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Abstract

This thesis aims to detect stellar streams in the retrograde Milky Way halo using the Reduced
Proper Motion selected halo sample created by Viswanathan et al. (2022) using data from Gaia
EDR3. The sample provides photometric distances, that are more reliable than the Gaia paral-
laxes, for around 48 million stars. For seven globular clusters that were identified in the sample,
the mean photometric and metallicity-dependent distance were computed. This provided reliable
distances for three globular clusters. For the other clusters, the stars in the sample belonged to
the main sequence turn-off instead of the main sequence. Consequently, their magnitudes were
incorrectly assigned, resulting in incorrect distances. The color cut 0.45 > G−GRP > 0.715 was
shown to effectively remove the majority of stars corresponding to the main sequence turn-off.
To systematically find stellar streams the sample was probed for different spatial and proper
motion intervals in the outer halo to create a series of plots. The streams GD-1, Jhelum, Indus,
Ophiuchus, Ylgr, and Orphan were identified through these plots. However, more conditions
need to be in place to efficiently find and identify streams with this method. Candidate members
of faint, strongly retrograde stream Phlegethon, located in the solar vicinity, were selected using
a series of alternating polynomial fits to overdensities in proper motion and the stream-track. 575
stars were selected with a mean photometric distance of 3.6± 0.6 kpc. Using a crossmatch with
Pristine, a metallicity of [Fe/H] = −1.9± 0.5 was established. The stream probes magnitudes
up to mG ≈ 21, which is a magnitude fainter than previous selections of Phlegethon by R. Ibata
using the STREAMFINDER algorithm. By not constricting stars to an orbit, more features of
the stream, like spurs are likely to be observed. The selection of Phlegethon candidates shows
that stellar streams can be selected through a method that can be automated. This will eventu-
ally help to create an algorithm that can systematically and automatically detect stellar streams
with the 5D data sample.
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A.F. Esselink 1. Introduction

1 Introduction

Galactic Astronomy is the study of the Milky Way and its contents. By studying our Galaxy
we can gain insight into its structure and history. Due to Milky Way being a fairly average
spiral galaxy (Bland-Hawthorn & Gerhard, 2016), it can also be used to study other systems. It
can provide a better understanding of galaxy formation and even of the formation of large-scale
structures in the Universe.

1.1 Components of the Milky Way

The main components of the Milky Way are the thin disk, the thick disk, the bulge/bar, and the
stellar halo, shown in fig. 1. Each component has its own distinct characteristics.

Figure 1: An artist’s impression of the Milky showing its main components. Image credits: Left:
NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab

The thin disk is the most noticeable feature of the Galaxy. There is active star formation at
an estimated rate of ∼ 1.6M⊙/yr. It contains mostly young stars that move in approximately
circular orbits. In addition, it extends up to 16 kpc and has a scale height of ∼ 300 pc. The
thick disk, as the name suggests, is thicker than the thin disk and has a scale height of ∼ 1 kpc.
It is also more diffuse and hotter, and contains older stars than the thin disk Bland-Hawthorn
& Gerhard (2016). Stars from the thin and thick disk can be separated by their chemical com-
ponents, specifically [α/Fe] and [Fe/H]. α-elements like O, Mg, Si, Ca, S, and Ti are released
during supernovae of massive stars (type II). Fe is produced in supernovae of a white dwarf in
a binary system (type Ia). Supernovae of type Ia happen over a longer timescale than type II,
due to the lower mass of the former. Hence [α/Fe] is expected to decrease over time. The thin
disk corresponds to low α values and the thick disk to higher α abundances (Bensby et al., 2003).

The bar/bulge is the densest component, located in the center of the Galaxy. It is obscured by
gas and dust, which interferes with observations and limits our understanding of this component.
The bulge contains around 40% of the total stellar mass in the Galaxy (Valenti et al., 2016).
In the true center resides a supermassive black, namely Sagittarius A∗. For a long time, it was
unclear whether the Milky Way had a bar. Its existence has now been confirmed, however,
there are still debates about its properties, like the size and rotation (Wegg et al., 2015; Portail
et al., 2017). The bulge contains different stellar populations, including very old (> 13 Gyr),
and metal-rich populations. Other populations correspond to the other Milky Way components.
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1.2 Galaxy formation and evolution A.F. Esselink

The Milky Way halo is the most extended region of the Galaxy and is spherical in shape. The
halo is dominated by dark matter contained in the dark halo. The stellar halo makes up only
∼ 0.1% of the halo’s mass Girelli et al. (2020). In this thesis, the focus will be on the stellar
part. The stars in the halo are generally old and metal-poor. The halo plays an important role
in the study of the history of the Galaxy, known as Galactic Archaeology. For example, tidal
streams provide information about their progenitors, globular clusters, and dwarf galaxies that
have merged with the Milky Way.

1.2 Galaxy formation and evolution

The currently accepted cosmological framework is the ΛCDM model in which structure is formed
hierarchically inside dark matter halos (White & Rees, 1978). Proto-galaxies grow through a
series of mergers with other systems to form the galaxies that are observed now. Star formation
in galaxies is fueled by gas coming in from mergers and the intergalactic medium. In galaxies
like the Milky Way, roughly half the baryonic mass originates from mergers and the other half
from the intergalactic medium. However, mergers are responsible for bringing in the majority of
the dark matter (Wang et al., 2011) and only ∼ 10% of the stars in the Galaxy. This suggests
gas-rich mergers and a subsequent higher star formation rate (Rodriguez-Gomez et al., 2016).

The formation and dynamics of galaxies are strongly dependent on their dark matter halos. The
halo attracts baryonic matter, in the right conditions the gas will cool down and begin star
formation. As the gas collapses towards the center of the halo, a rotating gaseous disk can form
as consequence of angular momentum conservation (Mo et al., 1998).
In the past, mergers happened more frequently, due to the higher density of the Universe. Large
merger events could also contribute to the creation of a bulge (Barnes, 1992). In the case of the
Milky Way, it led to the formation of the stellar halo consisting of stars from the original disk
and the progenitor, named Gaia-Enceladus (Helmi et al., 2018). It is likely that mergers also
disrupted the formation of the thin disk. Only after the activity decreased was it able to grow
further. Consequently, stars in the thin disk are commonly younger than in the stellar halo.
A large merger event could also be responsible for the creation of a bar by causing instability in
the disk of the Galaxy. The exact origin of the bar is unknown. The bar could have completely
originated from the thin disk or for some part also from the primordial thick disk Martinez-
Valpuesta & Gerhard (2013).

These examples show that the formation history of the different galactic components is connected.
A large merger event could be responsible for multiple structures. Based on the properties of the
stars in the different components, one can extract information about their origin. By determining
the sequence of events that occurred, the formation of the Galaxy can be revealed Helmi (2020).

1.3 Galactic Archaeology

Identifying stellar streams and their properties reveals information about the merger history of
the Milky Way. Based on their position and orientation, an estimate of their orbit can be made,
based on which an estimate of the distribution of their progenitors can be made (Grillmair &
Carlin, 2016). Streams are also important in the hierarchical cosmological paradigm. Mergers
form the dynamical mass (the dark halo) of a galaxy. They also provide information about the
general build-up of galactic systems.
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A.F. Esselink 1.3 Galactic Archaeology

The luminous satellites that are accreted in the Galaxy can generally be associated with one of
two types: dwarf galaxies and globular clusters. Dwarf galaxies have similar features as regular
galaxies but are smaller in size. Over 30 dwarf galaxies have been found in the Milky Way (Mc-
Connachie, 2012). The remnants of dwarf galaxies in the Milky Way and other observed dwarf
galaxies have a similar size and mass, however, their chemical composition is different (Tolstoy
et al., 2003). This can be explained by the fact that observed dwarf galaxies had Gyrs longer
to evolve and form stars than the accreted dwarf galaxies. This theory is supported by current
cosmological simulations (Fattahi et al., 2020).
Globular clusters (GCs) are dense stellar systems containing stars with similar ages and metallici-
ties. Over 150 GCs have been found in the galactic halo (Harris, 1996). The GCs can be split into
two groups based on their origin, the ones that formed in the Milky Way and the ones accreted.
The majority of GCs are thought to originate from accreting dwarf galaxies (Renaud et al., 2017).

Chemical abundances can be used to distinguish different systems. Based on the environment
and timescale in which the stars were formed, each system has its own distinct chemical se-
quence. This is observed for dwarf galaxies in the Local Group. The same principle applies to
dwarf galaxies that were accreted. Based on the mass and the time galaxies had to form stars,
their [α/Fe] and [Fe/H] abundances will differ. E.g. high [α/Fe] at low [Fe/H] will correspond
to low mass galaxies with a single generation of stars, while galaxies with star formation on a
large timescale could have high [α/Fe] at low [Fe/H] (Tolstoy et al., 2009). Chemical abundance
analysis like this can be used to distinguish large accreted systems. However, to identify smaller
systems like accreted globular clusters, extremely accurate abundances of many elements for a
large sample of stars would be needed (De Silva et al., 2006). In the case of stellar streams, it is
therefore often easier to identify them based on their dynamics.

When systems like dwarf galaxies and globular clusters merge with the Milky Way, they can
create a stellar stream due to the object being broken up by tidal forces under the gravitational
potential of the Milky Way. The stars contain information about their past through their kine-
matic and chemical properties (Johnston, 1998). Stars originating from the same dwarf galaxy
or globular cluster will have similar orbits due to their originally similar positions and velocities.
If the original system is small or the stream has recently formed, the stream is most likely to be
long and narrow (Johnston, 2016). Larger systems can lead to more complex and broad streams
that are more difficult to identify, due to the larger velocity dispersion and range of energies
amongst these stars (Quinn, 1984).
Identifying stellar streams helps to constrain the Galactic potential and density distribution of
the halo using their dynamics. One method that is used for this, fits the orbits of streams using
6D data (Nibauer et al., 2022). Accurately measuring the gravitational field, will also allow to
test the validity of the ΛCDM model.

A stellar stream is dependent on three major components, the size of the original system R and
its velocity dispersion σ, the time since the formation started t, and the characteristic orbital
timescale torb. An estimate of the density of a stream ρ can be given by ρ ∝ (torb/t)

3/(Rσ2).
Initially when t ∼ torb, the density will be high. Consequently, these streams will be easier to
detect due to their over-densities. This property applies to many streams in the outer halo due to
their long orbital time scale. However, for streams in the inner halo or streams originating from
a smaller system, the density will decrease quicker due to their shorter orbital time scale and
size respectively. Consequently, many accreted systems in the inner halo are very phase-mixed
(Helmi & White, 1999). Often multiple streams originate from the same progenitor. In this case,
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1.4 The Milky Way halo and its assembly history A.F. Esselink

it is more difficult to find streams through over-densities in spatial coordinates. Instead, energy
and angular momentum are used under the assumption that stars with the same progenitor have
similar integrals of motion. However, in this thesis, the focus will be on stellar streams that are
spatially coherent.

When looking for tidal streams in the vicinity of the Sun, it is estimated that the minimum data
sample needed to detect at least 10 stars per stream, contains 5000 halo stars with a velocity
resolution of ∼ 13 km/s. This is based on the velocity dispersion of the halo (∼ 100 kms/s) and
on the assumption that if the halo has formed through mergers, ca. 500 streams would exist in
this region. These conditions were almost met by Gaia DR2 (Gómez et al., 2013). For a more
detailed characterization of the streams and their progenitors, more data with higher precision is
needed. The recently release Gaia DR3 sample improves upon Gaia DR2 by giving line-of-sight
velocities for 33 million stars with GRV S magnitudes up to 14 (Gaia Collaboration et al., 2022).

1.4 The Milky Way halo and its assembly history

The stellar halo contains a lot of information about how the early Milky Way was formed. By
tracking stellar streams in the halo a lot can be revealed about the merger history of the Milky
Way. The stellar halo is also interesting due to its old and metal-poor stars. This suggests
that accreted dwarf galaxies were more metal-poor than the proto-Milky Way due to being less
massive (Tremonti et al., 2004). Due to the halo containing more old stars in proportion to the
other galactic components, it also gives valuable insights about the physical conditions of the
early universe.

With data from Gaia DR2, it was discovered by Helmi et al. (2018) that Gaia-Enceladus domi-
nates the inner halo. Two distinct sequences are present in the color-magnitude diagram (CMD)
of halo stars Gaia Collaboration et al. (2018). Halo stars are isolated by selecting stars with
tangential velocities greater than 200 km/s. This implies two stellar populations are present,
suggesting a so-called "dual" halo. The more metal-poor sequence consists largely of Gaia-
Enceladus. The other sequence consists of stars that kinematically belong to the splash of the
thick disk (fig. 2) Haywood et al. (2018). The accreted system is the result of a very massive
object merging with the Milky Way around 10 Gyr ago.

1.5 Stellar streams in the Milky Way halo

One of the first substructures in the inner halo was discovered by Helmi et al. (1999), and subse-
quently got the name Helmi streams. The streams were identified through their kinematics. Due
to their high z-velocities, they could be isolated from the other stars. The streams are thought
to originate from a system with a mass of M∗ ∼ 108M⊙ (Koppelman et al., 2019).
Currently, it remains difficult to determine the origin of many substructures in the vicinity of
the Sun. It is likely that better models and more detailed chemical analysis are needed on a
large number of stars to accurately do this (Helmi, 2020). Recent works like Lövdal et al. (2022)
and Ruiz-Lara et al. (2022) use data from the 6D sample of Gaia EDR3 in combination with
spectroscopic data from amongst others, LAMOST and APOGEE to link clusters to larger sub-
structures like Gaia-Enceladus and the Helmi streams.

