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Abstract
We present a photometric analysis of the globular clusters of NGC-1052 DF2 (DF2). DF2

is an ultra diffuse galaxy which appears to have a negligible dark matter content and overly
bright globular clusters; the Globular Cluster Luminosity Function (GCLF) seems to peak
at MV = −9 instead of the nigh-universal value of MV = −7.5. A previous study observed
a secondary peak around the canonical value. In this work, we used SExtractor software to
extract sources upon which we perform a photometric selection and statistical background
subtraction using extremely deep HST data, thereby obtaining the GCLF of DF2’s globular
clusters. We observe no evidence of bimodality in the GCLF, and a reduced χ2 test shows
that the data favours a single mode Gaussian over a bimodal model, although neither model
provides a good fit.



CONTENTS J. F. Lania

Contents

1 Introduction 2

2 Analysis 4
2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Source Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Photometric selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Apertures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Results 11
3.1 Luminosity Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Gaussian modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Discussion 14

5 Conclusion 16

6 References 17

7 Appendix: Python Code 19

1 Introduction

Since the 1980’s, a number of low surface-brightness galaxies have been discovered in well-studied
galaxy clusters, such as the Fornax and Virgo clusters (Saifollahi (2022), Binggeli et al. (1985)).
The detection of these galaxies is limited due to their intrinsic low luminosities, however new
deep sky optical surveys have contributed to their field of study. As such, study in the field of
low surface-brightness galaxies is becoming more active (Román et al., 2021).

A subclass of low surfrace brightness galaxies are the so-called Ultra Diffuse Galaxies, or
UDGs (van Dokkum et al., 2015). These galaxies appear to have extreme amounts of dark
matter in both senses of the term. UDG NGC-1052 DF44 was proposed by Dokkum et al.
(2016) and van Dokkum et al. (2017) to have a dark matter fraction within its half-light radius
of approximately 98 %, and a dark matter halo mass of order Mhalo ≈ 1011M⊙; though this
was shown to be erroneous by Saifollahi (2022). Conversely, other UDGs appear to have little
to no dark matter at all. One such dark matter deficient galaxy, NGC-1052 DF2, has been
extensively studied in the past years, with at least 40 publication regarding it in the last five
years; those by Shen et al. (2021b), van Dokkum et al. (2018b), Trujillo et al. (2019) and Shin
et al. (2020) constituting some examples over this time. NGC-1052 DF2, hereafter referred to
simply as DF2, is a UDG thought to be associated with the NGC-1052 galaxy group. Though it
had been identified as belonging to this group by wide-image surveys of the NGC-1052 cluster
beforehand, in 2018 a deeper study of the galaxy was carried out and concluded that the galaxy
has a halo to luminous ratio Mhalo/Mstars of order unity, indicating that it possesses little to no
dark matter (van Dokkum et al., 2018b).

Additionally, several globular clusters were identified thought to be associated with DF2.
While it is not uncommon for galaxies such as DF2 to have a globular cluster system, the
luminosities of these globular clusters appear to be anomalous (van Dokkum et al., 2018a). Many
identified globular cluster systems adhere to a canonical globular cluster luminosity function
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(GCLF), which is approximately Gaussian in shape and has an absolute peak magnitude of
approximately −7.5. This GCLF is nigh-universal (Rejkuba, 2012), which facilitates the use of
the canonical GCLF as a standard candle for the purposes of distance measurements: see Beasley
(2020) and Harris (1991) for more information. However, the globular cluster system of DF2 has
been suggested to have a GCLF with a narrow peak value −9.1, approximately 4.4 times brighter
than the canonical value, as presented in van Dokkum et al. (2018a). Combined with its puzzling
dark matter content, it would seem that DF2 challenges several previous assumptions regarding
galaxy formation models. In addition, a galaxy apparently similar to DF2 was discovered in 2019
by the same research group, named NGC-1052 DF4, raising the possibility that galaxies with
these interesting features may not be as uncommon as thought (van Dokkum et al., 2019).

Research into DF2 and these particular anomalies has been ongoing since the papers by Van
Dokkum were published. It is interesting to note that both the abnormally bright globular cluster
luminosities and the dark matter content are distance-dependant properties: a larger distance
shifs the peak of the GCLF to brighter absolute magnitudes. At a further distance, the stellar
mass of the galaxy (inferred through a mass-luminosity relation) would appear to be higher,
leaving less room for dark matter content. One study by Trujillo et al. (2019) pointed at these
facts, and estimated a distance of 13.4 ± 1.14 Mpc using a variety of distance measurements.
In contrast, Van Dokkum 2018 estimated DF2 to have a similar distance as the closest massive
galaxy (NGC-1052), giving an estimate of 20 Mpc. Under the distance measurement by Trujillo
et al. (2019), the galaxy appears far more ordinary: it has a significant dark matter fraction and
has comparatively normal globular clusters in terms of luminosity and size. Some time later,
a paper by Shen et al. (2021a) measured the distance to DF2 using the Tip of the Red Giant
Branch method, this time finding a distance of 22.1 ± 1.2 Mpc - a distance under which the
anomalies would be even more extreme. A two-way debate has begun to form, with proponents
of a closer distance of 13.4 Mpc and those in favour of a distance of 20 Mpc. As of today, the
true distance to DF2 remains in dispute.

The anomalies in DF2 pose interesting questions for several models of galaxy formation and
dark matter paradigms. Dark matter has long been considered pivotal to the formation of
galaxies, as they are thought to form when clumps of dark matter interact with baryonic matter.
In a scenario without dark matter, stars would likely not organise themselves in a collection as
we see in galaxies, but be spread more diffusely across space. DF2 would demonstrate that dark
matter is not always present in galaxies, which is itself an argument for its existence as dark
matter may be a ’substance’ that is often, but not always, found in galaxies. As pointed out by
van Dokkum et al. (2018b), DF2 also could falsify alternative theories to dark matter which would
expect a trace of it to be found in every galaxy. Supposing that dark matter deficient galaxies
exist, Silk (2019) put forwards that current galaxy formation models struggle to explain their
origins. In order to examine what the existence of DF2 will mean for cosmology and astronomy
as a whole, its distance must be pinned down to an agreed upon value.

Several theories and studies have examined the formation of dark matter deficient galaxies
such as DF2. A study by Ogiya et al. (2021) examined the possibility that such galaxies can
result from tidal stripping, and if it is possible for a galaxy thus formed to have bright globular
clusters like DF2 does. The study shows that it is possible for DF2 to have formed this way,
though another study by Müller et al. (2019) reports no evidence of any recent tidal interaction
in either DF2 or DF4. This appears to be corroborated by Montes et al. (2021). Other studies
are investigating the possibility that galaxies such as DF2 form from collisions of gas-rich dwarf
galaxies. In such scenarios, a high-velocity collision may cause the dark matter to be separated
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from the warm disc gas, which is compressed to form stars.(Shin et al., 2020). A third possibility
is that they are dwarf galaxies that formed in large gas clouds, which was then stripped away by
luminous quasars or interactions with other galaxies (Duc et al., 2014).

Recently, a paper by Shen et al. (2021b) revisited the GCLFs of DF2 and DF4 and corrob-
orated the earlier findings regarding the anomalous GCLFs of these galaxies. Additionally, the
study claims to have found a sub-population of less luminous globular clusters, forming a small
’second peak’ in the GCLF around the canonical value. Now, using HST data that is nearly
twenty times deeper than the data used by previous studies, this thesis aims to revisit DF2, pho-
tometrically identify its globular clusters and examine their luminosity function. In particular,
we aim to investigate more closely the claimed sub-population of globular clusters around the
canonical value. To perform a direct comparison with the works of Shen et al. (2021b), we will
follow the methodology of their study rather closely. In section 2 of this thesis, this methodology
will be discussed in detail. In section 3, the results of the analysis will be presented. In section
4, we will discuss the accuracy and validity of the analysis and the results. We summarize and
conclude the paper in section 5.

2 Analysis

2.1 Data

The data consists of a total of 38 exposures of the Hubble Space Telescope’s Advanced Camera
for Surveys (ACS) taken in late 2020. The data comprises 19 exposures of 2020 seconds each in
the V606 filter, and 19 exposures of approximately 2080 seconds in the I814 filter. Barbara (2019)
The exposures were stacked and converted to a FITS format to be used in the analysis, with
data reduction on them being performed using AstroDrizzle. This process was carried out by a
team at the IAC 1. The data reduction itself will not be covered in this paper.

Each .fits file contains two frames; a SCI frame containing science-ready data and a weight
map setting the priority of each pixel. The V606 filter is slightly smaller than the other filter,
comprising a stacked image of 6445x6826 pixels versus 8639x8455 pixels for the I814 filter. The
data is expected to be complete up to 28 mags, since it is deeper than the data used by Saifollahi
(2022), which used fewer orbits of data. The paper by Shen et al. (2021b) used two orbits (1 in
V606, 1 in I814) for their analysis of DF2 as opposed to the 38 orbits used in this analysis.

2.2 Source Extractor

The data was analyzed using Source Extractor software (SExtractor), with the aim of identifying
globular clusters using photometry. Separate configuration files were made for the two filters,
with the main differences between them being the weight maps, photometric zeropoints and
background values. The photometric zeropoints for each filter were obtained using a web-based
zeropoint calculator for the ACS by supplying the date of observations and the desired filter,
leading to values of M0 = 26.486 for V606 and 25.935 for I814. Background values were initially
computed using a simple python script, by forming a histogram of pixel photon counts and taking
the median as an approximation for the background value. The values obtained through this
routine were Bg = 1.05 · 10−3, 8.12 · 10−4 for V606 and I814 respectively. SExtractor automatic
background computation was however used for the majority of the analysis, using a BACK_SIZE
parameter of 128.

1Instituto de Astrofísica de Canarias (Institute of Astrophysics of the Canary Islands)
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Apart from these differences, the configuration files for each filter were kept identical. In order
to optimize SExtractor, the program was run over both filters numerous times while varying the
parameters slightly during each iteration. The results were inspected graphically using Aladin
graphical software. Aperture images, showing the extracted sources and the aperture in which
SExtractor performs photometry, were inspected after each iteration in order to examine whether
apparent sources within the image were extracted correctly. After optimizing the program in
this way, the following parameters values were used:

• DETECT_MINAREA = 4

• DETECT_THRESH = 1.5

• ANALYSIS_THRESH = 1.5

• DEBLEND_NTHRESH = 16

• DEBLEND_MINCONT = 0.0005

• PHOT_APERTURES = 5

• PHOT_AUTOPARAMS = 2.5, 3.5

• BACK_SIZE = 128

Other values were kept to their default parameters and were not varied during the optimisa-
tion. For information regarding each parameter, please refer to the SExtractor documentation.
SExtractor additionally provides the option to apply several types of filters to an image, in order
to smooth out the image and make detections easier (Casey, 2006). The so-called ’mexhat’ filters
are particularly appliccable to DF2, as the core of the diffuse galaxy constitutes a crowded field.
This type of filter is designed to aid in detecting objects within such crowded fields, and is tuned
specifically towards detecting objects between FWHMs of 1.5 to 5 pixels.

