
Finding Balance: A Series of U-Net Models for

Image Segmentation of Overlapping Organoids

Bachelor’s Project Thesis

Stefania Radu, s3919609, m.s.radu@student.rug.nl,

Daily supervisor: Asmaa Haja∗

Supervisor: Prof. Dr. Lambert Schomaker

Abstract: The interest in automatically analyzing biomedical images increased in the past years,
as an accurate localization and segmentation of organoids can help with the early detection of
malignancies and predict diseases, such as cancer. The morphometric appearances of these images
and the high level of overlapping in the organoids make the segmentation task challenging. This
paper studied a simple U-Net and also proposes a Dual U-Net model with a shared encoder and
two decoders, one for binary segmentation of the mask and one for the multi-class segmentation of
overlaps. A significant addition to the U-net are the residual-atrous skip connections which reduce
the semantic gap between the encoder and the decoder. The issue of high imbalance between the
classes is addressed using a combination between the Focal Loss and the Focal Tversky Loss,
which significantly improved the performance of the model. Ten networks were trained on more
than 17,000 images with overlapping and non-overlapping organoids and obtained promising
results. When tested on 88 new images, the final models achieved an F1 score of 0.83 for the
mask channel and 0.43 for the overlapping channel. The Jaccard Index was 0.72 for the mask
and 0.34 for the overlap.

1 Introduction

Organoids are 3D tissue structures derived from
adult or embryonic stem cells that can replicate the
micro-anatomy of any organ (Kaushik et al., 2018).
Unlike traditional 2D cell lines, organoids contain
several types of cells and facilitate the study of tis-
sue physiology or the development of diseases. In
the study of cancer, for instance, cells are taken di-
rectly from the tumor and used to create organoids
that will be an in-vitro equivalent of the in-vivo tis-
sue (Schutgens & Clevers, 2020). They are used to
study the development of infectious diseases, such
as the one caused by the Zika virus (Garcez et al.,
2016) or genetic disorders, especially in organs with
no regenerative capacity such as the brain (Freed-
man et al., 2015). As they are harvested directly
from the patient’s tissue, organoids make personal-
ized and more effective treatments easier to obtain.

*Supervision by A. Haja was supported by EU grant
ITN PERICO (GA ID: 812968)

In order to reach the treatment phase as early as
possible, automatic techniques are used to acceler-
ate the analysis process.

Deep learning (DL) is one of the most popu-
lar methods for computer-aided diagnosis and ex-
amination of biomedical data, such as cells or
organoids. Due to the heterogeneous morphomet-
ric appearance and the high level of overlapping
(Kaushik et al., 2018), the study of organoids is
challenging. As a consequence, many DL models are
focusing on hematologic images consisting of cells
on a background, which differs from the bright field
images of organoids. They are successfully used to
diagnose diseases, such as acute leukemia (Rastogi
et al., 2022), cervical cancer (Lu et al., 2016) or
brain tumors (Chang et al., 2018). A popular archi-
tecture is the encoder-decoder U-Net model (Ron-
neberger et al., 2019), which is generally applied to
biomedical data and serves as a starting point for
this paper. However, the U-Net focuses mostly on
the binary discrimination task and very few models
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had been applied to organoid datasets.
Different and enhanced versions of the U-Net can

be used to solve the problem of multi-class semantic
segmentation in overlapping organoids. Semantic
segmentation differentiates between the classes in
an image by assigning a class label to each pixel. Bi-
nary segmentation is used for the mask channel and
it is significantly more facile than multi-class seg-
mentation, where the model has to choose between
multiple candidate classes, as it is the case with
overlaps. When these organoids overlap, some are
partially or completely obstructed by others, which
might result in them not being analysed and rele-
vant information being lost along the way. More-
over, clusters of cells can form masses, which are
an indicator of tumors, as in the case of breast can-
cer (Grys et al., 2017). This is why the detection of
the overlaps is a difficult problem, especially when
there is a high imbalance between classes: back-
ground, object, overlap.
Class imbalance had been shown to have a detri-

mental effect in many real-life classification tasks
(Buda et al., 2018) and the current dataset encoun-
ters the same issue. Class imbalance involves hav-
ing one class in the training set with much more
examples than the rest of the classes. Several meth-
ods are used to address this problem, for example,
under-sampling or over-sampling, which remove or
add data, such that a balance is achieved. Other
techniques that operate at the model level include
the introduction of weights based on the frequency
of classes (Zhou & Liu, 2005). Loss functions with
factors that modulate the number of false positives
(FPs) or false negatives (FNs) (Lin et al., 2017;
Salehi et al., 2017; M. Li et al., 2021) represent an
effective solution, which does not change the inner
distribution of the data.
The current study attempts to solve the prob-

lem of overlapping organoids in a highly imbal-
anced dataset. To accomplish this, multiple addi-
tions had been brought to the classical U-Net, in-
cluding a second decoder for the multi-class seg-
mentation, residual-atrous skip connections, and a
learning rate scheduler. Moreover, to address the
class imbalance issue, the models use a combination
of Focal loss (Lin et al., 2017) and Focal Tversky
loss (Salehi et al., 2017), which down-weight the
most frequent class.
This paper is organized into 6 sections and the

structure is as follows: section 2 presents a litera-

ture review on numerous image segmentation meth-
ods, focusing on the biomedical field; section 3 con-
tains information about the data, the structure of
the main model and a description of the different
experimental designs; section 4 discusses the results
of the experiments and section 5 compares differ-
ent configurations. The paper ends with section 6,
which includes conclusions and future research.

