
Multi-Document Keyphrase Extraction
Bachelor’s Project Thesis

Daniel Skala, s3953602, d.s.skala@student.rug.nl

Supervisors: Daniela Jašš (Slido/Cisco) & Dr. George Azzopardi (RuG) & Dr. Fadi Mohsen (RuG)

July 19, 2022

Abstract: Multi-Document Keyphrase Extraction (MDKE) is one of the fundamental problems
withing Natural Language Processing (NLP). It is widely used in practice for tasks such as text
summarisation, topic generation and clustering. One of the recent advances in MDKE is the
creation of the MK-DUC-01 dataset. Due to its novelty and lack of research on MDKE, we
want to investigate the reproducibility of the performance of various KE algorithms. In addition,
we propose two novel methods for keyphrase extraction built on top of TopicRank. The first
algorithm ’SlidoRank’ is asymptotically faster and more scalable due to the replacement of the
slow topic graph generation and the PageRank algorithm used in TopicRank. The algorithm also
outperforms TopicRank in terms of F1@k scores tested on the MK-DUC-01 dataset. The second
proposed algorithm ’Embeddings’ extends SlidoRank by semantic similarity of keyphrases. For
a special configuration of hyperparameters, the Embeddings algorithm yields even better F1@k
scores than SlidoRank.

Contents
1 Introduction 2

1.1 Problem definition and Motivation 2
1.2 Main scientific challenges 2
1.3 Aims & Objectives 2
1.4 Overview of the proposed idea

within Slido 2
1.5 Report structure 3

2 State-of-the-Art 3
2.1 Search Terms 3
2.2 Works on Multi-Document KE . . 3
2.3 Evaluation of Multi-Document KE 3
2.4 The state-of-the-art benchmark

dataset for MDKE - MK-DUC-01 . 3
2.4.1 Random sentences dataset . 4

3 Proposal 4
3.1 Proposed algorithms 4
3.2 Research questions 4

4 Methods 4
4.1 Overview 5
4.2 Technology 5

5 Experiments and Results 5
5.1 Results 6

6 Keyphrase Extraction methods 6

7 TopicRank 7
7.1 Implementation of TopicRank . . . 7

7.1.1 Preprocessing 7
7.1.2 Candidate Extraction . . . 8
7.1.3 Candidate Clustering . . . 8
7.1.4 Graph-Based Ranking . . . 8
7.1.5 Keyphrase Selection 9

8 TopicRank without PageRank - Slido-
Rank 9
8.1 Alternative to the topic graph and

PageRank 9
8.1.1 Preprocessing and Candi-

date Extraction 10
8.1.2 Candidate Clustering . . . 10
8.1.3 Keyphrase Selection 10
8.1.4 Evaluation Benchmarks -

generation 1 10
8.2 SlidoRank, Mk. II 10

8.2.1 Reject one-token candidates 11

1

8.2.2 Optimizing the clustering
threshold using Silhouette
scores 11

8.2.3 Redefinition of candidates
through "Occurrences" class 11

8.2.4 Improved jaccard distance
computation 12

8.2.5 Faster cluster formation . . 12
8.2.6 Representative Selection . . 13
8.2.7 Comparison of different rep-

resentative selection algo-
rithms 14

8.2.8 Final results 14

9 The Embeddings algorithm 14
9.1 Word Embedding 14
9.2 Outline of The Embeddings 15
9.3 Generating candidate embeddings . 16

9.3.1 Language model selection . 16
9.4 Cluster centroids 16

9.4.1 Centroid 16
9.4.2 Cohesion 16

9.5 Adding semantically similar candi-
dates to clusters 17

10 Results 18
10.0.1 Hyperparameter search . . 18
10.0.2 Language model influence . 19
10.0.3 SlidoRank (Mk. II) vs. Em-

beddings vs. TopicRank . . 19

11 Conclusion 19
11.1 Discussion 19
11.2 Dataset bias 21
11.3 Streamlit demo 21
11.4 Summary 21

12 Future work 21

13 Acknowledgements 23

References 24

A Appendix 25

1 Introduction
Automatic Keyphrase Extraction (KE) is one of the
fundamental problems within the field of Natural
Language Processing (NLP). With the advance-
ment of document digitalization, creation of large
datasets and text processing, keyphrase extraction
has gained its popularity for its vast applicability
in real-world problems. Such use cases include
extracting keywords from scientific papers, text
summarisation, document indexing, or topic gener-
ation and clustering.

1.1 Problem definition and Motiva-
tion

An important factor for KE is the target document
from which keyphrases should be extracted. In
Single-Document Keyphrase Extraction (SDKE)
the text is often centered around one or very
few dominant topics while in Multi-Document
Keyphrase Extraction (MDKE) the amount of dom-
inant topics varies a lot more. Despite its ability
to describe large sets of documents, the research
on MDKE has always lagged behind SDKE. For
the use cases with large number of long documents
or high sub-topic variation, SDKE is no longer suf-
ficient which makes this problem more appealing
to research. (Shapira et al., 2021)

1.2 Main scientific challenges
One of the major recent contributions for MDKE
evaluation is the creation of the MK-DUC-01
dataset (Shapira et al., 2021) which opens new pos-
sibilities for the improvement/innovation of novel
keyphrase extraction algorithms. A number of
these will be also presented in this thesis, along with
an attempt for reproducing the obtained F1@k
scores described in this paper (Shapira et al., 2021).

Furthermore, since this thesis will be done in
cooperation with Slido (acquired by Cisco), we will
drive our attention to the topic generation sub-task
for data from the Slido events.

1.3 Aims & Objectives
First aim of this Thesis is to validate the
relevance of the MK-DUC-01 dataset by re-
producing the results from the scientific paper
the dataset was published in (Shapira et al., 2021).

Second aim of this Thesis is to solve the
questions-by-topics feature in Slido with two al-
gorithmic approaches, test various configurations
of their parameters and evaluate their performance
and the keyphrases they yield in terms of F-scores
on the MK-DUC-01 dataset. In the end, I will
provide a parameter configuration that gives the
best F-scores on the above mentioned dataset.