SExtractor creates user-specified output catalogs containing relevant parameters. For this
analysis, the following parameters were retrieved by SExtractor:

• NUMBER

• FLUX_ISO

• FLUXERR_ISO

• MAG_ISO

• MAGERR_ISO

• MAG_APER

• MAGERR_APER

• MAG_AUTO

• MAGERR_AUTO

• X_IMAGE

• Y_IMAGE

• ALPHA_J2000

• DELTA_J2000

• FWHM_IMAGE

• FWHM_WORLD

• ELLIPTICITY

• FLAGS

• CLASS_STAR

After obtaining one output catalog for each filter using SExtractor under its optimal pa-
rameters, the catalogs were cross-matched to exclude any uncorroborated detections. The final
master catalog, containing only the matched sources, consists of 15870 detections. In order to
identify the globular clusters, a selection based on their expected colours and sizes were made.
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2.3 Photometric selection

Figure 1: Colour-magnitude diagram of the matched detections. Colours are listed via their
AB-magnitude system designations. Colour cut limits are indicated in the plot, at V606 − I814 =
[0.37, 0.52]. Colour cut limits were computed from SExtractor measurements of confirmed glob-
ular clusters. Unconfirmed globular clusters are expected to fall within this colour range.

Following a similar methodology to the one outlined by Shen et al. (2021b), confirmed globular
clusters associated with DF2 were highlighted in the master catalog so that their measured
photometric properties could be used. First a V606− I814 colour selection was made based on the
magnitude data of the globular clusters adhering to the following relation: ⟨V606−I814⟩±3σ, with
σ being the standard deviation of the colours. This selection gives a colour range of [0.37, 0.52].
Although Shen et al. (2021b) used a 2σ cut for their colour selection, here we have extended the
cut to 3σ to accommodate the deeper data. This colour selection includes all globular clusters
from the previous catalog. It can be seen from the colour-magnitude diagram in figure 1 that
the colour selection greatly reduces the amount of candidates; of the original 15870 sources, 1593
remain. Figure 2 shows the selection in much more detail, and shows how all spectroscopically
confirmed globular clusters from previous works on DF2 are included within the colour cut. From
the selected sources, a subsequent size selection was made from the FWHM of each source in
pixels. We took a threshold of 4.7 pixels as the maximum value. This value is based on research
by Shen et al. (2021b), who took a FWHM cut according to ⟨FWHM⟩ ± 2.5σFWHM = 4.7. To
make sure that no confirmed globular clusters are excluded from the size cut, we use this value.
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The result of applying this cut on the colour-selected detections is shown in figure 3.

Figure 2: Colour-magnitude diagram of the matched detections, zoomed in on the region between
the colour cut limits as outlined in figure 1. A subset of the detections was made, consisting of
1593 sources out of the original 15870.

After the size selection, there are 827 sources remaining within the set criteria. Although
many of these sources are expected to be faint background objects and stars, some may constitute
globular clusters that have not been confirmed yet, and the previously documented globular
clusters all lie within the selection. From here, a statistical background subtraction process is
applied. A circular aperture of n half-light (or effective) radii is made around DF2’s centre, as
seen in figure 5. Taking the half-light radius of DF2 as 2.2 Kpc as according to van Dokkum
et al. (2018b), we convert this to a pixel value by computing the angle that DF2 subtends across
the sky (assuming a distance of 20 Mpc) in arcsec. We then convert this to pixels using the ACS
pixel size of 0.05. (Saifollahi et al., 2022) Magnitude histograms are made for sources outside
and inside the aperture, and normalized by area through the following relation to approximate
a background magnitude:

Mbg =
Hext ·Aint

Aext

This background magnitude is subtracted from the interior magnitude histogram to provide the
final GCLF. This process is performed for n = 2, 3 and 4 in order to examine the difference
this makes for the background estimation. It should be noted that several confirmed globular
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clusters lie outside the aperture for n = 2 and n = 3, meaning the background is overestimated
in those scenarios.

Figure 3: Size-magnitude diagram of the colour-selected detections. The dashed line represents
our FWHM cut at 4.7 pixels. All confirmed globular clusters (lime stars) fall underneath this
size cut. The figure is capped off at FWHM = 10, as the few sources above this size limit
are not important to the further background computation. The final cut (green) numbers 827
sources.

2.4 Errors

Though there may be other factors of uncertainty in the assumptions made throughout this
work (please refer to the discussion section for more details), the majority of the error bars in
the magnitude histograms arise from Poisson noise. Poisson noise, or shot noise, arises due to
the quantized nature of light. As light consists of a discrete number of photons, fluctuations in
the amount of photons hitting a detector occur naturally. If a source is sufficiently bright or
close, many billions of photons may hit a detector at any given time and the minor fluctuations
are negligible. If only a small number of photons hit the detector per unit time, as is the
case with extremely distant or faint sources, the random fluctuations become significant. These
fluctuations may be described by a Poisson distribution. The ratio of signal to photon noise
is equal to

√
N , with N the number of photons captured. As such, poisson noise is relatively

weaker at higher signal levels (Hasinoff, 2012).
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Figure 4: NGC-1052 DF2 as seen in the I814 filter. The x and y positions of each pixel in the
image were plotted against eachother to form the image.

2.5 Apertures

It may be noted from figures 4 and 5 that the images of DF2 appear cut and jagged around
their corners. The cause for this is that the observatory applies a slight rotation in each orbit,
in order to capture data on DF2 under slightly different orientations. This has the benefit that
any possible bad pixels or bad detections are not stacked up in one single pixel, and so can be
smoothened out during data reduction. The images were, as previously mentioned, stacked up
to form these final images, explaining the seemingly erratic aperture shape.
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Figure 5: NGC-1052 DF2 in the I814 filter, using x / y pixel position on the axes. Overplotted
in star markers are globular clusters spectroscopically confirmed by previous works. The green
dotted circle represents three half-light radii Re, used in the background subtraction process.
Sources external to the circle are compiled to an external luminosity function which is normalized
and subtracted from the GCLF from inside the aperture. Note that since one confirmed globular
cluster lies outside the aperture, the background may be slightly overestimated for this case, and
even more so for 2Re
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3 Results

3.1 Luminosity Functions

Figure 6: Magnitude histograms of all sources exterior to nRe, Re being DF2’s effective radius.
Plotted are exterior histograms for n = 2, n = 3 and n = 4 in the I814 (red) and V606 (blue)
filters. The symmetric error bars arise due to the Poisson Errors of each bin. Note that for
n ̸= 4, several globular clusters are excluded in the exterior sample, which can be seen around
m ≈ 22

The matched catalog was taken through the described selection cuts, leaving 827 sources. This
selection thus includes all sources with colours in the range [0.37, 0.52] and with seeing FWHMs
smaller than 4.7. A significant number of sources, particularly within the confines of DF2, are
thought to be red giants and supergiants, based on their colours, ellipticities and small FWHMs.
The background subtraction process was carried out several times, for two, three and four times
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the effective radii. The completeness of the globular clusters within the circular aperture are
63% under 2Re, 82% under 3Re and 100% under 4Re, meaning the background does not include
any of the globular clusters for a background subtraction using 4Re. The area of the full image
as well as the aperture areas were computed, giving Aext

Aint
= 9.22, 3.55 and 1.57 for 2Re, 3Re

and 4Re, respectively. No uncertainties are taken into account for these ratios, as all areas
are computed in units of pixels, and the error in the circular aperture is at most equal to the
circumference of the aperture. The difference in result due to the circumference is negligible.
Similar to the work by Shen et al. (2021b), we count objects within the magnitude range MV

= -5 to -11 in the background subtracted GCLF’s. They range from NGC = 12 ± 5 at least to
NGC = 14 ± 6 at most, correspondent with the I814 filter for 3Re and the I814 filter for 4Re

respectively. The errors in these results, as well as in the histograms and GCLFs, arise purely
from the Poisson-distributed shot error of the detectors.

Figure 7: Image taken from Shen et al. (2021b), showing the observed, uncorrected luminosity
function of their combined DF2 + DF4 dataset. The blue lines represents AEGIS data of objects
with similar colours and sizes to the confirmed globular clusters, which Shen et al. (2021b) used
as their background.

The histograms of exterior sources (figure 6) show a steadily increasing frequency of sources
with fainter magnitudes, eventually spiking around a magnitude of ≈ 27, where faint sources
dominate the bins. A comparison can be made to the background used by Shen et al. (2021b),
which is shown in figure 7. As can be seen from figure 6, several bright globular clusters are
included in the histograms under 2 − 3Re, as not all globular clusters fall within the circular
aperture in these cases. Note the steady decrease of sources as the aperture for background
subtraction increases, and the relatively larger error bars for the 4Re case. Since Poisson errors
scale with the root of the sample size, the errors are most significant in the 4Re case.
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Figure 8: GCLF of DF2’s globular clusters in the I814 (red) and V606 (blue) filters. The lumi-
nosity functions are background corrected through a statistical subtraction process with circular
apertures of radius nRe, with Re being the effective radius of DF2. Each GCLF shows a clear
peak around M = −9.5. In none of the cases is there a clear second peak around M = −7.5.

The background-subtracted Globular Cluster Luminosity Functions were made for both filters
under all three effective radii, with the results being presented in figure 8. In order to make a
direct comparison to the works by van Dokkum et al. (2018a) and Shen et al. (2021b), we
plot the absolute GCLFs by assuming a distance of 20 Mpc to DF2, which is consistent with a
distance modulus of −31.5. Plotting the absolute magnitude GCLF in figure 8, it is apparent
that there is a clear peak around MV = −9, as stated by the previous works. We however see no
clear secondary peak around the canonical value of MV = −7.5, unlike the work by Shen et al.
(2021b). The absence of such a secondary peak is absent in both filters and under all three cases
of background subtraction, as seen in figure 8, but is most clearly seen in the cases of 4Re.
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3.2 Gaussian modeling

In order to test the hypothesis that the GCLFs of DF2 adhere to a standard Gaussian-like
luminosity function, we fit a gaussian function with a mean µ ≈ −9, standard deviation σ = 1
and scaling A. The initial guess for standard deviation and scaling factor A were taken arbitrarily,
as the fitting function rapidly converges to a suitable value regardless. Such Gaussian functions
with three degrees of freedom were fitted to all GCLFs, with the fit for V606 under three effective
radii being shown in figure 9. The poisson errors for each bin are taken into account during the
fitting. The best fit is a Gaussian with a mean of µ = −8.8, σ = 0.76. A reduced χ2 test is
performed on each fit, with the best fit having a χ2 statistic of 3.45. This would indicate that the
fit does not model the data very well. A second fit using a bimodal fit with a fixed second mode
at µ2 = −7.5 was also performed, in accordance with the methodology of Shen et al. (2021b).
This model gives, at best, a χ2 statistic of 20.8, indicating that the single mode Gaussian fit is
at the very least a more suitable model for the GCLF.

Figure 9: GCLF in the V606 filter, background corrected using a 3Re aperture. A gaussian fit
with estimated parameters µ = −9, σ = 1.5 has been fitted to the bin points marked in blue, in
order to test the single mode Gaussian hypothesis. The fit to the data is poor, with a χ2 statistic
of 3.45.