A catalyst to the field of galactic archaeology was the discovery of the Sagittarius dwarf galaxy
by Ibata et al. (1994), which is currently merging with the Milky Way. The Sagittarius streams
are two branches consisting of stars that are tidally stripped from the core of the dwarf galaxy.
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A.F. Esselink 1.5 Stellar streams in the Milky Way halo

Figure 2: Toomre diagram, showing the velocity distribution of stars within 1 kpc of the Sun
with data from the 6D sample of Gaia DR2. The blue density area in the bottom right are stars
that belong to the disk. The others belong to the halo, which were selected as having tangential
velocities greater than 210 km/s (Koppelman et al., 2018). Image from: Helmi (2020)

These streams make up one of the largest complex structures in the Milky Way halo, stretch-
ing from one side of the sky to the other (de Boer et al., 2015). Using photometric wide-field
surveys like the Sloan Digital Sky Survey (SDSS), many substructures have been uncovered and
identified in the outer halo of the Milky Way through their overdensities in the sky. It has
allowed the structure of the Sagittarius streams to be defined (Ivezić et al., 2000)(Yanny et al.,
2000). Another large substructure that has been discovered with data from the SDSS is the Virgo
overdensity. This overdensity lies at a distance of ∼ 10 kpc, 4 times as close as the Sagittarius
streams, however, both can be found in the same region on the sky (Jurić et al., 2008). Both
substructures are thought to originate from dwarf galaxies merging with the Milky Way.

Many smaller thin streams have also been discovered in the outer halo, with digital sky surveys
like SDSS, 2MASS, and WISE (Grillmair & Carlin, 2016) and the Dark Energy Survey (DES)
(Shipp et al., 2018). These streams include GD-1, Orphan, Jhelum, Indus, and many others.
Smaller streams like this, likely originate from less massive systems like globular clusters and
small dwarf galaxies. The so-called "Field of Streams" from the SDSS data has allowed many
streams to be discovered. The Sagittarius streams dominate a large part of the field. Figure 3
shows the "Field of Streams" around Orphan, named for its unknown progenitor (Belokurov
et al., 2007). The color represents the distance and the intensity the density of stars.
New missions like Gaia have provided data that allows for the detection of substructures within
stellar streams. E.g. a gap and a streak of off-stream stars in the stream GD-1 provide evidence
of a dark satellite in the halo (Bonaca et al., 2019).
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1.6 Structure of the thesis A.F. Esselink

Figure 3: The "Field of Stream" from SDSS around the Orphan stream. The dashed red line is
a fit of the orbit with a radius of ∼ 25 kpc around the galactic center. The bright and broad
stream crossing Orphan is the Sagittarius Stream. The white contours correspond to HI column
densities of the dwarf galaxies UMa II (Belokurov et al., 2007). However, the kinematics of the
galaxy reveal that it is not the progenitor of Orphan Newberg et al. (2010)

.

1.6 Structure of the thesis

In this thesis, I will explore the possibilities of detecting stellar streams in the Milky Way halo
using data from the Gaia early Data Release 3 (EDR3) (Gaia Collaboration et al., 2021). Specif-
ically, I will use the reduced proper motion (RPM) selected halo sample created by Viswanathan
et al. (2022). This sample provides photometric distances for ∼48 million stars, which are more
accurate and precise than the parallax distances from Gaia and probes stars to higher distances.
More details about Gaia and the Gaia EDR3 are provided in section 2.1. Information about the
RPM halo sample and how it was created can be found in section 2.2.

The analysis consists of three main parts. In the first part, the distance to a selection of globular
clusters will be determined. Section 2.4 will discuss the process of how stars belonging to a par-
ticular cluster are selected. Additionally, the photometric distance will be compared to distances
computed using the metallicity and the effectiveness of using a color cut to remove stars with an
incorrectly assigned absolute magnitude will be discussed. The distances to the GCs using the
different methods are presented in section 3.1 and discussed in section 4.1.

The second part will explore the possibilities of creating an algorithm that can automatically
find and isolate stellar streams by systematically probing different parts of the RPM selected
halo sample. In section 2.5 the first steps are made in systematically going through the data.
The structures found in this process are presented in section 3.2. Finally, section 4.3 will discuss
the next possible steps in creating an algorithm to find stellar streams without being dependent
on the 6D data sample of Gaia.

The final part of this thesis is focused on creating a selection of stars that belong to a stellar
stream by using the overdensities in proper motion and the stream track, this process is described
in more detail in section 2.6. The stellar stream chosen as a proof of concept for this selection is
Phlegethon. Phlegethon is a stellar stream located nearby at an estimated distance of ∼ 3.8 kpc
and covers a large range of proper motions (discovered by Ibata et al. (2018)). The final selection
of the stellar stream and properties that can be inferred from it are presented in section 3.3.
Section 4.2 will discuss the limitations and shortcomings of the results and the methods used.
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A.F. Esselink 2. Datasets and Methods

2 Datasets and Methods

2.1 Gaia

Gaia was launched in December 2013, with its first data release in September 2016. The goal of
Gaia is to gain knowledge about the composition, formation, and evolution of the Milky Way.
Gaia has also revolutionized the detection of stellar streams and other substructures by providing
accurate distances, proper motions, magnitudes, colors, and much more for hundreds of millions
of stars. This has led to the discovery of new streams but also allows for verifying and defining
known structures better. Future data releases will provide more complete radial-velocity cata-
logues and improve the precision of proper motions by a factor of 4.5 (ESA, 2020).

Malhan & Ibata (2018) have developed an algorithm by the name STREAMFINDER, that can
be used to find thin stellar streams systematically and automated. It is able to find streams
down to > 10◦ long, containing only ∼ 15 members. The algorithm uses the proper motion and
photometry of stars, and samples randomly over their radial velocities. By integrating orbits in
a Galactic potential, stars that correspond to a thin stream-like structure in a certain orbit can
be detected, allowing for the identification of a stellar stream. Gaia-1 and Gaia-2, are two of
the streams that have been discovered using STREAMFINDER with data from the 6D sample
of Gaia DR2 (Malhan et al., 2018). Many more streams have been added with the Gaia EDR3.
These include Gaia-6 to Gaia-12 and twelve candidate streams (C-9 to C20) Ibata et al. (2021).
The Gaia early Data Release 3 (EDR3) (Gaia Collaboration et al., 2021) contains 1.811 billion
sources. 1.460 billion of these sources have full astrometric solutions.
A lot of research focused on stellar streams in the halo use the Gaia 6D sample, which contains
the three-dimensional position and velocity. This sample is used to compute the integrals of
motion. However, the 6D sample only contains 7.209 million sources. Most sources are missing
the line-of-sight velocities, and these make up the Gaia 5D sample, i.e. the full Gaia EDR3
sample.

One method of computing the distance to stars is by taking the inverse of their parallax. However,
around 90% of the stars in Gaia EDR3 have poor parallaxes due to their large error. Due to
the absence of radial velocities and imprecise distances in the 5D sample, it is difficult to study
the dynamics of the stellar halo. However, the Gaia EDR3 does have reliable astrometric and
photometric measurements. This information can be used to calculate more accurate distances
using the reduced proper motion while still probing Gaia’s faintest limit.

2.2 Reduced Proper Motion selected halo sample

An alternative to using parallax distances is to calculate the photometric distances of stars based
on their apparent magnitude.

MG = mG − 5 log10

(
d

kpc

)
− 10 (1)

Where MG and mG are the absolute and apparent magnitude in the Gaia G-band respectively, d
is the distance. MG is known for "standard candle" stars like cepheids and RR Lyrae Bhardwaj
(2018). For main-sequence (MS) stars there is an almost linear relation between the apparent
magnitude and colour, which can be used to determine MG for MS stars. This process of deter-
mining the photometric distances is described by Koppelman & Helmi (2021) and applied to the
stars in Gaia EDR3 by Viswanathan et al. (2022).
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2.2 Reduced Proper Motion selected halo sample A.F. Esselink

The main sequence stars are selected using the reduced proper motion (RPM) parameter, based
on the photometry and proper motions. The reduced proper motion is defined by:

HG = mG − 5 logµ− 10 (2)

Where µ is the Gaia proper motion. Based on the proper motions µj and the photometric
distances, the tangential velocities can be determined using

vj = 4.740 57 km/s

(
µj

mas/yr

)(
d

kpc

)
(3)

Where j = (l, b). The factor 4.74057 results from the unit conversion to km/s.
Using eqs. (1) and (3), the following expression for the reduced proper motion can be obtained
from eq. (2):

HG = MG − 5 log
vtan

4.74057
(4)

Where vtan is the tangential velocity. All these magnitudes are extinction corrected (see Viswanathan
et al. (2022)). Using the dependence of HG on the absolute magnitude, MS stars can be selected
using the HG-colours diagram. This RPM diagram is equivalent to the HR diagram of a stellar
population with an offset due to vtan. Stars in the halo orbiting the galactic center typically have
high tangential velocities compared to the disk. Therefore, halo stars are separated from stars
from the disk by selecting high vtan stars, which show up as a separate sequence in the RPM
diagram. This method can reliably select halo stars, it is however not complete. Stars that move
along the line of sight will have a small vtan and are therefore excluded. After selecting stars in
the MS region of the RPM diagram, with high vtan, an estimate can be made for MG, based on
the star in the position in the RPM diagram. Photometric distances for these MS stars can be
determined using their linear relation between the absolute magnitude and color. Stars outside
the MS, like the giants and stars at the MS turn-off, don’t have a reliable enough dependence
on the absolute magnitude and color (Koppelman & Helmi, 2021).

As a quality cut, only stars with an uncertainty in the reduced proper motion parameter
HG
δHG

> 1.75 are selected. This results in a final sample of around 48 million stars. Additionally,
a colour cut can be made to exclude turn-off and redder stars: 0.45 > G−GRP > 0.715, leaving
around 25 million stars. This sample contains around 3.5 times as many stars, as the equivalent
sample produced from Gaia DR2 by Koppelman & Helmi (2021).

Additionally, compared to RPM selected halo sample of Gaia Data Release 2 (DR2) (Gaia Col-
laboration et al., 2018), Gaia EDR3 populates the halo much more, especially at larger distances.
This can been clearly seen in figs. 4 and 5, which show the number density of Gaia DR2 and
EDR3 respectively, for different distances for the RPM selected halo stars (see section 2.2). The
average photometric distance in the RPM selected halo sample is 4.3 kpc for Gaia DR2, com-
pared to 8kpc for Gaia EDR3 (Viswanathan et al., 2022). The spatial distribution in cylindrical
heliocentric space (fig. 6), shows the sample populates space up to 15 kpc. A similar figure in
Koppelman & Helmi (2021) shows the RPM selected halo sample of Gaia DR2 populates space
well up to ∼ 8 kpc. Additionally, Gaia EDR3 improves the proper motion accuracy by a factor
of 2, and parallaxes by a factor of 1.5 compared to Gaia DR2.
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A.F. Esselink 2.2 Reduced Proper Motion selected halo sample

(a) d > 0 kpc (b) d > 5 kpc (c) d > 10 kpc

Figure 4: Galactic map of the RPM selected halo stars of Gaia DR2 at (a) all distances, (b)
photometric distances greater than 5 kpc and (c) photometric distances greater than 10 kpc.

(a) d > 0 kpc (b) d > 5 kpc (c) d > 10 kpc

Figure 5: Galactic map of the RPM selected halo stars of Gaia EDR3 at (a) all distances, (b)
photometric distances greater than 5 kpc and (c) photometric distances greater than 10 kpc.

Figure 6: Spatial distribution of the RPM selected halo sample in cylindrical heliocentric coordi-
nates for different galactic longitude sections. A half circle at 15 kpc around the origin is drawn
for comparison
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2.3 Substructures in velocity space A.F. Esselink

2.3 Substructures in velocity space

One simple method of looking for substructures is through velocity vectors. Structures can be
detected if their velocity is distinctly different enough from the background halo.
To obtain the right velocities in the galactic coordinate space, the velocities determined using
eq. (3), have to be corrected for the solar motion. The correction factors are defined by:

vl,⊙ = −U⊙ sin l + (V⊙ + VLSR) cos l (5)
vb,⊙ = W⊙ cos b− sin b(U⊙ + (V⊙ + VLSR) sin l) (6)

where the solar motion is defined as (U⊙, V⊙,W⊙) = (11.1, 12.24, 7.25) km/s (Schönrich et al.,
2010) and the local standard of rest motion VLSR = 232.8 km/s (McMillan, 2017). Finally, the
correction is added to the velocity determined with eq. (3).

v∗i = vi + vi,⊙ (7)

Figures 7a and 7b show that several substructures and overdensities can be observed in binned
velocity space for distances greater than 7 kpc which is around where the mean of the sample
lies.
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(a) Binned longitudinal velocities corrected for solar motion

(b) Binned latitudinal velocities corrected for sollar motion

Figure 7: Galactic maps of distances greater than 7 kpc, with (a) binned longitudinal velocities
and (b) latitudinal velocities, that are corrected for solar motion. Several streams and substruc-
tures can be observed, a number of them are annotated.
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Note: All data analysis was performed using Python. In this section, it will frequently be men-
tioned a fit to a Gaussian or polynomial function was performed. This was done using
scipy.optimize.curve_fit, which performs a non-linear least-squares fit (Virtanen et al., 2020).
The python module vaex (Breddels & Veljanoski, 2018), allows to efficiently use and explore
large tabular datasets. It was also used to visualize and do computations on the data. The main
components of Python code used for the computations of each part of the analysis can be found
in appendix B.

