(
1− 2M

r

)
ṫ

pr =
∂L
∂ṙ

=
1

1− 2M/r
ṙ

pφ =
∂L
∂φ̇

= r2φ̇

(14)

We add a minus sign in front of the derivative for the time canonical momentum since we want
to regain the classical momenta in asymptotically flat space. Then writing the Hamiltonian, we
get:

H = ẋµ ∂L
∂ẋµ

− L =
1

2

[
1

1− 2M/r
p2t −

(
1− 2M

r

)
p2r −

1

r2
p2φ

]
. (15)

Since the Hamiltonian is independent of t and φ, we know that pt and pφ are constants of motion
and we set pt = E and pφ = L. For null geodesics, L = 0, so:

E2

1− 2M/r
− r2

1− 2M/r
− L2

r2
= L. (16)

We know from Hamilton’s equations that:

ṙ =
∂H
∂pr

= ±

√
E2 +

L2

r2

(
2M

r
− 1

)
,

ṫ =
∂H
∂pt

=
E

1− 2M/r
,

φ̇ =
∂H
∂pφ

=
L

r2
.

(17)

Here we computed ṙ using L = 0. We have the issue with the ± sign for ṙ. If we set L = 0,
then the ± is fixed as an initial condition, − means falling in, and + means escaping. The sign
does not change. However, for L ̸= 0, a particle can have a flyby with the black hole. Here the
sign does change. This sign change can be anticipated by calculating the perihelion in advance
or by flipping the sign when ṙ2 becomes very small.
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We also want to know the equations of motion for massive particles. On timelike geodesics,
we have that L = 1

2 , plugging that into equation (16), we get the equations of motion:

ṙ =
∂H
∂pr

= ±

√
E2 +

(
1 +

L2

r2

)(
2M

r
− 1

)
,

ṫ =
∂H
∂pt

=
E

1− 2M/r
,

φ̇ =
∂H
∂pφ

=
L

r2
.

(18)

We want to put the equations of motion in Cartesian coordinates, such that we can more
easily do computer simulations with two black holes orbiting around each other classically. We
have to write ẋ and ẏ in terms of ṙ and φ̇, we can do this using r =

√
x2 + y2 and cos(φ) = x

r ,
we then get:

ṙ =
xẋ+ yẏ√
x2 + y2

,

φ̇ = − y

x2 + y2
ẋ+

x

x2 + y2
ẏ.

(19)

Solving this system of equations, we have:

ẋ =
x

r
ṙ − yφ̇,

ẏ =
y

r
ṙ + xφ̇.

(20)

These equations will be important when switching between using the Schwarzschild metric in
spherical coordinates and Newtonian gravity in Cartesian coordinates for computing the path
taken by a particle.

2.3 Reissner-Nordström Black Holes

Of course, we can also consider black holes with electric charge Q. Such black holes are called
Reissner-Nordström black holes. If the charges are chosen right, multiple charged black holes
can be in a stable configuration together. The upcoming Majumdar-Papetrou solution gives
these kinds of spacetimes. The spacetime metric for charged black holes is [5]:

ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2

(
dθ2 + sin2(θ)dϕ2

)
,

∆ = r2 − 2Mr +Q2.

(21)

There are two important cases. Firstly, Q = 0, which gives ∆ = r2 − 2Mr, leading to the
Schwarzschild metric. Secondly, |Q| = M , with ∆ = (r − M)2 where the gravitational and
electrical forces are equally strong. These are called extremal black holes. Two stationary
extremal black holes with the same sign of charge will not attract nor repel each other. The
metric describing a spacetime with two such black holes will be time-independent. This metric
will be discussed in section 2.4. The equations of motion for a massless particle are:

ṙ2 = E2 − L2 ∆

r4
,

ṫ = E
r2

∆
,

φ̇ =
L

r2
.

(22)

For super-extremal black holes, with |Q| > M , ∆ has no zeros, meaning there is no event hori-
zon. Thus, we can observe the singularity, therefore called a naked singularity. The weak cosmic
censorship principle states that naked singularities cannot exist. Penrose proposed it in 1969
because causality might break down if naked singularities exist [7]. Sub-extremal black holes,
with 0 < |Q| < M instead have two roots for ∆, the larger root serving as the event horizon.
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Two stationary extremal black holes will remain stationary if they are initially stationary. Black
holes with large electric charges compared to their mass are not expected to exist since charged
elementary particles are super-extremal and would thus be highly attracted by any black hole
with a significant charge. The equations of motion for a particle in a spacetime with multiple
extremal black holes are given by the Majumdar-Papetrou solutions, which we will now discuss.

2.4 Majumdar-Papetrou Solution

We will now discuss another class of static spacetime metrics, the Majumdar-Papetrou metrics.
This class of solutions was found independently by Majumdar and Papetrou [8, 9]. These metrics
are parameterized by the spacetime function U(x⃗). We have:

ds2 = − 1

U2(x⃗)
dt2 + U2(x⃗)dx⃗ · dx⃗, (23)

where U is required to be harmonic meaning ∇2U = 0. and the electromagnetic potential is
A = 1

U dt so the electromagnetic and gravitational forces cancel each other out. Remember that
because the black holes curve space, the electrostatic force loses its simple 1

r2 dependence.

Hawking and Hartle [10] showed that a static N black hole spacetime could be constructed
from the Majumdar-Papetrou solutions using:

U(x⃗) = 1 +
∑
i

Mi

|x⃗− r⃗i|
. (24)

Here, adding the integer one is required to ensure that the spacetime is asymptotically flat. The
sum is the classical potential. The solution is very useful because it is the only spacetime where
two black holes are stationary relative to each other. Two Schwarzschild black holes orbiting
around each other would lose energy by the emission of gravitational waves. The time evolution
of such systems is very tough to determine. Two Extremal black holes with the same sign of
charge which are moving relative to each other feel a force dependent on v2 [11]. That means we
can’t simply extend the Majumdar-Papetrou solution to moving black holes without the black
holes influencing each other’s paths.

Let’s take n = 1 and r⃗1 = 0. As you come closer to the origin, dτ
dt → 0, suggesting a black

hole. For r ≫ 1, we have that
(
1 + M

r

)2 → 1 + 2M
r , which is equivalent to the time component

of the Schwarzschild metric, the rest follows similarly. Since at large distances we need to retrieve
Newtonian gravity, we can say that M is indeed the mass of the black hole.

To find the charge of the black hole, lets apply Gauss’ law at a very far distance from the
black hole, where the spacetime is flat:

4πQ = lim
r→∞

∫
Br

E⃗ · dA⃗. (25)

Here Br is the boundary of the three-dimensional sphere of radius r centred at the black hole.
And dA⃗ represent a surface element of the sphere. We have that E⃗ = −∇⃗

(
1
U

)
, because the

electromagnetic potential has only a dt term.

Ex = − d

dx

(
1

U

)
=

Mx

r(r +M)2
(26)

This means that:

4πQ = lim
r→∞

r2
M

(M + r)2
= 4πM. (27)

This shows that Q = M and thus the black hole is extremal. We will, however, get a different
value if we do not take the limit because then we are not in flat space. A rigorous derivation is
given in [6].
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Now let’s discuss the surface area of the singularity, writing the metric out, we get

ds2 = − 1

(1 + M
r )2

dt2 +

(
1 +

M

r

)2 (
dr2 + r2dθ2 + r2 sin(θ)dϕ2

)
. (28)

As we take r → 0, and trace out a sphere, setting dr2 = 0, only M2
(
dθ2 + sin2(θ)dφ2

)
remains

important, suggest a surface area of 4πM2, this suggests we should consider r⃗ = 0 as the event
horizon of a black hole. The origin represent a sphere with radius r = M , because the event
horizon of an extremal black hole is also r = M .

2.4.1 Equations of Motion for Majumdar-Papetrou Spacetimes

Like in equations (13) and (15), we can deduce the Lagrangian and Hamiltonian from the metric.
This is based on [12].

L =
1

2

(
−U−2ṫ2 + U2 ˙⃗x · ˙⃗x

)
. (29)

H =
1

2

(
−U2p2t + U−2p⃗ · p⃗

)
. (30)

We can then calculate using the Hamiltonian equations:

ṫ =
∂H

∂pt
= −U2pt,

ṗt = −∂H

∂t
= 0,

ẋi =
∂H

∂pi
= U−2pi,

ṗi = −∂H

∂xi
=

1

2

∂U2

∂xi
p2t −

1

2

∂U−2

∂xi
= U

∂U

∂xi
p2t +

1

U3

∂U

∂xi
p⃗ · p⃗,

= 2U
∂U

∂xi
p2t .