4 Discussion

As was stated in the introduction, this thesis aimed to investigate the bimodality of the GCLF
of DF2 as was purported by Shen et al. (2021b). In this section we will discuss the methodology
of this work critically, and review any assumptions made on their validity. We will discuss the
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discrepancy in the result of this thesis and the results of the work by Shen et al. (2021b), par-
ticularly the means by which the background was computed in both works. Several suggestions
for follow up research into DF2 and its globular cluster system will also be discussed.

A significant amount of time went in to optimising SExtractor to good performance in the
crowded field of DF2. The process was done manually, and no machine learning or automation
was used. It is therefore likely that there are superior setups that would perform better, quali-
tatively, quantitatively or both, than the one ultimately used in this thesis. A follow-up study
related to this thesis might benefit from a review of the SExtractor configuration.

As this thesis aims to investigate the purported bimodality of the GCLF of DF2’s globular
cluster system, care was taken to follow the methodology by Shen et al. (2021b) closely in order
to make a fair comparison. Two major differences may be pointed out in the methodologies: the
deeper data of this thesis and the difference in background subtraction. In this thesis, we applied
a statistical background subtraction process based on the magnitudes of sources after selection,
with a normalization to unit area. The previous work instead used the All-wavelength Extended
Growth Strip International Survey (AEGIS) field, from the 2014 Hubble Space Telescope data
release. Aegis is a multiwavelength sky survey, formed up from observations by the Chandra,
GALEX, Hubble, Keck, CFHT, MMT, Subaru, Palomar, Spitzer and VLA telescopes. Shen et al.
(2021b) used sources from the AEGIS catalog, applied similar selection cuts and constructed a
luminosity function, which was then statistically subtracted from their GCLF as a background.
The major difference between the two methods is that AEGIS sources are distributed across the
whole sky, and are not local to DF2, while our background subtraction method is. It is difficult
to qualitatively assert which method of background correction is better. The previous paper did
not motivate explicitly why background subtraction using AEGIS data was chosen. In this thesis
we utilized the local background subtraction since the data on DF2 is very deep, allowing the
background in the image to be determined to a higher degree of accuracy than before.

The peak of the luminosity function is of course a distance-dependant quality, since the
apparent magnitudes cannot be converted to absolute magnitudes without a distance modulus.
It should also be noted that we use a distance of 20 Mpc in the computation of the half-light radius
in pixel values for the background subtraction, making our subtraction distance-dependant. If we
instead utilize a distance of 13.4 Mpc as cited by Trujillo et al. (2019), the half-light radius would
be 49% larger. From looking at figure 6 we can infer that this would imply a smaller background.
Given that we perform a near-direct comparison to previous works which also adopted this
distance, this should not be considered significant to the overall result, particularly since the
presence of a second peak within the GCLF is not distance dependant. The measured number of
objects within magnitude ranges from −5 to −11 is bigger than the number of spectroscopically
confirmed GCs (12±5 candidates compared to 11 confirmed GCs), and we cannot say for certainty
that the excess objects counted are truly globular clusters. It is likely that they are foreground
stars of similar colour or luminous background objects.

In computing the χ2 statistics for all fits, one reason for the poor quality of the fits is the small
amount of datapoints. A luminosity function with more sources may follow the expected Gaussian
behaviour more closely, as seen with the Milky Way’s GCLF which contains approximately 157
sources. (Frommert, 2011)(Harris, 1996) On top of this, it should be pointed out that the
bimodal fit is biased to lower values as the fit contains more degrees of freedom. This supports
the argument that the single mode Gaussian fit is more suited to DF2’s GCLF, as its χ2 statistic
is lower than that of the bimodal fit despite them being on unequal footing. To corroborate
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this, more statistical tests may be performed on the fits, such as the Kolmogorov-Smirnov (KS)
statistic or a Shapiro-Wilk test. Both test the hypothesis if a given set of observations match a
given distribution, and can be used in this context.

For future studies into the purported bimodality of DF2’s GCLF, we would suggest the
following improvements to this work. Firstly, a more direct comparison to the results of Shen
et al. (2021b) can be done if an identical background subtraction method is used on the deeper
data. This would allow us to verify whether the difference in result arises purely from the
different backgrounds. Additionally, there may be benefits to running an optimization program
on SExtractor to find a superior configuration than the one used in this thesis. It should also
be noted that Shen et al. (2021b) used a combined sample of globular clusters from DF2 and
a similar galaxy, NGC-1052 DF4. As such, their sample size is larger, improving the quality of
their models by nature of having more fittable datapoints. Forming a similar combined sample
from globular cluster data of DF4 may allow statistical tests like those used in this report to be
carried out with a higher degree of accuracy. It may also be argued that the difference between
our result and that of the previous work arises not just from the background subtraction, but
from this combination of samples. If this is the case, there may be no bimodality in the GCLF
of either galaxy at all, it simply being an apparent result from the combination of two different
datasets.

5 Conclusion

This thesis used extremely deep HST-ACS data to investigate the globular cluster system of the
seemingly anomalous galaxy NGC-1052 DF2. By using Source Extractor and several selection
cuts, some 800 sources were used to form the Globular Cluster Luminosity Function. The results
of the analysis are as follows:

• We find NGC = 12 ± 5 at least and NGC = 14 ± 6 at most, though these values are
misleading to the true number of globular clusters in association with DF2.

• We observe clear peaks in the GCLF of DF2 around −9 for all filters and all background
subtraction cases, taking a distance modulus of −31.5 in accordance with a distance of 20
Mpc.

• We observe no evidence of a ’second peak’ around MV = −7.5, unlike Shen et al. (2021b).

• Our reduced χ2 test on Gaussian and bimodal Gaussian models yield values of 3.45 and
20.8 respectively, indicating that the Gaussian fit is far better than the bimodal fit.

Though the methodology of the previous paper has been followed closely in order to make a
direct comparison, the differences in result could arise from the different background subtraction
methods that were used by the two works. Direct comparison with the background subtraction
method of the previous work was not possible since we do not possess their data.

Though it may seem like DF2 remains anomalous given the brighter peak of the GCLF, it
should again be noted that a distance of 20 Mpc was adopted in this project, giving an absolute
magnitude around −9 for the peak of the luminosity function. The real distance to DF2 is still
a debated subject, and a distance of 13.4 Mpc would instead shift the peak to lie around the
canonical value of −7.5. As our aim was to investigate the appearance of a secondary peak,
the distance we take to DF2 is not too relevant, and the mystery behind its true distance will
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need to be investigated by other studies. If the conservative distance of 13.4 Mpc is correct, it
would leave plenty of room for a dark matter halo in DF2 and its GCLF would shift towards
the universal values. It would imply that DF2 is a standard UDG with no apparent anomalies.
There remains the possibility that the larger distances of 20 Mpc assumed by van Dokkum et al.
(2018b) or even the revised 22.1 ± 1.2 Mpc as found by Shen et al. (2021a) are correct. This
would imply that DF2 is extraordinary, and challenges current models on the formation of dwarf
galaxies and the luminosities of globular clusters. It will be highly interesting to see how the
debate regarding this galaxy develops over the next decade.

6 References

References

Aladin sky atlas, 2005. URL https://aladin.u-strasbg.fr/.

Sextractor user manual — sextractor 2.24.2 documentation, 2013. URL https://sextractor.
readthedocs.io/en/latest/.

A. Barbara. Hst proposal search, 2019. URL https://archive.stsci.edu/proposal_search.
php?id=15851&mission=hst.

M. A. Beasley. Globular cluster systems and galaxy formation. arXiv:2003.04093 [astro-ph],
1:245–277, 2020. doi: 10.1007/978-3-030-38509-5_9. URL https://arxiv.org/abs/2003.
04093.

B. Binggeli, A. Sandage, and G. A. Tammann. Studies of the virgo cluster. ii - a catalog of
2096 galaxies in the virgo cluster area. v - luminosity functions of virgo cluster galaxies. The
Astronomical Journal, 90:1681, 09 1985. doi: 10.1086/113874.

C. Casey. Optimizing sextractor parameters for subaru macs fields, 2006. URL http://www.
ifa.hawaii.edu/reu/reu2006/casey.pdf.

P. v. Dokkum, R. Abraham, J. Brodie, C. Conroy, S. Danieli, A. Merritt, L. Mowla, A. Ro-
manowsky, and J. Zhang. A high stellar velocity dispersion and 100 globular clusters for
the ultra-diffuse galaxy dragonfly 44. The Astrophysical Journal, 828:L6, 08 2016. doi:
10.3847/2041-8205/828/1/l6.

P.-A. Duc, S. Paudel, R. M. McDermid, J.-C. Cuillandre, P. Serra, F. Bournaud, M. Cappellari,
and E. Emsellem. Identification of old tidal dwarfs near early-type galaxies from deep imaging
and hi observations. Monthly Notices of the Royal Astronomical Society, 440:1458–1469, 03
2014. doi: 10.1093/mnras/stu330.

H. Frommert. Milky way globular clusters, 2011. URL http://spider.seds.org/spider/MWGC/
mwgc.html#harris.

W. E. Harris. Globular cluster systems in galaxies beyond the local group. Annual Review of
Astronomy and Astrophysics, 29:543–579, 09 1991. doi: 10.1146/annurev.aa.29.090191.002551.

W. E. Harris. A catalog of parameters for globular clusters in the milky way. The Astronomical
Journal, 112:1487, 10 1996. doi: 10.1086/118116.

17

https://aladin.u-strasbg.fr/
https://sextractor.readthedocs.io/en/latest/
https://sextractor.readthedocs.io/en/latest/
https://archive.stsci.edu/proposal_search.php?id=15851&mission=hst
https://archive.stsci.edu/proposal_search.php?id=15851&mission=hst
https://arxiv.org/abs/2003.04093
https://arxiv.org/abs/2003.04093
http://www.ifa.hawaii.edu/reu/reu2006/casey.pdf
http://www.ifa.hawaii.edu/reu/reu2006/casey.pdf
http://spider.seds.org/spider/MWGC/mwgc.html#harris
http://spider.seds.org/spider/MWGC/mwgc.html#harris


REFERENCES J. F. Lania

S. Hasinoff. Photon , poisson noise, 2012. URL https://people.csail.mit.edu/hasinoff/
pubs/hasinoff-photon-2012-preprint.pdf.

M. Montes, I. Trujillo, R. Infante-Sainz, M. Monelli, and A. S. Borlaff. A disk and no signatures
of tidal distortion in the galaxy “lacking” dark matter ngc 1052-df2. The Astrophysical Journal,
919:56, 09 2021. doi: 10.3847/1538-4357/ac0d55.

O. Müller, R. M. Rich, J. Román, M. K. Yıldız, M. Bílek, P.-A. Duc, J. Fensch, I. Trujillo, and
A. Koch. A tidal tale: detection of several stellar streams in the environment of ngc 1052.
Astronomy Astrophysics, 624:L6, 04 2019. doi: 10.1051/0004-6361/201935463.

G. Ogiya, F. C. van den Bosch, and A. Burkert. On the tidal formation of dark matter-deficient
galaxies. Monthly Notices of the Royal Astronomical Society, 510:2724–2739, 12 2021. doi:
10.1093/mnras/stab3658.