1.4 Overview of the proposed idea
within Slido

Slido is aiming at making events/meetings more
engaging by bringing the audience closer to the
speaker through increased interaction. (Muthmain-
nah, 2019) During a Slido event, the clients (au-
dience) can send questions to the host (speaker)
and upvote them. There has been an ongoing at-
tempt to analyze incoming questions and create a
variety of features to improve the user experience.

2

One of these features is topic generation through
keyphrase extraction which will help participants
better navigate through the list of questions. Algo-
rithms that solve this task will be the focus of this
paper.

1.5 Report structure
This Thesis is divided into 13 sections. The first
section is an introduction to the topic of Keyphrase
Extraction and the context of Slido. Second section
describes the state of the art literature on MDKE.
This section is followed by the proposal section
where I describe what is the main objective of
the Thesis in greater detail. The Methods section
describes how the datasets will be obtained and
the fifth section Experiments and Results explains
how the results were reproduced. Section seven
is a thorough description about the TopicRank
algorithm and in section eight I describe the first
proposed algorithm. Section nine describes the
Embeddings approach and section ten shows the
results of the hyperparameter search. Thesis is
summarized in the Conclusion section which is
followed by the Future work and Acknowledgements
section. In the Appendix I include a qualitative
comparison between the state of the art and our
proposed algorithms.

2 State-of-the-Art
2.1 Search Terms
To gather information about the state of the art
research on Multi-Document keyphrase extraction,
we have used a number of data repositories and
databases such as IEEE-Xplore, Smartcat, and
GitHub.

Below is a subset of example search queries
used to obtain relevant papers, datasets, and other
works:

• Single-Document keyphrase extraction

• Multi-Document keyphrase extraction

• Benchmark dataset for KE evaluation

• Algorithms on keyphrase extraction

• Supervised vs. unsupervised KE algorithms

• Keyphrase extraction using word embeddings

• Keyphrase extraction using term frequencies

2.2 Works on Multi-Document KE
One of the first works on MDKE was done
by Khaled Hammouda, Diego N. Matute, and
Mohamed S. Kamel (Khaled M Hammouda and

Kamel, 2005). Their work is centered around
extracting keyphrases based on word-stem overlaps
between multiple documents. Their algorithm
could accurately identify the most dominant
topics using term frequencies of the shared
word-sequences. They based their evaluation
on comparing word-stem overlaps between the
obtained keyphrases and the keyphrases retrieved
by SDKE on individual documents. (Shapira et al.,
2021)

Another work by Gábor Berend and Richárd
Farkas (Berend and Farkas, 2013) was approached
by performing SDKE on each document in the docu-
ment set and then merging these lists of keyphrases
together. In the merging process they also incorpo-
rated word embeddings and base knowledge from
Wikipedia. Evaluation was done by comparing
the cosine similarity of the system keyphrases and
the ones provided from the scientific papers from
ACL workshops (Ulrich Schäfer and Oepen, 2012).
Similar approach was also performed by Farnoush
Bayatmokou (Farnoush Bayatmakou and Mohebi,
2017; Shapira et al., 2021).

2.3 Evaluation of Multi-Document
KE

Most SDKE works perform a comparison of the
obtained keyphrases and the gold list of keyphrases.
However, that is not the case for MDKE works since
(until recently), no extensive benchmark dataset
was available. Most of the previous works on
MDKE have gone around this by evaluating against
present and available SDKE datasets which are not
that informative and appropriate for this task.

The most promising evaluation metric for MDKE
algorithms is the standard F 1@k score which com-
prises both precision and recall in a harmonic mean.
However, other metrics can be used, such as Mean
Reciprocal Rank, Mean Average Precision, or the
Normalised Discounted Cumulative Gain (Sun and
Chi, 2020).

2.4 The state-of-the-art benchmark
dataset for MDKE - MK-DUC-
01

Recently, a number of researchers from Bar-Ilan
University and UNC Chapel Hill have been
working on a new dataset (including a liter-
ature review) for MDKE called MK-DUC-01.
This dataset is based on the DUC-2001 SDKE
dataset (Wan and Xiao, 2008) from the domain of
news articles. The dataset consists of 30 topics,
each consisting of 10.27 related news articles on
average. Every article, as well as every document
set, was individually summarized by a number

3

of experts from the field. These summaries of
different lengths were further processed and a list
of relevant keyphrases was extracted. On average,
there are 8.08 keyphrases per document (Wan
and Xiao, 2008; Shapira et al., 2021) and 2.205
words per keyphrase.

To construct the benchmark dataset for MDKE,
a number of refining procedures were applied.
These procedures include automatic merging,
reranking, deduplicating of keyphrases, comput-
ing a word_score(w, t) and using it to compute
the document frequency in a specific document set.
The resulting dataset was later manually refined
and cleansed from low informative or synonymous
keyphrases. This yielded a finalized MK-DUC-01
dataset (Shapira et al., 2021) which will be investi-
gated in this thesis.

2.4.1 Random sentences dataset

In my Thesis, I will also use the random sentences
dataset mainly for time complexity evaluation.
This dataset consists of 1800 random sentences
retrieved from a Random Sentence Generator.(sen,
) Since the sentences are random, there is no dom-
inant topic present. The average number of tokens
per sentence is 12.1125.

3 Proposal
Due to the novelty of the MK-DUC-01 and lack
of research on MDKE, it is crucial to investigate
the recent papers and expose the datasets and
algorithms to a stress test mainly in order to
see if the results and methods are reproducible.
Our work will be centered around the paper
(Shapira et al., 2021) and we will specifically
focus on reproducing the F1@k score in Tf-Idf,
TextRank, and TopicRank algorithms. The
attempt to reproduce the existing results might
strengthen or attenuate the reliability of the
above-mentioned paper which is an important step
in the state-of-the-art research on MDKE and its
novel evaluation datasets.