2 Literature review

Semantic segmentation has a wide range of appli-
cations. Several datasets include images of common
everyday objects (Lin et al., 2014) or traffic scenar-
ios (Geiger et al., 2013), used to train autonomous
driving agents. In essence, semantic segmentation
is a classification task, where each pixel is assigned
a class label. Binary segmentation is the most ele-
mentary case, as it only involves 2 classes, usually
the background and the foreground.

To differentiate between the 2 classes, early
methods use edge detection matrices that perform
convolution over an input image to detect bound-
aries. Some examples are the Sobel filter or the
Laplace kernel, which detects both horizontal and
vertical edges (Dhankhar & Sahu, 2013). Thresh-
olding segmentation methods like the Otsu algo-
rithm (Xue & Titterington, 2011) can classify the
background of an image using a global threshold.
In region-based segmentation, the goal is to detect
the immediate boundaries of pixels, and one popu-
lar approach is watersheding (Yang et al., 2006),
where the image is decomposed into catchment
basins that are enclosed by watersheds, that act as
boundaries. These methods do not, however, raise
to the expectation set by the complex multi-class
segmentation tasks.

DL models started to gain more popularity due
to their better performance in the detection of mul-
tiple classes (Liu et al., 2017). The power of con-
volutional neural networks, or short CNNs, lies in
the convolutional layers that extract features, the
non-linear layers that apply an activation function
and the pooling layers that reduce spatial resolu-
tion (Minaee et al., 2021). One architecture for ob-
ject recognition that achieved impressive results on
large datasets is the VGGNet (Simonyan & Zisser-
man, 2014). Rastogi et al. (2022) used LeuFeatx −
a variation on the VGG16 − to differentiate be-
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tween multiple leukemia sub-types. However, in or-
der to make the input reconstruction task possible,
the encoding path of the VGGNet is insufficient.
This led to a new category of DL models, those
with an encoder-decoder architecture. The segmen-
tation task involves pixel-wise classification and to
achieve this, the information in the input needs
not only to be harvested, but also rearranged in
such a way that the final output displays relevant
knowledge. Networks such as the SegNet (Badri-
narayanan et al., 2017) use the encoding features
of the VGG16 but add a decoder with max-pooling
layers that perform non-linear up-sampling. There-
fore, these networks become more powerful and can
currently address the object overlapping problem in
more specific scenarios such as microscopic data.
In the field of biomedical image segmentation,

many of the segmentation models are inspired by
the U-Net, proposed by Ronneberger et al. (2019).
It works by using a constricting path to extract
features, followed by a symmetrical decoding path
that places the features into context and recreates
the image. The classical U-Net was applied on neu-
ronal structures from microscopic stacks, as well
as light microscopic images, and solved the seg-
mentation task successfully with Intersection Over
Union (IoU) scores of 0.93 and 0.77, respectively.
Several variations on the U-Net were designed, in-
cluding the DenseRes-Unet (Kiran et al., 2022),
which segments clustered nuclei from histopathol-
ogy images and uses residual skip connections in-
stead of traditional ones. Xie et al. (2018) focused
on cell counting and compared two Fully Convolu-
tional Regression Networks based on the encoder-
decoder architecture. The study demonstrates that
results achieved on synthetic data generalize prop-
erly on real microscopy images. Naylor et al. (2019)
uses CNNs and regression to address the problem of
touching nuclei in stained images. In all these cases,
one recurrent problem is the class imbalance, in ad-
dition to the multi-class classification problem.
In order to reduce the frequency of one or more

of the classes, studies use different approaches. One
variation of the U-Net uses a shared encoder and
two decoders (X. Li et al., 2019) to detect clustered
nuclei in glioma images. The first decoder is used
for boundary segmentation, the second for the dis-
tance map prediction of the interior, and a third
forward convolution network is trained as a fusion
layer. Sun et al. (2018) uses stacked U-Nets and a

hybrid loss function to address the class imbalance
in a multi-output road extraction task. As a sub-
stitute for changing the structure of the U-Net, the
focus is on the loss functions. There are a number
of loss functions that can successfully minimise the
disproportion between classes.

Focal loss (Lin et al., 2017) is a popular function
based on Cross Entropy which tries to reduce the
class imbalance. Tian et al. (2019) uses it together
with the IoU loss to solve a segmentation task in-
volving 80 different classes. Ryan et al. (2021) seg-
ments kidney organoids using Focal loss and Al-
buquerque et al. (2021) uses it as part of a model
that counts cancer cells from zebrafish organoids.
Other loss functions which look at the entire im-
age include the Focal Tversky loss (Salehi et al.,
2017). While this loss has not yet been applied
in organoids datasets, it obtained a decent perfor-
mance in the segmentation of brain tumors (Ahuja
et al., 2021) or biomarkers in cases of bladder can-
cer (Lakshmi et al., 2019).

The current study adopts the idea of double U-
Nets to solve the overlapping problem in organoids.
It presents a comparison between two network
architectures with two outputs: the binary mask
channel and a multi-class overlapping channel. As
the class imbalance was a significant issue in the
dataset, different combinations of loss functions are
used, with the final goal being achieving a balance
in the frequency of classes for segmenting overlap-
ping organoids.

3 Methods

3.1 Data

The data used in this project was collected by the
University Medical Centre Groningen (UMCG).
Digital microscopes are used to take high-resolution
CZI images of three different overlapping organoids
cultures. These cultures contain organoids that are
derived from the same group of cells. Each 3D cul-
ture consists of 14 stacks, and every stack repre-
sents a horizontal slice in the culture. One example
of such a stack is given in Figure 3.1. As the ma-
jority of the organoids, especially overlapping ones,
are intelligible in the middle stacks, stacks num-
ber 6, 7 and 8 were selected to generate the train-
ing dataset. Two other stacks from the remaining
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Figure 3.1: Stack 6 of the culture of the
organoids culture in the training set. The im-
age has a resolution of 3830 by 2900 pixels.

organoids cultures were set aside and used for test-
ing.