M. Rejkuba. Globular cluster luminosity function as distance indicator. Astrophysics and Space
Science, 341:195–206, 01 2012. doi: 10.1007/s10509-012-0986-9.

J. Román, A. Castilla, and J. Pascual-Granado. Discovery and analysis of low-surface-brightness
galaxies in the environment of ngc 1052. Astronomy & Astrophysics, 656:A44, 12 2021. doi:
10.1051/0004-6361/202142161.

T. Saifollahi. Understanding the Extreme Classes of Dwarf Galaxies. PhD thesis, 2022.

T. Saifollahi, D. Zaritsky, I. Trujillo, R. F. Peletier, J. H. Knapen, N. Amorisco, M. A. Beasley,
and R. Donnerstein. Implications for galaxy formation models from observations of globular
clusters around ultradiffuse galaxies. Monthly Notices of the Royal Astronomical Society, 511:
4633–4659, 02 2022. doi: 10.1093/mnras/stac328.

Z. Shen, S. Danieli, P. van Dokkum, R. Abraham, J. P. Brodie, C. Conroy, A. E. Dolphin, A. J.
Romanowsky, J. M. Diederik Kruijssen, and D. Dutta Chowdhury. A tip of the red giant
branch distance of 22.1 ± 1.2 mpc to the dark matter deficient galaxy ngc 1052–df2 from
40 orbits of hubble space telescope imaging. The Astrophysical Journal Letters, 914:L12, 06
2021a. doi: 10.3847/2041-8213/ac0335.

Z. Shen, P. van Dokkum, and S. Danieli. A complex luminosity function for the anomalous
globular clusters in ngc 1052-df2 and ngc 1052-df4. The Astrophysical Journal, 909:179, 03
2021b. doi: 10.3847/1538-4357/abdd29.

E.-j. Shin, M. Jung, G. Kwon, J.-h. Kim, J. Lee, Y. Jo, and B. K. Oh. Dark matter deficient
galaxies produced via high-velocity galaxy collisions in high-resolution numerical simulations.
The Astrophysical Journal, 899:25, 08 2020. doi: 10.3847/1538-4357/aba434.

J. Silk. Ultra-diffuse galaxies without dark matter. Monthly Notices of the Royal Astronomical
Society: Letters, 488:L24–L28, 07 2019. doi: 10.1093/mnrasl/slz090.

I. Trujillo, M. A. Beasley, A. Borlaff, E. R. Carrasco, A. Di Cintio, M. Filho, M. Monelli,
M. Montes, J. Román, T. Ruiz-Lara, J. Sánchez Almeida, D. Valls-Gabaud, and A. Vazdekis.
A distance of 13 mpc resolves the claimed anomalies of the galaxy lacking dark matter. Monthly
Notices of the Royal Astronomical Society, 486:1192–1219, 03 2019. doi: 10.1093/mnras/
stz771. URL https://academic.oup.com/mnras/article/486/1/1192/5380810.

18

https://people.csail.mit.edu/hasinoff/pubs/hasinoff-photon-2012-preprint.pdf
https://people.csail.mit.edu/hasinoff/pubs/hasinoff-photon-2012-preprint.pdf
https://academic.oup.com/mnras/article/486/1/1192/5380810


J. F. Lania 7. Appendix: Python Code

P. van Dokkum, R. Abraham, A. J. Romanowsky, J. Brodie, C. Conroy, S. Danieli, D. Lokhorst,
A. Merritt, L. Mowla, and J. Zhang. Extensive globular cluster systems associated with
ultra diffuse galaxies in the coma cluster. The Astrophysical Journal, 844:L11, 07 2017. doi:
10.3847/2041-8213/aa7ca2.

P. van Dokkum, Y. Cohen, S. Danieli, J. M. D. Kruijssen, A. J. Romanowsky, A. Merritt,
R. Abraham, J. Brodie, C. Conroy, D. Lokhorst, L. Mowla, E. O’Sullivan, and J. Zhang.
An enigmatic population of luminous globular clusters in a galaxy lacking dark matter. The
Astrophysical Journal, 856:L30, 03 2018a. doi: 10.3847/2041-8213/aab60b.

P. van Dokkum, S. Danieli, Y. Cohen, A. Merritt, A. J. Romanowsky, R. Abraham, J. Brodie,
C. Conroy, D. Lokhorst, L. Mowla, E. O’Sullivan, and J. Zhang. A galaxy lacking dark matter.
Nature, 555:629–632, 03 2018b. doi: 10.1038/nature25767. URL https://www.nature.com/
articles/nature25767.

P. van Dokkum, S. Danieli, R. Abraham, C. Conroy, and A. J. Romanowsky. A second galaxy
missing dark matter in the ngc 1052 group. The Astrophysical Journal, 874:L5, 03 2019. doi:
10.3847/2041-8213/ab0d92.

P. G. van Dokkum, R. Abraham, A. Merritt, J. Zhang, M. Geha, and C. Conroy. Forty-seven
milky way-sized, extremely diffuse galaxies in the coma cluster. The Astrophysical Journal,
798:L45, 01 2015. doi: 10.1088/2041-8205/798/2/l45.

7 Appendix: Python Code

19

https://www.nature.com/articles/nature25767
https://www.nature.com/articles/nature25767


NGC 1052-DF2 Bachelor Thesis

J.Lania

Relevant Python Code

Background Computation

This Python code relates to the manual background computation for use in SExtractor, however ultimately SExtractor's automatic background estimation routines were employed

instead.

Selection Computations

This Python code pertains to the computation of colour selection cuts based on confirmed GC data.

Statistical Background Subtraction

This Python code relates to the statistical background subtraction, forming of the GCLF and visualization.

In [1]: ## Imports 
import numpy as np 
import os 
import scipy as sp 
import astropy as ap 
 
from scipy.stats import norm, sigmaclip 
from matplotlib.pyplot import figure, show 
from astropy.stats import sigma_clip 
from astropy.visualization import ZScaleInterval 
from astropy.io import fits 
from scipy.optimize import curve_fit 
from scipy.stats import chisquare 
from math import ceil 
import matplotlib.pyplot as plt 

In [ ]: ## Extracting all _sci.fits files from the Data directory 
science_files = list(filter(lambda fname: '_sci.fits' in fname, os.listdir('/net/virgo01/data/users/lania/BRP/Data'))) #filter for _sci files
 
HDUs = []; Data = [] 
for i in range(len(science_files)): 
    file = science_files[i] 
    hdu = fits.open('/net/virgo01/data/users/lania/BRP/Data/{}'.format(file))  #opening the files 
    try:  
        data = hdu["SCI"].data               #extracting the data from the header unit, the data is listed either 
    except:                                  #under 'SCI' or 'PRIMARY'. 
        data = hdu["PRIMARY"].data 
         
    HDUs.append(hdu); Data.append(data) 
 
     
## Removing NaN's from data for analysis 
Data_clean = [] 
for i in range(len(science_files)): 
    data_i = Data[i] 
    data_i = data_i[~np.isnan(data_i)] #removes NaN's from the data array 
    Data_clean.append(data_i) 
 
 
## Plotting data
Truelimits_606 = [-0.0223113, 0.0246015] #HARDCODED, found through DS9 for f606 
Truelimits_814 = [-0.0146599, 0.0220673] #HARDCODED, found through DS9 for f814 
# Truelimits_606 = [-0.05, 0.05] 
# Truelimits_814 = [-0.05, 0.05] 
Truelimits = [Truelimits_814, Truelimits_606] 
 
limit = [4.3e5, 5.1e5] #HARDCODED 
 
for i in range(len(science_files)): 
    print("Likely background value for ", str(science_files[i]), ":", np.median(Data_clean[i]), "e/s") 
    fig = figure(figsize=(10,10)) 
    fr = fig.add_subplot(111) 
    fr.hist(Data_clean[i], bins=250, label='pixel data', range=(Truelimits[i][0], Truelimits[i][1])) 
    fr.vlines((np.median(Data_clean[i])), 0, limit[i], color='red', label='np.median') 
    fr.set_ylabel("Number of pixels", fontsize='x-large'); fr.set_xlabel("electron/s", fontsize='x-large') 
    fr.legend(fontsize='large') 
    fr.set_title(str(science_files[i]), fontsize='x-large') 
show() 

In [ ]: def slicer(data, limits): 
    Min = limits[0]; Max = limits[1] 
    A = np.sort(data) 
    i = np.argmin( np.abs(A + Min) ) 
    j = np.argmin( np.abs(A - Max) ) 
    indices = np.array(i, j) 
    sliced = A[i:j] 
    return sliced 
 
## Sliced data 
D = slicer(Data_clean[0], Truelimits[0]) #814 
E = slicer(Data_clean[1], Truelimits[1]) #606 
 
std_606 = np.std(E) 
std_814 = np.std(D) 
 
print(std_606, std_814) 

In [ ]: ## Compute backgrounds using sigma clipping 
def sigmaclipping(data, i=4): 
    #clipped = sigma_clip(data, sigma=i, cenfunc=np.median, stdfunc=np.std) 
    clipped = sigma_clip(data, sigma=i) 
    #clipped = sigmaclip(data, low=2, high=2) 
    return clipped 
 
Clipped_data = sigmaclipping(D, i=2) 
print(len(D), len(Clipped_data)) 
print(D[-1]) 
#print(Clipped_data[:100]) 
Clipped_data2 = Clipped_data[~np.ma.is_masked(Clipped_data)] 

In [ ]: # Creating a table of known GC's according to Shen et al (2021) 
GCC = Table([['NGC 1052-DF2', 'GC-39','GC-59','GC-71','GC-73','GC-77','GC-80','GC-85','GC-91','GC-93','GC-92','GC-98','GC-101'], 
             \ ['2:41:46.8', '2:41:45.07','2:41:48.08', '2:41:45.13', '2:41:48.22', '2:41:46.54', '2:41:45.21', '2:41:47.75', \ 
            '2:41:42.17', '2:41:46.72', '2:41:46.90', '2:41:47.34', '2:41:45.21'], ['-8:24:09.3', '-8:25:24.9', '-8:24:57.5', \ 
            '-8:24:23.0', '-8:24:18.1', '-8:24:14.0', '-8:23:28.3', '-8:24:05.9', '-8:23:54.0', '-8:23:51.3', \ 
            '-8:23:51.1', '-8:23:35.2', '-8:23:28.3'], [-15.3, -9.3, -8.9, -9.0, -10.1, -9.6, -8.6, -9.2, -9.2, -8.6, \ 
            -9.4, -8.7, -8.6], [0.4, 0.36, 0.34, 0.38, 0.32, 0.36, 0.33, 0.39, 0.36, 0.39, 0.40, 0.44, 0.45]], \ 
            names = ('Id', 'ALPHA_J2000', 'DELTA_J2000', 'MAG_V606', 'V-I')) 

In [ ]: ## Opening FITS table
hdu = fits.open('GCs.fits') 
data = hdu['Joined'].data #data, 7 and 25 are mag_auto_1 and 2 
 
M_AUTO_2 = []; M_AUTO_1 = [] 
for i in range(len(data)): 
    s = data[i] 
    MAG_AUTO_1 = s[7]; MAG_AUTO_2 = s[25] 
    #errrs? 
    M_AUTO_1.append(MAG_AUTO_1) 
    M_AUTO_2.append(MAG_AUTO_2) 
 