(31)

For ṗi we used the null geodesic constraint, namely that pµpµ = 0, that implies that:

0 = −U2p2t +
1

U2
p⃗ · p⃗. (32)

We set pt = −1 since we are free to choose a parameterization. We can transform the Hamiltonian
by multiplying the whole thing by U2. This amounts to a time rescaling. We also add 1

2 to
ensure a stationary particle far away from the black hole has H = 0.

H′ =
1

2

(
−U4 +

(
p2x + p2y + p2z

)
+ 1
)

=
1

2
|p⃗|2 + 1

2

1−

(
1 +

∑
i

Mi

|x⃗− r⃗i|

)4
 (33)

Here we have the H = 1
2 |p|

2 + V (x) structure, which we use in scattering theory and is suitable
for simulations. By applying the time geodesic constraint instead, we get a solution for a massive
particle.

2.5 Gravitational Waves

Gravitational waves are ripples in curvature of spacetime. Gravitational waves travel at the
speed of light and carry energy. The merger of two black holes releases gravitational waves,
which has been observed by LIGO [13]. Gravitational waves are also emitted when two black
holes orbit around each other at any distance, however, at large separations, the energy loss due
to gravitational waves are negligible. We can approximate the amount of time for two black
holes to merge based on the masses and the initial separation [14]

dr

dt
= −64G3

5c5
m1m2(m1 +m2)

r3
. (34)
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Which gives

tmerger =
5c5

256G3

r4

m1m2(m1 +m2)
. (35)

These estimations assume nearly circular orbits. For eccentric orbits, substituting rmin gives a
good approximation to the merger time because the r3 dependence of dr

dt means that the point
of closest approach to the other black hole dominates the gravitational wave emission.
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3 Scattering Theory

Scattering happens when an incoming particle interacts with a potential, where it either gets
trapped by the potential or escapes to infinity. Scattering theory is an important mathemati-
cal tool in physics and plays an especially large role in particle physics. Rutherford scattering
showed the existence of the atomic nucleus. We will use scattering theory to understand the
interaction of particles with black holes.

We base this introduction primarily on [15]. We will start by introducing some basic definitions.
Then we will show that the measure of trapped states is zero and discuss Rutherford scattering.
We will apply this theory to find the critical impact parameter of Reissner-Nördstrom black
holes and the scattering map of Schwarzschild black holes. We will work in two spatial dimen-
sions for simplicity, meaning that we will not discuss cross-sections commonly used in particle
physics since cross-sections are formulated for three dimensions. A mathematical discussion of
cross-sections can be found in [15].

Figure 1: Scattering of a particle, q−⊥ is the offset from the x-axis and ∆θ is the scattering angle.
Modified from [16, Figure 10.1].

3.1 Preliminaries

We use the Hamiltonian H(p⃗, q⃗) = 1
2 |p⃗|

2+V (q⃗), where x = (p⃗, q⃗) ∈ P, which belongs to the phase
space P = Rd

p ×Rd
q , thus p, q represent momentum and position respectively. The dimension of

the phase space is 2d, where d is the dimension of the position space for the particle. We will
often consider planar dynamics, thus d = 2. The time evolution of the Hamiltonian system is
given by the flow Φt(x0) = (p⃗(t), q⃗(t)), which solves Hamilton’s equations

˙⃗p = −∂H
∂q⃗

,

˙⃗q =
∂H
∂p⃗

(36)

and has the initial condition Φ(t0) = x0. We also define the flow in the free field (V (q) = 0),

to be Φ
(0)
t (x0) = (p0, q0 + p0t). We will often consider central potentials, which are spherically

symmetric around one point in position space, meaning that V (x) = V (|q|). For example, the
Coulombic potential is a central potential proportional to 1

|q| .

Definition 3.1 (Types of Potentials [15, Definition 12.1]). Let α = (α1, . . . , αd) ∈ Nd ∪ {0},
with the norm |α| =

∑
i αi. Let ϵ, c > 0. A potential V ∈ C2(Rd

q) is

• long range if ∣∣∣∣ ∂α1

∂qα1
1

· · · ∂αd

∂qαd

d

V (q)

∣∣∣∣ ≤ c(|q|2 + 1)−|α|/2−ϵ, (∀q ∈ Rd
q , |α| ≤ 2), (37)

• short range if∣∣∣∣ ∂α1

∂qα1
1

· · · ∂αd

∂qαd

d

V (q)

∣∣∣∣ ≤ c(|q|2 + 1)−|α|/2−1/2−ϵ, (∀q ∈ Rd
q , |α| ≤ 2), (38)
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• compactly supported if the potential vanishes outside of a compact subset of Rd
q .

All compactly supported potentials are short-range potentials, and all short-range potentials

are long-range potentials. For example, the Yukawa potential V (r) ∝ e−αmr

r is short-range since
the potential and its derivatives all fall off exponentially. The gravitational potential is long-
range since we cannot pick ϵ = 0 in equation (37). Long-range potentials are not allowed to have
a singularity. However, Coulombic potentials and the potentials for black holes have a singular-
ity at the origin. To deal with this, we introduce the absorption radius. Any scattering particle
which gets within the absorption radius of the centre gets absorbed, meaning that we can remove
the singularity since no particles ever reach it. Black holes deal with this very naturally due
to their event horizon, which is their absorption radius. Introducing the absorption radius is a
rather blunt solution, which is justified by the physical context of the scattering centres which
we want to use. This singularity can also be dealt with by regularization of the potential, which
was first given for the Kepler potential in [17].

Now that we have defined the two main types of potentials, we can define the types of orbits a
particle can experience. We have three types: bound states, which stay bounded in forward and
backward time. Trapped states come from infinity and then become bound to the potential or
vice versa. Scattering states, which come from infinity, interact with the potential and then go
back to infinity.

Definition 3.2 (Types of States [15, Definition 12.3]). Define the sets:

b± =

{
x ∈ P : lim

t→∞

(
sup
t′≥t

q(±t′, x)

)
< ∞

}
,

s± = (b±)C = {x ∈ P : lim
t→∞

q(±t, x) = ∞)},

t± = b± ∩ s∓.

(39)

Define the bound states to be: b = b+ ∩ b−, the scattering states to be: s = s+ ∩ s− and the
trapping states to be: t = t+ ∪ t−. Define ΣE = H−1(E) the set of initial conditions with energy
E and XE = X ∩ ΣE for any subset of the phase space P.

We use the supremum in the definition of b± since particles orbiting around the potential
should also count as bounded. For scattering states, this requirement can be dropped. The
phase space is covered by b, s and t, this can be checked with basic set theory.

By definition, long-range potentials go to zero at infinity. Particles with negative energy can’t
escape to infinity, so ΣE is compact for E < 0 since it is bounded and closed. We have ΣE = bE
for E < 0 since the particles cannot escape to infinity in forward or backward time. Additionally,
there is an energy threshold such that any state not directly pointed at the scattering centre
scatters. This energy threshold is related to the virial radius, which we will now discuss.

Theorem 3.3 (Virial Radius [15, Theorem 12.5]). For V a long-range potential, define the virial
radius Rvir(E) := c1E

−1/ϵ for E > 0. There exists c1 > 0, such that for x0 = (p0, q0) ∈ ΣE with√
||q||2 + 1 ≥ Rvir(E) and ⟨q0, p0⟩ ≥ 0, we have that x0 ∈ s+. Where ⟨·, ·⟩ denotes the inner

product.

We can now define the energy threshold E0 such that Rvir(E0) = 1. Above this threshold,
the particle scatters if ⟨q0, p0⟩ ≥ 0.

It is time to discuss some parameters that characterize a single particle’s scattering off a cen-
tral potential. We define the asymptotic impact parameter q±⊥ as the offset of the forward and
backward asymptotic position of the scattering particle from the tangent line going through the
origin. The scattering angle ∆θ is the angle between the initial and final direction of the particle.
This is shown in figure 1.

Theorem 3.4 (Asymptotic Parameters [15, Theorem 12.5]). For a long range potential we
define the asymptotic momentum p±(x0) : s

±
E → Rd to be:

p±(x0) := lim
t→±∞

p(t, x0) ∈ Rd
p. (40)
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Furthermore, |p±(x0)| =
√
2E. The asymptotic direction is the normalized vector p̂±(x0).