2.4 Distance to Globular Clusters

When looking through the EDR3 density plots and different proper motions, described in sec-
tion 2.5, multiple globular clusters (GCs) can easily be identified. These clusters have known
distances and thus can be used to verify the photometric distances of the RPM selected halo
sample. The stars belonging to these GCs can be isolated through their overdensity due to proper
motion selections. GCs are identified through their galactic coordinates and validation is done
by looking at a GC database by (Massari et al., 2019).

Using the galactic coordinates corresponding to the center of the GCs, a square area of 0.5 x 0.5
degrees around the center of each GC is selected (fig. 8a). After determining the peak of the
binned proper motion space in µl, all stars within 1.3σ around the peak are selected (fig. 8b).
This range allows the majority of stars in the peak to be selected, while also accounting for the
errors in proper motion. However, the proper motion selection to isolate the stars corresponding
to the GC is not always successful. Therefore a Gaussian is fit to the number of stars along the
galactic longitude l. All stars within the full width at half maximum (FWHM) around the center
are selected (fig. 8c). Finally, the distance and its dispersion are determined by taking the mean
and standard deviation of the photometric distances of the selected stars respectively.

The colour cut described in section 2.2 (0.45 > G−GRP > 0.715) can be applied to remove very
blue stars (fig. 8d). Stars in this range have colors close to the MS turn-off. Consequently, their
absolute magnitude would be incorrectly assigned, leading to an underestimated distance.

Additionally, the photometric distances are compared to the distances computed using the metal-
licity of the GCs compiled by Massari et al. (2019). The absolute magnitude MG is determined
based on interpolation of the relationship between MG and G−GRP for a given metallicity, given
by Viswanathan et al. (2022). The distance can then be calculated using the distance modulus
(eq. (1)).
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(a) All stars with 0.5◦ around the center of the GC (b) Stars around the peak in proper motion in fig. 8a

(c) Stars within the FWHM of the density distribution (d) After colour cut: 0.45 > G−GRP > 0.715

Figure 8: An example of the selection process of GCs. The GC shown here is NGC7099

2.5 Systematic search for substructures

To effectively look for substructures in the Milky Way halo, an algorithm must be developed
that automatically and systematically looks for structures and potentially makes a selection of
these stars. Unlike STREAMFINDER, this method would use the 5D sample to not be limited
by the small number of sources that have line-of-sight velocities.

A first step in the direction of such an algorithm was made by slicing in the galactic coordinates,
proper motion space, and distance. By systematically probing the sky like this, overdensities
will become apparent. To test the method a set of scatter plots were created for 60◦ by 60◦

areas in galactic coordinates for proper motion bins in µl and µb with a 5mas/yr width for
distances greater than 8 kpc. Low latitude sources (|b| < 30◦) were excluded due to their high
contamination by stars from the thick disc. Only selections with over 2000 sources were plotted.
The selection of potential stellar streams and other substructures was done by eye. Six of the
streams that were found and identified using Ibata et al. (2021), can be seen in section 3.2.1.
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2.6 Star selection of the stellar stream Phlegethon

The stellar stream chosen to be examined in more detail is Phlegethon. Phlegethon was discov-
ered by Ibata et al. (2018) using the STREAMFINDER algorithm on data from Gaia DR2. The
stream is extremely retrograde and lies at an estimated distance of ≈ 3.8 kpc. The stream is
thought to be a remnant of a globular cluster. Because Phlegethon is located in the solar neigh-
borhood and is difficult to isolate in binned velocity space, it was unexplored in Viswanathan
et al. (2022). The stream is also interesting due to its location close to the galactic plane and low
surface brightness. Therefore showing the used method of star selection is reliable for Phlegethon,
will be a good proof of concept that the method is likely to be effective on stellar streams in the
outer halo too and/or with higher surface brightness. Additionally, STREAMFINDER is only
able to detect thin streams. It is possible Phlegethon is broader and has more gaps, wiggle, and
density variations than that have previously been reported. With the RPM sample, we can look
more into this.

Based on a rough estimation of the area, proper motion space, and distance of Phlegethon, a den-
sity plot with Gaussian smoothing (fig. 9) was created. The distance was limited to be greater
than 2.5 kpc and smaller than 4.5 kpc. The galactic coordinates were limited an area where
−20◦ < l < 70◦ and −50◦ < b < −35◦. The proper motion corrected for the solar motion was
bounded by −40 < µ∗

l < −20 mas/yr and −30 < µ∗
b < 5 mas/yr. These boundary values were

partly determined by experimenting with which combination of selections showed the clearest
overdensity and partly on information provided by Ibata et al. (2018). Stars in the higher density
regions of the density map were isolated to make an initial selection of stars.

Figure 9: Normalized star density of area around Phlegethon with proper motions limited to
−40 < µ∗

l < −20 mas/yr and −30 < µ∗
b < 5 mas/yr and distances to 2.5 < d < 4.5 kpc.

This selection was used to fit a 2nd-degree polynomial, representing the orbit. All stars ±8◦

in galactic latitude b were selected (eq. (8)). The previously set boundaries were expanded to:
2.5 < d < 5 kpc, −40 < µ∗

l < −9 mas/yr and −35 < µ∗
b < 17 mas/yr. No limits were set on the

galactic coordinates. The relatively large width of 8◦ was chosen because of large inaccuracy in
this initial fit to the orbit due to the still large amount of contamination in the sample.

b < (0.00315 l2 − 0.134 l − 41.9)± 8◦ (8)

Secondly, Phlegethon was isolated using proper motion vectors. Proper motion vectors were used
as opposed to velocity vectors since the latter introduces additional uncertainties. The photo-
metric distances in the RPM selected halo sample have poor accuracy for MS turn-off stars and
fainter redder stars.
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First, a 3rd degree polynomial was fitted to the overdensity in l vs. µb (fig. 10a).The fit was
performed on selected points near the overdensity, opposed to all sources in the selected sample.
All stars within ten standard deviations σ from the mean in the error in µb were selected:

µb < (3.8× 10−5 l3 − 4.3× 10−5 l2 − 0.51 l + 5.0)±
( ¯δ(µb) + 10σδ(µb)

)
[mas/yr] (9)

Based on this selection, an improved fit of the stream-track and corresponding selection was
created by fitting a 2nd degree polynomial to selected points in the spatial overdensity. Subse-
quently, a 2nd degree polynomial is fit to the overdensity in l vs. µl (fig. 10b).

µl < (9.3× 10−3 l2 − 0.32 l − 35.2)±
( ¯δ(µl) + 6σδ(µl)

)
[mas/yr] (10)

This was followed by another improved fit and selection of the stream track. However, now
enough contamination had been removed to let the points on the overdensity be automatically
selected. The current selection sample was put into bins with an ∆l = 10◦ width, from which
the median of b was taken. The improved fit of the stream track is followed by the selection of
the overdensity in l vs. µRA (fig. 10c). For this fit, the data has again been put into bins of
∆l = 10◦. By taking the peak of the histogram in µRA for every bin, points were created to fit
the polynomial.

These methods were repeated for another improved fit of the stream track and for the overdensity
in µDEC vs. l (fig. 10d), respectively.The final fit was performed on all data points in the selection.
For every new fit to the track, the width of the selection around the track was decreased from 8◦

for the first to 4◦ for the final selection. The final fit resulted in the following polynomial stream
track:

b(l) = (5.8± 0.5)× 10−3 l2 − (0.22± 0.02) l − (42.4± 0.2)

Where l and b are given in degrees.

In the end, the selection consisted of 575 potential members of Phlegethon. A corresponding
density map of Phlegethon is created to better analyze its substructure.
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(a) µb < (3.8× 10−5 l3 − 4.3× 10−5 l2 − 0.51 l + 5.0)±
( ¯δ(µb) + 10σδ(µb)

)
[mas/yr]

(b) µl < (9.3× 10−3 l2 − 0.32 l − 35.2)±
( ¯δ(µl) + 7σδ(µl)

)
[mas/yr]

(c) µRA < (−1.3× 10−4 l2 − 0.11 l − 5.4)±
( ¯δ(µRA) + 3σδ(µRA)

)
[mas/yr]

(d) µDEC < (6.5× 10−3 l2 − 0.27 l − 35.0)±
( ¯δ(µDEC) + 6σδ(µDEC)

)
[mas/yr]

Figure 10: The selection of members of the stellar stream Phlegethon through 4 proper motions
vectors: (a) µb, (b) µl, (c) µRA, (d) µDEC . A polynomial is fit to selected points in the overdensity
present in each plot. Stars around the polynomial fit are selected and shown in blue.
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3 Results

3.1 Distance to globular clusters

In total, eight globular clusters were chosen for the distance analysis. Table 1 shows the mean
photometric distance and mean metallicity-dependent distance for the data selections without
the color cut, and the distances from Massari et al. (2019). The GCs catalogue did not contain a
metallicity for NGC6402, hence no metallicity-dependent distance could be determined for this
GC.

Object Phot. Dist. [kpc] Met. dep. Dist. [kpc] Lit. value [kpc]
M2, NGC7089 10.1± 1.5 8.2± 1.9 11.50

M5, NGC5904 7.3± 1.4 7.9± 1.4 7.50

M13, NGC6205 11.0± 1.4 10.4± 1.3 7.10

M14, NGC6402 8.4± 1.7 N/A 9.30

M30, NGC7099 9.3± 2.2 7.7± 1.7 8.10

M80, NGC6093 8.8± 1.6 7.5± 1.2 10.0

M92, NGC6341 10.5± 2.0 8.7± 1.4 8.30

NGC5466 11.1± 2.1 8.8± 1.8 16.0

Table 1: The computed mean photometric and metallicity dependent distances for eight globular
clusters, without the color cut. The literature values in the last column are obtained from Massari
et al. (2019). GCs with reliable (metallicity dependent) distances are shown in bold.

To determine which combination of sample and method provides the most accurate distances,
two plots were created showing deviation from literature for both the photometric and metallicity
determined distance method for the data sample without the color cut (fig. 12a) and with the
color cut: 0.45 > G−GRP > 0.715 (fig. 12b).

When the color cut is used, the number of stars in the selection of most GCs greatly decreases.
This is likely because many stars in these GCs belong to the MS turn-off, consequently, their
absolute magnitude would be incorrectly assigned, leading to an underestimated distance. We
can check this by superimposing the GC selection of the RPM selected halo sample onto a rough
selection of the GC in the full Gaia EDR3 sample. This shows that amongst others, the selections
of NGC7089 and NGC5466 are mostly part of the MS-turnoff (figs. 11a and 11b), whereas the
selections of NGC5904 and NGC7099 do extent into the MS-turnoff, they still cover the MS
(figs. 11c and 11d). All sky distributions and CMDs of the GCs can be found in appendix A.

In total, for four out of the seven GCs, the stars in the selection belonged to the MS turn-
off. Only three GCs have more than 100 stars left after the color cut: NGC6341, NGC7099,
and NGC5904. Subsequently, these are the only GCs for which the deviation from literature is
around zero. From this, we can conclude that the color cut allows us to distinguish accurate
distances from incorrect ones. After the color cut, there is little difference in accuracy between
the photometric and metallicity determined distances. However, without the color cut, the
metallicity-dependent distances for GCs with correctly assigned magnitudes are more accurate.
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(a) CMD of M2, NGC7089 (b) CMD of NGC5466

(c) CMD of M5, NGC5904 (d) CMD of M30, 7099

Figure 11: The GC selections of the RPM selected halo sample without the color-cut (yellow)
are superimposed onto a rough selection of the GC for the full Gaia EDR3 sample (red) (all
stars with 0.15◦ of the GC’s center). The selection of NGC7089 and NGC5466 consist of mostly
MS-turnoff stars. The selections of NGC5904 and NGC7099 do cover the MS.

(a) No colour cut (b) With colour cut: 0.45 > G−GRP > 0.715

Figure 12: Blue: difference between the photometric distance and literature distance (Massari
et al., 2019). Orange: difference between metallicity-dependent distance and literature distance.
In (b), GCs for which >100 stars were left after the color cut are shown with a larger marker.
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3.2 Systematic selection substructures

3.2.1 Identified stellar streams

In total six known stellar streams were located by eye using the scatter plots created by looping
over different areas and proper motions. The streams that were found are: GD-1, Jhelum, Indus,
Ophiuchus, Ylgr, and Orphan. Their corresponding plots from the systematic search are shown
in figs. 13 to 19. The proper motion bins can be found in the figure caption, and the spatial
bins are represented on the axes. For every plot the data is colour-coded for the solar motion
corrected longitudinal proper motion µ∗

l .

GD-1

Figure 13: 5 < µ∗
l < 10,−5 < µ∗

b < 0 [mas/yr]
Scatter plot for the shown proper motion and
spatial interval, and dphot > 8 kpc. The data
is colour-coded for the solar motion corrected
longitudinal proper motion µ∗

l .

