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Abstract

A model is created for the escaping photon distribution of a corona around a compact object
as a function of time and energy which includes feedback from the corona to the source. This
model uses the exact closed-form expression for the time-dependent Green’s function solution
to the Kompaneets’ equation found by Becker (2004)[2]. In a previously created model described
in Roomer (2021)[24] it is assumed that no photons from the corona are going back into the
black body. This model describes the evolution in energy space of a photon distribution with
a varying injection rate or varying black body temperature. In a case where the photons would
fall back into the source, the returning photons will change the temperature of the source,
since they add energy to the black body. For a new, improved model, this feedback will be
added to the model containing temperature oscillations from Roomer (2021)[24]. The model
can be used to create light curves, spectra, power density spectra (PDS), phase lags, and root
mean square (rms). Here, the PDS will show peaks, also known as quasi-periodic oscillations
or QPOs which are also found in PDS of observations and can be used to compare to the
data. Phase lags of the photons in the escaping photon distribution are caused by delays
of the photons due to scattering in the corona. These phase lags can be reproduced by the
model to compare with observations.
The feedback model is obtained for different oscillation frequency values. These different results
are then compared. The width of one QPO in a PDS for one frequency has also been determined
using a Lorentzian fit.



Used abbreviations

� FFT: Fast Fourier Transform

� FWHM: Full Width Half Maximum

� HMXB: High Mass X-ray Binary

� kHz QPO: Kilohertz quasi-periodic oscillations

� LF QPO: Low-frequency quasi-periodic oscillations

� LMXB: Low Mass X-ray Binary

� LTP: Lense-Thirring precession frequency

� PDS: Power density spectra

� QPO: Quasi-periodic oscillation

� rms: Root mean square

� RPM: Relativistic precession model

� SPBF: Sonic-point beat-frequency

Used symbols

� A: Amplitude [-]

� BE : Specific intensity of black body [erg · cm−2 · s−1 · sr−1]

� Bx: Specific intensity of black body [-]

� Bx,0: Specific intensity of black body for the initial temperature [-]

� Bx,−1: Specific intensity of black body at time t− 1 [-]

� c: Speed of light [cm · s−1]

� E: Energy [keV ]

� ν: Frequency [Hz]

� νesc: Escape frequency [s−1]

� h: Planck constant [erg · s]

� k: Boltzmann constant [erg ·K−1]

� kTbb: Black body temperature [keV ]

� kTe: Electron temperature [keV ]

� kT : Black body temperature in units of the electron temperature [-]

� L: Luminosity of black body [erg · s−1]

� me: Electron mass [g]

� ne: Electron number density [cm−3]
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� Ṅx: Number of photons escaping cloud per unit time, per energy [photons/second]

� Ṅ0: Injection rate of photons per unit time with dimensionless energy x0 [photons/second]

� R: Radius of black body [cm]

� t0: Initial time [s]

� t: Time [s]

� tesc: Mean escape time of a photon [s]

� x: Energy [-]

� x0: Initial energy [-]

� y: Compton y-parameter/dimensionless time [-]

� ỹ: Mean value of Compton-y parameter [-]

� σT : Thomson cross-section [cm2]

� σ: Stefan-Boltzmann constant [erg ·K−4 · cm−2 · s−1]

� τ : Optical depth [-]

� ω: Angular frequency [rad · s−1]
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1. Introduction

In a binary system containing a star and neutron star, the mass accreted from the star forms
a disk around the neutron star. A corona containing electrons will also form around the neutron
star. In this corona, photons from the neutron star and disk will scatter with the electrons
in the corona. Figure 1 shows a schematic example. Note that the shape of the corona is
currently a topic of research and the shape in Figure 1 is for the specific case of microquasar
GRS 1915+105.

Figure 1: Corona around a compact object and its disc. Panel a shows a hot corona that covers part
of the disc. In panel b the corona has cooled down and the size of the corona is equal to
the inner radius of the disc. Taken from Mendez et al. (2022)[17].