     
FWHM = data['FWHM_IMAGE_2'] 
print(np.mean(FWHM) - 3*np.std(FWHM)) 
print(np.min(FWHM)) 
m1 = np.array(M_AUTO_1) - 31.5; m2 = np.array(M_AUTO_2) - 31.5 
M1 = np.delete(m1, 1); M2 = np.delete(m2, 1) 
print(M1,"\n", M2) 

In [ ]: ## Statistics on magnitudes: 
# Colours: 
BV_color = (M1 - M2) 
m = np.mean(BV_color) 
std = np.std(BV_color) 
print(m) 
print(std) 
 
print(BV_color) 
CC_l = m - 3*std 
CC_h = m + 3*std 
CC = np.array([CC_l, CC_h]) 
 
print("Color cut limits: ", CC) 

In [ ]: GCC.write('GCC_shen.fits', format='fits', overwrite=True) #for use in Aladin 

In [ ]: ## Opening the science fits file to display the image 
hdu_d = fits.open('/net/virgo01/data/users/lania/BRP/Data/f814_drc_sci.fits') 
data_sci = hdu_d['SCI'].data 
data_clean = data_sci[~np.isnan(data_sci)] 
 
## Opening the GC_candidate catalog, including positions of DF2 
hdu_c = fits.open('GC_candidates_newtest.fits') # Selected sources 
data = hdu_c['JOINED'].data             #The selected sources data 
cols = hdu_c['JOINED'].columns          #Column headers 
 
hdu_a = fits.open('Matched_mastercatalog.fits') 
data_a = hdu_a['JOINED'].data 
cols_a = hdu_a['JOINED'].columns 
 
hdu_gc = fits.open('GCs.fits')          # Shen et al candidates 
data_gc = hdu_gc['JOINED'].data         # data 
cols_gc = hdu_gc['JOINED'].columns      # columns 
 
hdu_g = fits.open('galaxy.fits')        # Galaxy centre 
data_g = hdu_g['JOINED'].data           # data 
cols_g = hdu_g['JOINED'].columns        # columns 
 
## Creating arrays of X/Y coordinates of objects and galaxy 
xarr = data['X_IMAGE_2']; yarr = data['Y_IMAGE_2'] 
x_g = data_g['X_IMAGE_2']; y_g = data_g['Y_IMAGE_2'] 
print(len(data)) 

In [ ]: ## Converting effective radius to arcseconds 
DM = 31.5       #Distance Modulus corresponding to 20 Mpc 
R_e = 2.2       #radius (originally in Kpc but units not important now) 
D = 20*1000   #distance (orginally in Mpc but units not important now) 
HST_parc = 0.05 #pixels per arcsecond for the HST ACS instrument 
P = (np.degrees(np.arctan(R_e / D))*3600)/HST_parc 

In [ ]: ## Statistical selection based on n*R_e 
 
def modulus(x_center, y_center, x_sources, y_sources, radius, n): 
    aper = n*radius 
    D = np.sqrt(((x_sources - x_center)**2) + ((y_sources - y_center)**2)) 
    interiors = []; exteriors = [] 
    for i in range(len(D)): 
        dist = D[i] 
        if dist <= aper: 
            interiors.append((x_sources[i], y_sources[i])) 
        else: 
            exteriors.append((x_sources[i], y_sources[i])) 
    return interiors, exteriors 
 
def finder(positioncatalog, items): 
    indices = [] 
    for i in range(len(items)): 
        x_i = items[i][0] 
        I = np.argmin(np.abs(positioncatalog - x_i)) 
        indices.append(I) 
    return np.sort(indices) 
 
## Exterior selection: 
_, exters3 = modulus(x_g, y_g, xarr, yarr, P, 3) 
_, exters2 = modulus(x_g, y_g, xarr, yarr, P, 2) 
_, exters4 = modulus(x_g, y_g, xarr, yarr, P, 4) 
 
indices_ext3 = finder(xarr, exters3)                #indices of the sources outside 3R_e 
indices_ext2 = finder(xarr, exters2)                #indices of the sources outside 2R_e 
indices_ext4 = finder(xarr, exters4)                #indices of the sources outside 4R_e 
 
exterior_sources_c3 = [data[i] for i in indices_ext3] #exterior sources (3), data in arrays
exterior_sources_c2 = [data[i] for i in indices_ext2] #exterior sources (2), data in arrays
exterior_sources_c4 = [data[i] for i in indices_ext4] #exterior sources (4), data in arrays
 
## Interior selection: 
inters_c3, _ = modulus(x_g, y_g, xarr, yarr, P, 3) #Case 1: 3R_e 
inters_c2, _ = modulus(x_g, y_g, xarr, yarr, P, 2) #Case 2: 2R_e 
inters_c4, _ = modulus(x_g, y_g, xarr, yarr, P, 4) #Case 3: 4R_e 
 
indices_int_c3 = finder(xarr, inters_c3) 
indices_int_c2 = finder(xarr, inters_c2) 
indices_int_c4 = finder(xarr, inters_c4) 
 
interior_sources_c3 = [data[j] for j in indices_int_c3] #interior sources case 1 
interior_sources_c2 = [data[j] for j in indices_int_c2] #interior sources case 2 
interior_sources_c4 = [data[j] for j in indices_int_c4] #interior sources case 3 

In [ ]: ## Luminosity functions of interior sources: 
def GCLF(m_int, m_ext, lo, hi, step, n, A, P): 
    """Computes GCLF through statistical background subtraction (through full data array A and P) 
       and additionally computes the poisson errors of the exterior histogram and GCLF""" 
    # Compute areas 
    if n < 3: 
        A_int = ceil(np.pi * ((3*P)**2)) 
        A_ext = A - A_int 
    else: 
        A_int = ceil(np.pi * ((n*P)**2)) 
        A_ext = A - A_int 
    # Create magnitude histograms 
    M_int = np.array(m_int) 
    M_ext = np.array(m_ext) 
    bins = np.arange(lo, hi, step) 
    hist_int = np.histogram(M_int, bins=bins) 
    hist_ext = np.histogram(M_ext, bins=bins) 
    poisson_int = np.sqrt(hist_int[0]) 
    poisson_ext = np.sqrt(hist_ext[0]) / (A_ext / A_int) 
    GCLF = (hist_int[0] - (hist_ext[0] / A_ext) * A_int) 
    err_GCLF = np.sqrt((poisson_int**2) + (poisson_ext**2)) #assume no covariances 
    return (hist_int, poisson_int), (hist_ext, poisson_ext), (GCLF, err_GCLF) 
 
A = len(data_clean) 
 
## 3R_e 
mag_auto_814_int3 = [interior_sources_c3[i][25] for i in range(len(interior_sources_c3))] #index 25 
mag_auto_814_ext3 = [exterior_sources_c3[i][25] for i in range(len(exterior_sources_c3))] #index 25 
mag_auto_606_int3 = [interior_sources_c3[j][7] for j in range(len(interior_sources_c3))] #index 7 
mag_auto_606_ext3 = [exterior_sources_c3[j][7] for j in range(len(exterior_sources_c3))] #index 7 
 
hist_814int3, hist_814ext3, GCLF_814_R3 = GCLF(mag_auto_814_int3, mag_auto_814_ext3, 21, 30.5, 0.5, 3, A, P) 
hist_606int3, hist_606ext3, GCLF_606_R3 = GCLF(mag_auto_606_int3, mag_auto_606_ext3, 21, 30.5, 0.5, 3, A, P) 
 
## 2R_e 
mag_auto_814_int2 = [interior_sources_c2[i][25] for i in range(len(interior_sources_c2))] #index 25 
mag_auto_814_ext2 = [exterior_sources_c2[i][25] for i in range(len(exterior_sources_c2))] #index 25 
mag_auto_606_int2 = [interior_sources_c2[j][7] for j in range(len(interior_sources_c2))] #index 7 
mag_auto_606_ext2 = [exterior_sources_c2[j][7] for j in range(len(exterior_sources_c2))] #index 7 
 
hist_814int2, hist_814ext2, GCLF_814_R2 = GCLF(mag_auto_814_int2, mag_auto_814_ext2, 21, 30.5, 0.5, 2, A, P) 
hist_606int2, hist_606ext2, GCLF_606_R2 = GCLF(mag_auto_606_int2, mag_auto_606_ext2, 21, 30.5, 0.5, 2, A, P) 
 
## 4R_e 
mag_auto_814_int4 = [interior_sources_c4[i][25] for i in range(len(interior_sources_c4))] #index 25 
mag_auto_814_ext4 = [exterior_sources_c4[i][25] for i in range(len(exterior_sources_c4))] #index 25 
mag_auto_606_int4 = [interior_sources_c4[j][7] for j in range(len(interior_sources_c4))] #index 7 
mag_auto_606_ext4 = [exterior_sources_c4[j][7] for j in range(len(exterior_sources_c4))] #index 7 
 
hist_814int4, hist_814ext4, GCLF_814_R4 = GCLF(mag_auto_814_int4, mag_auto_814_ext4, 21, 30.5, 0.5, 4, A, P) 
hist_606int4, hist_606ext4, GCLF_606_R4 = GCLF(mag_auto_606_int4, mag_auto_606_ext4, 21, 30.5, 0.5, 4, A, P) 
 
## Number of objects with magnitudes between 20.5 and 26.5: 
def countemup(GCLF): 
    stuffs = GCLF[0][:11] 
    errors = GCLF[1][:11] 
    count = np.sum(stuffs) 
    err = np.sqrt(np.sum((errors**2))) 
    return [count, err] 
 
N_814_R2 = countemup(GCLF_814_R2); N_814_R3 = countemup(GCLF_814_R3); N_814_R4 = countemup(GCLF_814_R4) 
N_606_R2 = countemup(GCLF_606_R2); N_606_R3 = countemup(GCLF_606_R3); N_606_R4 = countemup(GCLF_606_R4) 
 
print(N_814_R2, "   ", N_606_R2) 
print(N_814_R3, "   ", N_606_R3) 
print(N_814_R4, "   ", N_606_R4) 

In [ ]: ## Plotting interior histograms, not background-subtracted, 814 
low, high, step = 21, 30.5, 0.5 
Y = np.arange(low, high, step)[1:] - 0.5 
plottables = [hist_814int2, hist_814int3, hist_814int4] 
 
fig = figure(figsize=(10,30)) 
fr1 = fig.add_subplot(311); fr2 = fig.add_subplot(312); fr3 = fig.add_subplot(313) 
frames = [fr1, fr2, fr3] 
for i in range(len(frames)): 
    frame = frames[i] 
    frame.bar(Y, plottables[i][0][0], width=0.5, edgecolor='red', fill=False) 
    frame.errorbar(Y, plottables[i][0][0], yerr=plottables[i][1], fmt='none', alpha=0.5, color='black', \ 
                   linestyle='--') 
    frame.tick_params(which='major', length=15); frame.tick_params(which='minor', length=8) 
    frame.set_xticks(np.arange(low, high, step*2)); frame.set_xticks(np.arange(low, high, step/2), minor=True) 
    frame.set_title("Magnitude histogram of interior sources for I_814") 
    frame.set_xlabel("Apparent magnitude (mags)") 
    frame.set_ylim(-1, 10) 
show() 