3.1 Proposed algorithms
Furthermore, we also propose two new Multi-
Document keyphrase extraction algorithms that
are built on top of the current TopicRank algo-
rithm.

The first algorithm is a modification of
TopicRank which aims at speeding up the topic-
creation process asymptotically by replacing the
PageRank sub-algorithm. This algorithm is based
on word-stem overlaps, jaccard distance, and

agglomerative clustering.

The second algorithm is aiming for a better
F1@k by enhancing the previous algorithm by
word embeddings generated by a language model
(eg. sBERT, DistilBERT). With the use of the
embeddings, the algorithm will introduce seman-
tic similarity between keyphrases. We will further
investigate the influence of various parameters (eg.
the language model) on the performance of the
algorithm.

These algorithms will be evaluated on the same
MK-DUC-01 dataset and their F1@k scores will
be compared to the scores of Tf-Idf, TextRank and
the original TopicRank algorithm.

3.2 Research questions

This paper aims at scrutinizing the following re-
search questions:

• Are the algorithms in the MDKE paper
in (Shapira et al., 2021) reproducible?

• How do our novel algorithms compare to the
current state-of-the-art algorithms with re-
spect to speed performance and the quality of
retrieved keyphrases (in terms of F1@k)?

• Is it possible to improve F 1@k scores by form-
ing clusters of similar keyphrases and picking
their representative keyphrase?

• How do various parameters influence the clus-
tering process?

4 Methods

The primary idea of our proposed SlidoRank algo-
rithm (together with Embeddings) is to replace the
topic graph used in TopicRank by a faster and sim-
pler frequency-based approach and together with
other algorithmic improvements asymptotically in-
crease the speed performance of the algorithm. Fig-
ure 4.1 shows a high-level diagram illustrating the
structure of the proposed algorithm.

4

4.1 Overview

Figure 4.1: Schematic pipeline of the proposed
algorithm

4.2 Technology
The project will be developed using the Python
programming language with the use of pke which is
a Python library for keyphrase extraction. Some of
the methods in pke will be also used in the proposed
algorithms as a basis.

This paper is centered around the following two
datasets: The first one is a DUC 2001 dataset,
which was released by NIST (National Institute
of Standards and Technology) and includes the
documents from which the keyphrases will be
extracted. Furthermore, we will obtain the
MK-DUC-01 dataset containing the gold list of
keyphrases which can be downloaded from GitHub.

This thesis will be made in cooperation with
Slido (acquired by Cisco Systems, Inc.) I will be
working on a Cisco Laptop (all speed performance
graphs were performed on this laptop - MacBook
Pro (16-inch, 2021), M1 chip, 16GB RAM) and
the main supervision will also be from Cisco (more
about supervision in the Planning section). All
code-bases will be stored on a private personal
GitHub repository. The code might become pub-
licly available after the research is finalized and if
there will be no legal issues.

5 Experiments and Results

When it comes to reproducing the results, I will
mainly focus on the first column of the ’concat’
part of the table 2 (see 5.1) from the MK-DUC-01
paper (Shapira et al., 2021). The Unigram-F1@k
is an important metric but due to time constraints
I will not include it in my Thesis and instead the
focus will be on the standard F1@k.

Although the authors uploaded code for evalu-
ation on their GitHub repository (this was done
very recently and after my topic was chosen and ap-
proved), I will write my own evaluator from scratch
and compare my results with the author’s evaluator.
To do so, we need to ensure that:

• The input text is the concatenation of all the
documents and passed as one string

• We use the F1@k and not the unigram-F1@k
scores

• The output set of keyphrases is truncated at
20

• The golden list of keyphrases is truncated at
20

• When encountering a substitute cluster (which
is a collection of very similar keyphrases - part
of the golden list) we need to select the first
keyphrase for evaluation and ignore the rest.
(Note: Although it is explained in the paper, it
is not evident which strategy was used in the
construction of Table 2.)

• We are evaluating the stemmed form of
keyphrases

We start by loading the appropriate datasets,
in this case MKDUC01_keyphrases.json for the
golden list of keyphrases and the MKDUC01.json
for the documents. To process the golden set we
construct a dictionary of topic IDs as keys and list
of keyphrases as values. We also "flatten" the list
by selecting the first phrase in case of substitute
clusters. Cropping the list at 20 keyphrases yields
the final dataset.

Next, we load the documents dataset, iterate
over every topic ID and join the corresponding doc-
uments into one concatenated string docs_concat.

Now we can test any algorithm by passing the
concatenated string of documents into the it (either
as a string or a list, depends on the algorithm).
Algorithm 5.1 shows testing SlidoRank (Mk. I).

5

https://github.com/boudinfl/pke

Figure 5.1: Table from the paper MK-DUC-01 paper (Shapira et al., 2021)

Algorithm 5.1 Testing SlidoRank (Mk. I)
Require: docs_concat

kps ⇐ SlidoRank(docs_concat)
kps_phrases ⇐ obtain only the phrases
store the generated kps_phrases

At the end, we store the generated keyphrases in
a dictionary with topic IDs as keys and generated
list of keyphrases as values. Finally, we pass this
dictionary into the evaluator function.

Function compute_f1() takes as parameters
the golden list of keyphrases, the generated
dictionary of keyphrases and returns the final
F1@k scores for the defined values of k. For every
topic, we truncate the predicted keyphrases at 20
(the golden list is already truncated), stem both
predicted and golden list and compute the F1
score F1 = 2∗p∗r

p+r where p stands for precision and
r stands for recall. In the end we take the average
of all F 1 scores for every topic which yields a final
value for some k. We repeat for k = {1, 5, 10, 20}.

5.1 Results

We test Tf-Idf, TextRank, and TopicRank with our
evaluator and obtained the results depicted in table
5.1.

All f-scores for all three algorithms from table 5.1
are identical to the scores obtained by the author’s
evaluator (eg. F1@5 for TextRank). However,
most of the values from table 5.1 differ from the
values in figure 5.1 by 1 − 2 percentage points.
These differences might be caused by different ver-
sions of algorithms used (as the pke library is an
open-source library).