A model to describe the number of photons leaving the corona as a function of time has been
created in a previous research project.[24] In the previous project, a model described in a
paper by Becker (2002)[2] has been recreated and extended to create an improved model.
The paper obtains an exact closed-form expression for the time-dependent Green’s function
solution to the Kompaneets’ equation. The Kompaneets’ equation describes the spectral modification
of a photon distribution as it moves through a hot electron population.[25] Green’s function
can be used to solve differential equations such as the Kompaneets’ equation.[8] The solution
obtained describes the evolution in energy space of a photon distribution that is initially monoenergetic.[2]
The model of Becker (2002)[2] assumes that the corona and photon source (i.e. black body)
will not change in temperature and that the source provides a constant injection of photons
into the corona. In the previous project, either source temperature oscillations or injection
rate oscillations were added to the model after recreating the results of the paper[2] in a Python
model.[24]
However, a more accurate model contains both oscillations. In the previous model, it is assumed
that no photons from the corona are going back into the black body. In a case where this
would happen, the returning photons will change the temperature of the source since they
add energy to the black body. Adding this feedback to the model will create an improved
model. The goal of this project is to extend the previous model further to create an improved
model to simulate the escaping photon distribution of a corona around a compact object.
This will be done by adding feedback from the corona back to the black body on top of the
temperature oscillations. With this model, the power density spectrum (PDS) can be created
to simulate the quasi-periodic oscillations (QPOs), phase lags, and rms. Here, a PDS can be
found by calculating the Fast Fourier Transform (FFT) of the light curves obtained. They
can be useful to analyze the variability of a light curve of a source. A PDS will give the square
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of the amplitude, also called power, of the variability of the light curve at each frequency.
[16] Here, the light curves show the escaping photon distribution versus time. The phase lags
will be explained further in section 2.1. As the name implies, the rms is the square root of
the mean square. It will show the variability of the light curve of a source over a range of
frequencies.[17] Using the PDS, the dependence of the width of the QPOs with frequency
can be analyzed. The PDS, phase lags, and rms from the model can also be compared with
results obtained from observations to give a better understanding of the QPOs and phase lags
and their origin.
This report will start with a theoretical background on the subject in section 2. Section 3
will then describe the method and results for the new model and in section 4 the model will
be discussed. Finally, in section 5 a conclusion of the research is provided, and in section 6
recommendations for the next steps.
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2. Theoretical background

This section will provide background information on binary systems, the corona, the Kompaneets’
equation, black body radiation, and quasi-periodic oscillations (QPOs). If one would prefer to
have more information, it is advised to read the report by Roomer (2021)[24]. Some terms
mentioned in this section are not further elaborated when they have no significant relevance
to the research in this paper.

2.1. Binary systems

A binary system contains two objects orbiting around each other, where one of the two is
a compact object and the other a star. The compact object can be either a neutron star,
black hole, or white dwarf. Due to the gravity of the compact object, it can strip matter from
its companion. The matter transfer can happen due to Roche lobe overflow or stellar wind
accretion.[20] More information on the type of binary systems can be found in Roomer (2021)[24].
X-ray binaries are a special type of binary system. They emit X-ray radiation and can be
divided into two classes: Low Mass X-ray Binaries (LMXB) and High Mass X-ray Binaries
(HMXB). In LMXB the companion star has a lower mass than the mass of the compact object,
while for HMXB the companion star has a mass that is higher than that of the compact object.
The model created in this paper is a model for LMXB.
Mass transfer to the compact object will create a disk around it. Due to the loss in gravitational
energy when falling towards the compact object, the disk will heat up. Heating of this disk
causes a corona to form. Figure 1 shows a schematic picture of the corona.[7]

The corona contains electrons and can Compton-scatter, also called Comptonise, photons
coming from the compact object and/or disk.[6] These photons can have high or low energies,
depending on the number of times they have scattered. Photons with high energies are called
hard photons and photons with low energies are soft photons. These soft photons thus have
longer wavelengths and are produced when hard radiation from the corona falls in the accretion
disc and is reflected or thermalized. The photons then enter the corona again and Compton
cools the plasma.[24] The hard photons have a delay (also called time and phase lag) with
respect to the soft photons since they undergo more scattering. The time lags are the time
delays between these photons. They also have a phase lag due to this scattering. This is the
phase of the averaged cross-power spectrum.[22]

2.2. Green function solution to the Kompaneets’ equation

X-ray spectra show power-law tails due to thermal Comptonization. They also show time
and phase lags between the observed photons because of this phenomenon. The Kompaneets’
equation described in Rybicki(2004)[25] expresses this thermal Comptonization:

1

neσT c

∂n

∂t
=

(
kT

mc2

)
1

x2
∂

∂x

[
x2

(
n′ + n+ n2

)]
. (1)

It describes the spectral modification of a photon distribution as it moves through a hot electron
population. The equation assumes that photons scatter off non-relativistic electrons and therefore
the fractional energy transfer for each scattering is small.[25]
In the Kompaneets’ equation, n′ is the diffusion along the x-axis, n is the cooling of the photon
population as the photons scatter on electrons that take part in the energy recoil, and n2 is
the stimulated reactions. ne is the electron number density, σT the Thomson cross-section, c
the speeds of light, k the Boltzmann constant, T the electron temperature, t the time and x
the energy, given by

x =
E

kTe
. (2)
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y is the Compton y-parameter given by

y =
kTe

mec2
τT , (3)

where τT is the optical depth.[25] When y ≪ 1 the spectrum is a modified black body and
when y ≫ 1 the photons are in equilibrium or saturated Comptonization. In all other cases,
the Kompaneets’ equation is required.[2, 7]
Equation 1 can be solved using Green’s function. A Green’s function is the inverse of an arbitrary
linear differential operator L.[8] It can be used to solve complicated differential equations and
is fully explained in Roomer (2021)[24]. The Green’s function solution to the Kompaneets’
equation determined by Becker (2002)[2] is given by

fG(x, x0, y) =
32

π
e−9y/4x−2

0 x−2e(x0−x)/2

∫ ∞

0
e−u2y u sinh (πu)