In [ ]: ## Plotting exterior histograms, not background-subtracted, 814 
low, high, step = 21, 30.5, 0.5 
Y = np.arange(low, high, step)[1:] - 0.5 
plottables = [hist_814ext2, hist_814ext3, hist_814ext4] 
 
fig = figure(figsize=(10,30)) 
fr1 = fig.add_subplot(311); fr2 = fig.add_subplot(312); fr3 = fig.add_subplot(313) 
frames = [fr1, fr2, fr3] 
for i in range(len(frames)): 
    frame = frames[i] 
    frame.bar(Y, plottables[i][0][0], width=0.5, edgecolor='red', fill=False) 
    frame.errorbar(Y, plottables[i][0][0], yerr=plottables[i][1], fmt='none', alpha=0.5, color='black', \ 
                   linestyle='--') 
    frame.tick_params(which='major', length=15); frame.tick_params(which='minor', length=8) 
    frame.set_xticks(np.arange(low, high, step*2)); frame.set_xticks(np.arange(low, high, step/2), minor=True) 
    frame.set_title("Magnitude histogram of exterior sources for I_814") 
    frame.set_xlabel("Apparent magnitude (mags)") 
    frame.set_ylim(-1, 10) 
show() 

In [ ]: ## Plotting GCLF histograms, 814 
low, high, step = 21, 30.5, 0.5 
Y = np.arange(low, high, step)[1:] - 0.5 
plottables = [GCLF_814_R2, GCLF_814_R3, GCLF_814_R4] 
 
fig = figure(figsize=(10,30)) 
fr1 = fig.add_subplot(311); fr2 = fig.add_subplot(312); fr3 = fig.add_subplot(313) 
frames = [fr1, fr2, fr3] 
for i in range(len(frames)): 
    frame = frames[i] 
    frame.bar(Y, plottables[i][0], width=0.5, edgecolor='red', fill=False) 
    frame.errorbar(Y, plottables[i][0], yerr=plottables[i][1], fmt='none', alpha=0.5, color='black', \ 
                   linestyle='--') 
    frame.tick_params(which='major', length=15); frame.tick_params(which='minor', length=8) 
    frame.set_xticks(np.arange(low, high, step*2)); frame.set_xticks(np.arange(low, high, step/2), minor=True) 
    frame.set_title("Magnitude histogram of GCLFs for I_814") 
    frame.set_xlabel("Apparent magnitude (mags)") 
    frame.set_ylim(-1, 10) 
     
     
show() 

In [ ]: ## Plotting GCLFs 
mlow, mhigh, mstep = 21, 30.5, 0.5 
Mlow, Mhigh, Mstep = (21-31.5), (30.5 - 31.5), 0.5 
bins = np.arange(Mlow, Mhigh, Mstep)[1:] - 0.5 
 
fig = figure(figsize=(25, 25)) 
fr1 = fig.add_subplot(231); fr2 = fig.add_subplot(232) 
fr3 = fig.add_subplot(233); fr4 = fig.add_subplot(234) 
fr5 = fig.add_subplot(235); fr6 = fig.add_subplot(236) 
 
fr1.bar(bins[0:11], GCLF_814_R2[0][0:11], width=0.5, fill=False, edgecolor='red') 
fr1.errorbar(bins[0:11], GCLF_814_R2[0][0:11], yerr=GCLF_814_R2[1][0:11], fmt='none', color='black', \ 
            linestyle='--', alpha=0.7) 
fr4.bar(bins[0:11], GCLF_606_R2[0][0:11], width=0.5, fill=False, edgecolor='blue') 
fr4.errorbar(bins[0:11], GCLF_606_R2[0][0:11], yerr=GCLF_606_R2[1][0:11], fmt='none', color='black', \ 
            linestyle='--', alpha=0.7) 
fr2.bar(bins[0:11], GCLF_814_R3[0][0:11], width=0.5, fill=False, edgecolor='red') 
fr2.errorbar(bins[0:11], GCLF_814_R3[0][0:11], yerr=GCLF_814_R3[1][0:11], fmt='none', color='black', \ 
            linestyle='--', alpha=0.7) 
fr5.bar(bins[0:11], GCLF_606_R3[0][0:11], width=0.5, fill=False, edgecolor='blue') 
fr5.errorbar(bins[0:11], GCLF_606_R3[0][0:11], yerr=GCLF_606_R3[1][0:11], fmt='none', color='black', \ 
            linestyle='--', alpha=0.7) 
fr3.bar(bins[0:11], GCLF_814_R4[0][0:11], width=0.5, fill=False, edgecolor='red') 
fr3.errorbar(bins[0:11], GCLF_814_R4[0][0:11], yerr=GCLF_814_R4[1][0:11], fmt='none', color='black', \ 
            linestyle='--', alpha=0.7) 
fr6.bar(bins[0:11], GCLF_606_R4[0][0:11], width=0.5, fill=False, edgecolor='blue') 
fr6.errorbar(bins[0:11], GCLF_606_R4[0][0:11], yerr=GCLF_606_R4[1][0:11], fmt='none', color='black', \ 
            linestyle='--', alpha=0.7) 
 
fr1.set_ylim(-4, None); fr2.set_ylim(-4, None); fr3.set_ylim(-4, None) 
fr4.set_ylim(-4, None); fr5.set_ylim(-4, None); fr6.set_ylim(-4, None) 
 
fr1.set_ylabel("N", fontsize='xx-large'); fr1.set_xlabel(r'M (I814)', fontsize='xx-large') 
fr2.set_ylabel("N", fontsize='xx-large'); fr2.set_xlabel(r'M (V606)', fontsize='xx-large') 
fr3.set_ylabel("N", fontsize='xx-large'); fr3.set_xlabel(r'M (I814)', fontsize='xx-large') 
fr4.set_ylabel("N", fontsize='xx-large'); fr4.set_xlabel(r'M (V606)', fontsize='xx-large') 
fr5.set_ylabel("N", fontsize='xx-large'); fr5.set_xlabel(r'M (I814)', fontsize='xx-large') 
fr6.set_ylabel("N", fontsize='xx-large'); fr6.set_xlabel(r'M (V606)', fontsize='xx-large') 
 
fr1.text(0.9, 0.9,'n=2', horizontalalignment='center', verticalalignment='center', transform=fr1.transAxes, \ 
        fontsize='xx-large') 
fr4.text(0.9, 0.9,'n=2', horizontalalignment='center', verticalalignment='center', transform=fr2.transAxes, \ 
        fontsize='xx-large') 
fr2.text(0.9, 0.9,'n=3', horizontalalignment='center', verticalalignment='center', transform=fr3.transAxes, \ 
        fontsize='xx-large') 
fr5.text(0.9, 0.9,'n=3', horizontalalignment='center', verticalalignment='center', transform=fr4.transAxes, \ 
        fontsize='xx-large') 
fr3.text(0.9, 0.9,'n=4', horizontalalignment='center', verticalalignment='center', transform=fr5.transAxes, \ 
        fontsize='xx-large') 
fr6.text(0.9, 0.9,'n=4', horizontalalignment='center', verticalalignment='center', transform=fr6.transAxes, \ 
        fontsize='xx-large') 
 
## Tickmarks 
fr1.tick_params(which='major', length=10, labelsize=19) 
fr1.tick_params(which='minor', length=6) 
fr1.set_xticks(np.arange(-11, -4.75, 0.25), minor=True) 
fr1.set_xticks(np.arange(-11, -4.75, 1)) 
fr1.set_yticks(np.arange(-4, 5.1, 0.5), minor=True) 
fr1.set_yticks(np.arange(-4, 5.1, 2)) 
 
fr2.tick_params(which='major', length=10, labelsize=19) 
fr2.tick_params(which='minor', length=6) 
fr2.set_xticks(np.arange(-11, -4.75, 0.25), minor=True) 
fr2.set_xticks(np.arange(-11, -4.75, 1)) 
fr2.set_yticks(np.arange(-4, 5.5, 0.5), minor=True) 
fr2.set_yticks(np.arange(-4, 5.5, 2)) 
 
fr3.tick_params(which='major', length=10, labelsize=19) 
fr3.tick_params(which='minor', length=6) 
fr3.set_xticks(np.arange(-11, -4.75, 0.25), minor=True) 
fr3.set_xticks(np.arange(-11, -4.75, 1)) 
fr3.set_yticks(np.arange(-4, 6.5, 0.5), minor=True) 
fr3.set_yticks(np.arange(-4, 6.5, 2)) 
 
fr4.tick_params(which='major', length=10, labelsize=19) 
fr4.tick_params(which='minor', length=6) 
fr4.set_xticks(np.arange(-11, -4.75, 0.25), minor=True) 
fr4.set_xticks(np.arange(-11, -4.75, 1)) 
fr4.set_yticks(np.arange(-4, 8.5, 0.5), minor=True) 
fr4.set_yticks(np.arange(-4, 8.5, 2)) 
 
fr5.tick_params(which='major', length=10, labelsize=19) 
fr5.tick_params(which='minor', length=6) 
fr5.set_xticks(np.arange(-11, -4.75, 0.25), minor=True) 
fr5.set_xticks(np.arange(-11, -4.75, 1)) 
fr5.set_yticks(np.arange(-4, 10, 0.5), minor=True) 
fr5.set_yticks(np.arange(-4, 10, 2)) 
 
fr6.tick_params(which='major', length=10, labelsize=19) 
fr6.tick_params(which='minor', length=6) 
fr6.set_xticks(np.arange(-11, -4.75, 0.25), minor=True) 
fr6.set_xticks(np.arange(-11, -4.75, 1)) 
fr6.set_yticks(np.arange(-4, 9, 0.5), minor=True) 
fr6.set_yticks(np.arange(-4, 9, 2)) 
 
show() 