The ground truth mask channel is generated us-
ing the Mask-RCNN (He et al., 2017), which local-
izes and segments the organoids. As parts of au-
tomatic segmentation were not accurate, manual
work was needed to fix some of the boundaries co-
ordinates. However, this is a tedious process and
due to the blurriness and the high level of overlap-
ping, a significant number of organoids, especially
large ones, were missed by the Mask-RCNN. This
represents one of the main issues encountered in the
training process.

To create the ground-truth overlapping chan-
nel, a histogram-like method was used to count
the number of touching organoids. All overlaps are
treated as the same class, regardless of the number
of organoids that are overlapping. As a result, there
are 3 classes: 0 − background, 1 − organoids and

Table 3.1: The distribution of classes in the train
and test sets.

background mask overlap
training 65% 34% 1%
testing 44% 48% 8%

2 − overlaps. The limitations of the Mask-RCNN
resulted in many missed overlaps.

All the previously discussed issues, together with
the nature of the data created a serious imbalance
in the frequency of classes. Table 3.1 shows the dis-
tribution of the different classes in the train and
test sets. In the training dataset, overlaps account,
on average, for only 1% in an image, while the fre-
quency of the background class is 65 higher. The
test set consists of images where the sum of mask
and overlap pixels account for at least half of the to-
tal. Consequently, there are 8 times more overlaps
than in the train set and the mask is also more re-
current, as it account for almost 50%, on average.
The class imbalance is a common issue in segmen-
tation tasks and solutions including down-sampling
the data to match the lowest frequency class can
lead to a lack of diversity in the dataset (Moen et
al., 2019). This is why, the current study proposes a
combination of different losses, which includes class
weights.

The initial culture images have a high-resolution,
with a size of 3830 by 2900 pixels. As this is incred-
ibly large for a DL network, a sliding window with
a step size of 60 pixels is used over the image to cre-
ate smaller crops of 320 by 320 pixels. The edges of
the image are ignored, as they do not contain any
organoids. During training, the images are shrunk
further with a scaling factor of 0.5. The reason for
this is that images with a lower resolution reduce
the training time considerably.

To introduce diversity in the dataset, image aug-
mentation techniques are used to generate addi-
tional examples. The first augmentation method
used is rotation. The ground truth images are ro-
tated with 90◦ , 180◦ and 270◦. The second method
is affine transformations, including a combination
of positive and negative shearing with factors of
−0.6 and 0.6, as well as translation on the x and
y axes with a value of 1000. An affine transforma-
tion preserves parallel lines and creates images that
continue to look realistic.

After the data augmentation, the train set con-
tains 21,773 gray-scale crops. One random crop
is shown in Figure 3.2. The leftmost crop is the
ground truth image, followed by the true mask
channel and the true overlapping channel. The
mask channel is binary, so it contains two classes,
the background, encoded as 0 and the organoids,
encoded as 1. In the overlapping channel, there are
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Figure 3.2: A random crop consisting of the ground truth image, the true mask and the true
overlap with the corresponding encoding values: 0 - background, 1 - organoid, 2 - overlap.

Figure 3.3: Feature maps from each of the four down-convolution blocks of the encoder.

three classes. Apart from the background and the
foreground, any kind of overlap in the organoids is
encoded using value 2. While the data does contain
overlaps between different numbers of organoids
(higher than two), the issue of class imbalance dis-
cussed previously would have only been aggravated
if more classes had been added.

3.2 Model structure

The U-Net model proposed by Ronneberger et al.
(2019) serves as a starting point for the architec-
tures used in this paper. The current study focuses
on the overlapping channel of the segmentation pro-
cess, which is a significantly more intricate task,
due to the low frequency of examples. The encoder-
decoder architecture is preserved, but two main ad-
ditions are included: the second decoder in the case
of the double network and the residual-atrous skip
connections. Depictions of the two architectures −
the simple network with one decoder and the dou-

ble network with two decoders − can be seen in
Figures 3.7 and 3.8, respectively.

The encoder follows the structure of a convo-
lutional neural network. It contains four down-
convolution blocks, where each block is a series of
two 3× 3 padded convolution layers, each followed
by a 2D normalization layer and a ReLU activa-
tion function. The role of the convolution layers is
to increase the number of channels in the image.
The input is a gray-scale 320 × 320 pixels image
(160×160 after scaling) with only one channel and
the number of channels doubles with each block
of the encoder. The normalization layer stabilizes
the gradients in the learning process and the acti-
vation function reduces the exponential growth of
the weights. At the end of the down block, a 2× 2
max-pooling layer is applied, which reduces the size
of the image. The role of the encoder is to squeeze
the relevant information into a bottleneck and cre-
ate a representation of the input. The input image
that had one channel originally is encoded to a fea-
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Figure 3.4: The first 64 feature maps of the first
convolution layer in the encoder.