Figure 14: Same as fig. 13 but for
5 < µ∗

l < 10, 0 < µ∗
b < 5 [mas/yr]

Jhelum and Indus

Figure 15: Same as fig. 13 but for
−10 < µ∗

l < −5,−5 < µ∗
b < 0 [mas/yr]

Figure 16: Same as fig. 13 but for
−5 < µ∗

l < 0,−5 < µ∗
b < 0 [mas/yr]
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Ophiuchus

Figure 17: Same as fig. 13 but for
−5 < µl∗ < 0,−5 < µ∗

b < 0 [mas/yr]
Figure 18: Same as fig. 13 but for
0 < µ∗

l < 5,−5 < µ∗
b < 0 [mas/yr]

Ylgr and Oprhan

Figure 19: Same as fig. 13 but for
0 < µ∗

l < 5,−5 < µ∗
b < 0 [mas/yr]
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In the systematic search for stellar streams, only structures with |b| > 30◦ and distances greater
than 8 kpc were considered. However, to assess the possibility of detecting nearby streams closer
to the galactic plane with a similar method, specific stellar streams were identified using a rough
estimation of their proper motions based on Ibata et al. (2021). Two of the stellar streams that
were identified are Hríd and Gjöll using 15 < µ∗

l < 25 mas/yr, 7 < µ∗
b < 25 mas/yr and distances

between 3 and 6 kpc. Figure 20 shows that both streams are resolved using these boundary
parameters. Similarly, the stellar stream Phlegethon could also be identified like this.

Figure 20: Galactic map showing overdensities who have identified as the stellar streams Hríd
and Gjöll. Stars with proper motions 15 < µ∗

l < 25 mas/yr, 7 < µ∗
b < 25 mas/yr and distances

between 3 and 6 kpc have been selected from the RPM selected halo sample for this plot.
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3.2.2 Scanning pattern

Additionally, some of the substructures that could not be identified were found to be a result
of the scanning pattern of Gaia. Using the astrometric_n_obs_al parameter, which shows the
total number of observations for sources, the scanning pattern can be revealed. This is shown in
gray scale in the figures. By superimposing the sources of a single plot created in the systematic
search for substructures on the scanning pattern, one can observe whether there is a correlation
between the two. A few examples of substructures due to the scanning pattern are shown in
figs. 21 and 22

Figure 21: Galactic map of sources with proper motions −5 < µ∗
l < 0,−5 < µ∗

b < 0 [mas/yr]
and distances 8 < d < 25 kpc (red) superimposed on the scanning pattern (grey).

Figure 22: Galactic map of sources with proper motions 0 < µ∗
l < 5,−5 < µ∗

b < 0 [mas/yr] and
distances 8 < d < 25 kpc (red) superimposed on the scanning pattern (grey).
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3.3 Analysis of the Phlegethon selection

The sequence of selections on proper motion overdensities and the stream-track results in a final
selection of 575 stars. Figure 23 shows the distribution of the stars in galactic coordinates,
which show a clear stream-like structure. The colored dots reveal a gradient in both µl and µb.
Additionally, fig. 24 shows the distribution in proper motion, resembling an curvature in the
continuous structure. There is a large gradient in the proper motions, with −40 < µl < −15
and −20 < µl < 15. The colored dots show a continuous gradient in the galactic longitude.
The continuity in the three parameters corresponds to what is expected for structures like stellar
streams.

(a) Sky distribution with latitudinal proper motion.

(b) Sky distribution with longitudinal proper motion.

Figure 23: The distribution in galactic coordinates of the 575 selected stars of Phlegethon. The
line is the best polynomial fit to the data, representing the track the stream follows. The data
is color-coded for (a) µl and (b) µb.

The mean photometric distance of the selected Phlegethon sample is 3.6 ± 0.6 kpc. The large
uncertainty is due to the large distribution of distances in the sample. Based on the distance of
the stream and its angular size, its true size can be determined. Assuming a length of ∼ 80◦, its
physical length is ∼ 5 kpc, and a width of ∼ 5◦ corresponds to ∼ 0.3 kpc.

The proper motion µl is negative throughout the whole structure, indicating that the stream
moves in the negative l direction (towards the right in fig. 23a) and his highly retrograde. µl

is lowest around l = 18◦, where µl ≈ −40mas/yr. µb is lowest at high l end of the stream at
l ≈ 70◦, where µb ≈ −20mas/yr and highest and the low l end (l ≈ 70◦) where µb ≈ 10mas/yr.
To make the substructure of Phlegethon more apparent, a density plot was created (fig. 25).
This reveals a larger density on the high l end and a relatively lower density on the low l end
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Figure 24: Proper motion distribution for the selected Phlegethon sample. The colour represent
the galactic longitude, showing a continuous gradient through the structure. The uncertainties
in the individual points are shown through errorbars.

of the stream. In combination with the movement direction and proper motions gradient, this
indicates that the stream is growing longer as it is being pulled apart further by tidal forces.

A gap in the stream can be observed around l = 40◦, which is also visible in fig. 24 at (µl, µb) ≈
(−35,−10) mas/yr. A smaller gap is present around l = 3◦, corresponding to (µl, µb) ≈ (−36, 3)
mas/yr. Additionally, possible parallel structures can be seen below the the stream around
l ∼ 55◦ and above the stream around l ∼ −5◦. They are however very faint, due to not being
fully resolved, as the selection was focused on Phlegethon.

Figure 25: Galactic density map of the Phlegethon selection.

The stars in the selected Phlegethon sample can be cross-matched with Pristine (Martin et al.,
2022), resulting in 38 cross matches. The distribution of the cross matches is displayed in fig. 26,
showing all stars have a galactic longitude greater than 55◦. This is a consequence of the footprint
of Pristine. The metallicity distribution is shown through a histogram in fig. 27. A Gaussian
was fit to this histogram, from which was determined that the mean spectroscopic metallicity
of these stars is [Fe/H] = −1.9 ± 0.5, which corresponds to the very metal-poor range. The
metallicity range is relatively broad compared to other streams originating from GCs Martin
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et al. (2022), ranging from [Fe/H] ∼ −1.0 to [Fe/H] ∼ −3.0. This could indicate that the stream
is instead part of an accreted dwarf galaxy. However, some contamination and large metallicity
uncertainties for faint stars could also have influenced the large dispersion.

Figure 26: The distribution of the cross matches
between the Phlegethon selection and Pristine in
galactic coordinates. 38 cross matches were found
in total

Figure 27: Histogram of the metallicities in
the cross-match of the Phlegethon selection
with Pristine. Based on the Gaussian fit
to the histogram, the mean metallicity is
[Fe/H] = −1.9± 0.5 .

4 Discussion

4.1 Distance to globular clusters

The uncertainties in the distance without the color cut (0.45 > G−GRP > 0.715) are relatively
big, with a mean error of 1.7 kpc for the photometric distances and 1.5 kpc for the metallicity-
dependent distances. Since these errors represent the standard deviation of the distance distri-
bution of each globular cluster, the large errors can be largely attributed to the disparity of the
distances in each sample. This is likely partly due to contamination by stars not part of the
GC and by stars with an incorrectly assigned magnitude. Additionally, the uncertainty in the
distance of individual stars is ∼ 1 kpc, also contributing to the large variance in distance.

Using the color cut improves the precision by a factor of ∼ 1.4. This can be largely attributed
to the color cut removing stars that could potentially have an incorrect absolute magnitude, re-
ducing the discrepancy between the distances. However, only three GCs have a reliable distance,
based on the size of each GC sample after the cut. This is due to the color cut decreasing the
number of sources in each sample significantly. For the other GCs, little improvement is made
in the accuracy of the distances. Likely, their distances after the cut are solely based on stars
that are not part of the GC or giant stars with incorrect magnitudes that fell just outside the
cut. Based on the CMDs a slightly redder color cut could be considered. E.g. the selection of
NGC5466 extends past G−GRP = 0.45 in the MS turn-off. However, this would lead to an even
greater reduction of the selection sample sizes. Increasing the upper limit is also not likely to be
advantageous in this case, since very few stars in the CMDs have G−GRP > 0.715. Additionally,
MS stars corresponding to these colors are generally faint and cover a larger range of G−GRP ,
increasing the error of these distances. In general, using a redder color cut is likely to remove
more stars with correctly assigned magnitudes than incorrect ones. Hence, it might often not be
worth the trade-off.
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Furthermore, the sample size is limited by the limitations and uncertainties of Gaia. GCs are
highly dense regions. Consequently, Gaia is not able to resolve individual stars around the center
of the GCs, explaining the ’hole’ visible in fig. 8. Besides the RPM selected halo sample con-
taining only MS stars, the uncertainty of the parameters of stars in dense regions is relatively
higher. Due to quality cuts, for example in the reduced proper motion parameters, the sample
size is further limited.

Ultimately this shows that the color cut is effective at removing stars with incorrectly assigned
absolute magnitudes However, simultaneously it greatly reduces the sample size and removes stars
in the MS that are close to the turn-off. Hence it is not always advantageous to use the color cut,
depending on the age and metallicity of the stellar population that is being observed. Based on
fig. 12a, the metallicity-dependent distances are more accurate than the photometric distances,
especially for more metal-poor populations. However, metallicities are often not available and
therefore can’t be used in the computation of the distance.

4.2 Phlegethon selection

The sample of Phlegethon members from the RPM selected halo sample is similar to the most
recent STREAMFINDER algorithm determined sample for Gaia (E)DR3 provided by R. Ibata.
However, we probe at least one magnitude mg fainter, with a limit around 21 instead of 20. This
allows for lower surface brightness structures to be traced. The STREAMFINDER selection does
extend to higher values of b for the high l-end of the stream. This might be due to difficulties
faced with the first fit to a proper motion overdensity due to high contamination in the sample
(fig. 10a). Ibata et al. (2021) shows a parallel structure below the main stream around l ∼ 55◦,
this could be part of Phlegethon or another smaller stream with similar properties. The streak
above the stream around l ∼ −5◦ is not visible in the STREAMFINDER selected sample or any
streams in the surrounding area, implying that it is likely other contamination. The functions
in proper motions µRA and µDEC against the galactic longitude l (figs. 10c and 10d), can be
compared to equivalent plots by Ibata et al. (2018). Their orbital solution is similar to the poly-
nomials that were computed. One notable difference is that the STREAMFINDER determined
selection contains more stars with µl > −25 mas/yr in the region where l > 60◦.

One of the downsides of the selection method used, as opposed to the STREAMFINDER us-
ing the 6D sample, is that is more difficult to claim with high certainty that sources belong to
a particular stellar stream. Another downside is the fact that the RPM selected halo sample
only contains MS stars, making it impossible to accurately fit a population model to the color-
magnitude distribution and determine the age of the population. Additionally, the RPM sample
is kinematically biased. The sample lacks stars with small proper motions due to the selection
being focused around stars with high tangential velocities (Viswanathan et al., 2022). Due to
the lack of line-of-sight velocities, it is also difficult to accurately determine its true orbit. On
the contrary, the RPM selected halo sample is not limited by stars being constricted to an or-
bit. Consequently, this sample could be more effective at showing interesting features like spurs,
especially for low surface brightness stars.

Unlike how most other stream selections in the 5D sample are performed (e.g. (Viswanathan
et al., 2022)), namely by using a hand-drawn polygon around the stream, Phlegethon members
were selected using a selection of overdensities followed by a sequence of polynomial fits. The
advantage of the latter is that it could potentially be automated, simplifying the process and
making it applicable to other stellar streams. Nonetheless, this method is still biased. Due to the
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large contamination around the overdensities in proper motion, a polynomial could not simply
be fit to all sources in the sample. Instead, specific points along the overdensity had to be set
by eye or be determined through a Gaussian fit to histograms of bins with a width of ∆l = 10◦.
The latter is also strongly biased through the boundaries that are set for the Gaussian param-
eters to secure an accurate fit. This issue is amplified when the overdensity cannot be clearly
distinguished from the background. This occurred on the edges of the µb fit, shown in fig. 10a.
Additionally, the method is biased through the chosen maximum distance stars can be removed
from the fitted polynomials. It would be better if Gaussian’s were fitted perpendicular to the
overdensity along its track, allowing for a better estimate of the true width at different points
in the track. However, a general problem with trying to fit Gaussian’s in these samples is the
non-uniform background.

The distance to Phlegethon was determined to be 3.6± 0.6 kpc, which is in agreement with the
distance of ∼ 3.8 kpc reported in Ibata et al. (2018). The large uncertainty in the found value is
likely due to similar issues as the GCs distances, discussed in section 4.1. The same paper also
reports a metallicity of [Fe/H] = −1.56± 0.04, which is based on two stars from their selection
that crossmatched with the SDSS/Seque survey. The metallicity that was found in this thesis
using the 38 cross matches with Pristine is [Fe/H] = −1.9± 0.5, which is in agreement with Ibata
et al. (2018). One downside of the distribution of the cross matches with Pristine is that they
all reside in the high l tail (l > 55◦) of the stellar stream, due to Pristine’s footprint. Ideally,
the cross matches would be distributed throughout the whole stream, increasing the probability
that the metallicity reflects the metallicity of the entire stream accurately. It would also us to
inspect whether any metallicity variation is present throughout the stream.

4.3 Systematic identification of substructures

Locating and identifying stellar streams by eye in the many plots that were created is a strenu-
ous and tedious process. The six stellar streams that were identified were likely only a fraction
of the stellar streams that could be observed in the plots. To effectively find stellar streams,
the process needs to be simplified by reducing the number of plots that are created that could
potentially contain a stream. Eventually, the desired algorithm would locate and isolate stellar
streams automatically.