In [ ]: ## Plotting Exterior histograms 
mlow, mhigh, mstep = 21, 30.5, 0.5 
Mlow, Mhigh, Mstep = (21-31.5), (30.5 - 31.5), 0.5 
bins = np.arange(mlow, mhigh, mstep)[1:] - 0.5 
bins_M = np.arange(Mlow, Mhigh, Mstep)[1:] - 0.5 
 
fig = figure(figsize=(25, 25)) 
fr1 = fig.add_subplot(321); fr2 = fig.add_subplot(322) 
fr3 = fig.add_subplot(323); fr4 = fig.add_subplot(324) 
fr5 = fig.add_subplot(325); fr6 = fig.add_subplot(326) 
 
fr1.bar(bins, hist_814ext2[0][0], width=0.5, fill=False, edgecolor='red') 
fr1.errorbar(bins, hist_814ext2[0][0], yerr=hist_814ext2[1], fmt='none', color='black', \ 
            linestyle='--', alpha=0.7) 
fr2.bar(bins, hist_606ext2[0][0], width=0.5, fill=False, edgecolor='blue') 
fr2.errorbar(bins, hist_606ext2[0][0], yerr=hist_606ext2[1], fmt='none', color='black', \ 
            linestyle='--', alpha=0.7) 
fr3.bar(bins, hist_814ext3[0][0], width=0.5, fill=False, edgecolor='red') 
fr3.errorbar(bins, hist_814ext3[0][0], yerr=hist_814ext3[1], fmt='none', color='black', \ 
            linestyle='--', alpha=0.7) 
fr4.bar(bins, hist_606ext3[0][0], width=0.5, fill=False, edgecolor='blue') 
fr4.errorbar(bins, hist_606ext3[0][0], yerr=hist_606ext3[1], fmt='none', color='black', \ 
            linestyle='--', alpha=0.7) 
fr5.bar(bins, hist_814ext4[0][0], width=0.5, fill=False, edgecolor='red') 
fr5.errorbar(bins, hist_814ext4[0][0], yerr=hist_814ext4[1], fmt='none', color='black', \ 
            linestyle='--', alpha=0.7) 
fr6.bar(bins, hist_606ext4[0][0], width=0.5, fill=False, edgecolor='blue') 
fr6.errorbar(bins, hist_606ext4[0][0], yerr=hist_606ext4[1], fmt='none', color='black', \ 
            linestyle='--', alpha=0.7) 
 
fr1.set_ylim(-4, None); fr2.set_ylim(-4, None); fr3.set_ylim(-4, None) 
fr4.set_ylim(-4, None); fr5.set_ylim(-4, None); fr6.set_ylim(-4, None) 
 
fr1.set_ylabel("N", fontsize='xx-large'); fr1.set_xlabel(r'm (I814)', fontsize='xx-large') 
fr2.set_ylabel("N", fontsize='xx-large'); fr2.set_xlabel(r'm (V606)', fontsize='xx-large') 
fr3.set_ylabel("N", fontsize='xx-large'); fr3.set_xlabel(r'm (I814)', fontsize='xx-large') 
fr4.set_ylabel("N", fontsize='xx-large'); fr4.set_xlabel(r'm (V606)', fontsize='xx-large') 
fr5.set_ylabel("N", fontsize='xx-large'); fr5.set_xlabel(r'm (I814)', fontsize='xx-large') 
fr6.set_ylabel("N", fontsize='xx-large'); fr6.set_xlabel(r'm (V606)', fontsize='xx-large') 
 
fr1.text(0.1, 0.9,'n=2', horizontalalignment='center', verticalalignment='center', transform=fr1.transAxes, \ 
        fontsize='xx-large') 
fr2.text(0.1, 0.9,'n=2', horizontalalignment='center', verticalalignment='center', transform=fr2.transAxes, \ 
        fontsize='xx-large') 
fr3.text(0.1, 0.9,'n=3', horizontalalignment='center', verticalalignment='center', transform=fr3.transAxes, \ 
        fontsize='xx-large') 
fr4.text(0.1, 0.9,'n=3', horizontalalignment='center', verticalalignment='center', transform=fr4.transAxes, \ 
        fontsize='xx-large') 
fr5.text(0.1, 0.9,'n=4', horizontalalignment='center', verticalalignment='center', transform=fr5.transAxes, \ 
        fontsize='xx-large') 
fr6.text(0.1, 0.9,'n=4', horizontalalignment='center', verticalalignment='center', transform=fr6.transAxes, \ 
        fontsize='xx-large') 
 
## Tickmarks 
fr1.tick_params(which='major', length=10, labelsize=12) 
fr1.tick_params(which='minor', length=6) 
fr1.set_xticks(np.arange(20, 30, 0.25), minor=True) 
fr1.set_xticks(np.arange(20, 31, 1)) 
fr1.set_yticks(np.arange(0, 140, 5), minor=True) 
fr1.set_yticks(np.arange(0, 141, 20)) 
 
fr2.tick_params(which='major', length=10, labelsize=12) 
fr2.tick_params(which='minor', length=6) 
fr2.set_xticks(np.arange(20, 30, 0.25), minor=True) 
fr2.set_xticks(np.arange(20, 31, 1)) 
fr2.set_yticks(np.arange(0, 140, 5), minor=True) 
fr2.set_yticks(np.arange(0, 141, 20)) 
 
fr3.tick_params(which='major', length=10, labelsize=12) 
fr3.tick_params(which='minor', length=6) 
fr3.set_xticks(np.arange(20, 30, 0.25), minor=True) 
fr3.set_xticks(np.arange(20, 31, 1)) 
fr3.set_yticks(np.arange(0, 140, 5), minor=True) 
fr3.set_yticks(np.arange(0, 141, 20)) 
 
fr4.tick_params(which='major', length=10, labelsize=12) 
fr4.tick_params(which='minor', length=6) 
fr4.set_xticks(np.arange(20, 30, 0.25), minor=True) 
fr4.set_xticks(np.arange(20, 31, 1)) 
fr4.set_yticks(np.arange(0, 140, 5), minor=True) 
fr4.set_yticks(np.arange(0, 141, 20)) 
 
fr5.tick_params(which='major', length=10, labelsize=12) 
fr5.tick_params(which='minor', length=6) 
fr5.set_xticks(np.arange(20, 30, 0.25), minor=True) 
fr5.set_xticks(np.arange(20, 31, 1)) 
fr5.set_yticks(np.arange(0, 140, 5), minor=True) 
fr5.set_yticks(np.arange(0, 141, 20)) 
 
fr6.tick_params(which='major', length=10, labelsize=12) 
fr6.tick_params(which='minor', length=6) 
fr6.set_xticks(np.arange(20, 30, 0.25), minor=True) 
fr6.set_xticks(np.arange(20, 31, 1)) 
fr6.set_yticks(np.arange(0, 140, 5), minor=True) 
fr6.set_yticks(np.arange(0, 141, 20)) 
 
show() 

In [ ]: ## Gaussian modeling 
def Gaussian(x, *p): 
    A, mu, sigma = p 
    f = A*np.exp( (-(x - mu)**2) / (2*sigma**2)) 
    return f 
 
def Gaussian2(x, *p): 
    A, mu, sigma, A2, mu2, sigma2 = p 
    f = A*np.exp( (-(x - mu)**2) / (2*sigma**2)) + A2*np.exp( (-(x - mu2)**2) / (2*sigma2**2)) 
    return f 
 
def fitGaussians(f1, x2, LF, p_guess=None, sigma=None, bounds=(np.NINF, np.inf)): 
    coeffs, var_matrix = curve_fit(f1, x2, LF, p0=p_guess, sigma=sigma, bounds=bounds) 
    y_vals = f1(x2, *coeffs) 
    y_errs = y_vals - LF 
    mu = np.mean( y_vals ) 
    z = (y_vals - mu) / y_errs 
    chi2 = np.sum( (z**2) ) 
    chi2red = chi2 / (len(z) - len(p_guess)) 
    return (coeffs, var_matrix, chi2red) 
     
p0 = [5, -9, 1.5] #guess for a gaussian 
p0_1 = [5, -9, 1.5, 1, -7.5, 1.5] #guess for bimodal gaussian 
lowerbounds = np.array([np.NINF, np.NINF, np.NINF, np.NINF, -7.55, np.NINF]) 
higherbounds = np.array([np.inf, np.inf, np.inf, np.inf, -7.45, np.inf]) 
bounds = (lowerbounds, higherbounds) 
 
fit2_814r3 = fitGaussians(Gaussian2, bins_M[0:11], GCLF_814_R3[0][0:11], p_guess=p0_1, bounds=bounds) 
 
## Gaussian fits
fit_814r3 = fitGaussians(Gaussian, bins_M[0:11], GCLF_814_R3[0][0:11], p_guess=p0) 
fit_606r3 = fitGaussians(Gaussian, bins_M[0:11], GCLF_606_R3[0][0:11], p_guess=p0) 
fit_814r2 = fitGaussians(Gaussian, bins_M[0:11], GCLF_814_R2[0][0:11], p_guess=p0) 
fit_606r2 = fitGaussians(Gaussian, bins_M[0:11], GCLF_606_R2[0][0:11], p_guess=p0) 
fit_814r4 = fitGaussians(Gaussian, bins_M[0:11], GCLF_814_R4[0][0:11], p_guess=p0) 
fit_606r4 = fitGaussians(Gaussian, bins_M[0:11], GCLF_606_R4[0][0:11], p_guess=p0) 
 
## Bimodal fits 
fit2_814r3 = fitGaussians(Gaussian2, bins_M[0:11], GCLF_814_R3[0][0:11], p_guess=p0_1, bounds=bounds) 
fit2_606r3 = fitGaussians(Gaussian2, bins_M[0:11], GCLF_606_R3[0][0:11], p_guess=p0_1, bounds=bounds) 
fit2_814r2 = fitGaussians(Gaussian2, bins_M[0:11], GCLF_814_R2[0][0:11], p_guess=p0_1, bounds=bounds) 
fit2_606r2 = fitGaussians(Gaussian2, bins_M[0:11], GCLF_606_R2[0][0:11], p_guess=p0_1, bounds=bounds) 
fit2_814r4 = fitGaussians(Gaussian2, bins_M[0:11], GCLF_814_R4[0][0:11], p_guess=p0_1, bounds=bounds) 
fit2_606r4 = fitGaussians(Gaussian2, bins_M[0:11], GCLF_606_R4[0][0:11], p_guess=p0_1, bounds=bounds) 
 
chi2s = np.array([fit_814r2[2], fit_814r3[2], fit_814r4[2], fit_606r2[2], fit_606r3[2], fit_606r4[2]]) 
chi2s2 = np.array([fit2_814r2[2], fit2_814r3[2], fit2_814r4[2], fit2_606r2[2], fit2_606r3[2], fit2_606r4[2]]) 
print("Chi2 statistics for all 6 cases, I814 to V606 from R2 to R4: \n", chi2s) 
print("Chi2 statistics for all 6 cases, bimodal fit for I814 to V606 from R2 to R4: \n", chi2s2) 
 
## Plotting one example 
X = np.linspace(bins_M[0], bins_M[11], 1000) 
Gauss1 = Gaussian(X, *fit_606r2[0]) 
Gauss2 = Gaussian2(X, *fit2_814r3[0]) 
LF = GCLF_606_R2 
 
fig = figure(figsize=(15,10)) 
fr = fig.add_subplot(111) 
fr.bar(bins_M, LF[0], width=0.5, fill=False, label=None) 
fr.errorbar(bins_M, LF[0], yerr=LF[1], fmt='none', alpha=0.5, color='black', \ 
                   linestyle='--', label=None)
fr.plot(X, Gauss1, color='red', label='Gaussian fit') 
fr.plot(bins_M[0:11], LF[0][0:11], 'bx', label='fitting points') 
fr.set_ylim(-2, 10) 
fr.set_title("Gaussian fit to GCLF", fontsize='xx-large') 
fr.set_ylabel("N", fontsize='xx-large'); fr.set_xlabel("M (V606)", fontsize='xx-large') 
 
fr.tick_params(which='major', length=15, labelsize=15) 
fr.tick_params(which='minor', length=8) 
 
fr.set_xticks(np.arange(-11, -1.1, 0.25), minor=True) 
fr.set_xticks(np.arange(-11, -1.1, 1)) 
fr.set_yticks(np.arange(-2, 10, 0.2), minor=True) 
fr.set_yticks(np.arange(-2, 10.1, 1)) 
fr.legend(fontsize='x-large') 
show() 