For a short range potential we define the asymptotic impact parameter q±⊥ to be:

q±⊥ : s±E → Rd
q ; q±⊥ = lim

t→±∞
(q(t, x0)−

〈
q(t, x0), p̂

±(x0)
〉
p̂±(x0)). (41)

The
√
2E term comes from E = 1

2mv2 = p2

2m . We cannot define the asymptotic impact
parameter for long range potentials because the potential still influences the motion too much
whilst going to infinity.

Definition 3.5 (Asymptotic Completeness [15, Definition 12.40]). A flow is asymptotically
complete if the limit:

v±(x0) = lim
t→±∞

q(t, x0)

t
(42)

exists for all x0 ∈ Rd
q . In contrast to the asymptotic momentum, this limit exists for trapped

states. Scattering with a static potential is asymptotically complete.

Surprisingly, it has been shown that in the 5-body problem, the distances between objects
can diverge in finite time [18]. One star moves between two binary star systems and drives them
apart, as shown in figure 2. This would be an example where the flow is not asymptotically
complete. We have a universal speed limit in special relativity, meaning that the asymptotic
velocity cannot go to infinity. However, the limit can still fail to converge. For example, when a
photon bounces between two mirrors moving away from each other, such configurations do not
exist when considering static spacetimes where you cannot place infinitely many mirrors.

In general relativity, if we consider an asymptotically flat and static spacetime, then no asymp-
totic incompleteness can be found by moving away very fast because then special relativity holds,
but incompleteness could be caused by the curvature in spacetimes. If you stand infinitesimally
close to the event horizon of a black hole, time dilation would be so large that you would see the
future whiz by. However, a massive observer cannot stand still at the event horizon, so this way
a divergence can’t be observed. If we take a super-extremal black hole, the event horizon is gone,
and the singularity becomes observable. Such a singularity is called a naked singularity. We
have that ṫ(r = 0) = 0 from equation (22), so an outside observer would see the entire evolution
of the singularity. This would violate asymptotic completeness if we change the definition to use
four-coordinates. Perhaps asymptotic completeness and the weak cosmic censorship principle,
as discussed at the end of section 2.3, are equivalent in asymptotically flat and static spacetimes.

Figure 2: Shuttle orbit causing a divergence in finite time [15].

3.2 Measure of Trapped States

We could imagine orbits that neither scatter nor get absorbed by either black hole. Those states
would continue orbiting around one or two of the black holes. These orbits could continually
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drive the two black holes together or apart. However, the Schwarzschild capture theorem states
that the measure of trapped states is zero. We can thus ignore those trapped states. Before we
can state this theorem, we have to introduce some definitions.

Definition 3.6 (σ-Algebra). A σ-Algebra on a set X is a set Σ of subsets of X which is closed
under complements and countable unions and intersections.

Definition 3.7 (Measure). Let X be a set and Σ a σ-algebra. The function µ : Σ → R ∪ {∞}
is a measure on X if:

1. µ(E) ≥ 0, ∀E ∈ Σ,

2. µ(∅) = 0,

3. µ (
⋃∞

k=1 Ek) = Σ∞
k=1µ(Ek), if the {Ek} are pairwise disjoint.

A measure is complete if S ⊆ N ∈ Σ and µ(N) = 0 implies that S ∈ Σ. The Lebesgue measure
λn on Rn is a complete translation invariant measure with µ([0, 1]n) = 1.

We have a theorem that states that the flow under a smooth Hamiltonian system preserves
the measure, so the measure in phase space is a useful object to consider.

Theorem 3.8 ([15], Theorem 9.8). Let H ∈ C2(P,R) generate a flow Φ on P. Then Φt preserves
the Lebesgue measure λ2d.

Theorem 3.9 (Schwarzschild’s Capture Theorem [15, Theorem 12.16]). Let Φ : Z × P → P
a dynamical system that preserves a measure µ on P, A ⊆ P measurable with finite measure.
For A± =

⋂
t∈N0

Φ±t(A), we have that µ(A+∆A−) = 0. The symmetric difference is defined as:
A∆B = (A\B) ∪ (B\A).

Proof. For all T ∈ Z, we have:

µ(A±) = µ(∩t∈N0Φ±t(A)),

= µ(ΦT (∩t∈N0Φ±t(A))).
(43)

Where the last equality holds because the measure is preserved by the flow.

µ(ΦT (∩t∈N0
Φ±t(A))) = µ(∩t∈N0

ΦT±t(A))

=(b) µ(∩t∈ZΦt(A))

= µ(A+ ∩A−)

(44)

The second equality holds because ∩t∈N0ΦT±t(A) converges to ∩t∈ZΦt(A), thus by theorem 3.2
of [19] the measures also converge. We have that A+ = A− and A∆B = ∅.

We know from theorem 3.8 that Schwarzschild’s capture theorem applies to the dynamical
systems we are considering. Using Schwarzschild’s capture theorem, we can prove the following
lemma.

Lemma 3.10 (Measure of Trapped States [15, Theorem 12.15]). The measure of trapped states
of a compactly supported potential V ∈ C2(Rd

q ,R) is zero.

Proof. The set t = s+∆s− is measurable because it is constructed from the open sets s±. For
k ∈ N, we construct:

Ak :=
{
(p, q) ∈ H−1([0, E0])

∣∣ ||q|| ≤ k
}
. (45)

We can restrict ourselves to energies between 0 and E0, where E0 is the energy threshold from
theorem 3.3. Because negative energies only give bounded states and above the energy threshold,
all states scatter. We know that λ2d(Ak) < ∞ because they are compact. The Hamiltonian is
twice differentiable if the potential is twice differentiable.

By theorem 3.9 we have λ2d(A+
k ∆A−

k ) = 0, which implies that λ2d(∪k∈NA
+
k ∆A−

k ) = 0 and
since t ⊆ ∪k∈NA

+
k ∆A−

k , we have λ2d(t) = 0.

We have now shown that only scattering states and absorbing states are important when
considering the force applied to a black hole by a photon flux.
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3.3 Rutherford scattering

Rutherford scattering is the scattering of massive particles by a Coulomb potential, where the
resulting Coulomb force may be attractive or repulsive. In 1909 Geiger and Marsden performed
an experiment which showed the existence of the atomic nucleus [20]. They fired alpha particles
at a few atoms thick gold foil and found that the foil greatly deflected a small portion of the
alpha particles. The dominant plum pudding theory of the atom, where the positive charge is
more spread out, could not produce the Coulomb force required. The positive charge needs to
be concentrated at one point, the nucleus.

Rutherford scattering can be very broadly applied because both classical gravity and the elec-
trostatic potential have an 1

r -dependence. We will compute the scattering angle as a function of
the impact parameter and force felt by one particle as it encounters particles from all possible
impact parameters at once. We will take the general potential V (r) = −k

r , where for gravity we
have k = GMm. We give the scattering particle unit mass.

We can relate the impact parameter D to the constants of motion using:

D =
(
r − p

m
t
)
tan(φ(t)). (46)

Here we assume that r is very large, and we are thus in the free field regime. We can differentiate
both sides by time to get:

0 = − p

m
tan(φ(t)) + φ̇(t)

r − p
m t

cos2(φ(t))
,

= −
√
2E tan(φ) +

(
r − p

m
t
)
φ̇,

tan(φ) =
L√

2E
(
r − p

m t
) .

(47)

So we have D = L√
2E

. Now we want to calculate the scattering angle, we can say

∆φ(E,L) =

∫ ∞

−∞

dφ

dt
dt+ π, (48)

We add π because in free motion, the radial angle of the incoming particle changes by π because
first, it is on the left of the centre and eventually on the right of the centre. We want to ensure
that in free motion, the scattering angle is zero.

However, this integral is not easy to calculate, so we write it using dφ
dr instead. The point

of closest approach, the perihelion, is denoted by P . We multiply the integral by two because
we need to go from infinity to the perihelion and then back to infinity.