To maximize the number of streams that can be identified through overdensities, the current
method needs to be optimized first. One of the problems of the current method is that the
proper motions selected for a single plot are within a 5mas/yr interval. Many stellar streams
have proper motions that cover a much larger range. E.g. Phlegethon for which −20 < µb < 15
mas/yr and −40 < µl < −20 mas/yr. By only probing a small part of the proper motions, the
overdensity will not appear as a stream-like structure. Likewise, the density deviation from the
background will be smaller, making it less apparent. One could loop over a larger combination of
proper motion intervals to limit the problem. However, that would create a significantly larger
number of plots, making it an even more lengthy and strenuous process to identify streams. As
a solution, more conditions should be put in place that decides whether a plot is created or not.
Currently, only one condition is in place, namely, the number of sources in the selection must
exceed 2000.
If the proper motions of a stream deviate enough from the background, a peak in proper motion
should be present. By selecting stars around the peak, part of the contamination can already be
removed. This method would be most effective if the proper motion is approximately constant
in at least one direction, as this would result in a more prominent peak. Ideally, one would use
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a map of the background proper motions, allowing streams to be observed through the residual.
However, the proper motions of stellar streams do not always differ significantly from their back-
ground in the sky. Another possibility could be to use the correlation between densities along
two directions. For a stellar stream, it is likely there will be a positive correlation, due to the
density in both directions increasing at these points. One of the issues with this method is that
streams are usually thin structures, which are difficult to isolate if the stream is not aligned with
one of the two directions.

Additionally, some substructures appear due to the scanning pattern of Gaia. The scanning
pattern is created, due to some areas being scanned more frequently than others, allowing more
and fainter stars to be detected in these regions. Gaia’s scanning pattern can be observed in
Riello, M. et al. (2021). Examples of overdensities due to the scanning pattern were shown in
section 3.2.2. This problem could be reduced by using a model of the scanning pattern, which
can be scaled and subtracted from density plots. Another method could be to automatically
cross-reference any overdensities that are found with the scanning pattern and let them be dis-
regarded in case of a match. Another concern is the non-uniform background. Towards the
galactic plane, the density of sources increases substantially, partly due to the contamination
of stars of the thick disk. This increases the complexity of isolating overdensities. Selected
overdensities should be divided by their shape. Overdensities corresponding to the background
will be larger in size, follow a large-scale gradient in density, and will not have a stream-like shape.

Once a better selection process is in place, the boundary parameters can be relaxed to allow for
nearby structures, and structures that lie closer to the galactic plane to be detected as well. The
example of Hríd and Gjöll, shown in section 3.2, shows that it is feasible to observe these types
of stellar streams.

Laporte et al. (2021) shows it is possible to detect substructures using peaks in proper motion
space in the outer disk. They spatially bin the data into bins of 0.5◦ by 0.5◦ and apply a so-
called "shrinking sphere algorithm" to find proper motion peaks in each pixel. By mapping
these peaks, several new substructures were identified. A similar method could be applied to
the galactic halo. However, likely larger bins have to be used due to the lower density of the halo.

In the end, one should have an algorithm that can locate stellar streams using the RPM selected
halo sample from Gaia. This sample consists of around 47 million halo stars, as opposed to the
7.2 million stars in the 6D sample of Gaia EDR3 (Gaia Collaboration et al., 2018). Additionally,
the RPM selected halo sample contains photometric distance with an uncertainty of ≈ 7%
(Viswanathan et al., 2022), which is more precise and accurate than the distances that Gaia
parallaxes provide. Under the assumption that the variance in distance within a stellar stream
is negligible compared to the heliocentric distance to the stream, slices in distance spanning
interval 2-4 times the uncertainty of the photometric distance, allows streams to more effectively
be isolated.

30



A.F. Esselink 5. Conclusion

5 Conclusion

In this thesis, we explored the detection of stellar streams in the Milky Way halo. A stellar
stream is created when a dwarf galaxy or globular cluster merges with the Milky Way, causing it
to be torn apart by tidal forces. Identifying stellar streams can provide information about their
progenitors and the history of the Galaxy.
Digital sky surveys like SDSS and DES have enabled the discovery of many streams in the outer
halo. New data that is provided by Gaia, has allowed for new streams to be discovered and for
known streams to be studied in more detail. The STREAMFINDER algorithm has played an
instrumental role in the study of many stellar streams. The algorithm has automated the search
for stellar streams using the 6D data provided by Gaia. Despite being very effective, the 6D
sample only consists of around 7.2 million stars.
The data analysis done in this thesis has used the RPM selected halo sample provided by
Viswanathan et al. (2022). This sample of around 48 million stars, contains photometric dis-
tances that are more reliable than the distances provided by the Gaia parallaxes.

By computing the distances of seven globular clusters with known distances and metallicities,
the reliability of the photometric distances compared to distances computed using the metallicity
was tested. It was also concluded that the color cut (0.45 > G − GRP > 0.715) is successful
in removing stars with incorrectly assigned absolute magnitudes. However, it also greatly de-
creased the sample size of each GCs. Consequently, for only three GCs accurate distances were
computed. After the color cut, there is little difference in accuracy between the photometric and
metallicity-dependent distances.

The next part explores the first step of systematically and eventually automatically detecting
stellar streams. By probing the RPM selected halo sample at different proper motion and space
intervals a series of scatter plots were created through which several stellar streams were identi-
fied by eye. Potential future improvements need to put more conditions in place that limit the
number of plots that potentially contain observable streams. This would also enable the bound-
ary parameters to be relaxed to explore are a larger range of proper motions, distances, and space.

Finally, a selection of potential members of the stellar stream Phlegethon was created using a se-
quence of alternating polynomial fits to the overdensity in proper motions µb, µl, µRA and µDEC

and the stream-track. Stars within a given width around the polynomial were selected for the
next fit in the sequence. The final sample consists of 575 stars with a mean photometric distance
of 3.6 ± 0.6 kpc. Using a crossmatch with Pristine, a metallicity of [Fe/H] = −1.9± 0.5 was
established. Phlegethon spans between −15◦ < l < 70◦ and −50◦ < b < −25◦ and is strongly
retrograde. This is in agreement with what has previously been reported on Phlegethon. A
crossmatch with the STREAMFINDER selection of Phlegethon by R. Ibata shows that this
method can successfully isolate stars corresponding to the stream. The main difference is that
the STREAMFINDER selection extends to higher values of b for the high l-end of the stream.
However, our selection shows more extending off-stream features. The main shortcoming of the
used method is that is biased by the widths of the selections that are set and the selected points
on the overdensities in proper motion. The selection of Phlegethon candidates provides a proof
of concept that stellar streams can be selected through a simple method that can potentially
be automated, bringing us one step closer to creating an algorithm that can systematically and
automatically detect stellar streams with the 5D data sample.
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A Globular Clusters: Sky distribution and CMD

For seven globular clusters a CMD is created. The selection of each GC in the RPM selected
halo sample without the color-cut (yellow) is layed on top of the selection with the full Gaia
EDR3 sample (red). The latter was created by selecting all stars within 0.15◦ of the GC’s center.
This is a rough selection, consequently it will include more contamination. The CMD plot will
show whether the stars in the selection belong to the MS or the MS turn-off.

(a) Sky distribution

(b) CMD

Figure 28: M2, NGC7089

(a) Sky distribution
(b) CMD

Figure 29: M5, NGC5904
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(a) Sky distribution
(b) CMD

Figure 30: M13, NGC6205

(a) Sky distribution
(b) CMD

Figure 31: M30, NGC7099

(a) Sky distribution
(b) CMD

Figure 32: M80, NGC6093
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(a) Sky distribution
(b) CMD

Figure 33: M92, NGC6341

(a) Sky distribution
(b) CMD

Figure 34: NGC5466
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B Python Code

1 # ## Import modules
2

3 # In [ 1 ] :
4

5 import vaex
6 import numpy as np
7 import matp lo t l i b . pyplot as p l t
8 from matp lo t l i b . pyplot import f i gu r e , show
9 from sc ipy . opt imize import curve_f i t

10 from astropy . convo lut ion import Gaussian2DKernel , convolve
11

12

13 # ## Import data
14

15 # In [ 2 ] :
16

17 df = vaex . open ( ’ / net / ga ia2 /data/ us e r s /viswanathan/anna−e s s e l i n k /RPM−f u l l −cata log−edr3 . hdf5 ’ )
18 df
19

20

21 # In [ 3 ] :
22

23 df [ " l_adj " ] = df . l
24

25 #qua l i t y cuts
26 Se lect_qual = ( df . log10_Hg_over_error >1.75) &(( df . g_rp_corrected >0.45)& \
27 ( df . g_rp_corrected <0.715))
28 Select_qual2 = ( df . log10_Hg_over_error >1.75)
29

30 # adju s t i ng range o f l from 0−360 to −180−180
31 Se l e c t = ( df . l_adj >=180)
32 df [ ’ l_adj ’ ] = df . func . where ( Se l e c t , ( df . l_adj −360) , df . l_adj )
33

34

35 # In [ 4 ] :
36

37 # Calcu la te and add l o n g i t ud i n a l and l a t i t u d i n a l v e l o c i t i e s to df
38

39 #so l a r motion in km/ s
40 U_sol = 11 .1
41 V_sol = 12 .24
42 W_sol = 7.25
43 v_LSR = 232.8 #motion o f the l o c a l standard o f r e s t
44

45 df . add_virtual_column ( ’ v_l_sol ’ , (−U_sol∗np . s i n ( df . l ∗np . p i /180) + \
46 (V_sol + v_LSR)∗np . cos ( df . l ∗np . p i /180) ) )
47 df . add_virtual_column ( ’ v_b_sol ’ , (W_sol∗np . cos ( df . b∗np . p i /180) − np . s i n ( df . b∗np . p i /180) \
48 ∗(U_sol∗np . cos ( df . l ∗np . p i /180) + (V_sol + v_LSR)∗np . s i n ( df . l ∗np . p i /180 ) ) ) )
49 df . add_virtual_column ( ’ v_l ’ , ’ 4 .74057∗pm_l_apex∗phot_dist ’ )
50 df . add_virtual_column ( ’v_b ’ , ’ 4 .74057∗pm_b_apex∗phot_dist ’ )
51

52 # proper motions not co r r e c t ed f o r s o l a r motion
53 df . add_virtual_columns_proper_motion_eq2gal ( long_in=" ra " , lat_in="dec" ,
54 pm_long="pmra" , pm_lat="pmdec" , pm_long_out="pml" , pm_lat_out="pmb" ,
55 rad ians=False , p ropagate_uncer ta in t i e s=True )
56

57 df
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B.1 Globular cluster distance

1 # ## Globular c l u s t e r s − Distances
2 #
3

4 # In [ 4 ] :
5

6

7 # run t h i s notebook to c a l c u l a t e magnitude us ing the me t a l l i c i t y and g_rp with the ms f eh f i t ( ) f unc t i on
8 get_ipython ( ) . run_line_magic ( ’ run ’ , ’ / net / ga ia2 /data/ u s e r s /viswanathan/anna−e s s e l i n k /␣\
9 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ me t a l l i c i t y −dependent−d i s t an c e s . ipynb ’ )

10

11 # In [ 5 ] :
12

13 # acce s s GC cata l og
14 path = ’ /net / ga ia2 /data/ us e r s /koppelman/ f i l e s −from−arend/koppelman/Research/␣\
15 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣DR2_6D/GC_AGE_METALLICITY/ ’
16 gc= vaex . open ( path + ’GC−cat− f u l l . v4 . hdf5 ’ )
17 Names = gc .Name . va lue s
18

19 # ext ra c t me t a l l c i t y and d i s t ance from the GC cata l og
20 Met = np . array ( [ ] )
21 Dist = np . array ( [ ] )
22 GC_names = [ b ’NGC7089 ’ , b ’NGC5904 ’ , b ’NGC6205 ’ , b ’NGC6402 ’ , b ’NGC7099 ’ , b ’NGC6093 ’ , \
23 b ’NGC6341 ’ , b ’NGC5466 ’ ]
24 f o r name in GC_names :
25 i = i n t (np . where (Names==name ) [ 0 ] )
26 Met = np . append ( gc . met . va lue s [ i ] , Met)
27 Dist = np . append ( ( gc . x . va lue s [ i ]∗∗2 + gc . y . va lue s [ i ]∗∗2 + gc . z . va lue s [ i ]∗∗2 )∗∗0 . 5 , Dist )
28 # pr in t (Met)
29

30 Met = np . f l i p (Met)
31 Dist = np . f l i p ( Dist )
32

33

34 # In [ 6 ] :
35

36

37 de f Gaussian (x , a , b , c , d ) :
38 """Returns a gauss ian func t i on with independent va r i ab l e x , and parameters a , b , c , d"""
39 r e turn a∗np . exp(−(x−b)∗∗2/(2∗ c∗c ) ) + d
40

41 de f g lob_c lus te r_d i s t ( l , b , co lor_cut=False , p lo t_h i s t=False , p l o t_sca t t e r=False ,
42 parr = False , CMD = True , i =0):
43 """Based the g a l a c t i c coo rd ina t e s l and b ( in degree s ) o f the GC’ s center , t h i s
44 f unc t i on i s o l a t e s s t a r s be long ing to the GC through i t s proper motion and
45 dens i ty d i s t r i b u t i o n . i i s the index o f the GC in the l i s t :
46 [ NGC7089 , NGC5904 , NGC6205 , NGC6402 , NGC7099 , NGC6093 , NGC6341 , NGC5466 ]
47