(1 + 4u2) (9 + 4u2)

×W2,iu (x0)W2,iu (x) du+
e−x

2
+

e−x−2y

2

(2− x) (2− x0)

x0x
. (4)

Here y is the dimensionless time or Compton-y parameter given by

y(t) ≡ neσT c
kTe

mec2
(t− t0) , (5)

x is the dimensionless photon energy given by equation 2, x0 the dimensionless photon energy
at time t0 and location r0, and W2,iu are the Whittaker functions. In equation 5, ne is the
electron number density, σT the Thomson cross-section, c the speeds of light, k the Boltzmann
constant, Te the electron temperature, and t the time. For the full derivation of Green’s function
solution to the Kompaneets’ equation, one can refer to Becker (2002)[2].
Using equation 4 and equation 6, the solution to the distribution function, f(x, y), can be
found.[2, 24]

f(x, y) =

∫ ∞

0
x20f0(x0)fG(x, x0, y)dx0, (6)

Here, f0(x) is the initial spectrum, and x0 the initial energy.[2, 24]

2.3. Black body Radiation

To simplify the model, the compact object is assumed to be a black body. In a black body
matter and radiation are in thermodynamical equilibrium since photons are scattered many
times in an optically thick region. The model created in this paper has special units. Therefore,
in this subsection, an expression for the specific intensity in the correct units for the model is
obtained. It also obtains equations to calculate the new temperature needed for the feedback
model.

The specific intensity of black body radiation or also called Planck radiation law is given by

Bν(Tbb) =
2hν3

c2
1

ehν/kTbb − 1
. (7)

This equation can be rewritten into terms of energy by using

Bν(Tbb)dν = BE(Tbb)dE. (8)

This will give the Planck law in terms of energy:

BE(Tbb) =
2E3

c2h2
1

eE/kTbb − 1

1

h
. (9)
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Where E = hν. Here Tbb is the temperature of the black body, h the Planck constant, ν the
frequency, c the speed of light, k the Boltzmann constant, and E the energy.[5, 24, 25]
Redefining the energy into a dimensionless quantity x, where x = E/kTe, gives an intensity of

Bx(Tbb) =
2 · (x · kTe)

3

c2h2
1

e
x∗kTe
kTbb − 1

1

h
, (10)

Bx[(1/2)c
2 · h3 · kT−3

e ] = x3
1

ex/kT − 1
. (11)

Here kT = kTbb
kTe

, where kTe is the electron temperature. The specific intensity given in equation
11 is in the correct units for the model and is needed to calculate the feedback.
The specific intensity can be used to calculate the luminosity of the black body with

L = 4π2R2B(Tbb). (12)

Where B(Tbb) is defined by

B(Tbb) =

∫ ∞

0
BE(Tbb)dE =

∫ ∞

0
Bx(Tbb)

2kT 4
e

c2h3
dx, (13)

and R is the radius of the black body. The luminosity from equation 12 can then be used to
calculate the temperature of the black body:

T =
4

√
L

σ
. (14)

Here σ is the Stefan-Boltzmann constant and is defined by σ = 5.670374419 · 10−5[erg · s−1 ·
K−4 · cm−2].[12, 18]

2.4. Quasi-periodic oscillations (QPO)

The power spectra of X-ray binaries show quasi-periodic oscillations or QPOs. These fast
signals are nearly periodic and mostly in the kilohertz range of the spectrum. They are therefore
often referred to as kilohertz quasi-periodic oscillations (kHz QPOs). However, these oscillations
can also occur in the lower frequency part of the spectrum and are then referred to as LF
QPOs (or low-frequency quasi-periodic oscillations). It is currently unknown what the origin
is of these QPOs.[6] Figure 2 shows an example of an X-ray power spectrum containing QPOs.

Figure 2: X-ray Fourier power spectra of GRS1915+105 with a strong fundamental QPO around 2
Hz for both the blue and black spectra. Here the dotted lines are several Lorentzian fits
combined into one fit (solid lines). Taken from Mendez et al. (2022)[17].