∆φ(E,L) = 2

∫ ∞

P

dφ

dr
dr + π. (49)

At the perihelion, the radial velocity is zero, let’s calculate this:

E =
1

2

(
ṙ2 + r2φ̇2

)
− k

r
, (50)

ṙ2 = E − L2

2r2
+

k

r
= 0. (51)

Finding the positive root of this polynomial, gives us:

P =
−k +

√
k2 + 4E2D2

2E
. (52)

This determines P in terms constants of motion. We can now also calculate the integrand.

dφ

dr
=

dφ
dt
dr
dt

=
L

r2
√
2
(
E − L2

2r2 + k
r

) (53)
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Integrating, we get the Rutherford scattering angle:

∆φ(E,L) = 2 arctan

(
k

L
√
2E

)
. (54)

Now we can compute the force applied upon the scattering centre when particles with all
possible impact parameters, but fixed direction interact with the centre. The momentum of the
particles with impact parameters within an arbitrary interval [D,D + 1] which encounter the
centre per second is given by pflux. When a particle with initial momentum p⃗i = (1, 0) scatter
with a scattering angle ∆φ, its final momentum is p⃗f = (cos(∆φ), sin(∆φ)). The momentum
transferred upon the centre, is thus p⃗c = (1− cos(∆φ),− sin(∆φ)). The force we want compute
is:

Fx =

∫ ∞

−∞
1− cos(∆φ(D))dD,

Fy =

∫ ∞

−∞
− sin(∆φ(D))dD.

(55)

Because both sin and ∆φ are antisymmetric functions, we have that contributions of positive
and negative impact parameters cancel for Fy and thus Fy = 0. We still want to compute Fx.
We can rewrite equation (54) into:

tan

(
∆φ

2

)
=

k

2ED
:= α. (56)

Writing in terms of cos(∆φ), we get:

α2 =
1− cos2

(
∆φ
2

)
cos2

(
∆φ
2

) =
1
2 (1− cos(∆φ))
1
2 (1 + cos(∆φ))

. (57)

We can solve for cos(∆φ), which results in:

cos(∆φ) =
1− α2

α2 + 1
. (58)

We want the momentum transferred to the centre. We get this by integrating over the impact
parameter. We substitute x = 2ED for D. Thus:

Fx =

∫ ∞

−∞
(1− cos(∆φ(D)))dD =

∫ ∞

−∞

2α2

1 + α2
dD =

∫ ∞

−∞

2dD
4E2D2

k2 + 1

=
k

E

∫ ∞

−∞

dx

x2 + 1
=

k

E
π

(59)

Interestingly, we have that force on the scattering centre decreases as the energy of the
incoming particles increases. This is because fast-moving particles have a lower scattering angle.

3.4 Critical Impact Parameter of Reissner-Nordström Black Holes

The critical impact parameter Dc is the impact parameter such that for all D such that 0 ≤ D <
Dc, the photon is absorbed and for all larger impact parameters D > Dc, the photon scatters. It
is important to calculate this critical impact parameter to better understand the system before
computing the scattering angle and testing the accuracy of the simulation results. We follow the
method in [6]. Recall the equations of motion from equation (22):(

dr

dτ

)2

= E2 − L2 ∆

r4
,

dt

dτ
= E

r2

∆
,

dφ

dτ
=

L

r2
,

(60)
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with ∆ = r2−2Mr+Q2. The proper time τ is the time experienced by the particle, and t is the
time for a far-away stationary observer. Setting Q = 0, we get back the Schwarzschild equations
of motion. Setting Q = M gives ∆ = (r −M)2, which gives you a double root.

The equations of motions use angular momentum, but we want to express the initial condi-
tion using the impact parameter D. They are connected via D = L/E for the photon case, in
the previous section we had D = L√

2E
for massive non-relativistic particles. We will now show

this. We have: φ = tan(D/r), if we use the approximation r ≫ D and r ≫ M , then

dφ

dt
=

D

(r − t)2 cos2(D/(r − t))
≈ D

r2
,

dt

dτ
= E

r2

∆
≈ E,

L = r2
dφ

dτ
= r2

dφ

dt

dt

dτ
= r2

D

r2
E = DE.

(61)

Now going to back to the absorption cross section, we replace r by u = 1
r :(

du

dφ

)2

=
1

r4

(
dr

dτ

)2(
dτ

dφ

)2

=
1

r4

[
E2 − L2 ∆

r4

]
r4

L2
,

=
1

D2
−Q2u4 + 2Mu3 − u2 = f(u).

(62)

The perihelion P = 1
uP

of any scattering trajectory will have f(uP ) = 0. To get the minimal
perihelion Pc possible, it should be the largest uc with such a property. Additionally, f(uc)
should be a double root since if f ′(uc) ̸= 0, then f(uc +∆u) or f(uc −∆u) would be negative,
which implies that du

dφ is imaginary, which is not allowed. Solving both equations, gives:

uc =
3M

4Q2

(
1−

√
1− 8Q2

9M2

)

rc =
3

2
M

[
1 +

√
1− 8Q2

9M2

]

Dc = D(rc) =
r2c√
∆(rc)

(63)

Where the value of Dc follows from the requirement that f(uc) = 0. This gives (rc, Dc) =
(3M, 3

√
3M) for the Schwarzschild case and (rc, Dc) = (2M, 4M) for the extremal case. The

absorption cross section is then σabs = πD2
c .

3.5 Scattering Angle of a Schwarzschild Black Hole

We now consider the scattering angle of a test particle scattered by a Schwarzschild black hole.
Given a impact parameter D, the perihelion P can be calculated using equation (63).

D2(P ) =
P 4

P 2 − 2MP
=

P 3

P − 2M
, (64)

Note that P ≥ rc = 3M . Now we should find the other roots of

f(u) =

(
du

dφ

)2

= 2Mu3 − u2 +
1

D2
=

(
u− 1

P

)(
2Mu2 − P 2

D2
u− P

D2

)
. (65)

The roots are:

u1 =
P − 2M −Q

4MP
, u2 =

1

P
, u3 =

P − 2M +Q

4MP
, (66)

with
Q2 = (P − 2M)(P + 6M). (67)
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Let’s apply the coordinate transformation:

u− 1

P
= −Q− P + 6M

8MP
(1 + cosχ). (68)

For this to be a well-behaved transformation, we require that: 0 ≤ χ∞ < χ ≤ π. At χ = π, we
have that u = 1

P . Where χ∞ is the value for which equation (68) holds for u = 0.

χ∞ = 2arcsin

(√
1− 4M

Q− P + 6M

)
(69)

or equiventally

sin2
(χ∞

2

)
= 1− 4M

Q− P + 6M
(70)

Now we want the equation of motion for χ. Take α = Q− P + 6M . We have:(
du

dχ

)2

=
α2

4(8MP )2
sin2(χ),(

du

dφ

)2

= 2M

(
u− 1

P

)(
u− P − 2M −Q

4MP

)(
u− P − 2M +Q

4MP

)
,

=
−2Mα

8MP
(1 + cosχ)

( α

8MP

)
(1− cosχ)

1

8MP
(−4Q+ α(1− cosχ)),

=
8α2QM

(8MP )3

(
1− α

2Q

)
sin2 χ.

(71)

Combining these, we get:(
dχ

dφ

)2

=

(
dχ

du

)2(
du

dφ

)2

=
P

Q
(1− k2 sin2(χ/2)). (72)

with k2 = (Q− P + 6M)/2Q. We can express the angle φ as an integral of:

∆φ = 4

√
P

Q

∫ π/2

χ∞/2

dt√
1− k2 sin2(t)

. (73)

We must multiply by two to change the argument of sin(χ/2). To get the scattering angle,
we need to multiply the angle between the incoming direction and the perihelion by two as well,
to take into account the angle between the perihelion and the outgoing direction, which is equal
to the other angle.

3.5.1 Far Field Approximation to the Schwarzschild Scattering Angle

We start by computing the scattering angle due to a single Schwarzschild black hole at high
impact parameters. We will write everything in terms of the perihelion P because at large
values, P ≈ D. First, we give a second-order approximation to Q:

Q =
√
P 2 + 4MP − 12M2 ≈ P + 2M − 8M2

P
+

16M3

P 2
. (74)

Now we give the second-order approximation to k, here we plug in the approximation to Q and
then again approximate.

k2 =
Q− P + 6M

2Q
≈

8M − 8M2

P + 16M3

P 2

2P + 4M − 16M2

P + 32M3

P 2

≈ 4M
P −M

(P − 2M)(P + 4M)
(75)

Finally, we want an approximation to χ∞, we will first compute sin2 (χ∞/2).

sin2
(χ∞

2

)
= 1− 4M

Q− P + 6M
≈ 1− 4M

8M − 8M2/P + 163/P 2
≈ 1− P 2

2P 2 − 2MP + 4M2
(76)
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Figure 3: Schwarzschild scattering angle for photons computed using equation (73).