6 Keyphrase Extraction meth-
ods

There are three main approaches of extracting im-
portant keyphrases from a body of text:

1. Supervised methods approach KE as a clas-
sification task (Bulgarov and Caragea, 2015).
Such tasks require large labeled datasets with
document-keyphrases training samples, a neu-
ral network model (eg. MLP(Pal and Mitra,
1992), Bayes(Rish et al., 2001)) and a train-
ing and testing process. Although supervised
learning has recently become increasingly pop-
ular due to availability of large datasets in vari-
ous fields, large document-keyphrases datasets
are still often difficult to find or use.

2. Unsupervised approaches generally share the
following structure:

(a) Pre-process document
(b) Generate candidates from cleansed docu-

ment
(c) Score candidates (determine their impor-

tance)
(d) Candidate post-processing (eg. dedupli-

cation)
(e) Ranking and final keyphrase selection

Popular unsupervised algorithms include
Term Frequency Inverse Document Frequency
(TF-IDF)(Christian et al., 2016), Rapid
Automatic Keyword Extraction (RAKE)(Rose
et al., 2010) or Yet Another Keyword Extrac-
tor (YAKE)(Campos et al., 2020).

Some unsupervised methods approach the
task using an Encoder-Decoder neural
architecture although these architectures
often find their use in text summarisation or

6

F1-scores for the original algorithms

Algorithm F1@1 F1@5 F1@10 F1@20

Tf-Idf 0.32 2.67 5.56 6.5

TextRank 0.63 4.0 5.33 9.17

TopicRank 0.95 6.67 9.56 11.67

Table 5.1: Obtained F 1 scores for Tf-Ids, TextRank and TopicRank using the author’s evaluator.
The values are in %. Some scores are identical but some differ in 1 − 2 percentage points.

compression.(Hinton, 2012)

A subcategory of unsupervised methods
are Graph-Based approaches that build a
fully connected graph from candidates and
use a graph algorithm to determine their
importance / scores (eg. PageRank (Xing
and Ghorbani, 2004)). One of the first graph-
based algorithms was introduced in 2004 by
Mihalcea and Tarau (Shobha S. Raskar, 2014)
under the name TextRank. TextRank builds
a graph where two words are connected if
they occur within the same window of words
in a document. The importance of these
words is then computed using a random walk
algorithm.

There exist a number of TextRank variations
that use different graph-building algorithms
and different scoring methods claiming to have
outperformed TextRank. These variations in-
clude SingleRank, PositionRank, Multipartit-
eRank, or TopicRank. In this Thesis, we will
investigate TopicRank since it serves as a back-
bone for our proposed algorithms.

7 TopicRank
TopicRank is a popular graph-based unsupervised
keyphrase extraction algorithm. It improves
TextRank by building a graph of topics (instead
of graph of all candidates) which are constructed
using agglomerative clustering. TopicRank is a
recent algorithm proposed by Adrien Bougouin,
Florian Boudin, Béatrice Daille in 2013 in this pa-
per (Adrien Bougouin, 2013). (One of the authors
(Florian Boudin) is also the main contributor to
the Python Keyphrase Extraction - pke, a very
popular Python library used for NLP tasks.)

In their paper they claim to have significantly
outperformed the state-of-the-art TextRank on
three out of four datasets. These results persuaded
us to use TopicRank as the basis for our proposed
algorithms used in the Slido’s questions-by-topics
feature.

7.1 Implementation of TopicRank
In order to understand our proposed algorithms, it
is important to first understand the implementa-
tion details of TopicRank. Hence, I will dedicate
this section to explaining how the algorithm works
in detail, what are its components, structure and
its strengths and weakenesses.

As stated earlier, the abstract struc-
ture of TopicRank follows the stan-
dard graph-based pipeline pattern
(Preprocessing → Candidate Extraction →
(Candidate Clustering) → Graph −
Based Ranking → Keyphrase selection).
In the following subsections I will describe the
workings and implementation of each of these
stages. I will use the TopicRank implementation
available in the pke library written by Florian
Boudin.

7.1.1 Preprocessing

Like in any other NLP task, we first start
with cleaning the original document from non-
descriptive words (stopwords) such as ’and’, ’the’
or punctuation. For this the author uses the
load_document() function which takes the path to
a file, a list of stopwords, type of normalization and
performs the preprocessing. The implementation
of the load_document() function is non trivial but
I will not go into details here since it is a standard
preprocessing step done before any KE algorithm
can be applied. The implementation can be found
in pke.base.

7

7.1.2 Candidate Extraction

Candidate extraction is a process of extracting po-
tential keyphrases from a body of preprocessed text.
To do this, we first determine the Part-Of-Speech
tags (POS tags) such as NUM , ADV , PROPN or
others for every token in the text. Next, we iterate
over these tokens and select the longest sequence of
tokens with the predefined POS tags. (The default
POS tag set is generally {NOUN, PROPN, ADJ}
since nouns, proper nouns and adjectives tend to be
most descriptive of a text (Hulth, 2003). However,
sometimes this set includes also NUM .) These
sequences are further processed and discarded if
they happen to be too long/short, or include some
unwanted tokens. (POS tagging is a non-trivial
task and some POS tagging models can tag certain
tokens in some contexts inaccurately.) This is done
using the candidate_filtering() method.

Algorithm 7.1 Candidate Extraction
Require: document

POS ⇐ {′NOUN ′,′ PROPN ′,′ ADJ ′}
seq = []
for every tuple (token, POS tag) in document
do

if POS tag in POS then
seq ⇐ add token

end if
end for
candidate_filtering()

7.1.3 Candidate Clustering

Candidate Clustering is where TopicRank starts
to differ from TextRank. The motivation for
clustering is that candidates within the same
topic tend to share similar tokens/words/stems.
For example an article about tunnels can include
candidates such as: "tunnel, tunnels, underground
tunnels, tunnelling, etc." In TextRank, these
candidates would be treated separately whereas
in TopicRank, these candidates are merged into
one cluster which is represented by one candidate.
This is where the name TopicRank comes from - it
is an important step which is performed before the
topic graph is created.