5



Multiple origins of QPOs have been suggested, such as temperature oscillations in the disk or
neutron star, temperature oscillations in a Comptonised region (or corona) around the disk,
optical depth oscillations in the corona, matter precessing at the Lense-Thirring precession
frequency (LTP) and brightness oscillations due to the rotation of bright spots on the surface
of the neutron star.[11]
Models have also been created to explain the origin of QPOs. The relativistic precession model
(RPM)[26] explains that the LF QPO is caused by matter precessing at the LTP. This frequency
is the difference between the orbital epicyclic frequency and the vertical epicyclic frequency.
The kHz QPO can be explained by it being the orbital epicyclic frequency.[11] The sonic-
point beat-frequency (SPBF) model[19] explains the upper kHz QPO by it being the Keplerian
frequency of the matter at the inner radius (sonic radius) around a neutron star. It also explains
the lower kHz QPO to be a beat between the Keplerian frequency and the neutron star spin.[11]
A beat between frequencies is the absolute value of the difference between the frequencies.[21]
This beat between the Keplerian frequency and neutron star spin is also explained in the beat
frequency model by Alpar & Shaham (1985)[1].
Hameury, King & Lasota (1985)[10] described that a magnetic field mechanism can produce
bright spots on the surface of the neutron star. These spots rotate with the neutron spin and
therefore create brightness oscillations which can be seen as QPOs.[11]
Another model about the origin of QPOs was made by Boyle, Fabian & Gilbert (1986)[4].
They were the first to suggest a Comptonising medium, also called a corona, from which the
QPOs origin could be explained. They related the QPO frequencies to the optical depth of
the corona, where the corona exists above the accretion disk.[11]
Lee & Miller (1998)[14], Lee, Misra & Taam (2001)[15], and Kumar & Misra (2014)[13] all
proposed models with a thermal Comptonising medium where the thermodynamic properties
are oscillating. These properties are the temperature and external heating rate of the corona,
the electron density of the corona, and the temperature of the soft photon source that provides
the seed photons for Comptonization. Lee & Miller (1998)[14] were able to create a model to
simulate the rms and time lags due to Comptonization of a seed photon source in a homogeneous
and spherically symmetric corona.[11]
In the model of Lee, Misra & Taam (2001)[15] it is assumed that the temperature oscillation
of the seed photon source is delayed due to the oscillation in the corona temperature. This
delay happens through feedback, where a part of the Comptonised photons in the corona fall
back into the source. These photons will heat the source creating a temperature oscillation.[11]

3. Method and Results

This section will describe the method and results of the research. To be able to implement
the feedback in the Python program, the code that has already been created in Roomer (2021)[24]
needs to be checked. This will be done first in section 3.1. When the code has proven to work,
the feedback will be implemented. Section 3.2 will discuss how the code with feedback works
and the results that follow. The fundamental QPO in the power spectra will be fitted with a
Lorentzian in section 3.3.
The model for injection rate oscillations, temperature oscillations, and the model containing
feedback can be found on the Gitlab page of the author.[23]

3.1. Testing code

First, to be able to implement the feedback, it is important to check if the model that has
been created in the previous project still creates the same results as obtained in Roomer (2021)[24].
For a full description of this model, one can refer to Roomer (2021)[24]. The model can be
checked by implementing the same values as previously done and checking the light curves
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and power spectra with the plots shown in Roomer (2021)[24]. Both the injection rate oscillations
and temperature oscillations will be checked for an angular frequency of ω = 2π rad/s, a
black body temperature of kT = 0.1[kT−1

e ] and a mean value of the Compton-y parameter
of ỹ = 1.0, as was also done in Roomer (2021)[24].
First, the injection rate oscillations will be checked. Here the time-dependent escaping photon
distribution is calculated using

Bx (x, t) =

∫ t/tesc

0
Ṅ0 (1 +A sin (wt0)) e

− t−t0
tesc x2f

(
x, x0, ỹ

(
t− t0
tesc

)
, kT

)
dt0. (15)

Where f
(
x, x0, ỹ

(
t−t0
tesc

)
, kT

)
is given by equation 6 with a black body initial spectrum for

f0. Here Bx (x, t) = Ṅx (x, t) from equation (25) and (31) of Roomer (2021)[24].
The middle panels in Figure 18 from Roomer (2021)[24] for the light curve and Figure 19
from Roomer (2021)[24] for the power spectrum were replicated. Figure 3 and Figure 4 show
the results obtained.

Figure 3: Light curve obtained for injection
rate oscillations to compare with
Figure 18 from Roomer (2021)[24].
Here ω = 2π rad/s, kT = 0.1[kT−1

e ],
ỹ = 1.0.

Figure 4: Power spectrum for injection rate
oscillations to compare with Figure 19
from Roomer (2021)[24]. Here ω = 2π
rad/s, kT = 0.1[kT−1

e ], ỹ = 1.0.

This result is the same as the light curve and power spectrum obtained for these values in
Roomer (2021)[24].
Next the temperature oscillations need to be plotted. The escaping photon distribution for
these oscillations is calculated using

Bx (x, t) =

∫ t/tesc

0
Ṅ0e

− t−t0
tesc x2f

(
x, x0, ỹ

(
t− t0
tesc

)
, (1 +A sin (wt0)) kT

)
dt0. (16)

Where f
(
x, x0, ỹ

(
t−t0
tesc

)
, (1 +A sin (wt0)) kT

)
is given by equation 6 with a black body initial

spectrum for f0 and Bx (x, t) = Ṅx (x, t) from equation (25) and (33) of Roomer (2021)[24].
The results are shown in Figure 5 for the light curve and Figure 6 for the power spectrum.
These will be compared with the middle panels of Figure 20 and Figure 21 from Roomer
(2021)[24].
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Figure 5: Light curve obtained for temperature
oscillations to compare with Figure
20 from Roomer (2021)[24]. Here
ω = 2π rad/s, kT = 0.1[kT−1

e ],
ỹ = 1.0.