We then have:

χ∞ = 2arcsin

(√
1− P 2

2P 2 − 2MP + 4M2

)
=

π

2
− M

P
. (77)

Combining everything, we get:

∆φ = 4

√
P

Q

∫ π/2

χ∞/2

dt√
1− k2 sin2(t)

= 4
M

P

√
P

Q(1− k2)
= 4

M

P
. (78)

The term in the square root goes to one, because Q → P and 1 − k2 → 1 at high impact pa-
rameters. This final answer is actually the Einstein angle, Einstein derived the formula in 1912
before publishing General Relativity [5, 21].

Now let us consider the net force exerted upon the black hole by photons coming from one
direction, with all possible impact parameters, like in the case of Rutherford scattering (59).
Without using the high impact parameter approximation, we can find this force by numerical
integration.

Fx = 2Dc + 2

∫ ∞

Dc

1− cos(∆φ(D))dD ≈ 18.6705M. (79)

The net force is linear in M , which is far from obvious looking at equations (73) or (??).
Comparing to equation (59), which in contrast in only true for massive particles, selecting v = 1,
we see that the force differ by a ratio of about 3, showing that relativistic effects matter.
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4 Perturbed Kepler problem

We will consider the Kepler problem, where a planet orbits the sun due to their gravitational
attraction. The planet moves through the potential V (r) = −k

r wit k = GMm. The Kepler

problem has three constants of motion: energy E, angular momentum L⃗ and the Laplace-Runge-
Lenz (LRL) vector A⃗. The LRL vector is directly related to the eccentricity of the orbit and will
be explained further below.

To deal with the orbiting case of black hole mergers induced by a photon flux, we need to
know how the orbit of a planet is affected by a small additional force applied to it. These effects
will be studied by looking at the change in the constants of motion of the orbit. We want to
look for continually increasing eccentricity and whether or not the eccentricity of the circular
orbit with eccentricity e = 0 changes over time. If the eccentricity is unstable, this would be an
avenue for the gravitational waves to force a merger since the decrease in the separation between
the black holes scales with r−3, as can be seen from equation 34. The minimal distance during
an orbit between the black holes effectively determines the merger rate.

First, we discuss Kepler’s laws to get a basic understanding of the Kepler problem. Then
we will transform the system to action-angle coordinates, where two coordinates are constants
of motion, and the other two are ’angles’. We keep track of the periodic variation in the distance
between the planet and the sun and the angular coordinate of the planet’s position. Then we
consider the averaging principle, which states that we can compute the effects of the perturbative
force by considering its average effect on the constants of motion over one orbit of the planet.
Writing the system in the action-angle coordinates, we prove that the Coulomb potential satisfies
the requirement for the averaging principle to hold. Then in the last section, we compute the
effects of specific forces on the planet’s orbit.

We know that the Lagrangian in polar coordinates is:

L = T − V =
1

2
m
(
ṙ2 + r2φ̇2

)
− k

r
. (80)

From this we deduce the equation of motion:

d

dt

(
mr2φ̇

)
= mr2φ̈+ 2mrṙφ̇ = 0,

mr̈ = mrφ̇2 +
k

r2
.

(81)

The first equation shows conservation of angular momentum, L = mr2φ̇.

4.1 Kepler’s Laws

Kepler’s first law states that the planet’s orbit is described by an ellipse with the sun at one of the
two foci. As can be seen in figure 4, the parameters which define an ellipse are: the semi-major
axis a and the semi-minor axis b. The foci are located at (±c, 0). Using that every point on the
ellipse has an equal sum of distances to the foci, we get that (a− c) + (a+ c) = 2a = 2

√
b2 + c2,

implying that c =
√
a2 − b2. The eccentricity e is an unitless number indicating how squished

the ellipse is and is given by e = c
a ∈ [0, 1). If r± denote the farthest and closest distance

between the ellipse and one of the foci, then we have: r± = (1± e)a and e = r+−r−
r++r−

.

Apart from energy and angular momentum, there is one additional constant of motion in the
Kepler system, the Laplace-Runge-Lenz(LRL) vector. It is defined as:

A⃗ = p⃗× L⃗−mkr̂. (82)

Where r⃗ is the position relative to the sun, which is located at one of the foci, it can be shown
to be a constant of motion by:

d

dt

(
p⃗× L⃗

)
= F⃗ × L⃗ = − k

r2
r̂× (mr2ω⃗) = mkω⃗ × r̂,

d

dt
(mkr̂) = mkω⃗ × r̂.

(83)
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Figure 4: Notation for an ellipse, modified from [22].

Where ω⃗ is the angular velocity, we have that d
dt r̂ = ω⃗ × r̂, because only the phase of the unit

vector can change, and the angular velocity governs this change. Additionally, we can say that:

A⃗ · r⃗ = |A⃗|r cos θ,

= r⃗ · (p⃗× L⃗)−mkr = L2 −mkr,
(84)

where θ is the angle between A⃗ and r⃗. Which implies that:

u :=
1

r
=

mk

L2
(1 +

|A⃗|
mk

cos θ). (85)

It is related to the eccentricity of the orbit via:

e =
|A⃗|
m|k|

. (86)

This is because a conic subsection [23] can be described as:

r =
C

1 + e cos(θ)
. (87)

4.2 Action-Angle Coordinates

Action-angle coordinates are a choice of coordinates for integrable systems. Integrable systems
are dynamical systems with a sufficient number of independent constants of motion. The Kepler
problem is one such system. Action-angle coordinates consist of n constants of motion I⃗ =
(I1, · · · , In), and n angles θ⃗ = (θ1, · · · , θn), which are periodic function of time. This introduction
is based on [24]. The general form of the action-angle coordinates system is:

(p⃗, q⃗) → (I⃗ , θ⃗). (88)

Here we scale θi such that 0 ≤ θi < 2π. With such a choice of coordinates, the Hamiltonian
takes the form H = H(I⃗). Because the Hamiltonian is independent of the angle variables, we
have:

˙⃗
I = 0

˙⃗
θ =

∂H
∂I⃗

= ω⃗
(89)

Where ω⃗ is constant. The right construction for I⃗ to get the system above is given by:

Ii =
1

2π

∮
pidqi. (90)

Where we integrate over one orbit of the particle. The derivation can be found in [24].
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4.2.1 Action-Angle Coordinates of the Kepler Problem

Let us derive the action-angle coordinates of the Kepler problem. Consider the Hamiltonian

H =
|p⃗|2

2m
− k

|q⃗|
=

p2r
2m

+
p2ϕ

2mr2
− k

r
. (91)

Then we have:

Iϕ =
1

2π

∫ 2π

0

pϕdϕ = pϕ (92)

Note that pϕ is already a conserved quantity. Using equation (91), we can write pr in terms of
r and the constants of motion.

p2r = 2m

(
E +

k

r

)
−

I2ϕ
r2

(93)

We then have the integral:

Ir =
1

2π

∮
prdr =

1

π

∫ rmax

rmin

prdr =
1

π

∫ rmax

rmin

√
2m

(
E +

k

r

)
−

I2ϕ
r2

dr. (94)

The second integral only integrates over half the path of the first integral, since the second
integral doesn’t complete the loop. Therefore, the second integral is multiplied by two, leading
to the 1

π term in front. Skipping the computation of the final integral, we get:

Ir =

√
m

2|E|
k − Iϕ. (95)

We can also write the energy in terms of the action variables, to get the new Hamiltonian.

E = − mk2

2(Ir + Iϕ)2
(96)

From Hamilton’s equations, we can compute:

θ̇r =
∂H
∂Ir

θ̇ϕ =
∂H
∂Iϕ

(97)

Because the energy equation 96 is symmetric in Ir and Iϕ, we have that θ̇r = θ̇ϕ, meaning
that the Kepler problem is a single frequency system. The orbit returns to the same point
periodically, and thus the orbits are closed because the particle’s motion repeats itself after one
cycle. Bertrand’s theorem [25] states that the Kepler problem and the harmonic oscillator are
the only central potentials with bound orbits, for which all bound orbits are closed orbits, so
this is a very special property.