Before the candidates can be clustered, they
first have to be vectorized. This is a topic in itself
and clustering methods will be described more
deeply in later sections.

The TopicRank implementation uses one hot en-
coding of the candidates which are then clustered
using agglomerative clustering with average link-
age and jaccard distance for the distance matrix.
The cluster hierarchy is then cut using fcluster()

method from scipy using a threshold of 0.74 which
leads to cluster formation. The pseudocode in 7.2
describes this process.

Algorithm 7.2 Topic Clustering
candidates, X ⇐ vectorize_candidates()
Y ⇐ pdist(X,′ jaccard′)
Z ⇐ linkage(Y,′ average′)
clusters ⇐ fcluster(Z, 0.74,′ distance′)
for id in range(max(clusters)) do

add candidates to corresponding clusters
end for

7.1.4 Graph-Based Ranking

The next step is the creation of a fully connected
graph using the topics obtained from the previous
step. Topics are represented as nodes where the
weighted edges are the "semantic relations" between
the topics. However, this semantic relation is not
based on feature vectors but merely on words oc-
curring within the same window of tokens in the
document. Formally speaking the weight wi,j of
an edge is:

wi,j =
∑
ci∈ti

∑
cj∈tj

dist(ci, cj) (7.1)

dist(ci, cj) =
∑

pi∈pos(ci)

∑
pj∈pos(cj)

1
∥pi − pj∥

(7.2)

Where ti, tj are topics, dist(ci, cj) is the distance
between two candidate keyphrases and pos(ci) is
a set of all the positions of the candidate in a
sentence. (Adrien Bougouin, 2013)

After the graph is constructed and the "se-
mantic" weights are set, now we determine the
significance of the topics using the PageRank
algorithm (although in the original TopicRank
paper, authors use TextRank model proposed
by Mihalcea and Tarau, 2004, that is based on
the concept of "voting"(Adrien Bougouin, 2013; ?)).

Although PageRank was originally designed for
ranking web pages based on the links between
them, it is also used in this scenario to rank the
topics. The PageRank algorithm first computes the
transition matrix from the graph and iteratively
applies it on the nodes and edges until the ranks
converge. The default number of iterations is set to
100. The output of the algorithm is the set of top-
ics with their scores (higher being more significant).

The graph representing "semantic" connections
together with the PageRank algorithm works very
well in determining the significance of the topics
in the document. However, the construction of the

8

fully connected graph, determining the edges and
ranking of the topics using PageRank turns out
to be the slowest, most computationally expensive
process in the pipeline making it almost unusable
for very long documents.

7.1.5 Keyphrase Selection

Last step in the TopicRank pipeline is final
keyphrase selection. At this point we have a set of
topics of certain significance score where each topic
consists of one or more candidates. To produce
the final set of keyphrases, one representative
candidate (or token) needs to be picked. Although
this seems like a trivial problem, it is one of the
most difficult problems in the entire pipeline;
which token/candidate represents a cluster the
best.

There are a number of strategies that can be
applied here and I will dedicate one section to
explaining what are the other options as well as
some experimental results showing the impact
of these strategies on the F1-score. The authors
of the TopicRank paper have tackled the task
accordingly: "To find the candidate that best
represents a topic, we propose three strategies.
Assuming that a topic is first introduced by its
generic form, the first strategy is to select the
keyphrase candidate that appears first in the
document. The second strategy assumes that the
generic form of a topic is the one that is most
frequently used and the third strategy selects
the centroid of the cluster. The centroid is the
candidate that is the most similar to the other
candidates of the cluster." (Adrien Bougouin, 2013)

Clearly, these strategies are context-dependent
and for the Multi-Document scenario of the Slido’s
questions-by-topics context, different strategies
have to be applied.

8 TopicRank without PageR-
ank - SlidoRank

The primary motivation for our first proposed
algorithm is the questions-by-topics feature in
Slido. To reiterate, the specific context Slido
operates within is the following: during an event
participants send questions to the host of the
event as a part of the Q&A session. For large
events with hundreds or thousands of participants,
the amount of questions sent to the host is very
large. To prevent multiple participants asking
the same question, one of the strategy is the
ability to upvote questions that participants like.
This upvote feature functions as a user-ranking
system which builds a hierarchy of questions that

participants want to ask. (Slido also offers more
advanced sentence similarity feature but that is
not of primary concern for this Thesis.)

The problem arises when the amount of ques-
tions present in the Q&A section is too large. If eg.
500 questions are present in an event, participants
will read only a tiny fraction of questions which
will lead to less upvotes, and more duplicate
questions being asked. To improve user experience
and attenuate question redundancy, Slido offers a
questions-by-topics feature. This feature extracts
keyphrases from all the questions and clusters
them into topics which are then displayed to the
user. The idea was first introduced in one of the
Slido hackathons and incrementally developed by
the Data Team.

The idea began with the TopicRank implemen-
tation but we quickly realized that for our use
case of millions of simultaneous events containing
hundreds or thousands of participants all over the
world, TopicRank was too computationally inten-
sive and slow. Figure 8.1 shows TopicRank run
times for the MK − DUC − 01 dataset on up to
1140 sentences. We can already observe that on 342
sentences, TopicRank takes 5 seconds and grows
approximately with the square of the number of
sentences.

Figure 8.1: Performance of the TopicRank algo-
rithm tested on the MK − DUC − 01 dataset

8.1 Alternative to the topic graph
and PageRank

Our proposed algorithm is more complex than
TopicRank and has been incrementally developed,
speeding up various parts of the pipeline. To
fully understand the workings of the algorithm,
I will explain step-by-step which changes were
made and how these changes influence the overall
performance.

To further refer to our first proposed algorithm
I will simply use a name SlidoRank.