ture vector of 1024 values at end of the encoder.
Figure 3.3 shows how the contracting path encodes
information, starting with low-level features at the
beginning of the encoder and finishing with higher-
level features. Similarly, Figure 3.4 shows the 64
feature maps, as they are encoded by the first con-
volution layer of the model.
The decoder is an expanding path that places

the extracted features into context and groups the
pixels under classes. In the case of the simple U-
Net architecture, as the input travels through the
decoder, the image is up-sampled using 2 × 2 up-
sampling layers, series of double convolution lay-
ers and ReLU activation functions, in a symmetri-
cal manner to the encoder. The number of feature
maps is decreased in the final step, and a 1×1 con-
volution is applied to map the features to the final
classes. The output of the network constitutes of
pairs of images, the binary mask channel and the
three-class overlapping channel. Figure 3.7 depicts
the simple architecture and all the steps explained
previously. For consistency, the architecture of the
double U-Net will be explained next, followed by
the skip connections.
The double U-Net has one encoder, but two de-

coders, one responsible for each channel. As the
features of both channels share similarities − the
mask part in the two outputs is almost identical

− it is reasonable to believe that the branches can
be encoded together. While the simple architecture
assumes that they can also be decoded together,
the double version separates the ways in which the
channels are reconstructed. The motivation for this
is that the overlaps are areas that are very alike
to the organoids themselves, and by separating the
features, the aim is to reduce the number of over-
laps falsely labelled as organoids. Figure 3.8 shows
the two decoders, which are equivalent in terms of
structure. The only difference is in the final num-
ber of classes of the output: two for the binary
mask and three for the overlapping mask. To fur-
ther highlight the idea that the two decoders work
with different information, Figure 3.5 shows the
first 64 kernels from the last up-convolution layer
in each of the two decoders.

The role of skip connections is to take informa-
tion from each of the levels of the encoder and
copy them directly to the decoder by skipping the
bottleneck. This way, the loss of features is re-
duced. While the conventional U-Net concatenated
the feature maps directly, Kiran et al. (2022) sug-
gests that this does not account for the semantic
gap between the encoder and the decoder. By fol-
lowing the authors’ advice, the current model in-
tegrates residual-atrous blocks, which are applied
to the feature maps of the encoder. As shown in
Figure 3.6, 3 × 3 and 1 × 1 convolution layers are
applied to the features of the encoder to reduce in-
formation loss. The weights are summed together
element-wise and an atrous block with two parallel
dilated convolution layers is then applied. The con-
volution layers are 3 by 3 and use dilation rates of
2 and 4. The dilation rate ensures that more spa-
tial information is encoded and that the blurriness
of the image is minimised (Kiran et al., 2022). The
resulting features are finally concatenated to the
corresponding level of the decoder. In the case of
the double architecture, the same feature maps are
copied in the two decoders.

3.3 Experimental design

This study looked at four different additions to the
traditional U-Net and compared a total of 10 mod-
els. These four contributions are the residual-atrous
skip connections, the architecture of the model, the
combination of loss functions and the scheduler.

The 21,773 input images are divided into a train-

6



Figure 3.5: The first 64 kernels of the mask decoder (left) and the overlap decoder (right) from
the final up-convolution blocks, in the case of a double architecture.

Figure 3.6: The residual-atrous skip connec-
tions, which apply dilated layers to the feature
maps of the encoder, before the concatenation
step, as depicted by Kiran et al. (2022).

Table 3.2: Examples of parameters used during
training.

Property Value
Batch size 1
Epochs 3
Validation % 10
Optimizer RMSprop with momentum
Learning rate 10−5

Loss Focal Loss + Focal Tversky Loss
Scheduler ReduceOnPlateau

ing and a validation set. 90% of the data is used for
training and 10% for validation. During the imple-
mentation, other attempts were also made, such as
using 20% of the data for validation, but due to
the complexity of the network, this option was too
time-consuming and so the 90-10 split was more
feasible. The Dice score was used as an evaluation
metric for the validation set (see subsection 4.1).
The batch size is set to 1, indicating that only one
random crop is presented to the network at a time,
followed by an update of weights based on the loss.
A wide variety of losses, such as Cross Entropy,
Focal Loss, Dice Loss, or Focal Tversky Loss are
used throughout the experiments. The optimizer
used during training was a first-order optimization
algorithm − RMSprop with a momentum factor
of 0.9. After the gradients are computed based on
the loss, the optimizer updates the weights. RM-
Sprop is a technique for mini-batch learning, which
deals with the vanishing or explosion of gradients
by normalizing the gradients using a squared mov-
ing average. The goal of the normalization step is
to balance the momentum, by decreasing the step
size for large gradients and increasing the step for
small gradients. The majority of the models are
trained for 2 epochs, but in order to assess the
performance of a longer training time, two mod-
els are trained for 3 epochs. The starting learning
rate was 1×10−5 for all the models, but in some, a
scheduler was used, while in others the decreasing
step was performed manually. All models are tested
on 88 unseen images from two different organoids
cultures. An example of a training configuration
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Figure 3.7: The simple U-net architecture with one encoder and one decoder. The two outputs −
the mask channel and the overlapping channel − are generated in the end.

Figure 3.8: The double U-net architecture with a shared encoder and two decoders, one responsible
for each channel.
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for one of the models is given in Table 3.2. Ad-
ditionally, transfer learning is used to initialize the
weights of the model with pre-trained weights from
a U-Net trained on 11 grayscale images of the Car-
vana dataset ∗.

3.3.1 Residual - Atrous skip connections

The starting model of this study is a simple U-Net,
as described in Section 3.2. The skip connections
used in this model are trivial. Feature maps from
the encoder are copied directly to the decoder and
concatenated with the result of the up-sampling
layer. While the result of the concatenation is a
block with twice as many features, the role of the
convolution layers is to decrease this number. In
this first experiment, the aim is to compare the
performance of the model − especially the F1 score
− when it uses traditional skip connections versus
enhanced residual-atrous skip connections (Figure
3.6). Two comparisons are presented, involving 4
models that were trained for 2 epochs, using the
ReduceOnPlateau learning rate scheduler. The first
comparison looks at the effect of the residual-atrous
skip connections on a simple architecture. In this
case, the weights are updated based on a combina-
tion of the Cross Entropy Loss and the Dice Loss.
Later on, the same experiment is performed on 2
double U-Nets, which use the Focal Loss and the
Focal Tversky Loss. These loss combinations are se-
lected based on multiple experiments with different
model configurations. As the results during training
(Section 4.2.1) indicate that applying the residual-
atrous block in the skip connection improves the
validation Dice score and decreases the loss in both
scenarios, this addition was kept in the future ex-
periments.