4.3 The Averaging Principle

We want to compute the long-time effect of small perturbations of the gravitation force on the
planet’s orbit. These long-time effects will be represented by the evolution of the constants
of motion of the planet over time. One method, the averaging principle, is to average the
perturbation’s effect on the constants of motion over one orbit and use this average to determine
the time evolution of the constants of motion. In Arnold’s [26], the averaging principle is
discussed. We will informally state the averaging principle before proving that it applies to the
Kepler problem. Consider the unperturbed case:

⃗̇I = 0,
⃗̇
θ = ω⃗

(
I⃗
)

(98)

Where as before, ω⃗(I⃗) = ∂H0

∂I⃗
, with H0 the unperturbed Hamiltonian. We then add the pertur-

bation:
⃗̇I = ϵg

(
I⃗ , θ⃗
)
,

⃗̇
θ = ω⃗

(
I⃗
)
+ ϵf

(
I⃗ , θ⃗
)
. (99)
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Then the averaging principle states that the differential equation:

⃗̇J = ϵg̃(J⃗) =
ϵ

(2π)k

∫ 2π

0

· · ·
∫ 2π

0

g(J⃗ , θ⃗)dθ⃗ (100)

is a good approximation to ⃗̇I = ϵg
(
I⃗ , θ⃗
)

at large time scales, a notion which will be made

rigorous below. The averaging principle is not a general theorem. However, for single-frequency
systems, we can say that the difference has a strict bound under some conditions, which will be
discussed in the theorem below.

Theorem 4.1 (Averaging in a single-frequency system [26, page 294]). Suppose that:

1) the functions ω, f, g are defined for I⃗ in a bounded region G, and they and their first and
second-order derivatives are bounded in G.

|ω(I⃗)|, |f(I⃗)|, |g(I⃗)| < c1, ∀I⃗ ∈ G. (101)

2) In the region G we have that ω(I⃗) > c2 > 0.

3) For 0 ≤ t ≤ 1
ϵ , a neighborhood of radius d of the point J⃗(t) belongs to G.

Then for sufficiently small ϵ, (0 < ϵ < ϵ0),

|I⃗(t)− J⃗(t)| < Cϵ, ∀t : 0 ≤ t ≤ 1

ϵ
. (102)

Here C may depend on c1, c2 and d, but not on ϵ.

Note that the Kepler problem is a single frequency problem. It can be checked that all
assumptions of the theorem hold, so J⃗(t) is a good approximation to the actual effects of the
perturbation. It is often more convenient to calculate the time average of a quantity. The time
average of a function f(θ⃗) is:

⟨f⟩ = 1

T

∫ T

0

f
(
θ⃗(t)

)
dt. (103)

Luckily, we have the following theorem.

Theorem 4.2 ([26, page 286]). The time average of f(θ) exists everywhere and coincides with
the space average if f is continuous and the frequencies φ⃗ are independent over Z.

A vector φ⃗ is independent over Z if k⃗ · φ⃗ = 0 implies that k⃗ = 0. Since the Kepler problem
has just one frequency, this theorem applies. Although everything is formulated in action vari-
ables here, in the next section, we will calculate the effect on the constants of motion E, L⃗ and
|A⃗|. Since the action variables determine these constants of motion, this is allowable. The norm

|A⃗| is dependent on E, L⃗ through |A⃗| = mke, because the eccentricity is also determined by E, L⃗.

However, the action variables don’t fully determine the constants of motion. The phase of
the LRL-vector is, for example, determined by the phase between the angles θφ and θr. The
unperturbed system has a single frequency, so the phase of the LRL-vector is also preserved.
In a perturbed system, the averaging principle allows us to compute the time evolution of the
action variables but not the angle variables, so the phase between the two angles shifts over
time, leading to a perihelion shift.

4.4 Effect of Outside Forces on Orbits

Now we will calculate what happens when the particle’s Kepler orbit is perturbed by an outside
force acting on the planet. We want to do this to understand how the shadowing force affects
the black hole binary. Let this outside force be denoted by F⃗s. Let’s first compute the time

23



derivative of the constants of motion if you apply an outside force:

Ė =
1

m
( ˙⃗p+ F⃗s) · p⃗+ k

d

dt

(
1

r

)
=

1

m
F⃗s · p⃗,

˙⃗
L = r⃗× (F⃗s + ˙⃗p) + ˙⃗r× p⃗ = r⃗× F⃗s,

˙⃗
A = F⃗s × L⃗+ p⃗× ˙⃗

L = F⃗s × (r⃗× p⃗) + p⃗× (r⃗× F⃗s)

= 2r⃗(F⃗s · p⃗)− p⃗(F⃗s · r⃗)− p⃗(F⃗s · r⃗).

(104)

We can apply the averaging principle to perturbations in E and L⃗ and |A⃗| because they are

determined by the action variables. This isn’t true for the phase of A⃗.

4.4.1 Radial Forces

Firstly we will compute the effect of an additional radial force on the problem because the
shadowing force for stationary black holes is a radial force. This is because the spacetime
is symmetric over the axis connecting the two black holes. The orbits are Kepler orbits for
perturbative radial forces with an r−2 dependence. You can modify k = GMm to incorporate the
perturbative force. This means that they will have closed orbits. For a more general Fs = αnr

nr̂
we have:

˙⃗
L = r⃗× F⃗s = 0〈

Ė
〉
=

1

m

〈
F⃗s · p⃗

〉
= 0〈

˙⃗
A
〉
=
〈
F⃗s × L⃗

〉
=
〈
αrn−1[r⃗× (p⃗× L⃗)]

〉
=
〈
αrn−1

[
p⃗(r⃗ · L⃗)− L⃗(r⃗ · p⃗)

]〉
= −αL⃗

〈
rn−1r⃗ · p⃗

〉
= 0

(105)

This is because
〈
rn−1r̂ · p⃗

〉
= 0 by symmetry. We can show this by reflecting the particle’s

position through the x-axis, assuming the ellipse’s foci lay on the x-axis.〈
rn−1(rxpx + rypy)

〉
=

1

2

(〈
rn−1 ((−rx)px + (ry)(−py))

〉
+
〈
rn−1(rxpx + rypy)

〉)
= 0 (106)

Because of the averaging principle, a small radial force will never have large consequences, even if
it acts over a long time. In the figures below, it can be seen that the variation in the constants of
motion is periodic. Only a r−2 force produces closed orbits, as predicted by Bertrand’s theorem.
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Figure 5: The variation in the constants of motion for a perturbative force of r−3, there is a
significant perihelion shift and a periodic variation in the constants of motion.
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Figure 6: This is the only setup where there is no perihelion shift, because we retain the r−1

dependence of the potential.
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Figure 7: The variation in the constants of motion for a perturbative force of r−1, there is a
significant perihelion shift and a periodic variation in the constants of motion.
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4.4.2 Drag Forces

Consider the drag force: ṗs = Fs = αp⃗, α < 0. These significantly effect the orbit, their effect
on the angular momentum is:

˙⃗
L = r⃗× ṗs = αL⃗ (107)

That gives an exponential decay independent of any other constants of motion. The other
constants of motion give:

Ė =
1

m
p⃗ · ˙⃗ps =

α

m
|p⃗|2. (108)

To compute
〈
Ė
〉
, we would like to know ⟨cos θ⟩ and

〈
1
r

〉
. Since the difference in the x-

direction between the planet and the sun is x = a cos θ, because the sun is offset by a · e from
the centre of the ellipse, we have: ⟨a cos θ + ae⟩ = 0, which implies ⟨cos θ⟩ = −e. We can now
compute

〈
1
r

〉
. 〈

1

r

〉
=

km

L2
+

A

L2
⟨cos θ⟩

=
mk

L2
− A

L2
e

=
mk

L2
(1− e2)

=
mk

L2
(−E)

2L2

mk2

= −2E

k
.

(109)

Going back to calculating
〈
Ė
〉
, we get:〈

Ė
〉
= − α

m
⟨p⃗ · p⃗⟩ = −2α ⟨K⟩ . (110)

Where K is the kinetic energy. We can use partial integration to show:

⟨p⃗ · p⃗⟩ =
∫ T

0

p⃗ · p⃗dt = m [p⃗(t) · r⃗(t)]T0 −m

∫ T

0

F⃗ (t) · r⃗(t)dt = −m
〈
F⃗ · r⃗

〉
. (111)

The first term of the partial integration is zero because, at t = T , we have traversed one orbit
and are back where we started. This statement is equivalent to the virial theorem which states

that ⟨T ⟩ = − 1
2

〈
F⃗ · r⃗

〉
in the single-particle case [27]. We can furthermore say〈

F⃗ · r⃗
〉
= −GMm

〈
1

r

〉
+ α ⟨p⃗ · r⃗⟩ = −GMm

〈
1

r

〉
= −2E. (112)

Putting everything together gives: 〈
Ė
〉
= −2αE, (113)

which shows that the energy exponentially decreases to negative infinity for α < 0 and bounded
energies E < 0. We can now compute the perturbation of the LRL vector.