9

8.1.1 Preprocessing and Candidate Extrac-
tion

The first two steps, preprocessing and candidate
extraction, of the pipeline remain almost identi-
cal to TopicRank: candidates are extracted as
longest sequences of tokens with predefined POS
tags ({′NOUN ′,′ PROPN ′,′ ADJ ′}).

8.1.2 Candidate Clustering

Just like in TopicRank, candidates are first
vectorized using a sparse matrix and clustered
using agglomerative clustering based on the
jaccard distance of stemmed tokens. The resulting
cluster hierarchy is then cut using the default
threshold of 0.6 (further experiments with the
threshold are explained in section 8.2.2).

In TopicRank, the resulting clusters are then
converted into a fully connected graph and scored.
However, we have decided to skip this stage and
simply score the clusters according to the number
of candidates they include.

Recall that the context of Slido is an event with
a set of questions for the host. Take for example a
company meeting about inflation and a potential
pay raise. Let us also assume that the clusters in
the event are as follows: [salary, salary increase,
higher salary, current low salary], [crysis, economic
crysis], and [high inflation]. Lastly, to make mat-
ters simpler, let us assume that one candidate cor-
responds to exactly one unique question (this is
rarely the case). From this setting it is clear that
the cluster about salary is the most dominant one
since most of the questions in the event are about
salaries. Hence this cluster will obtain a higher
score than the remaining clusters about crysis and
inflation.

8.1.3 Keyphrase Selection

The keyphrase selection approach used in Top-
icRank takes into consideration the order of
candidates - candidates appearing earlier in text
will be prioritized. That is not the case in our
Multi-Document setting. We look at the data as a
set of questions present at an event at a point in
time. The order of asked questions is not relevant
at all for which topics are most dominant in an
event.

For the first iteration of SlidoRank we will be
using the TopicRank’s approach of selecting final
keyphrases (I will further refer to this as "repre-
sentative selection") but further experiments with
selecting the representative of a cluster will be
described in section 8.2.6.

8.1.4 Evaluation Benchmarks - generation
1

According to our hypothesis, skipping the PageR-
ank algorithm will have a positive influence on the
overall time complexity. Since the scoring of clus-
ters also differs, we expect a difference in the F 1@k
scores. Figures 8.2 and 8.3 show the speed perfor-
mance of the entire pipeline (from preprocessing
to final keyphrase selection).

Figure 8.2: TopicRank vs. SlidoRank speed
comparison on the MK − DUC − 01 dataset.

Figure 8.3: TopicRank vs. SlidoRank speed
comparison on the dataset of 1800 randomly
generated sentences.

Figures 8.2 and 8.3 show that skipping the topic
graph and PageRank algorithm indeed significantly
improves the computational complexity and hence
speeds up the pipeline.

8.2 SlidoRank, Mk. II

To further improve the speed performance and
the set of resulting keyphrases (as well as code
quality and scalability) we introduce a number
of improvements at various stages of the pipeline
which will be explained in the following sections.

10

8.2.1 Reject one-token candidates

We introduce a small change in the
get_candidates() function and allow only
candidates whose lexical form is greater than 1.
The reason for this is to keep more contextual
information which candidates with a very short
lexical form (only one word) do not offer.

8.2.2 Optimizing the clustering threshold
using Silhouette scores

Clustering is an ill-defined problem; most real-
world tasks include noise or ambiguity which make
problems like clustering very difficult. There is
a number of clustering algorithms, starting with
simple k-means, through more advanced hierar-
chical clustering to very advanced density-based
approaches like HDBSCAN.

TopicRank as well as SlidoRank use agglom-
erative clustering which iteratively merges two
nearest data points or clusters and returns a
hierarchy of clusters (where at the bottom of the
hierarchy are n clusters for n data points and
on top is 1 cluster for n data points). In order
to obtain the desired clusters we have to specify
a level of this hierarchy, often called a thresh-
old. This threshold was set to a default value of 0.6.

The problem is that a threshold of 0.6 is not the
best possible threshold for every event; sometimes
a threshold of 0.7 or 0.5 would yield better
results. In order to investigate the "goodness" of
clustering we can use a metric such as Silhouette
score. Silhouette score measures the inter and
intra-cluster distances and returns a score between
−1 and 1. The score is 1 when the distances
between clusters are large and distances between
data points within their cluster is small.

To search for an optimal threshold we cut the
hierarchy at different levels and compute the sil-
houette score. Then, from all the scores we pick a
threshold that leads to the highest silhouette score.
The algorithm 8.1 outlines this process.

Algorithm 8.1 Get optimal threshold
Require: distance matrix X and the cluster hier-

archy Z
silhouettes ⇐ []
thresholds ⇐ [0.0, 0.01, 0.02, . . . , 0.99, 1.0]
for every threshold t do

clusters ⇐ fcluster(Z, t)
silh ⇐ silhouette_score(X, clusters)
add silh to silhouettes

end for
return threshold with maximum silh. score

Figure 8.4: Silhouette scores at different thresh-
old values for questions from Elon Musks Slido
event.

Table 8.1 presents the impact of the threshold
value on the overall f-score tested on the MK-DUC-
01 dataset.

As we see from table 8.1, the clustering threshold
has a significant influence on the f-scores. The
threshold that gives the best overall results is 0.5.
However, what comes as a surprise is that the worst
performing threshold (among the ones I tested) is
the "optimal" one based on the silhouette score.
We can safely conclude that optimizing the inter-
intra cluster distances via silhouette scores is a bad
strategy in obtaining the highest f-scores on the
MK-DUC-01 dataset. The reason for this is not self-
evident and investigating this behaviour is a good
candidate for future work 12. For the remaining
benchmarks I will be working with t = 0.6.

8.2.3 Redefinition of candidates through
"Occurrences" class

The first SlidoRank implementation had three im-
portant classes:

• Question: A class holding a question entity
including question_id, list of candidates, text,
length, POS tags and other attributes.