48 i f co lor_cut=True − The co l o r cut 0 .45 < g_rp < 0.715 i s app l i ed
49 i f p l o t_h i s t=True − p lo t a histogram of the photometr ic and pa ra l l ax d i s t ance
50 i f p l o t_sca t t e r=True − p lo t a s c a t t e r p l o t o f the f i n a l s e l e c t i o n o f s t a r s
51 i f parr=True − the output w i l l i n c lude the mean pa ra l l ax d i s t ance
52 i f CMD=True − p lo t o f the CMD of bp_g vs . gmag_corrected
53 """
54 Select_qual2 = ( df . log10_Hg_over_error >1.75)
55

56 hw = 0.25 #ha l f width o f g l obu l a r c l u s t e r " area " [ deg ]
57 se l ec t_sky = ( ( df . l_adj>l−hw) & ( df . l_adj< l+hw) & ( df . b>b−hw) & ( df . b<b+hw) )
58

59 Se l e c t = ( Se lect_qual2 & se l ec t_sky ) #& s e l e c t_d i s t
60

61 #background removement through s e l e c t i o n o f proper motion peak
62 counts_pm = df . count ( binby="pm_l_apex" , l im i t s =[−20, 20 ] , s e l e c t i o n=Se l e c t , shape=100)
63 pm_bins = np . l i n s p a c e (−20 ,20 ,100)
64 pm_peak = pm_bins [ np . argmax ( counts_pm ) ]
65

66 select_pm = ( df . pm_l_apex> pm_peak−3) & ( df . pm_l_apex < pm_peak+3)
67 Std = df . pm_l_apex . std ( s e l e c t i o n=( S e l e c t & select_pm ) )

39



B.1 Globular cluster distance A.F. Esselink

68 select_pm2 = ( df . pm_l_apex> pm_peak−Std ∗1 . 3 ) & ( df . pm_l_apex < pm_peak+Std ∗1 . 3 )
69 Se l e c t 2 = ( Se lect_qual2 & se l ec t_sky & select_pm2 ) #& s e l e c t_d i s t
70

71 # parameters converted to array f o r convenience
72 l_adj_arr = df [ S e l e c t 2 ] . l_adj . va lue s
73 b_arr = df [ S e l e c t 2 ] . b . va lue s
74 pm_arr = df [ S e l e c t 2 ] . pm_l_apex . va lue s
75 d i s t_arr = df [ S e l e c t 2 ] . phot_dist . va lue s
76

77 r = ( ( b_arr−b)∗∗2 + ( l_adj_arr−l )∗∗2)∗∗0 .5 #d i s t anc e from cent r e
78

79 #f i n e r cut around GC
80 counts_l = df . count ( binby=" l_adj " , l im i t s =[ l−hw, l+hw] , s e l e c t i o n=Se l ec t2 , shape=50)
81 l_bins = np . l i n s p a c e ( l−hw, l+hw, 50 )
82 popt , pcov = curve_f i t ( Gaussian , l_bins , counts_l , p0=([30 , l , 0 . 1 , 1 0 ] ) )
83 a_fit , b_fit , c_f i t , d_f i t = popt
84 # pr in t ( a_fit , b_fit , c_f i t , d_f i t )
85 R = 1.0 ∗2 .4∗ c_f i t /2 #c i r c u l a r ( rad iu s=R) cut at 1 .∗FWHM/2
86

87 se l ec t_sky2 = np . where ( ( r<R)&(r>0∗R))
88

89

90 pr in t ( l en ( l_adj_arr [ s e l ec t_sky2 ] ) )
91

92 i f p l o t_sca t t e r==True :
93

94 p l t . f i g u r e ( f i g s i z e = (9 , 7 ) )
95 p l t . s c a t t e r ( l_adj_arr [ se l ec t_sky2 ] , b_arr [ s e l ec t_sky2 ] , s=2, alpha=1,
96 c=di s t_arr [ s e l ec t_sky2 ] , cmap=’ i n f e r n o ’ , vmin=6, vmax=15)
97 p l t . c o l o rba r ( )
98 p l t . x l ab e l ( ’ l ␣ [ deg ] ’ , f o n t s i z e =14)
99 p l t . y l ab e l ( ’b␣ [ deg ] ’ , f o n t s i z e =14)

100 p l t . x t i c k s ( f o n t s i z e =14)
101 p l t . y t i c k s ( f o n t s i z e =14)
102 p l t . show ( )
103

104 i f p l o t_h i s t==True :
105 df . v i z . histogram ( df . d i s tance , l im i t s =[−10 ,20] , s e l e c t i o n=Se l ec t2 , shape=100)
106 df . v i z . histogram ( df . phot_dist , l im i t s =[−10 ,20] , s e l e c t i o n=Se l ec t2 , shape=100)
107

108 i f CMD==True :
109 bp_g = df [ S e l e c t 2 ] . g_rp_corrected . va lue s
110 g_mag = df [ S e l e c t 2 ] . gmag_corrected . va lue s
111 pm_arr = df [ S e l e c t 2 ] . pm_l_apex . va lue s
112

113

114 p l t . f i g u r e ( f i g s i z e = (8 , 8 ) )
115 p l t . s c a t t e r (bp_g [ se l ec t_sky2 ] , g_mag [ se l ec t_sky2 ] , s=2, alpha =0.5 ,
116 c=pm_arr [ se l ec t_sky2 ] , cmap=’ i n f e r no ’ , vmin=−10, vmax=10)
117

118 p l t . c o l o rba r ( )
119 p l t . gca ( ) . inver t_yax i s ( )
120 p l t . x l ab e l ( ’bp−g ’ , f o n t s i z e =14)
121 p l t . y l ab e l ( ’ g ’ , f o n t s i z e =14)
122 p l t . x t i c k s ( f o n t s i z e =14)
123 p l t . y t i c k s ( f o n t s i z e =14)
124 p l t . show ( )
125

126 #s e l e c t i o n s t a r s with in FWHM of the cent r e
127 Se l e c t 3 = ( Se lect_qual2 & select_pm2 & se l ec t_sky& ( ( ( ( df . b−b)∗∗2 +
128 ( df . l_adj−l )∗∗2)∗∗0 .5 )<R) & ( ( ( ( df . b−b)∗∗2 + ( df . l_adj−l )∗∗2)∗∗0 .5 )>0∗R))
129

130 i f co lor_cut==True :
131 Se l e c t 3 = Se l e c t 3 & ( ( df . g_rp_corrected >0.45)&( df . g_rp_corrected <0.715))
132

133 N= df [ S e l e c t 3 ] . l ength ( )
134

135 # photometr ic d i s t ance
136 Dist_GC = df .mean( "phot_dist " , s e l e c t i o n=Se l e c t 3 )
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137 Std_GC = df . std ( "phot_dist " , s e l e c t i o n=Se l e c t 3 )
138 pr in t ( df .mean( " phot_dist_uncertainty " , s e l e c t i o n=Se l e c t 3 ) )
139

140 i f parr==True : #pa ra l l ax d i s t an c e s
141 Dist_GC_parr = df .mean( " d i s t ance " , s e l e c t i o n=Se l e c t 3 )
142 Std_GC_parr = df . s td ( " d i s t ance " , s e l e c t i o n=Se l e c t 3 )
143 r e turn Dist_GC , Std_GC, Dist_GC_parr , Std_GC_parr
144

145 # me t a l l i c i t y dependent d i s t ance c a l c u l a t i o n
146 g_rp_corrected_arr = df [ S e l e c t 3 ] . g_rp_corrected . va lue s
147 gmag_corrected_arr = df [ S e l e c t 3 ] . gmag_corrected . va lue s
148 Gmag = ms f eh f i t ( (Met [ i ] , g_rp_corrected_arr ) )
149 M_EG_arr= df [ S e l e c t 3 ] .M_EG. va lues
150

151 d i s t_arr = (10∗∗(1+( gmag_corrected_arr−M_EG_arr−Gmag)/5))/1000
152 d i s t = [ np . nanmean( d i s t_arr ) , np . nanstd ( d i s t_arr ) ]
153

154 r e turn Dist_GC , Std_GC, d i s t
155

156 # Example f o r M92, NGC6341
157 Dist_6341 , Std_6341 , d i s t6341 = g lob_c lus te r_d i s t ( 68 . 34 , 34 .86 , p lo t_h i s t=False ,
158 p lo t_sca t t e r=True , parr=False , CMD=True , i =6)
159 pr in t ( f "M92 : ␣d_phot␣=␣{Dist_6341}␣ ␣{Std_6341}␣kpc" )
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B.2 Systematic search

1 # ## Plot s pm
2

3 # In [ 4 ] :
4

5 s e l e c t_d i s t = ( df . phot_dist>8)& ( df . phot_dist <25) # d i s t ance s l i c e ( in kpc )
6 Select_qual2 = ( df . log10_Hg_over_error >1.75)
7

8 #lower l im i t s proper motion b ins
9 pm_bin_size = 5

10 pm_l_low = np . arange (−10 ,10 , pm_bin_size )
11 pm_b_low = np . arange (−10 ,10 , pm_bin_size )
12

13 #lower l im i t s coo rd ina t e s b ins
14 coord_bin_size l = 60
15 coord_bin_sizeb = 60
16 l_low = np . f l i p (np . arange (−120 ,240 , coord_bin_size l ) )
17 b_low = np . array ([−90 , 3 0 ] )
18

19 # loop over s p a t i a l c oo rd ina t e s and proper motions in l and b
20 f o r l im_l in l_low :
21 f o r lim_b in b_low :
22 f o r lim_pml in pm_l_low :
23 f o r lim_pmb in pm_b_low :
24

25 select_pm = ( df . pm_l_apex>lim_pml ) & ( df . pm_l_apex < lim_pml+pm_bin_size )
26 & ( df . pm_b_apex>lim_pmb) & ( df . pm_b_apex < lim_pmb+pm_bin_size )
27 se l ec t_sky = ( df . l_adj>(lim_l − coord_bin_size l ) ) & ( df . l_adj< lim_l )
28 & ( df . b>lim_b) & ( df . b< ( lim_b + coord_bin_sizeb ) )
29

30 Se l e c t = select_pm & Select_qual2 & s e l e c t_d i s t & se l ec t_sky
31

32 N = df [ S e l e c t ] . l ength ( ) #number o f s t a r s
33

34 # fo r a l l s e l e c t i o n s with more than 2000 s t a r s a s c a t t e r p l o t i s c r ea ted
35 i f (N > 2e3 ) :
36 pr in t ( f "{lim_pml}␣<␣pm_l␣<␣{lim_pml+pm_bin_size } , ␣{lim_pmb}␣␣␣\
37 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣<␣pm_b␣<␣{lim_pmb+pm_bin_size } , ␣{N}" )
38

39 #sc a t t e r p l o t
40 l_adj_arr = df [ S e l e c t ] . l_adj . va lue s
41 b_arr = df [ S e l e c t ] . b . va lue s
42 pm_arr = df [ S e l e c t ] . pm_l_apex . va lue s
43

44 p l t . f i g u r e ( f i g s i z e = (9 , 7 ) )
45 p l t . s c a t t e r ( l_adj_arr , b_arr , s=3, alpha =0.3 , c=pm_arr , cmap=’ i n f e r n o ’ )
46 p l t . c o l o rba r ( )
47 p l t . xl im ( [ lim_l , lim_l−coord_bin_size l ] )
48 p l t . yl im ( [ lim_b , ( lim_b+coord_bin_sizeb ) ] )
49 p l t . x l ab e l ( ’ l ␣ [ deg ] ’ )
50 p l t . y l ab e l ( ’b␣ [ deg ] ’ )
51 p l t . show ( )
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B.3 Phlegethon star selection

1 # ## Phlegeton s e l e c t i o n
2

3 # In [ 5 ] :
4

5 de f Norm_Data( data ) :
6 """ Normal ises the datase t """
7 r e turn ( data − np . min ( data ) ) / ( np .max( data ) − np . min ( data ) )
8

9 de f Gaussian (x , a , b , c , d ) :
10 """Returns a gauss ian func t i on with independent va r i ab l e x , and parameters a , b , c , d"""
11 r e turn a∗np . exp(−(x−b)∗∗2/(2∗ c∗c ) ) + d
12

13 # polynomical f un c t i on s
14 de f l i n e a r ( l , a , b ) :
15 r e turn a∗ l + b
16

17 de f quadrat i c (x , a , b , c ) :
18 r e turn a∗x∗∗2 + b∗x +c
19

20 de f cub ic (x , a , b , c , d ) :
21 r e turn a∗x∗∗3 + b∗x∗∗2 + c∗x + d
22

23

24 # In [ 6 ] :
25

26 s e l e c t_qua l = ( df . log10_Hg_over_error >1.75)
27 p i x e l_s i z e = 1 # 0.5 degree per p i x e l
28