Figure 6: Power spectrum for temperature
oscillations to compare with Figure 21
from Roomer (2021)[24]. Here ω = 2π
rad/s, kT = 0.1[kT−1

e ], ỹ = 1.0.

These figures are identical to the ones from Roomer (2021)[24].
However, the values that were used for the variables were non-realistic. Therefore, it is necessary
to check whether the model will also work when implementing values that are based on parameters
obtained from observations.
The code is tested with these more realistic values for both the injection rate oscillations and
the temperature oscillations. Figure 7 and Figure 8 show respectively the light curve and
power spectrum for injection rate oscillations with realistic values. The power spectrum can
be created by performing a Fast Fourier Transform (FFT) on the light curves.

Figure 7: Light curve for injection rate
oscillations with more realistic
values. Normalized to the mean
value. Here ỹ = 2.0967, ω = 2π

0.0233
rad/s, kT = 0.1[kT−1

e ] and A = 0.2.
Where tesc = 0.0233 s.

Figure 8: Power spectrum for injection rate
oscillations for more realistic values.
Here ỹ = 2.0967, ω = 2π

0.0233 rad/s,
kT = 0.1[kT−1

e ] and A = 0.2. Where
tesc = 0.0233 s.

As can be seen in Figure 7, the light curves show phase lags and the amplitude decreases with
increasing energy. These phase lags are caused by energy gain or also called up-scattering of
the photons since the corona has a higher temperature than the black body. The amplitude
changes are caused by Comptonization as was established already in Roomer (2021)[24].
As expected, the height of the peaks in the power spectrum in Figure 8 decreases with increasing
energy. This is due to the amplitude of the light curves decreasing.
Figure 9 and Figure 10 show the light curves and power spectrum for temperature oscillations
with realistic values.
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Figure 9: Light curve for temperature
oscillations with more realistic
values. Normalized to the mean
value. Here ỹ = 2.0967, ω = 2π

0.0233
rad/s, kT = 0.1[kT−1

e ] and A = 0.2.
Where tesc = 0.0233 s.

Figure 10: Power spectrum for temperature
oscillations for more realistic values.
Here ỹ = 2.0967, ω = 2π

0.0233 rad/s,
kT = 0.1[kT−1

e ] and A = 0.2. Where
tesc = 0.0233 s.

The amplitude of the light curves decreases with increasing energy, as expected. However,
this is not the case for x = 0.150. To better understand this behavior the amplitude as a
function of energy is plotted in Figure 11.

Figure 11: Amplitude versus energy for temperature oscillations with a frequency of ν = 1
0.0233 Hz.

Looking at Figure 11, the curve has a well-defined shape. This explains the behavior seen in
Figure 9.

The phase lags in Figure 9 also increase with increasing energy as expected. This is due to
the same reason as explained above.
Due to the temperature oscillations being proportional to

1

e
x kTe
kT (1+sin(ωt))

− 1,

the power spectrum in Figure 10 shows not only a fundamental harmonic but also higher
harmonics. Again, the height of the spectra decreases with increasing energy, due to the amplitude
changes in the light curve in Figure 9.
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3.2. Feedback model

It is now known that the code for the injection rate oscillations and temperature oscillations
works properly. Next, the feedback can be implemented in the model. The way this is done
is as follows. To calculate the new temperature, the luminosity needs to be known (eq. 14).
This luminosity can be calculated using equation 12 and equation 13. The values of Bx are
obtained from the model. The values of Bx at time t−1 (Bx,−1) can then be used to calculate
the new Bx with

Bx = Bx,0 + factor ∗Bx,−1. (17)

Here Bx,0 is the specific intensity of the initial black body at a temperature of kT that is
initially specified and the factor indicates the percentage of photons that fall back into the
black body. This Bx can be used in equation 13 to calculate B(T ) and ultimately calculate
the new temperature at time t. This new temperature will be implemented in the model for
the next time step. A flowchart of the process can be found in Figure 20 in Appendix A. The
Python code for the model can be found on the Gitlab page of the author.[23]
Using the model, the power density spectra (PDS) can be obtained. This can be used to study
the behavior of the PDS and specifically the behavior of the width of the QPO peaks with
changing angular frequency. The spectra have been created for five different angular frequencies,
where one frequency is the harmonic frequency of νesc = 1/tesc. The power spectra for the five
different angular frequencies can be found in Figure 12.
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Figure 12: Power spectrum for different frequencies in units of the escape frequency νesc = 1/tesc.
From top to bottom the frequencies are ν = 1 Hz, ν = 30 Hz, ν = 1/tesc = 42.9 Hz, ν = 60
Hz, ν = 90 Hz. In all panels ỹ = 2.0967, kT = 0.1[kT−1

e ], tesc = 0.0233 s, A = 0.2.