3.3.2 Loss functions

Another set of experiments is carried out to test
the effect of the loss function. Three different com-
binations of losses are used on a simple U-Net
model with residual-atrous skip connections. The
first combination is the classical Cross Entropy
(CE) + Dice loss (DL), which is very popular in
semantic segmentation tasks, followed by Focal loss
(FL) + Dice loss and Focal Loss + Focal Tversky

∗The data can be found at
https://www.kaggle.com/c/carvana-image-masking-challenge

Loss (FTL). Several studies (Badrinarayanan et al.,
2017; Rastogi et al., 2022) use Cross Entropy or
Categorical Cross Entropy as a low-level loss func-
tion. Cross Entropy is a binary loss function that
measures the performance of a classification model,
by computing the pixel-wise difference, as shown in
Equation 3.1, where p ∈ [0, 1] is the probability for
the true class. Similarly, Categorial Cross Entropy
is used when more than two classes are involved,
as it is the case in the overlapping channel. How-
ever, for very imbalanced datasets, the loss tends
to be dominated by the most frequent class. This
is why, a more viable solution to solve the overlap-
ping problem is Focal Loss (Lin et al., 2017). This
function uses the extra −α(1− p)γ (Equation 3.2)
balanced modulating factor, which reduces the loss
contribution of frequent examples, so that the net-
work can focus on the more difficult classes. The
parameter γ adjusts the rate at which loss is re-
duced for well-classified examples and the factor α
balances the importance of positive and negative
examples. In the current experiments, α is set to 1
and the function is initialized with the weights of
the training class (Table 3.1) to achieve the desired
balancing effect. In this work, the γ factor is set to
2.

CE(p) = −log(p) (3.1)

FL(p) = −α(1− p)γ log(p) (3.2)

The Dice Loss (Equation 3.3) is widely used
in biomedical segmentation tasks as a second loss
function. It is defined as 1 − DS, where the Dice
score (DS) indicates the amount of overlap between
the ground truth image and the predicted image. A
perfect overlap means a Dice score equal to 1 and so
a loss that equals 0. This loss, however, does not ad-
dress the class imbalance problem. To address this
issue, the Focal Tversky Loss (Salehi et al., 2017) is
used instead of the Dice loss. It is a generalization of
the Dice loss, but uses two extra hyperparameters
which modulate the number of false positives and
false negatives (Equation 3.4). In order to penal-
ize the false negatives for the less frequent classes
(mask and overlap), the β factor is set to 0.7 and
α to 0.3.

DL = 1− 2× TP

TP + FP + TP + FN
(3.3)
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Figure 3.9: Two ways to decrease the learning
rate: with the scheduler (enhanced lr) and man-
ually (manual lr).

FTL = 1− TP

TP + αFP + βFN
(3.4)

The experiments conducted in this subsection
look at the effect of loss functions on each archi-
tecture type. Six models are trained in total, three
with the simple architecture and three with the
double architecture.

3.3.3 Model architecture

The third set of experiments analyses the effect of
model architectures. Two models were trained for 2
epochs, a double U-Net with a shared encoder and
two decoders (Figure 3.8) and a simple U-Net with
a single encoder and decoder (Figure 3.7). Both
models use the Focal Loss and the Focal Tversky
loss, introduced in the previous section. By using
only one decoder, the simple architecture decodes
the features concurrently for the mask and over-
lapping channels and builds the outputs in parallel.
On the other hand, the double architecture involves
two branches, one responsible for each channel.

3.3.4 Learning rate and scheduler

The last experiment studies the effect of the sched-
uler. While the ReduceOnPlateau scheduler is used
in all previous setups, the goal of this current anal-
ysis is to show that it does indeed improve the eval-
uation Dice score, compared to a manual approach.
The role of the learning rate is to modulate the step

size when moving towards the minimum of the loss
function. In order to achieve a balance between ex-
ploration and exploitation, the initial learning rate
starts high, but decreases with time. The starting
learning rate used throughout this study is 10−5.
Two methods to adjust the learning rate are com-
pared, one is by manually decreasing its value after
each epoch with a factor of 10−1 and an automatic
one using a scheduler that decreases the learning
rate with the same 10−1 factor when the evalua-
tion score stops improving. In other words, when
the Dice score function stops increasing monotoni-
cally, the learning rate is reduced. No plateau move-
ments are allowed. Moreover, to allow the model
to explore more the state space at the beginning of
the training, the scheduler is frozen for the first two
epochs. To preserve the equivalence, the manual de-
crease was also performed only at the beginning of
the second epoch. Figure 3.9 depicts the behaviour
of the learning rate in the two scenarios.

4 Results

4.1 Evaluation metrics

Several metrics are used to evaluate the perfor-
mance of the model, both at the pixel and image
levels. All the metrics are computed per each class,
not including the background and then averaged.
The most trivial metric which looks at the individ-
ual pixels is the accuracy, defined in Equation 4.1,
followed by precision (4.2) and recall (4.3). A per-
fect precision score is an indicator that there are
no false positives (FPs), so no background pixels
miss-classified as mask, for example. On the other
hand, a perfect recall score shows that there are no
false negatives (FNs), so no missing organoids. Due
to the imperfect nature of the true masks, the focus
is on the minimisation of FNs.