29 #phlegethon
30 # i n i t i a l rough s e l e c t i o n in area , d i s t anc e and proper motion
31 region_sky = [[ −20 , 70 ] , [ −50 , −35] ]
32 s e l e c t_d i s t = ( df . phot_dist >2.5)& ( df . phot_dist <4.5)
33 select_pm = ( df . pm_l_apex>−40) & ( df . pm_l_apex < −20) & ( df . pm_b_apex>−30) & \
34 ( df . pm_b_apex < 5)
35 se l ec t_sky = ( ( df . l_adj> region_sky [ 0 ] [ 0 ] ) & ( df . l_adj< region_sky [ 0 ] [ 1 ] ) & \
36 ( df . b> region_sky [ 1 ] [ 0 ] ) & ( df . b< region_sky [ 1 ] [ 1 ] ) )
37

38 Se l e c t = ( select_pm & se l e c t_qua l & s e l e c t_d i s t & se l ec t_sky )
39

40 # re l evan t parameters are converted to ar rays
41 l_adj_arr = df [ S e l e c t ] . l_adj . va lue s
42 b_arr = df [ S e l e c t ] . b . va lue s
43 pm_arr = df [ S e l e c t ] . pm_l_apex . va lue s
44

45 #dens i ty p l o t
46 Shape = ( i n t ( ( region_sky [ 0 ] [ 1 ] − region_sky [ 0 ] [ 0 ] ) / p i x e l_s i z e ) , \
47 i n t ( ( region_sky [ 1 ] [ 1 ] − region_sky [ 1 ] [ 0 ] ) / p i x e l_s i z e ) ) # 2 p i x e l s per degree
48

49 # 2d histogram i s c r ea ted f o r a g iven binning ( shape )
50 l bcounts = df . count ( binby=[ df . l_adj , df . b ] , s e l e c t i o n=Se l e c t , shape=Shape , l im i t s=region_sky )
51 ke rne l = Gaussian2DKernel ( x_stddev=1.5) #gauss ian smoothing
52 counts_smooth = Norm_Data( convolve ( lbcounts , k e rne l ) ) #norma l i s a t i on
53

54 # extent o f p l o t in g a l a c t i c coo rd ina t e s
55 Ext = [100 , 220 , 40 , 65 ]
56 Ext = [ region_sky [ 0 ] [ 0 ] , region_sky [ 0 ] [ 1 ] , region_sky [ 1 ] [ 0 ] , region_sky [ 1 ] [ 1 ] ]
57

58 # dens i ty p l o t o f ’ rough s e l e c t i o n ’
59 p l t . f i g u r e ( f i g s i z e = (10 , 2 ) )
60 # pl t . imshow( lbcounts .T, o r i g i n =’ lower ’ , extent=Ext , cmap=’ i n f e r no ’ )
61 im = p l t . imshow( counts_smooth .T, o r i g i n=’ lower ’ , extent=Ext , cmap=’ i n f e r n o ’ )
62 cbar = p l t . c o l o rba r ( im)
63 p l t . gca ( ) . inver t_xax i s ( )
64 cbar . s e t_ labe l ( ’ counts ’ , r o t a t i on =90)
65 p l t . x l ab e l ( ’ l ␣ [ deg ] ’ )
66 p l t . y l ab e l ( ’b␣ [ deg ] ’ )
67 p l t . show ( )
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68

69 # same p lo t but a contour i s drawn around the high dens i ty areas
70 p l t . f i g u r e ( f i g s i z e = (10 , 2 ) )
71 im = p l t . imshow( counts_smooth .T, o r i g i n=’ lower ’ , extent=Ext , cmap=’ i n f e r n o ’ )
72 p l t . contour ( counts_smooth .T, l e v e l s = [ 0 . 6 ] , extent=Ext , c o l o r s=’ ye l low ’ )
73 cbar = p l t . c o l o rba r ( im)
74 p l t . gca ( ) . inver t_xax i s ( )
75 cbar . s e t_ labe l ( ’ counts ’ , r o t a t i on =90)
76 p l t . x l ab e l ( ’ l ␣ [ deg ] ’ )
77 p l t . y l ab e l ( ’b␣ [ deg ] ’ )
78 p l t . show ( )
79

80

81 # In [ 7 ] :
82

83

84 l_coords = np . arange ( region_sky [ 0 ] [ 0 ] , region_sky [ 0 ] [ 1 ] , p i x e l_s i z e )
85 b_coords= np . arange ( region_sky [ 1 ] [ 0 ] , region_sky [ 1 ] [ 1 ] , p i x e l_s i z e )
86

87 l_grid , b_grid = np . meshgrid ( l_coords , b_coords )
88 l_gr id = l_gr id . f l a t t e n ( ) ; b_grid = b_grid . f l a t t e n ( )
89

90 # a l l p i x e l s with a h igher dens i ty ( with in the contour ) are s e l e c t e d
91 ind = np . argwhere ( counts_smooth .T. f l a t t e n () >0.6)
92

93

94 s e l e c t_d i s t = ( df . phot_dist >2.5)& ( df . phot_dist <4.5)
95 select_pm = ( df . pm_l_apex>−40) & ( df . pm_l_apex < −19) & ( df . pm_b_apex>−30) & ( df . pm_b_apex < 10)
96 select_mag2 = df . gmag_corrected <19.5
97

98 #s e l e c t a l l s t a r s with in contour
99 s e l e c t_ r e s t = Select_qual2 & s e l e c t_d i s t & select_pm & select_mag2 #& se l e c t_ l

100 l_adj_arr = df [ s e l e c t_ r e s t ] . l_adj . va lue s
101 b_arr = df [ s e l e c t_ r e s t ] . b . va lue s
102 s e l e c t 1 = np . where ( df . l_adj >1000 , False , Fa l se )
103

104 # loop over every p i x e l with high dens i ty and l a b e l s t a r s with g a l a c t i c coo rd ina t e s
105 # correspond ing to that p i x e l
106 f o r i in ind [ : ] :
107 s e l e c t = np . where ( ( ( l_adj_arr> l_gr id [ i ] ) & ( l_adj_arr< l_gr id [ i ] + p i x e l_s i z e ) & \
108 ( b_arr> b_grid [ i ] ) & ( b_arr< b_grid [ i ] + p i x e l_s i z e ) ) , True , Fa l se )
109 s e l e c t 1 = s e l e c t 1 | s e l e c t
110

111 # a l l s t a r s in the high dens i ty area are put in to a s e l e c t i o n
112 ph leg_se l e c t1 = {" l_adj " : np . array ( [ ] ) , "b" : np . array ( [ ] ) , "pm_l_apex" : np . array ( [ ] ) ,
113 "pm_b_apex" : np . array ( [ ] ) , " phot_dist " : np . array ( [ ] ) , "gmag_corrected" : np . array ( [ ] ) }
114 f o r key in ph l eg_se l ec t1 :
115 ph leg_se l e c t1 [ key ] = eva l ( f " df [ s e l e c t_ r e s t ] . { key } . va lue s [ s e l e c t 1 ] " )
116

117

118

119 # In [ 8 ] :
120

121

122 # f i t 2nd deg . polynomial to stream track o f thecur r ent s e l e c t e d sample
123 popt , pcov = curve_f i t ( quadrat ic , ph l eg_se l ec t1 [ " l_adj " ] , ph l eg_se l ec t1 [ "b" ] )
124 a_fit , b_fit , c_ f i t = popt
125 pr in t ( ’ o r b i t ␣ f i t ␣ 1 : ’ )
126 pr in t ( popt , np . s q r t (np . diag ( pcov ) ) )
127

128 # model o f d i c t i ona ry with r e l e van t parameters
129 phleg_select_empty = {" l_adj " : np . array ( [ ] ) , "b" : np . array ( [ ] ) , "pm_l_apex" : np . array ( [ ] ) ,
130 "pm_b_apex" : np . array ( [ ] ) , "pml" : np . array ( [ ] ) , "pmb" : np . array ( [ ] ) , "pmra" : np . array ( [ ] ) ,
131 "pmdec" : np . array ( [ ] ) , "pmra_error" : np . array ( [ ] ) , "pmdec_error" : np . array ( [ ] ) ,
132 "pml_uncertainty" : np . array ( [ ] ) , "pmb_uncertainty" : np . array ( [ ] ) , " phot_dist " : np . array ( [ ] ) ,
133 "gmag_corrected" : np . array ( [ ] ) , " source_id " : np . array ( [ ] ) }
134

135

136 #s e l e c t a l l s t a r s with in 8 deg in b d i r e c t i o n o f o r b i t f i t
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137 width = 8
138 s e l e c t 2 = np . where ( ( ( b_arr > quadrat i c ( l_adj_arr , a_fit , b_fit , c_ f i t ) − width ) & \
139 ( b_arr < quadrat i c ( l_adj_arr , a_fit , b_fit , c_ f i t ) + width ) ) , True , Fa l se )
140 ph leg_se l e c t2 = phleg_select_empty . copy ( )
141 f o r key in ph l eg_se l ec t2 :
142 ph leg_se l e c t2 [ key ] = eva l ( f " df [ s e l e c t_ r e s t ] . { key } . va lue s [ s e l e c t 2 ] " )
143

144

145 # f i t o f cub ic func t i on to ove rdens i ty in l vs pm_b
146 # po int s chosen by eye because o f l a r g e contamination
147 l _ f i t = [ 60 , 50 , 40 , 30 , 20 , 10 , 0 , −10]
148 pm_b = [−18 , −16, −13, −10, −5, 0 , 5 , 10 ]
149

150 popt2 , pcov2 = curve_f i t ( cubic , l_ f i t , pm_b)
151 a_fit2 , b_fit2 , c_f i t2 , d_f it2 = popt2
152 pr in t ( ’pm_b␣x␣ l ␣ f i t ’ )
153 pr in t ( popt2 , np . s q r t (np . diag ( pcov2 ) ) )
154

155 # new ( broader ) boundar ies are s e t on d i s t ance and proper motion , no boundar ies on l and b
156 s e l e c t_d i s t 2 = ( df . phot_dist >2.5)& ( df . phot_dist <5)
157 select_pm2 = ( df . pm_l_apex>−40) & ( df . pm_l_apex < −9) & ( df . pm_b_apex>−35) & ( df . pm_b_apex < 17)
158 select_mag2 = df . gmag_corrected<21
159

160 s e l e c t_r e s t 2 = Select_qual2 & s e l e c t_d i s t 2 & select_pm2 & select_mag2
161

162 # Al l s t a r s with in the mean + x standard dev i a t i on o f the proper motion b from the f i t t e d model
163 width = np .mean( ph l eg_se l ec t2 [ ’ pmb_uncertainty ’ ] ) + 20∗np . std ( ph l eg_se l ec t2 [ ’ pmb_uncertainty ’ ] )
164 s e l e c t_ f i t = ( ( df .pmb > cubic ( df . l_adj , a_fit2 , b_fit2 , c_f i t2 , d_f it2 ) − width ) & \
165 ( df .pmb < cubic ( df . l_adj , a_fit2 , b_fit2 , c_f i t2 , d_f it2 ) + width ) )
166

167 # a l l s t a r s in the new s e l e c t i o n that are with in 10 deg o f the stream track f i t t e d
168 # e a r l i e r are s e l e c t e d
169 l_adj_arr2 = df [ s e l e c t_r e s t 2 & s e l e c t_ f i t ] . l_adj . va lue s
170 b_arr2 = df [ s e l e c t_ r e s t 2 & s e l e c t_ f i t ] . b . va lue s
171 width = 10
172 se l ec t2_2 = np . where ( ( ( b_arr2 > quadrat i c ( l_adj_arr2 , a_fit , b_fit , c_ f i t ) − width ) & \
173 ( b_arr2 < quadrat i c ( l_adj_arr2 , a_fit , b_fit , c_ f i t ) + width ) ) , True , Fa l se )
174 ph leg_se l e c t3 = phleg_select_empty . copy ( )
175 f o r key in ph l eg_se l ec t3 :
176 ph leg_se l e c t3 [ key ] = eva l ( f " df [ s e l e c t_r e s t 2 ␣&␣ s e l e c t_ f i t ] . { key } . va lue s [ se l ec t2_2 ] " )
177

178 # data without l x pm_b f i t ( only f o r p l o t )
179 l_adj_plot = df [ s e l e c t_r e s t 2 ] . l_adj . va lue s
180 b_plot= df [ s e l e c t_r e s t 2 ] . b . va lue s
181 s e l e c t 2_p lo t = np . where ( ( ( b_plot > quadrat i c ( l_adj_plot , a_fit , b_fit , c_ f i t ) − width ) & \
182 ( b_plot < quadrat i c ( l_adj_plot , a_fit , b_fit , c_ f i t ) + width ) ) , True , Fa l se )
183

184 phleg_plot = phleg_select_empty . copy ( )
185 f o r key in phleg_plot :
186 phleg_plot [ key ] = eva l ( f " df [ s e l e c t_ r e s t 2 ] . { key } . va lue s [ s e l e c t 2_p lo t ] " )
187

188 popt3 , pcov3 = curve_f i t ( quadrat ic , ph l eg_se l ec t3 [ " l_adj " ] , ph l eg_se l ec t3 [ "b" ] )
189 a_fit3 , b_fit3 , c_f i t3 = popt3
190

191

192 # improved f i t to stream track , po in t s s t i l l chosen by eye due to l a r g e contaminat ion
193 l_orb i t = [ 60 , 50 , 40 , 30 , 20 , 10 , 0 , −10, −20]
194 b_orbit = [−33 , −39, −42, −43, −44, −43, −40, −36, −31]
195 popt4 , pcov4 = curve_f i t ( quadrat ic , l_orbit , b_orbit )
196 a_fit4 , b_fit4 , c_f i t4 = popt4
197