Using these power spectra the phase lags for the fundamental harmonic can be determined
and plotted. This is shown in Figure 13.
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Figure 13: Phase lags of fundamental harmonic for different frequencies in units of the escape
frequency νesc = 1/tesc. From top to bottom the frequencies are ν = 1 Hz, ν = 30 Hz,
ν = 1/tesc = 42.9 Hz, ν = 60 Hz, ν = 90 Hz. In all panels ỹ = 2.0967, kT = 0.1[kT−1

e ],
tesc = 0.0233 s, A = 0.2.
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In this model the optical depth τ = 1. This indicates that there are not many scatterings and
the lags are therefore small. For frequencies below the escape frequency (ν < νesc = 1/tesc)
the lags increase for low energies. This increase is due to up-scattering in the corona. Since
the energy of the photons is below the energy of the corona the photons will gain energy when
colliding with an electron in the corona. The higher this energy the longer the delay of these
photons and thus the phase lags increase. When the energy of the photons reaches approximately
the energy of the corona and above the lags start to decrease. Here, the photons lose energy
or down-scatter since they have a higher energy than the electrons in the corona. When they
collide with these electrons they lose energy. It is expected that the value at which the transition
from up to down-scattering occurs is around a value of x = 1, since here the temperature
of the black body would be equal to that of the corona. However, looking at Figure 13, this
turning point does not occur at x = 1. The bottom two plots do not even show a distinct
shape with one up- and one down-scattering part. It is currently unknown why this is the
case and needs to be further investigated.

The phase lags start to show different behavior when they reach the escape frequency and
above. As can be seen from the bottom two plots in Figure 13 the lags show a big ”u-shape”
at low energies and a smaller ”u-shape” at higher energies. Here the variations are faster than
the escape time of the photons and thus the corona has less time to reach a new equilibrium
state, which might explain the behavior seen. The energy at which the minimum of this low-
energy ”u-shape” is found increases with increasing feedback. To better explain this behavior
the root mean square or rms versus energy is plotted in figure 14.

Figure 14: Root Mean Square of light curves for each frequency value.

The lags for ν = 1.4[ν−1
esc], ν = 2.1[ν−1

esc], and a small part of the lags of ν = 1.0[ν−1
esc] have a

very steep slope at low energies. This steep slope can be explained by the rms values having
a minimum around those energies, as can be seen in Figure 14. This minimum shifts to the
right with increasing frequency, and therefore so does the slope in Figure 13.

To see the influence of the feedback on the lags, the lags for three different feedback factors
are plotted in Figure 15. Here, the frequency is constant at a value of ν = 1 Hz, and the
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mean value of the Compton-y parameter, the temperature, and the amplitude of the oscillations
are also kept constant.

Figure 15: Phase lags of fundamental harmonic for ν = 1 Hz = 0.0233[ν−1
esc] for different feedback

factors of 0.0, 0.2 and 0.4. Here ỹ = 2.0967, kT = 0.1[kT−1
e ], tesc = 0.0233 s, A = 0.2.

The curve for the lags flatten out with increasing feedback but remain to have a similar shape.
The soft lags here increase, while the hard lags do not change a lot with changing frequency,
causing the lags to soften for a higher feedback factor. This effect is also seen by Candela(2022)[3].
Some of the photons that were up-scattered return to the black body when there is feedback.
Where the number of these photons returning increases with increasing feedback. These photons
are reprocessed and thermalized in the black body, leading to low-energy photons escaping
the corona. This increases the soft lags.[3] This might be the reason for the softening of the
lags with increasing feedback, but more research is necessary to confirm this. The peaks in
Figure 15 shift slightly to the right with increasing feedback. It is currently unknown why
this behavior is seen and is a topic for further research.
The lags are positive (or also called hard lags) for the low-energy range, where the lags become
soft at higher energies. This can be explained by the hard photons undergoing more scattering
at lower energies than low-energy photons. Vice versa, the soft photons undergo more scattering
at higher energies than the hard photons, causing the lags to become negative. This explains
the transition from positive to negative lags around x = 1, since here the temperature of the
corona is equal to the temperature of the black body. Figure 15 can be compared with the
bottom left panel of Figure 2 in Candela (2022)[3]. Here it is also seen that the lags have a
pivot point at a certain energy value. However, this is a different model with different values
for the parameters and therefore the exact values on the axes cannot be compared.
To better explain the behavior of the lags in Figure 15 the rms per energy is plotted in Figure
16.
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Figure 16: Root Mean Square of light curves for each feedback factor. The frequency is kept constant
at ν = 1 Hz = 0.02[ν−1

esc]. Here ỹ = 2.0967, kT = 0.1[kT−1
e ], tesc = 0.0233 s, A = 0.2.

Here it is seen that the rms increase with increasing feedback factor. This explains the softening
of the lags seen in Figure 15. Figure 16 also shows that when the energy reaches a value of
x = 1, i.e. the black body temperature reaches the corona temperature, the rms values become
relatively constant. This explains the flattening of the curves seen at high energies in Figure
15.