ACC =
1

cls− 1

cls∑
i=1

TP + TN

TP + TN + FP + FN
(4.1)

Precision =
1

cls− 1

cls∑
i=1

TP

TP + FP
(4.2)

Recall =
1

cls− 1

cls∑
i=1

TP

TP + FN
(4.3)
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The F1 score (also called Dice Score) is a com-
monly used metric in classification tasks and it is
applied during the evaluation step in training, as
well as in testing. The average F1 score is com-
puted based on the number of classes cls (Equa-
tion 4.4). It is important to note that class 0 (the
background) is purposely left out of the computa-
tion due to its high frequency, which would have
altered the results. Therefore, in the mask channel,
the score is computed only between the mask pixels
in the true image and the mask pixels in the pre-
dicted image. The same applies to the overlapping
channel, but in this case, the average is computed
between the mask and the overlap parts.
The Jaccard Index (JI) is also used as a metric

(Equation 4.5), equivalently to the F1 score. While
the JI measures image similarity comparable to the
F1 score, when averaged on multiple examples, the
values differ and generally, the JI scores are lower
than the corresponding F1 score, although they re-
main positively correlated.

F1 =
1

cls− 1

cls∑
i=1

2
precision ∗ recall
precision+ recall

(4.4)

JI =
1

cls− 1

cls∑
i=1

TP

TP + FN + FP
(4.5)

4.2 Experimental results

There are 10 models trained in total, as illustrated
in Table 4.1, which presents an overview. The high-
est F1-score during training was achieved by the
most complex model called enhanced lr. It obtained
an F1 score of 0.63 in the overlapping channel and
0.85 in the mask channel. This model uses a dou-
ble architecture, residual-atrous skip connections, a
combination of Focal loss and Focal Tversky loss,
as well as the learning rate scheduler. Additionally,
it is trained for 3 epochs. However, this model did
not deliver good results on the test set. While there
might be several reasons for this, the complexity of
the training configuration plays an important role.
This Section presents the results of all sets of ex-

periments discussed in Section 3, both during train-
ing and testing. The first subsection discusses the
residual-atrous skip connections. Subsection 4.2.2
presents a comparison of different combinations of

losses, followed by an experiment involving the two
architectures (Subsection 4.2.3) and finally a de-
scription of the scheduler in subsection 4.2.4.

4.2.1 Residual - Atrous skip connections

The first experiment studies the effect of the skip
connections type on performance. In both stud-
ied scenarios (a simple architecture with CE + DL
and a double architecture with FL + FTL) adding
the residual-atrous skip connections decreases the
loss (Figure 4.1) and increases the training final
F1 score (Figure 4.2). While these results concern
the overlapping channel, the mask channel has very
similar behaviour. However, this result does not
generalize in testing. Regardless of the architecture,
adding the residual-atrous block to the features of
the encoder before concatenation always decreases
the testing F1 score both in the mask (Table 4.3)
and overlap (Table 4.2). The score decreases from
0.42 to 0.35 in the overlapping channel for a simple
U-Net and from 0.41 to 0.39 in a double U-Net. In
the case of the mask channel, the decrease is from
0.82 to 0.72 in a simple architecture and from 0.79
to 0.77 in a double architecture. For this compari-
son, the last value of the F1 score during testing is
used, together with the average F1 score obtained
on the 88 images that comprise the test set.

4.2.2 Loss functions

The second set of experiments investigates three
different combinations of losses in the case of a sim-
ple U-Net. While the initial combination is the clas-
sic Cross Entropy and Dice loss, using the enhanced
abilities of the Focal loss and the Focal Tversky
loss improves the performance of the models sig-
nificantly. The ”focal” nature of the functions is
given by the hyperparameter γ = 2, which reduces
the loss considerably for the overlapping channel
(Figure 4.3). The loss value converges to 0.45 for
CE + DL, 0.30 for FL + DL and 0.18 for FL +
FTL. The flexibility of the modulating factors min-
imises the class imbalance, which results in higher
training Dice scores. Figure 4.4 shows that using
increasingly complex combinations of losses has a
beneficial effect on the Dice score in the case of a
simple U-Net model.
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Table 4.1: An overview of the 10 models with respect to the skip connections, model architecture
type, loss functions, scheduler and the number of training epochs. The res-atrous entry indicates
the use of residual-atrous skip connections, as opposed to regular connections. The model archi-
tecture has two types: simple U-Net or double U-Net. The loss function includes a combination of
the following: Cross Entropy (CE), Focal loss (FL), Dice loss (DL) and Focal Tversky loss (FTL).

Name Skip connections Architecture Loss Scheduler Epochs
simple with atrous res-atrous simple CE + DL ReduceOnPlateau 2
simple no atrous regular simple CE + DL ReduceOnPlateau 2
focal dice res-atrous simple FL + DL ReduceOnPlateau 2
focal tversky res-atrous simple FL + FTL ReduceOnPlateau 2
double focal tversky res-atrous double FL + FTL ReduceOnPlateau 2
manual lr res-atrous double FL + FTL no 3
enhanced lr res-atrous double FL + FTL ReduceOnPlateau 3
double focal dice res-atrous double FL + DL ReduceOnPlateau 2
double ce dice res-atrous simple CE + DL ReduceOnPlateau 2
double no atrous regular simple FL + FTL ReduceOnPlateau 2

Table 4.2: Testing results of the 10 models for the overlapping channel based on several evaluation
metrics.