In [ ]: ## Plotting the GCLFs
X = np.arange(21, 30.5, 0.5)[1:] - 0.25 - 31.5        # Sets the alingment for the histograms 
 
fig = figure(figsize=(16,16)) 
fr1 = fig.add_subplot(221); fr2 = fig.add_subplot(222) 
fr3 = fig.add_subplot(223); fr4 = fig.add_subplot(224) 
 
fr1.bar(X, GCLF_814_R3[0], width=0.5, edgecolor='red', fill=False) 
fr1.errorbar(X, GCLF_814_R3[0], yerr=GCLF_814_R3[1], fmt='none', alpha=0.5, color='black', linestyle='--') 
fr1.set_title("I814, three effective radii", fontsize='x-large') 
fr1.set_xlabel("M (mag)", fontsize='x-large') 
fr1.set_ylabel("Bin counts", fontsize='x-large') 
#fr1.vlines(-5, 0, 8, color='black', linestyle='--') 
fr1.set_ylim(-2, 8) 
 
fr2.bar(X, GCLF_606_R3[0], width=0.5, edgecolor='blue', fill=False) 
fr2.errorbar(X, GCLF_606_R3[0], yerr=GCLF_606_R3[1], fmt='none', alpha=0.5, color='black', linestyle='--') 
fr2.set_title("V606, three effective radii", fontsize='x-large') 
fr2.set_xlabel("M (mag)", fontsize='x-large') 
fr2.set_ylabel("Bin counts", fontsize='x-large') 
#fr2.vlines(-5, 0, 8, color='black', linestyle='--') 
fr2.set_ylim(-2, 8) 
 
fr3.bar(X, GCLF_814_R2[0], width=0.5, edgecolor='red', fill=False) 
fr3.errorbar(X, GCLF_814_R2[0], yerr=GCLF_814_R2[1], fmt='none', alpha=0.5, color='black', linestyle='--') 
fr3.set_title("I814, two effective radii", fontsize='x-large') 
fr3.set_xlabel("M (mag)", fontsize='x-large') 
fr3.set_ylabel("Bin counts", fontsize='x-large') 
#fr3.vlines(-5, 0, 8, color='black', linestyle='--') 
fr3.set_ylim(-2, 8) 
 
fr4.bar(X, GCLF_606_R2[0], width=0.5, edgecolor='blue', fill=False) 
fr4.errorbar(X, GCLF_606_R2[0], yerr=GCLF_606_R2[1], fmt='none', alpha=0.5, color='black', linestyle='--') 
fr4.set_title("V606, two effective radii", fontsize='x-large') 
fr4.set_xlabel("M (mag)", fontsize='x-large') 
fr4.set_ylabel("Bin counts", fontsize='x-large') 
#fr4.vlines(-5, 0, 8, color='black', linestyle='--') 
fr4.set_ylim(-2, 8) 
 
## Tickmarks 
fr1.tick_params(which='major', length=10) 
fr1.tick_params(which='minor', length=6) 
fr1.set_xticks(np.arange(-11, -1, 0.5), minor=True) 
fr1.set_xticks(np.arange(-11, -1, 2)) 
fr1.set_yticks(np.arange(-2, 8, 0.5), minor=True) 
fr1.set_yticks(np.arange(-2, 8, 2)) 
 
fr2.tick_params(which='major', length=10) 
fr2.tick_params(which='minor', length=6) 
fr2.set_xticks(np.arange(-11, -1, 0.5), minor=True) 
fr2.set_xticks(np.arange(-11, -1, 2)) 
fr2.set_yticks(np.arange(-2, 8, 0.5), minor=True) 
fr2.set_yticks(np.arange(-2, 8, 2)) 
 
fr3.tick_params(which='major', length=10) 
fr3.tick_params(which='minor', length=6) 
fr3.set_xticks(np.arange(-11, -1, 0.5), minor=True) 
fr3.set_xticks(np.arange(-11, -1, 2)) 
fr3.set_yticks(np.arange(-2, 8, 0.5), minor=True) 
fr3.set_yticks(np.arange(-2, 8, 2)) 
 
fr4.tick_params(which='major', length=10) 
fr4.tick_params(which='minor', length=6) 
fr4.set_xticks(np.arange(-11, -1, 0.5), minor=True) 
fr4.set_xticks(np.arange(-11, -1, 2)) 
fr4.set_yticks(np.arange(-2, 8, 0.5), minor=True) 
fr4.set_yticks(np.arange(-2, 8, 2)) 
 
show() 

In [ ]: ## Plotting the galaxy image 
hlr = plt.Circle((x_g, y_g), 3*P, color='lime', fill=False, linestyle='--', label="3R_e") 
 
fig = figure(figsize=(20,20)) 
fr1 = fig.add_subplot(111) 
 
fr1.imshow(data_sci, vmin=-0.000869, vmax=0.020963, cmap='gray', origin='lower') 
fr1.set_title("NGC 1052-DF2 in I814 filter", fontsize='xx-large') 
fr1.tick_params(which='major', length=15, right=True) 
fr1.set_ylim(850, 7500); fr1.set_xlim(1100, 7300) 
fr1.tick_params(which='minor', length=8, right=True) 
fr1.set_xlabel("X position (pixels)", fontsize='xx-large') 
fr1.set_ylabel("Y position (pixels)", fontsize='xx-large') 
fr1.set_xticks(np.arange(1000, 7500, 100), minor=True) 
fr1.set_xticks(np.arange(1000, 7500, 1000)) 
fr1.set_yticks(np.arange(1000, 7500, 100), minor=True) 
fr1.set_yticks(np.arange(1000, 7500, 1000)) 
 
show() 

In [ ]: # Creating multiple plots of galaxy images 
 
hlr3 = plt.Circle((x_g, y_g), 3*P, color='lime', fill=False, linestyle='--', label="3R_e") 
hlr2 = plt.Circle((x_g, y_g), 2*P, color='lime', fill=False, linestyle='--', label="2R_e") 
hlr4 = plt.Circle((x_g, y_g), 4*P, color='lime', fill=False, linestyle='--', label="4R_e") 
 
fig = figure(figsize=(30,30)) 
fr1 = fig.add_subplot(131); fr2 = fig.add_subplot(132); fr3 = fig.add_subplot(133) 
 
fr1.imshow(data_sci, vmin=-0.000869, vmax=0.020963, cmap='gray', origin='lower') 
#fr2.scatter(data_a['X_IMAGE_2'], data_a['Y_IMAGE_2'], color='gold', marker='.', alpha=0.15) 
fr1.scatter(data_gc['X_IMAGE_2'], data_gc['Y_IMAGE_2'], color='white', marker='*', s=250) 
fr1.scatter(data_gc['X_IMAGE_2'], data_gc['Y_IMAGE_2'], color='gold', marker='*', label='Shen 2021 GCs', s=200) 
#fr2.scatter(xarr, yarr, color='cyan', marker='s', label="GC candidates", alpha=0.25, s=10) 
#fr2.set_xlabel("X position (pixels)", fontsize='xx-large'); fr2.set_xlim(1100, 7300) 
#fr2.set_ylabel("Y position (pixels)", fontsize='xx-large'); 
fr1.set_ylim(850, 7500) 
fr1.set_xlim(1150, 7300) 
#fr2.set_title("Globular clusters and aperture overplotted", fontsize='xx-large') 
fr1.tick_params(which='major', length=15, right=True, labelsize=20) 
fr1.tick_params(which='minor', length=8, right=True) 
fr1.set_xticks(np.arange(1000, 7500, 100), minor=True) 
fr1.set_xticks(np.arange(1000, 7500, 1000)) 
fr1.set_yticks(np.arange(1000, 7500, 100), minor=True) 
fr1.set_yticks(np.arange(1000, 7500, 1000)) 
fr1.add_patch(hlr2) 
 
fr2.imshow(data_sci, vmin=-0.000869, vmax=0.020963, cmap='gray', origin='lower') 
#fr2.scatter(data_a['X_IMAGE_2'], data_a['Y_IMAGE_2'], color='gold', marker='.', alpha=0.15) 
fr2.scatter(data_gc['X_IMAGE_2'], data_gc['Y_IMAGE_2'], color='white', marker='*', s=250) 
fr2.scatter(data_gc['X_IMAGE_2'], data_gc['Y_IMAGE_2'], color='gold', marker='*', label='Shen 2021 GCs', s=200) 
#fr2.scatter(xarr, yarr, color='cyan', marker='s', label="GC candidates", alpha=0.25, s=10) 
#fr2.set_xlabel("X position (pixels)", fontsize='xx-large'); fr2.set_xlim(1100, 7300) 
#fr2.set_ylabel("Y position (pixels)", fontsize='xx-large'); 
fr2.set_ylim(850, 7500) 
fr2.set_xlim(1150, 7300) 
#fr2.set_title("Globular clusters and aperture overplotted", fontsize='xx-large') 
fr2.tick_params(which='major', length=15, right=True, labelsize=20) 
fr2.tick_params(which='minor', length=8, right=True) 
fr2.set_xticks(np.arange(1000, 7500, 100), minor=True) 
fr2.set_xticks(np.arange(1000, 7500, 1000)) 
fr2.set_yticks(np.arange(1000, 7500, 100), minor=True) 
fr2.set_yticks(np.arange(1000, 7500, 1000)) 
fr2.add_patch(hlr3) 
 
fr3.imshow(data_sci, vmin=-0.000869, vmax=0.020963, cmap='gray', origin='lower') 
#fr2.scatter(data_a['X_IMAGE_2'], data_a['Y_IMAGE_2'], color='gold', marker='.', alpha=0.15) 
fr3.scatter(data_gc['X_IMAGE_2'], data_gc['Y_IMAGE_2'], color='white', marker='*', s=250) 
fr3.scatter(data_gc['X_IMAGE_2'], data_gc['Y_IMAGE_2'], color='gold', marker='*', label='Shen 2021 GCs', s=200) 
#fr2.scatter(xarr, yarr, color='cyan', marker='s', label="GC candidates", alpha=0.25, s=10) 
#fr2.set_xlabel("X position (pixels)", fontsize='xx-large'); fr2.set_xlim(1100, 7300) 
#fr2.set_ylabel("Y position (pixels)", fontsize='xx-large'); 
fr3.set_ylim(850, 7500) 
fr3.set_xlim(1150, 7300) 
#fr2.set_title("Globular clusters and aperture overplotted", fontsize='xx-large') 
fr3.tick_params(which='major', length=15, right=True, labelsize=20) 
fr3.tick_params(which='minor', length=8, right=True) 
fr3.set_xticks(np.arange(1000, 7500, 100), minor=True) 
fr3.set_xticks(np.arange(1000, 7500, 1000)) 
fr3.set_yticks(np.arange(1000, 7500, 100), minor=True) 
fr3.set_yticks(np.arange(1000, 7500, 1000)) 
fr3.add_patch(hlr4) 
 
#fr1.legend(fontsize='x-large'); fr2.legend(fontsize='x-large') 
 
show() 


	Introduction
	Analysis
	Data
	Source Extractor
	Photometric selection
	Errors
	Apertures

	Results
	Luminosity Functions
	Gaussian modeling

	Discussion
	Conclusion
	References
	Appendix: Python Code