3.3. Lorentzian fit

To measure the width of the QPOs a Lorentzian is fitted to the PDS. Since the PDS consists
of multiple QPOs, multiple Lorentzians are fitted and combined to form one fit. This is shown
in Figure 17 for both the combined fit and the individual components of the fit for a frequency
of ν = 60 Hz.
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Figure 17: In the top panel the fit of the Lorentzian is shown and the bottom panel shows the
components of the individual Lorentz fits used to make the total fit for the PDS. Here
ν = 60 Hz, ỹ = 2.0967, A = 0.2, kT = 0.1[kT−1

e ] and tesc = 0.0233 s.

Using this model the width of the fundamental QPO can be determined. In the case of ν =
60Hz the Full Width Half Maximum (FWHM) is determined to be FWHM= 0.0008 ± 0.0007
Hz.
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4. Discussion

There are some points that can be discussed as to why some things were done or why certain
results are useful. This discussion is divided into two parts: One that discusses the theoretical
model and another that discusses the physics behind it.

4.1. Theoretical model

Since the model runs for a large number of points, it is important that the code is as fast as
can be. However, this is an analytic model and therefore takes a longer time for the calculations
than if it were a numerical model. The basic limitations of the model are discussed in chapter
4.1 of Roomer (2021)[24]. Nonetheless, the new feedback model has oscillations combined
with the feedback and needs a large number of points for the time to avoid aliasing. This
large number of time values causes the run-time to increase.
The main limitation of this model is the constant corona. Here the properties of the corona
do not change with time. The electron temperature of the electrons in the corona, the size
of the corona, and the optical depth are all assumed constant, whereas in a more accurate
case these would vary. The corona is also assumed spherical and homogeneous, which is a
simplification of the model and does not resemble reality.
This model is also not practical to fit to data, but only to compare it with data. When fitting
to data the parameters in the model need to change individually as free parameters to obtain
the best fit. Due to the long run time of the model, this is not possible on a realistic time
scale. The feedback model also goes to higher energies than currently possible in observations.
The satellites available will only go to an energy of approximately 30 keV maximum. This is
approximately the value of the electrons in the corona (kTe). Since the model created goes to
energies above those values, we cannot compare the whole range of energies with data. This is
also one of the reasons it is currently unknown why the peak of the lags for frequencies below
the escape frequency is not at a value of x = 1.
The feedback in the model is instantaneous. At each time value, a percentage of the photons
injected one time step prior are going back to the black body instantaneously. In a more
realistic case, these feedback photons are a distribution and some photons take longer to fall
back into the black body than others. Therefore a photon that was emitted into the corona
might also fall back into the black body two or more time steps later, which is not implemented
in this model.
Finally, Figure 18 shows the fractional rms and phase lags of black hole transient MAXI J1348-
630 obtained from observations.
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Figure 18: Fractional rms (top panel) and phase lags (lower panel) of the QPO from the black hole
transient MAXI J1348–630. The individual points represent the data and the solid lines a
model fitted by Garcia et al. (2020)[9]. Taken from Garcia et al. (2020)[9]

In Figure 18, the black points represent the data. Since these are from observations, the energy
values are low for the reason explained above. The phase lags in the bottom panel can be
compared with the phase lags in Figure 13. However, this can only be compared for the left
side of the figure, since the energies in Figure 18 do not go higher than 10 keV. Garcia (2020)[9]
calculated an electron temperature of kTe = 20 keV, by fitting a model to the data (blue
line). This makes it possible to calculate the energy values in the units for the model created
in this paper. This will give energies between approximately x = 0.03 and x = 0.5. Figure
18 can be better compared to Figure 13 when it is selected for the same energy range. This is
done for the bottom two panels of Figure 13 and shown in Figure 19.
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Figure 19: Phase lags obtained with model cropped to the energy range of Figure 18. Here the phase
lags for the frequency of ν[ν−1

esc] = 1.4 and ν[ν−1
esc] = 2.1 are plotted.

It can be seen that the shape of the lags shows quite a resemblance, especially for the lower
panel of Figure 19. However, the frequency of the QPO in Figure 18 is ν = 4.45 Hz, whereas
the frequencies in the lags from the model shown in Figure 19 are ν = 60 Hz and ν = 90 Hz
respectively. The model created in this paper is still a preliminary model containing many
simplifications. Therefore, the exact values of the parameters may differ. For example, in
Figure 18 the source temperature is obtained with the best fit and estimated at approximately
kTbb = 0.2 keV.[9] This is equal to a kT = 0.01, in the units of this model. The lags obtained
in Figure 13 are all for a value of kT = 0.1. These differences do not imply that the model is
not useful. As mentioned, the shapes are very similar and indicate that the model created has
the potential to give a better understanding of the observations.
The rms from the observations of MAXI J1348-630 in Figure 18 can also be compared with
the rms from the model shown in Figure 14. Here it is seen that the shape of the rms from
the data also has a resemblance to the shape of the rms shown in Figure 14 for the frequency
of ν = 1 Hz = 0.02[ν−1

esc].