198 # a l l s t a r s with in 6 degree s o f the stream track are s e l e c t e d
199 width = 6
200 s e l e c t 4 = np . where ( ( ( b_arr2 > quadrat i c ( l_adj_arr2 , a_fit4 , b_fit4 , c_f i t4 ) − width ) &
201 ( b_arr2 < quadrat i c ( l_adj_arr2 , a_fit4 , b_fit4 , c_f i t4 ) + width ) ) , True , Fa l se )
202 ph leg_se l e c t4 = phleg_select_empty . copy ( )
203 f o r key in ph l eg_se l ec t4 :
204 ph leg_se l e c t4 [ key ] = eva l ( f " df [ s e l e c t_r e s t 2 ␣&␣ s e l e c t_ f i t ] . { key } . va lue s [ s e l e c t 4 ] " )
205
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206 pr in t ( ’ o r b i t ␣ f i t ␣ 2 : ’ )
207 pr in t ( popt4 , np . s q r t (np . diag ( pcov4 ) ) )
208

209 # f i t to ove rdens i ty in l vs . pm_l
210 # po int s picked by eye
211 l_ f i t 2 = [60 , 50 , 40 , 30 , 20 , 10 , 0 , −10]
212 pml = [−21 , −28, −33, −36, −38, −38, −35, −31]
213

214 popt5 , pcov5 = curve_f i t ( quadrat ic , l_ f i t 2 , pml )
215 a_fit5 , b_fit5 , c_f i t5 = popt5
216 pr in t ( ’pm_l␣x␣ l ␣ f i t ’ )
217 pr in t ( popt5 , np . s q r t (np . diag ( pcov5 ) ) )
218

219 # Al l s t a r s with in the mean + x standard dev i a t i on o f the proper motion l from the f i t t e d model
220 width = np .mean( ph l eg_se l ec t4 [ ’ pml_uncertainty ’ ] ) + 7∗np . std ( ph l eg_se l ec t4 [ ’ pml_uncertainty ’ ] )
221 s e l e c t 5 = np . where ( ( ( ph l eg_se l ec t4 [ ’ pml ’ ] > quadrat i c ( ph l eg_se l e c t4 [ ’ l_adj ’ ] , \
222 a_fit5 , b_fit5 , c_f i t5 ) − width ) & ( ph l eg_se l ec t4 [ ’ pml ’ ] < \
223 quadrat i c ( ph l eg_se l ec t4 [ ’ l_adj ’ ] , a_fit5 , b_fit5 , c_f i t5 ) + width ) ) , True , Fa l se )
224 ph leg_se l e c t5 = phleg_select_empty . copy ( )
225 f o r key in ph l eg_se l ec t5 :
226 ph leg_se l e c t5 [ key ] = ph leg_se l ec t4 [ key ] [ s e l e c t 5 ]
227

228

229 # improved o rb i t f i t
230

231 # Enough contaminat ion i s removed to not have the f i t be based on hand picked po in t s
232 # ins t ead the data i s put in to b ins o f l = 10 deg , and the mean o f b in each bin
233 # i s taken to correspond to the cent r e o f each bin
234 b_mean2 = np . array ( [ ] )
235 i = 0
236 Sum = 0
237 bin_s ize = 10
238 bins_low2 = np . arange ( region_sky [ 0 ] [ 0 ] , region_sky [ 0 ] [ 1 ] , b in_s ize ) #lower l im i t s b ins
239 bins = np . empty ( ( l en ( bins_low2 ) , l en ( ph l eg_se l e c t2 ) ) , dtype= ob j e c t )
240 f o r l_low in bins_low2 :
241 s e l e c t = np . where ( ( ph l eg_se l ec t5 [ " l_adj " ] > l_low ) & ( ph leg_se l ec t5 [ " l_adj " ]
242 <= l_low + bin_s ize ) , True , Fa l se )
243

244 j = 0
245 f o r key in ph l eg_se l ec t5 :
246 bins [ i ] [ j ] = ph leg_se l ec t5 [ key ] [ s e l e c t ]
247 j += 1
248

249 b_mean2 = np . append (b_mean2 , np . median ( b ins [ i ] [ 1 ] ) )
250 i += 1
251

252 popt6 , pcov6 = curve_f i t ( quadrat ic , bins_low2 [ 1 : 7 ]+ bin_size /2 , b_mean2 [ 1 : 7 ] )
253 a_fit6 , b_fit6 , c_f i t6 = popt6
254

255 pr in t ( ’ o r b i t ␣ f i t ␣ 3 : ’ )
256 pr in t ( popt6 , np . s q r t (np . diag ( pcov6 ) ) )
257

258 # Al l s t a r s with in 6 degree s o f the newly f i t t e d stream track are s e l e c t e d
259 width = 6
260 s e l e c t 6 = np . where ( ( ( ph l eg_se l ec t5 [ ’b ’ ] > quadrat i c ( ph l eg_se l ec t5 [ ’ l_adj ’ ] , \
261 a_fit6 , b_fit6 , c_f i t6 ) − width ) & ( ph leg_se l ec t5 [ ’b ’ ] < \
262 quadrat i c ( ph l eg_se l ec t5 [ ’ l_adj ’ ] , a_fit6 , b_fit6 , c_f i t6 ) + width ) ) , True , Fa l se )
263 ph leg_se l e c t6 = phleg_select_empty . copy ( )
264 f o r key in ph l eg_se l ec t6 :
265 ph leg_se l e c t6 [ key ] = ph leg_se l ec t5 [ key ] [ s e l e c t 6 ]
266

267

268 l_plot = np . l i n s p a c e (−30 ,80 ,100)
269

270 # f i t to ove rdens i ty in l vs . pm_ra
271 # Points on the ove rdens i ty are determined by tak ing the pm_ra value cor re spond ing
272 # to the peak in the histogram f o r b ins o f l = 10 deg .
273

274 bin_s ize = 10
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275 bins_low2 = np . arange ( region_sky [ 0 ] [ 0 ] , region_sky [ 0 ] [ 1 ] , b in_s ize ) #lower l im i t s b ins
276 bins = np . empty ( ( l en ( bins_low2 ) , l en ( ph l eg_se l e c t2 ) ) , dtype= ob j e c t )
277 pmra_mean2 = np . array ( [ ] )
278 pmra_err_mean = np . array ( [ ] )
279 pmra_err_std = np . array ( [ ] )
280

281 #f i t l vs . pmra
282 s e l e c t 7 = np . where ( ph l eg_se l ec t6 [ " l_adj " ] >1000 , False , Fa l se )
283 f o r l_low in bins_low2 :
284 s e l e c t = np . where ( ( ph l eg_se l ec t6 [ " l_adj " ] > l_low ) & ( ph leg_se l ec t6 [ " l_adj " ]
285 <= l_low + bin_s ize ) , True , Fa l se )
286

287 pmra_counts , edges = np . histogram ( ph leg_se l ec t6 [ ’ pmra ’ ] [ s e l e c t ] , b ins=20)
288 Max = edges [ : − 1 ] [ pmra_counts == np .max( pmra_counts )]+ ( edges [1]− edges [ 0 ] ) / 2
289 pmra_mean2 = np . append (pmra_mean2 , np .mean(Max) )
290 pmra_err_mean = np . append (pmra_err_mean , np .mean( ph l eg_se l ec t6 [ ’ pmra_error ’ ] [ s e l e c t ] ) )
291 pmra_err_std = np . append ( pmra_err_std , np . std ( ph l eg_se l ec t6 [ ’ pmra_error ’ ] [ s e l e c t ] ) )
292

293 popt7 , pcov7 = curve_f i t ( quadrat ic , bins_low2 [ 2 : ]+ bin_s ize /2 , pmra_mean2 [ 2 : ] )
294 a_fit7 , b_fit7 , c_f i t7 = popt7
295 pr in t ( ’ f i t ␣ l ␣ vs ␣pmra ’ )
296 pr in t ( popt7 , np . s q r t (np . diag ( pcov7 ) ) )
297

298 i=0
299 f o r l_low in bins_low2 :
300 # Al l s t a r s with in the mean + x standard dev i a t i on o f the proper motion RA from the f i t t e d model
301 width = pmra_err_mean [ i ] + 3∗pmra_err_std [ i ]
302 se l ec t_2 = np . where ( ( ( ph l eg_se l e c t6 [ ’pmra ’ ] > quadrat i c ( ph l eg_se l ec t6 [ ’ l_adj ’ ] , \
303 a_fit7 , b_fit7 , c_f i t7 ) − width ) & ( ph l eg_se l ec t6 [ ’pmra ’ ] < \
304 quadrat i c ( ph l eg_se l ec t6 [ ’ l_adj ’ ] , a_fit7 , b_fit7 , c_f i t7 ) + width ) ) , True , Fa l se )
305 s e l e c t 7 = s e l e c t 7 | s e l ec t_2
306 i += 1
307

308 ph leg_se l e c t7 = phleg_select_empty . copy ( )
309 f o r key in ph l eg_se l ec t7 :
310 ph leg_se l e c t7 [ key ] = ph leg_se l ec t6 [ key ] [ s e l e c t 7 ]
311

312 # improved o rb i t f i t , same method as be f o r e
313 b_mean3 =np . array ( [ ] )
314 f o r l_low in bins_low2 :
315 s e l e c t = np . where ( ( ph l eg_se l ec t7 [ " l_adj " ] > l_low ) & ( ph leg_se l ec t7 [ " l_adj " ]
316 <= l_low + bin_s ize ) , True , Fa l se )
317

318 b_mean3 = np . append (b_mean3 , np . median ( ph l eg_se l ec t7 [ ’b ’ ] [ s e l e c t ] ) )
319

320 popt8 , pcov8 = curve_f i t ( quadrat ic , bins_low2 [ 1 : 7 ]+ bin_size /2 , b_mean3 [ 1 : 7 ] )
321 a_fit8 , b_fit8 , c_f i t8 = popt8
322 pr in t ( ’ o r b i t ␣ f i t ␣4 ’ )
323 pr in t ( popt8 , np . s q r t (np . diag ( pcov8 ) ) )
324

325 width = 4
326 s e l e c t 8 = np . where ( ( ( ph l eg_se l ec t7 [ ’b ’ ] > quadrat i c ( ph l eg_se l ec t7 [ ’ l_adj ’ ] , \
327 a_fit8 , b_fit8 , c_f i t8 ) − width ) & ( ph leg_se l ec t7 [ ’b ’ ] < \
328 quadrat i c ( ph l eg_se l ec t7 [ ’ l_adj ’ ] , a_fit8 , b_fit8 , c_f i t8 ) + width ) ) , True , Fa l se )
329 ph leg_se l e c t8 =phleg_select_empty . copy ( )
330 f o r key in ph l eg_se l ec t8 :
331 ph leg_se l e c t8 [ key ] = ph leg_se l ec t7 [ key ] [ s e l e c t 8 ]
332

333 # f i t l vs pmdec , f i n a l s e l e c t i o n
334 # This time a l l data po in t s are used to make the f i t .
335 popt9 , pcov9 = curve_f i t ( quadrat ic , ph l eg_se l ec t8 [ ’ l_adj ’ ] , ph l eg_se l ec t8 [ ’ pmdec ’ ] )
336 a_fit9 , b_fit9 , c_f i t9 = popt9
337 pr in t ( ’ f i t ␣ l ␣ vs ␣pmdec ’ )
338 pr in t ( popt9 , np . s q r t (np . diag ( pcov9 ) ) )
339

340 # Al l s t a r s with in the mean + x standard dev i a t i on o f the proper motion DEC from the f i t t e d model
341 width = np .mean( ph l eg_se l ec t8 [ ’ pmdec_error ’ ] ) + 7∗np . std ( ph l eg_se l ec t8 [ ’ pmdec_error ’ ] )
342 s e l e c t 9 = np . where ( ( ( ph l eg_se l ec t8 [ ’ pmdec ’ ] > quadrat i c ( ph l eg_se l ec t8 [ ’ l_adj ’ ] , \
343 a_fit9 , b_fit9 , c_f i t9 ) − width ) & ( ph leg_se l ec t8 [ ’ pmdec ’ ] < \
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344 quadrat i c ( ph l eg_se l ec t8 [ ’ l_adj ’ ] , a_fit9 , b_fit9 , c_f i t9 ) + width ) ) , True , Fa l se )
345 ph leg_se l e c t9 = phleg_select_empty . copy ( )
346 f o r key in ph l eg_se l ec t9 :
347 ph leg_se l e c t9 [ key ] = ph leg_se l ec t8 [ key ] [ s e l e c t 9 ]
348

349

350 # number o f s t a r s in f i n a l s e l e c t i o n
351 pr in t ( l en ( ph l eg_se l ec t9 [ ’b ’ ] ) )
352

353 # f i n a l dens i ty map with gauss ian smoothing
354 H, xedges , yedges = np . histogram2d ( ph l eg_se l ec t9 [ " l_adj " ] , ph l eg_se l ec t9 [ "b" ] , \
355 bins=[ i n t (110∗2) , i n t ( 5 0∗2 ) ] , range =[ [ −30 ,80] , [ −60 , −10] ] )
356 ke rne l = Gaussian2DKernel ( x_stddev=1.5) #gauss ian smoothing
357 counts_smooth = convolve (H, ke rne l )
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