˙⃗
A = F⃗s × L⃗+ p⃗× ˙⃗

L = 2αp⃗× L⃗ (114)

Using that ⟨p⃗⟩ = 0, because after one orbit, we return where we started, we get〈
˙⃗
A
〉
= 2αL ⟨p⃗× ẑ⟩ = 2αL [⟨py⟩ x̂− ⟨px⟩ ŷ] = 0. (115)

We can also calculate the change in the semi-minor axis of the orbit rmin = L2

km(1+e) , we get:

ṙmin = 2
LL̇

km(1 + e)
= 2α

L2

km(1 + e)
= 2αrmin (116)

Comparing to the rate of change of the semi-minor axis due to gravitational waves (34), which
has a r−3, we can see that at large distances, a drag force dominates the effects of gravitational
wave emissions.

The simulations show the predicted exponential decay of energy and angular momentum
until very close to the centre, where the simulations are no longer accurate.
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Figure 8: As can be seen, the predicted change of the constants of motion hold well until the
simulation accuracy falls, because the particle gets to close to the centre.

4.4.3 Mass increases

When a black hole absorbs a particle, its mass increases. If this black hole forms part of a black
hole binary, its orbit is also affected. We consider a mass increase of the form ṁ = αm. Note
that we are just adding weight to the planet, and the planet’s momentum is not affected because
the incoming direction of the absorbed particles is isotropic. We have that = 0, because neither
r⃗ nor p⃗ are affected. The case for energy is a bit more difficult. To start with, we have:

dE

dm
ṁ = ṁ(− p2

2m2
− k

mr
) = −ṁ

m
(
p2

2m
+

k

r
). (117)

We will take the time average of the part in the brackets.〈
Ė
〉
= −ṁ

m

[〈
E +

k

r

〉
+

〈
k

r

〉]
= 3

ṁ

m
E. (118)

Here we used that
〈
k
r

〉
= −2E and rewrote the kinetic energy term in terms of the total energy

and the potential term. Let us now consider the LRL-vector, we have:

˙⃗
A = ṁ(−2kr̂). (119)

We know that r̂ = cos θx̂+ sin θŷ, where we as usual chose the axis such that the foci lay on the
x-axis. By a reflection symmetry through the x-axis, we have that ⟨sin θ⟩ = 0 and we use that
⟨cos θ⟩ = −e, then we have that:〈

˙⃗
A
〉
= −2kṁ ⟨r̂⟩ = 2kṁex̂ =

ṁ

m
A⃗. (120)
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Figure 9: As can be seen, the predicted change of the constants of motion hold well, there is no
change in the eccentricity and the planet spirals slowly towards the sun.

Differentiating both sides of mke = |A⃗|, you can see that ė = 0. Let us now compute the change

in the minimal distance between the planet and the sun, we have: rmin = L2

km(1+e) , we thus have:

ṙmin =
L2

(1 + e) k
m

d

dt

(
1

m2

)
=

L2

(1 + e) k
m

d

dt

−2ṁ

m3
= −2

ṁ

m
rmin (121)

We see ṁ
m appear again and again in the final answer, this is quite convenient, because the

absorption cross section of a single black hole scales linearly with its mass, thus its mass growth
also scales linearly with its mass. This is likely also a good first approximation for the mass
growth of black holes in a black hole binary. We can conclude that mass growth of the planet
does cause an inspiral.

Now let us consider the effects of the mass of the sun increasing. This calculation is very
similar to mass increases of the planet, we get:

˙⃗
L = 0,〈

Ė
〉
= −Ṁ

M

〈
k

r

〉
= 2E

Ṁ

M
,〈

˙⃗
A
〉
= −Ṁ

M
mk ⟨r̂⟩ = Ṁ

M
A⃗,

⟨ė⟩ = 0,

ṙmin = −Ṁ

M
rmin.

(122)

30



We see that there is again an inspiral predicted.
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Figure 10: As can be seen, the predicted change of the constants of motion hold well, there is
no change in the eccentricity and the planet spirals slowly towards the sun.
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5 Momentum Transfer Model

Now we will start studying the shadowing force. Firstly, we look at the shadowing force due to
Rutherford scattering. Since Rutherford scattering is not relativistic, the scattering centres are
not strictly speaking black holes, but for uniformity, they will be referred to as such. Secondly,
we will look at the shadowing force due to photons scattering off extremal black holes in the
Majumdar-Papetrou spacetime. Lastly, we will look at the shadowing force due to massive par-
ticle scattering off Schwarzschild black holes.

The code used for these simulations can be found on Github. Throughout this section, we
assume that the black holes have unit mass in geometrized units. For the impact parameters,
we use the integration interval [−104, 104], although the plots zoom into the interval with large
scattering angles.

For a single black hole, we have already discussed what forces are applied to a black hole when a
front of particles with one direction, but all possible impact parameters interact with the black
hole. We wrote this using the scattering angle of such particles. However, this method does not
work anymore when dealing with two black holes. We need to know the momentum transferred
to each black hole individually, which cannot be found by looking at the final momentum of
the particle. Instead, when we use the equations of motion to find the particle’s path, we add
variables to keep track of the momenta of the black holes. At each moment, the momentum
of the particle is changed by the forces the black holes apply to the particle, but the particle
applies the same force to the black hole.

Until now, we have assumed fronts of particles coming from one direction. We take instead
an isotropic flux of particles, a flux which is rotation and translation invariant. For a single
black hole, because the particle flux is isotropic, all the forces cancel out. For two black holes,
the shadowing force is produced.

When we want to find the force caused by a front of particles with the same direction nu-
merically, we use an integrator with an adaptive grid. Since numerically computing a single
orbit is computationally expensive, we wish to minimize the number of orbits we compute. One
way to do this is by adaptively choosing which points to sample. The spacing of grid points is
smaller when the first or second derivative of the momentum transfer is large.

When the particle is far away from the scattering centres, they travel in asymptotically straight
lines, and it is allowable to take a lower precision with simulation when a particle is far away
from a scattering centre. However, a small step size in the simulation is important. Naturally,
we want time to go fast far away from the scattering centres and slow near them. Therefore we
let the step size in the simulation depend on the particle’s distance from scattering centres.

5.1 Rutherford Shadowing Force

We first consider the shadowing force felt by two scattering centres due to Rutherford scattering.
Because Rutherford scattering is a classical phenomenon, instead of photons, we take massive
particles with velocities of v = 0.1c. Of course, this force and the force felt by black holes due
to relativistic scattering are not comparable.

In figure 12, the shadowing force for particles with initial direction θ0 = 0 is given. Pecu-
liar is that the shadowing forces in the x-direction are very similar, although the graphs are very
different. The relative difference between the integrals is about 0.2%, suggesting that the actual
value is zero or very small. In figure 12, the shadowing force for particles with initial direction
θ0 = π

2 is given. The relative forces in the x-direction are again small.

The shadowing force for particles coming from all directions is given by figure 13. As ex-
pected, the force in the x-direction is anti-symmetric over the two black holes. The forces in the
y-direction are very small as required. The graphs look like sine waves because we are rotating
the incoming direction of the particles.
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Momentum transfer from a photon flux to black hole versus impact parameter 
 for a black hole separation of 20.0 and incoming angle 0

BH1_x, total force: 57.758988
BH2_x, total force: 57.884831, difference -0.125843
BH1_y, total force: -0.045836
BH2_y, total force: 0.059786, difference -0.105623

Figure 11: The momentum transferred from the particles to the black holes for an incoming
angle of θ0 = 0. As can be seen, the total forces in the x-direction are very similar, although
the curves giving rise to them are very different. The total forces in the y-direction are almost
zero, like demanded by symmetry. Number of data points is N = 300, the particles have velocity
v = 0.1.
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Figure 12: The momentum transferred from the particles to the black holes for an incoming
angle of θ0 = π

2 . As can be seen, the total forces in the y− direction are the same for both
black holes. The forces in the x-direction are small and antisymmetric. Number of data points
is N = 300, the particles have velocity v = 0.1.
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Momentum transfer from a matter flux to black hole versus angle 
 for a black hole separation of 200.0

BH 1_x, total force: 1.4049707787751977
BH 2_x, total force: -1.4048577535674944
BH 1_y, total force: -0.034419876972654695
BH 2_y, total force: 0.03552542231934286

Figure 13: The shadowing force for particles coming from all directions. 20 Grid points where
used for the angles and each angle used 300 samples of different impact parameters.
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5.2 Extremal Black Hole Shadowing Force

We now consider the shadowing force by two extremal black holes. We use the Majumdar-
Papetrou spacetime and compute the orbits of the photons numerically. In contrast to Ruther-
ford scattering, the photons can be absorbed by the black holes. This, however, causes issues.
Due to time dilation, an outside observer never sees the photon cross the event horizon. Thus
the particle keeps exchanging momentum with the other black hole. This leads to an unbounded
increase in momentum for the other black hole. We need to make an arbitrary choice, at what
distance from the black hole do we stop the simulation. Since we use the Majumdar-Papetrou
spacetime, the event horizon of a black hole is a point. Thus we still need to pick a nonzero
distance due to the finite precision of numerical simulations. This issue makes sense because
when the particle gets absorbed by the black hole, the black hole is no longer extremal. Thus
there would be a net attraction between the two black holes.