4.2. Physics

In this section, the physics and results of the model will be discussed. It is divided into two
parts. First, the model with feedback will be discussed and in 4.2.2 the Lorentzian fit shown
in section 3.3 is discussed.
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4.2.1. Feedback model

As can be seen in Figure 12 the peaks of the PDS move to the right with increasing angular
frequency. This is expected since the fundamental QPO will be at the frequency implemented
in the model and this value increases with each plot, causing the peaks to shift to the right.
The peak of the first PDS where ν = 1 Hz looks broader than the other ones. However, this
is due to the fact that the peak is shifted more to the left on the x-axis and the axis has a log
scale.
The peaks of the phase lags for different values of the feedback factor shift to the right with
increasing feedback, as can be seen in Figure 15. However, it is unknown why this happens
and it is necessary to further look into this behavior.

4.2.2. Lorentzian fit

The value determined for the FWHM of the fundamental QPO at ν = 60 Hz is very small
and close to zero. The reason for this is that the light curves are quasi-sinusoidal and the
amplitude does not change much over time for each energy value. The oscillations do not
decay and remain roughly the same over time. Therefore the FFT will create peaks that are
close to a delta function at the frequency resolution and do not resemble a Lorentzian. This
makes it not useful to measure the width of the peaks since they will always go to a value of
zero. This is the case at each frequency and therefore it is decided that it is not necessary to
analyze the widths of the QPOs of the other PDS.

5. Conclusion

An analytic model to study the radiative and thermodynamical properties of a corona around
a compact object including feedback has been created. This model adds a fraction of feedback
from the corona back to the black body and calculates the evolution in energy space of a
photon distribution in a spherically and homogeneous corona. It can be used to plot the spectra,
light curves, power density spectra (PDS), phase lags, and rms of the escaping photons to
compare with observations.

One of the goals of this project was to analyze the behavior of the widths of the QPO peaks
in the PDS as a function of frequency. However, it was found that the peaks of the QPOs
resembled a delta function and could therefore not be used to measure the width changes.

In the end, three models have been created, separated over two projects. The first two models
do not contain feedback but only have either temperature oscillations or injection rate oscillations.
The third model contains feedback from the corona back to the black body and also contains
temperature oscillations. All models can be found on the Gitlab page of the author, including
a file to plot the spectra, light curves, PDS, phase lags, and rms. It also contains a program
to calculate the parameters of the model in the correct units of the model given parameters in
cgs units.[23]

6. Recommendations

In order to quantitatively measure the width of the peaks at different frequencies, the amplitude
of the light curve needs to change. Therefore the oscillations need more than a sinusoidal
oscillation. This can be done by for example multiplying an exponential function with the
oscillations of the temperature. This exponential can be a function of the optical depth. Using
this function the oscillations will slowly damp. Implementing random shots can keep the
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oscillations going. However, it has not been proven that this works and therefore needs to be
researched further.
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Tomaso M. Belloni, and Diego Altamirano. Coupling between the accreting corona and
the relativistic jet in the microquasar GRS 1915+105. Nature Astronomy, 6(5):577–583,
mar 2022.

[18] Chris Mihos. Blackbody radiation;, Sep 2002.

[19] M. Coleman Miller and Frederick K. Lamb. Bounds on the compactness of neutron stars
from brightness oscillations during x-ray bursts. The Astrophysical Journal, 499(1):L37–
L40, may 1998.

[20] J.D. Myers. X-ray binary stars - introduction, 2014.

[21] Carl R. (Rod) Nave. Beats.

[22] Michael A. Nowak, Brian A. Vaughan, Jorn Wilms, James B. Dove, and Mitchell C.
Begelman. Rossi x-ray timing ExplorerObservation of cygnus x-1. II. timing analysis.
The Astrophysical Journal, 510(2):874–891, jan 1999.

[23] J. Roomer. An analytic model to study the radiative and thermodynamic properties
of a corona around a compact object. https://gitlab.astro.rug.nl/roomer/

an-analytic-model-to-study-the-radiative-and-thermodynamical-properties-of-a-corona-around-a-compact-object.

git, 2022.

[24] Jesse Roomer. An analytic model to study the radiative and thermodynamical properties
of a corona around a compact object. Graduation thesis Engineering Physics, January
2021.

[25] George B. Rybicki and Alan P. Lightman. Radiative processes in astrophysics. WILEY-
VCH, 2004.

[26] Luigi Stella and Mario Vietri. Lense-thirring precession and quasi-periodic oscillations in
low-mass x-ray binaries. The Astrophysical Journal, 492(1):L59–L62, jan 1998.

23

https://gitlab.astro.rug.nl/roomer/an-analytic-model-to-study-the-radiative-and-thermodynamical-properties-of-a-corona-around-a-compact-object.git
https://gitlab.astro.rug.nl/roomer/an-analytic-model-to-study-the-radiative-and-thermodynamical-properties-of-a-corona-around-a-compact-object.git
https://gitlab.astro.rug.nl/roomer/an-analytic-model-to-study-the-radiative-and-thermodynamical-properties-of-a-corona-around-a-compact-object.git


A. Flowchart of Python code

A.1. Flowchart for the code to obtain the time-dependent escaping photon
distribution with feedback

Figure 20: Flowchart of the Python code for the code that creates the time-dependent escaping
photon distribution with feedback.
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