Name Accuracy Precision Recall F1 score Jaccard Index
simple with atrous 0.82 0.51 0.32 0.35 0.27
simple no atrous 0.85 0.54 0.42 0.42 0.34
focal dice 0.83 0.50 0.37 0.38 0.30
focal tversky 0.84 0.50 0.45 0.43 0.34
double focal tversky 0.83 0.50 0.38 0.39 30
manual lr 0.84 0.51 0.37 0.38 0.30
enhanced lr 0.83 0.50 0.35 0.36 0.28
double focal dice 0.83 0.51 0.40 0.40 0.31
double ce dice 0.84 0.53 0.44 0.43 0.34
double no atrous 0.84 0.52 0.41 0.41 0.33

Table 4.3: Testing results of the 10 models for the mask channel based on several evaluation
metrics.

Name Accuracy Precision Recall F1 score Jaccard Index
simple with atrous 0.74 0.88 0.63 0.72 0.58
simple no atrous 0.81 0.87 0.79 0.82 0.71
focal dice 0.76 0.86 0.71 0.76 0.63
focal tversky 0.81 0.83 0.83 0.83 0.71
double focal tversky 0.77 0.86 0.71 0.77 0.64
manual lr 0.76 0.87 0.69 0.76 0.62
enhanced lr 0.74 0.86 0.66 0.74 0.59
double focal dice 0.78 0.85 0.75 0.79 0.66
double ce dice 0.81 0.85 0.82 0.83 0.72
double no atrous 0.79 0.87 0.75 0.79 0.67
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Figure 4.1: A loss comparison between models
using the residual-atrous skip connections ver-
sus the regular connections. The orange and red
models use a simple architecture and the CE +
DL loss combination, while the blue and pink
models have a double architecture and a FL +
FTL loss (Table 4.1).

Figure 4.2: A dice comparison between models
using the residual-atrous skip connections ver-
sus the regular connections. The orange and red
models use a simple architecture and the CE +
DL loss combination, while the blue and pink
models have a double architecture and a FL +
FTL loss (Table 4.1).

Figure 4.3: A comparison between different
combinations of losses in models with a simple
architecture (Table 4.1).

Figure 4.4: A dice comparison between models
using different combinations of losses, as shown
in Table 4.1.

4.2.3 Model architecture

In terms of the model architecture types, the cur-
rent comparison evaluates a simple and double U-
Net, both using the Focal loss and Focal Tversky
loss combination. Overall, the double architecture
achieves a higher training F1 score in the overlap-
ping channel (Figure 4.6), as well as a lower loss
(Figure 4.5) during training. The final training F1
scores are 0.54 for the simple model and 0.56 for
the double version.

To further study the effect of different losses on
the architecture type, Histograms 4.7 and 4.8 show
the final F1 score achieved during training and the
average F1 score during testing, respectively. The
F1 score increases during training for the double
architecture with more complex losses, while the
average F1 score on the test set is not high and de-
creases with complex losses. The F1 score for the
simple U-Net also increases during training and this
behaviour remains consistent in testing. In sum-
mary, the simple U-Net achieves the highest scores
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Figure 4.5: The loss during training in the over-
lapping channel for a simple U-Net compared to
a double U-Net.

Figure 4.6: The dice score during training in the
overlapping channel for a simple U-Net, com-
pared to a double U-Net.

Figure 4.7: The effect of model architecture and
loss on the training F1 score.

Figure 4.8: The effect of model architecture and
loss on the testing F1 score.

with complex losses, while the double U-Net per-
forms best with simple losses.

4.2.4 Learning rate and scheduler

The last experiment studies the effect of the learn-
ing rate scheduler, as well as experiments with a
larger number of training epochs. The initial learn-
ing rate value is 10−5. Two models are trained for
3 epochs. One of them uses the ReduceOnPlateau
scheduler, which automatically decreases the learn-
ing rate (with a factor of 10−1) when the evaluation
dice score stops improving. For this experiment, the
scheduler is also frozen for the first 2 epochs. The
second model uses a manual decrease with the same
factor, at the beginning of the second epoch. Fig-
ures 4.9, 4.10, 4.11 and 4.12 show that using the
scheduler improves performance and that training
for additional time increases the dice score signifi-
cantly. In fact, the model enhanced lr achieves the

highest Dice score during training of 0.63 for the
overlapping channel (Figure 4.10) and 0.85 for the
mask channel (Figure 4.12). The loss function con-
verged to 0.08 for the multi-class channel (Figure
4.9) and 0.01 for the binary channel (Figure 4.11).

5 Discussion

The high level of overlapping in organoids repre-
sents a serious challenge in biomedical segmenta-
tion tasks. While several deep learning networks
have achieved state-of-the-art performance when it
comes to binary segmentation, overlapping objects
are still an impediment to an accurate diagnosis of
many diseases. The encoder-decoder architecture of
the U-Net Ronneberger et al. (2019), as well as the
skip connections represent useful additions, which
resulted in high performance on many datasets.

The current study proposed a variation of the U-
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Figure 4.9: The effect of the scheduler on the
overlap training loss in the case of a double U-
Net (Table 4.1).

Figure 4.10: The effect of the scheduler on the
training dice score of the overlapping channel
in the case of a double U-Net (Table 4.1).

Figure 4.11: The effect of the scheduler on the
mask training loss in the case of a double U-Net
(Table 4.1).

Figure 4.12: The effect of the scheduler on the
training dice score of the mask channel in the
case of a double U-Net (Table 4.1).

Net that solves the overlapping organoids task in a
severely imbalanced dataset. Ten different models
were trained and compared with respect to different
additions, including the atrous skip-connections,
model architecture, loss functions and scheduler.