Two black holes with equal charges also cannot form a Kepler system at large distances be-
cause there are velocity-dependent forces [11].

Objects transfer the majority of their momentum to the black hole when it gets absorbed by
the black hole. A part of the momentum is emitted in gravitational waves. The energy emitted
is proportional to m2 [28]. Thus for light particles, we can assume that the entire momentum is
transferred to the black hole. If the black hole is moving relative to the source of the particles,
these forces will change. We will use Rabsorb = 10−4 in the simulations unless stated otherwise.
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Momentum transfer from a photon flux to black hole versus impact parameter 
 for a black hole separation of 20.0 and incoming angle 0

BH1_x, total force: 20.884481
BH2_x, total force: 13.497511, difference 7.386969
BH1_y, total force: 0.001822
BH2_y, total force: 0.000661, difference 0.001161

Figure 14: In contrast to Rutherford scattering, for extremal scattering the total forces
are larger and the difference between the forces is significant. Here Rabsorb = 10−4, for
Rabsorb = 10−2, 10−6, the total forces are: 6.65 and 8.09 in the x-direction, this is rather signifi-
cant difference. The number of grid points is 400.
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Momentum transfer from a photon flux to black hole versus impact parameter 
 for a black hole separation of 20.0 and incoming angle 1.570796

BH1_x, total force: 2.783006
BH2_x, total force: -2.769448, difference 5.552454
BH1_y, total force: 17.797515
BH2_y, total force: 17.806477, difference -0.008962

Figure 15: Again, we see that the relative force in the x-direction between the black holes is
larger than in the case of Rutherford scattering. The number of grid points is 400.
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Momentum transfer from a matter flux to black hole versus angle 
 for a black hole separation of 20.0

BH 1_x, total force: 16.642175550698628
BH 2_x, total force: -16.642335499677163
BH 1_y, total force: -0.0015587856778347398
BH 2_y, total force: 0.0015889234239975236

Figure 16: The shadowing force for particles coming from all directions in the case of extremal
scattering. Now the graphs are significantly offset from each other, unlike for Rutherford scat-
tering. This leads to a significant force in the x-direction, whilst in the y-direction, the forces
are almost zero. 20 Grid points where used for the angles and each angle used 200 samples of
different impact parameters.
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Figure 17: The shadowing force for Schwarzschild scattering for particle with initial direction
θ0 = 0, as you can see the difference between the forces is significant in the x-direction. The
number of grid points is 400.

5.3 Schwarzschild Shadowing Force

Now we will discuss the Shadowing force in the case of Schwarzschild black holes, here we have
the issue however that a spacetime with two stationary Schwarzschild black holes is not a solu-
tion to Einstein’s equations, we need to make the separation between the two black holes large
enough such their interactions are Newtonian. Without having a full grasp on the actual metric
for a black hole binary, we don’t know how a photon close to one black hole is affected by the
gravity of another black hole, therefore we use the approximation that far away from both black
holes, we use Newtonian gravity, however, if the particle gets within 100Mi of the ith black hole,
the dynamics of the particle are fully determined by the Schwarzschild metric of that black hole,
until the separation is again larger than 100Mi. We take v = 0.1 as the velocity of the particles.
The separation between the black holes is 2000, because we require that when the particle is
close to one of the black holes, its movement is barely affected by the other black hole.
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Figure 18: The shadowing force for Schwarzschild scattering for particle with initial direction
θ0 = π

2 . The differences between the forces in the y-direction is concerning because the difference
should be zero due to symmetries. Issues are likely caused by the much larger integration interval
compared to other scattering methods. The number of grid points is 400.
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Momentum transfer from a matter flux to black hole versus angle 
 for a black hole separation of 4000.0
BH 1_x, total force: 34.704981027200816
BH 2_x, total force: -35.088572591387816
BH 1_y, total force: -0.037382743130292884
BH 2_y, total force: 0.17980423989292538

Figure 19: The shadowing force for particles coming from all directions in the case of extremal
scattering. Now the graphs are significantly offset from each other, unlike for Rutherford scat-
tering. This leads to a significant force in the x-direction, whilst in the y-direction, the forces
are almost zero. 20 Grid points where used for the angles and each angle used 500 samples of
different impact parameters.

41



6 Discussion

The work done in the perturbed Kepler problem section shows that a perturbative radial force
does not produce long-term effects on the Kepler orbits of a black hole binary with a large sepa-
ration. However, the shadowing force for stationary black holes is radial. We have shown in the
scattering theory section using the Schwarzschild capture theorem that trapped orbits play no
role in the shadowing force.

We have done simulations of the shadowing force under multiple types of scattering. For Ruther-
ford scattering, the shadowing force is far smaller than the under general relativistic scattering.
This shows that the relativistic effects matter. The shadowing force is so tiny that it could
be identically zero. Since, for relativistic scattering, photons can be absorbed, their shadowing
force is less dependent on orbits which closely encounter a black hole and then escape to infinity.
However, these kinds of orbits have the most significant numerical errors.

For extremal black hole scattering, we considered the shadowing force when photons are the
scattering particles. For the other spacetimes, this was not possible. Because when photons are
absorbed, the black hole gains mass but not charge, the black hole is no longer extremal, and
the two black holes start attracting each other. This is also visible in the simulations because
the photon never hits the event horizon due to time dilation, leading it to forever attract the
other black hole. These effects could be dealt with if the black holes were assumed to be orbiting.

For Schwarzschild black hole scattering, we had to compute the path the particle takes, us-
ing both Newtonian gravity and the Schwarzschild metric. When the particle is far away from
both black holes, it moves under the Newtonian gravity of both black holes. The Schwarzschild
metric determines the path when it gets close to one black hole. This switch is necessary because
the general relativistic effects of both black holes are not additive. We cannot add curvatures
together as we can do with forces. If a particle is close to a black hole, the movement of the
particle is dominated by that black hole, meaning that the effects of the other black hole can
be ignored. This method does have some issues. Firstly, photons are not bent by Newtonian
gravity. Finding the motion of a photon by two faraway black holes requires linearized gravity,
which is not in the scope of the thesis. Secondly, there are issues when switching between the
two methods. Newtonian gravity is not a relativistic theory. Thus the particles need to move at
speeds far below the speed of light.

The simulations show that the shadowing force is vastly different for Rutherford and Schwarzschild
scattering. We work with photons only for extremal black hole scattering, so we cannot compare
the force with classical results. We have shown that only mass increases and drag forces affect
the black hole binary orbits. Thus for the shadowing force to cause an inspiral, the black holes
need to be moving.

Further avenues to explore are whether or not the shadowing force is zero for Rutherford scat-
tering. Look at what happens to the shadowing force when the black holes orbit each other.
Furthermore, using linearized gravity to find the shadowing force for photons impinging on a
Schwarzschild black hole binary.

42



7 Conclusion

This research aimed to study the effect of infalling matter on black hole binaries using the
shadowing force. First, an introduction to general relativity was given, so we could use the
equations of motion to compute geodesics. Then, we considered scattering theory, showed that
trapped orbits do not occur and calculated the critical impact parameter and scattering angle
for photons interacting with Schwarzschild black holes. Furthermore, we looked at the effects
of perturbative forces on Kepler orbits and found that radial forces are unimportant using the
averaging principle, but drag forces cause the orbits to spiral inwards. We have seen that
the shadowing force is very small for Rutherford scattering, but these forces are significant for
extremal and Schwarzschild scattering.
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