• Candidate: A class for a candidate entity
holding surface form, lexical form, the position
in a question and other attributes.

• Cluster: A class having an ID, candidates, all
associated questions and the representative.

In SlidoRank II the Question and Candidate
classes were transformed into @dataclass objects
with have defined fields which are filled in later
in the process after instantiation. Moreover, the
Candidate class now serves as a wrapper class for
OccurrenceInQuestion. Since every candidate
is a subsequence of a specific question(s). It has
an occurrences field which holds question IDs of
questions in which the candidate occurs (including

11

Thresholds for SlidoRank (Mk. II)

Thresholds f1@1 f1@5 f1@10 f1@20

t = 0.5 2.86 8.81 13.8 14.85

t = 0.54 2.54 8.54 14.02 15.01

t = 0.55 2.54 8.54 13.81 15.01

t = 0.6 2.54 8.54 13.13 15.01

t = 0.7 0.95 4.53 6.0 6.67

t = 0.74 0.32 3.2 4.44 4.83

t = topt 0.32 4.0 6.22 6.0

Table 8.1: F-score comparison of SlidoRank (Mk. II) with different thresholds tested on the
MK-DUC-01 dataset. topt is the optimal threshold found by the silhouette score.

its offset).

The Cluster class now only includes a list of
candidates, all questions associated with the candi-
dates, frequency (length of the all questions list),
and a representative.

8.2.4 Improved jaccard distance computa-
tion

Another significant improvement is the replacement
of the standardized function pdist() from the scipy
library (scipy.spatial.distance). Jaccard distance
computes the similarity of two groups (sets) by the
ratio of their intersection over their union:

Jaccard(A, B) = |A ∩ B|
|A ∪ B|

In Python code, this can be implemented as follows:

len(set(A).intersection(B))
len(set(A).union(set(B)))

. However, for large datasets, this computation is
too slow.

An article by Roy Hung (hun,) about Jaccard’s
Index in Practice provides a guide in significantly
speeding up this computation using linear algebra.
In short, the core idea is to reformat the dataset and
represent it in a sparse matrix form X, compute
XXT as the numerator and use the identity |A ∪

B| = |A| + |B||A ∩ B| for the denominator. Figure
8.5 depicts a difference of the first iteration of
SlidoRank with the standard pdist() function and
the improved one.

Figure 8.5: Speed performance comparison of
two jaccard distance functions tested on the
MK-DUC-01 dataset.

8.2.5 Faster cluster formation

The fcluster() method returns a list of cluster
IDs, the actual cluster objects still have to be con-
structed. The TopicRank implementation forms
the clusters in quadratic time complexity in the
number of clusters. The pseudocode is shown in
8.2.

12

Algorithm 8.2 Make clusters in O(n2)
Require: list of clusters from fcluster()

for every cluster ID do
cand_dict ⇐ dict()
for j in range(len(clusters)) do

if clusters[j] == cluster_id then
add candidates to cand_dict

end if
end for
add to cluster_objects

end for

The improved version uses only one for loop
thanks to the use of Python’s dictionary objects as
shown in 8.3. This asymptotically speeds up the
cluster formation process.

Algorithm 8.3 Make clusters in O(n)
Require: list of clusters from fcluster() and

candidates
cands ⇐ candidate keys
cand_objects ⇐ candidate objects
for cand_ID, cluster_ID in enum(clusters) do

cand ⇐ cands[cand_id]
obj ⇐ cand_objects[cand_id]
clusters_dict[cluster_id][cand] ⇐ obj

end for

Figure 8.6 depicts the dramatic asymptotic speed
up from quadratic to linear time complexity.

Figure 8.6: Speed performance comparison of
two cluster formation algorithms tested on the
MK-DUC-01 dataset (with the faster jaccard
computation).

8.2.6 Representative Selection

Representative selection is s non-trivial task
which goes as follows: given a set of candidate
keyphrases, which token or set of tokens best
describes the entire group of keyphrases? As an
example, take the following set {methane, aerosol,
gas, hydrogen, electricity}. One might say that
this cluster can be best described as power sources

since electric cars are becoming very prevalent,
hydrogen engines are being researched as well
and the remaining chemicals can be used in some
combustion engine. However, we can also describe
the cluster as chemicals or fuel. The selection of
the representative is dependent on the context of
the entire event. What complicates this task even
more is the idea of selecting a representative that
is not present in the set itself.

Luckily, since our clusters are based on word-
stem overlap using the jaccard distance, the
stems of the candidates (at least some of their
tokens) will mostly remain the same. Hence our
clusters might look as follows: {tunnel, tunnelling,
underground tunnels, . . . }. This nice property
of "shared stem" allows us to pick a representa-
tive keyphrase from the set itself - which is also
done in both TopicRank and SlidoRank algorithms.

The original TopicRank solution uses two
heuristics for representative selection: for each
cluster either pick the first occurring candidate or
apply a more advanced strategy of choosing the
most frequent candidate in the set and selecting
the first occurring one (if there are more candidates
with the same frequency).

Both TopicRank approaches take into con-
sideration the order in which candidates are
occurring (their offsets) in text. As previously
stated, this heuristic is not important for our use
case; the order of occurrence does not matter for
a set of asked questions. The descriptive ability
of a cluster is the determining factor since the
representatives are the first thing that the user sees.

Our representative selection algorithm first
obtains subsequences sorted by the number
of tokens and then checks which subsequence
is in the majority of other candidates. That
candidate is selected as a representative of a
cluster 8.4. In contrast to other representative
selection algorithms (like the one in TopicRank),
this approach tends to prefer single tokens over
multi-word phrases.

13

Algorithm 8.4 Get Representative
rep ⇐ None
if there is only 1 candidate then

select that candidate
else

subseq ⇐ get_candidate_subsequences()
for sub_stem, sub_lex_forms in subseq do

if sub_stem in majority then
rep ⇐ max(sub_lex_forms)

end if
end for

end if
if rep is None then

rep ⇐ most_frequent_candidate()
end if

8.2.7 Comparison of different representa-
tive selection algorithms

Since the final keyphrase selection has a strong
influence on the f-scores I provide a comparison of
different - basic to complex - representative selec-
tion algorithms in table 8.2.