Starting with the skip connections, the training
results show that using residual-atrous skip con-
nections increases the evaluation Dice score (Fig-
ure 4.2). However, this finding does not generalize
in testing, where Table 4.2 illustrates that regu-
lar skip connections achieve an F1 score with 0.07
higher in a simple architecture and 0.02 higher in
a double architecture. This does not match with
the results of Kiran et al. (2022) on the DenseRes-
Unet. An explanation for this can be that, while

the role of the skip connections is to copy informa-
tion from the encoder to the decoder by skipping
the bottleneck, the extra convolution layers in the
residual-atrous block might create a different bot-
tleneck which results in information loss. Kiran et
al. (2022) used a U-Net with dense layers, instead
of convolution layers, which might have influenced
the results.

Experimenting with different losses and architec-
tures shows that, while more complex losses and a
double architecture generally increase the F1 score
during training (Figure 4.7), only part of the pat-
tern generalizes in testing. With regards to the dou-
ble architecture, the results show a decrease in the
F1 score with more complex losses during testing
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(Figure 4.8). The reason for this might be that
the frequency of classes in the testing set does not
match the frequency in the training set. The im-
ages in the testing dataset were selected such that
at least 50% of the overlapping channel contains
mask or overlap. The testing dataset has 8 times
more overlaps than the training dataset (Table 3.1).
Losses such as Focal loss and Focal Tversky loss
have hyperparameters that modulate the number
of FPs and FNs which were tuned for the training
dataset. Thus, as the weights do not match, the
performance is not the same for the test set. In the
case of the simple architecture, the 2 classes are de-
coded together so the weights mismatch is reduced
and the difference is not as significant as when the
channels are considered separately.

Figure 5.1: Confusion matrix for the mask chan-
nel showing the true positives, true negatives,
false negatives and false positives.

Training for longer (3 epochs compared to 2)
appears to have a positive effect during training
(Figures 4.9 - 4.12), which is to be expected. Nev-
ertheless, testing results show that this can intro-
duce overfitting. As the model is going through the
test set an extra time, it learns the distribution of
the data and losses flexibility when presented with
new data. Manually decreasing the learning rate

seems to reduce the overfitting effect, but a shorter
training time remains the preferable option. Addi-
tionally, using the ReduceOnPlateau scheduler im-
proves the F1 score and creates a drop in the over-
lapping channel loss (Figure 4.9) right around step
46,000, the exact time when the scheduler decides
to decrease the learning rate from 10−5 to 10−6

(Figure 3.9).

Figure 5.2 presents the prediction results of all
10 models for 5 randomly selected images from the
test set. Overall, the binary mask has a much more
accurate segmentation than the overlapping mask
(also seen in Tables 4.2 and 4.3, as well as the con-
fusion matrix in Figure 5.1), as it is uncomplicated
for the model to differentiate between 2 classes,
compared to 3 in the multi-class task. Many large
organoids are missing from the predicted segmenta-
tion and the reason for this might be that the model
did not have many examples of large organoids in
the test set, or they were not segmented in the true
mask. Some networks also predict extra organoids
that do appear in the original image, but are not
segmented in the true mask (for example, the top-
left organoid in the first row). This contributed to
a decrease in the F1 scores. The difference in class
frequency between the train and the test set (Table
3.1) is also an explanation as to why the test results
are generally lower than those obtained in training.
The best two models in terms of the F1 score, as in-
dicated in Tables 4.2 and 4.3 are focal tversky and
focal ce dice. The first one uses a simple architec-
ture with the complex combination of losses FL +
FTL, while the second one has a double architec-
ture and simpler losses CE + DL. One main point
that can be accentuated here is that, while com-
plexity can increase performance, too much com-
plexity is detrimental. Thus, combining the best
attributes in model double focal tversky decreases
the F1 score, so, once more, balance remains the
key.

6 Conclusions

An accurate segmentation of biomedical images is
the first step to automatic cancer diagnosis. While
cells and nuclei are different structures, when pre-
sented as a 2D image, they share many of the mor-
phometric attributes with 2D images of organoids.
This study proposed several models based on the
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Figure 5.2: The output of the 10 models on 5 random images from the test set.

encoder-decoder architecture and focused on solv-
ing the class imbalance issue by using a combina-
tion of losses such as the Focal loss and the Focal
Tversky loss, which reduces the loss for common
examples, so that the model can focus on the in-
frequent classes. Other additions include the double
architecture, as well as the residual-atrous skip con-
nections, which reduce the semantic gap between
the encoder and the decoder. The scheduler is also
used to automatically decrease the learning rate.

In future work, the focus should be on cre-
ating accurate and faithful ground truth masks
which include large organoids and overlaps. Cor-
rectly annotated data benefits the model, by mak-
ing it discover the relationships between the back-
ground, organoids or overlapping areas. Moreover,
with more balanced datasets, the network can be
trained to differentiate between different levels of
overlaps. In terms of the segmentation process, sev-
eral studies obtained good results when separating
the detection process of the boundaries from that
of the center. Xin et al. (2012) used single-path vot-
ing and mean-shift clustering for center localization
and an interactive model for boundary detection.
X. Li et al. (2019) had a double U-Net model with
two decoders, for decoding the contours and the in-
teriors separately. A different study (Molnar et al.,

2016) attempts to solve the overlapping problem
by using active contours and the property that the
intensities of touching nuclei are additive.

Finally, the best models proposed in this paper
can also be used as part of an online platform, sim-
ilar to that proposed by Matthews et al. (2022),
that can generate binary and overlapping masks for
new data, which can be used as training input for
improved models.
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