The results in table 8.2 indicate that represen-
tative selection algorithm does have an influence
on the f-scores. Despite the differences being small,
our representative selection algorithm outperforms
the remaining three (naive) approaches at F1@10
and F1@20.

8.2.8 Final results

To conclude, implementing "TopicRank without
PageRank" and optimizing the time complexity
of various stages of the entire pipeline led to
an algorithm that not only outperforms the
current state-of-the-art TopicRank on every F1@k
metric but is also asymptotically faster; making
it practical for large-scale purposes. The above
mentioned improvements allowed us to scale up
the questions-by-topics feature in Slido and offer
the functionality for events of "arbitrary" sizes (see
figures 8.7 and 8.8).

However, I would like to emphasize that the MK-
DUC-01 dataset does not match the Slido use case
entirely. Therefore, building the entire pipeline
only on the basis of the f-scores from this dataset
is very risky since it might not "blend in" with the
Slido use case well (users might simply dislike it).
The MK-DUC-01 dataset might give us an indi-
cation of which parameters are worth scrutinizing
and optimising but we have to be aware of the
danger of over-fitting to this dataset.

Figure 8.7: Speed performance TopicRank vs.
SlidoRank (Mk. II) tested on the MK-DUC-01
dataset

Figure 8.8: Speed performance TopicRank vs.
SlidoRank (Mk. II) tested on the dataset of
1800 random sentences

9 The Embeddings algorithm
Although being fast and scalable, SlidoRank has
a fundamental limitation - it does not group to-
gether semantically similar candidates. TopicRank
is trying to go around this by applying a heuristic
that "words occurring close to each other often have
similar semantic meaning" in their topic graph. Al-
though this heuristic might hold in some scenarios,
it is obvious that some words can have very similar
meaning while occurring in completely different
contexts. To solve this issue, we have to introduce
the concept of word embeddings.

9.1 Word Embedding
Word embedding is an abstract representation
of a word as a vector. The simplest way to
embed a word is an approach called "one hot
encoding"(Rodríguez et al., 2018). Given a
vocabulary (list of words) or length n, every word
in the vocabulary will be attributed with a vector
of zeroes with a single 1 at the index at which the
word occurs withing the vocabulary. While this

14

F-score comparison of different representative selection algorithms

Representative f1@1 f1@5 f1@10 f1@20

Our 2.54 8.54 13.13 15.01

First Candidate 2.86 9.34 12.67 14.5

Random 1.9 7.48 11.56 12.84

Most frequent 2.54 7.744 12.68 13.675

Table 8.2: Our algorithm is described in section 8.2.6. ’First candidate’ algorithm selects the as
representative the first candidate in the candidate list (candidates are appended in order in which
they appeared in the document). ’Random’ algorithm selects a random candidate as representative.
’Most frequent’ algorithm selects the most frequent candidate from the candidate list.

F-scores for TopicRank vs. SlidoRank (MK. II)

Algorithm f1@1 f1@5 f1@10 f1@20

TopicRank 0.95 6.67 9.56 11.67

SlidoRank (Mk. II) 2.54 8.54 14.02 15.01

Table 8.3: F-score comparison of SlidoRank (Mk. II) with TopicRank tested on the MK-DUC-01
dataset. Clustering threshold for SlidoRank is 0.6 and the representative selection algorithm is
"our".

approach might work for some simple applications,
it is possible to construct the embedding in much
more efficient and compact way - feature vectors.

Feature vector (in the context of NLP and word
embeddings) is, just like in one hot encoding, a
vector representation of a specific word. While
in one hot encoding the size of the vector equals
the size of the vocabulary, feature vectors can
be arbitrarily long (short). The core concept of
feature vectors is to extract or "learn" the features
of a word, its semantic meaning and its concept
through training a neural network architecture
which is exposed to large quanta of text. While
word embeddings and neural architectures that
build them are a very important topic withing
the field of Artificial Intelligence and Machine
Learning, I will not go into much detail about the
workings of such architectures.

In this section I present The Embeddings algo-
rithm, an extension of SlidoRank which "fine-tunes"

the output of SlidoRank (MK. II) to group together
semantically similar candidates. We do so by us-
ing a pre-trained sentence transformer (sBERT)
with the aim of increasing the f-scores on the MK-
DUC-01 dataset. I will provide the outline for
this algorithm, implementation details and most
importantly the evaluation results.

9.2 Outline of The Embeddings
The Embeddings is not a novel algorithm aiming
at solving the KE task in a novel way. It has to
be understood as an extension or a "build-up" on
top of the SlidoRank algorithm. We can extend
the original pipeline as follows:

1. Pre-process document

2. Generate candidates from cleansed document

3. Score candidates (determine their importance)

4. Candidate post-processing (eg. deduplication)

15

5. Ranking and final keyphrase selection

6. Generate candidate embeddings

7. Compute centroids of clusters

8. Add semantically similar candidates to
clusters

9.3 Generating candidate embed-
dings

Since we used a pre-trained model, gener-
ating the embeddings was very simple. We
overrode the Candidate dataclass with a new
field embedding as folows: self.embedding =
MODEL.encode(′ ′.join(self.surface_form)).
We are embedding joined surface forms (sur-
face forms is an array of tokens) because this
includes the most natural form of candidate
with most of the semantic information. Sim-
ilarly, we overrode the Question dataclass as:
self.embedding = MODEL.encode(self.text).
The reason for embedding entire questions will be
explained later in this section.

9.3.1 Language model selection

One of the most fundamental questions or points
of debate is language model selection. From all
the pre-trained models available, which one should
we use? Models differ in the training datasets,
number of parameters or architecture and leading
to the difference in speed performance and their
"depth of understanding natural language" (or
their performance on various NLP tasks). Since
it is still unknown to us which language model
would be best for our use-case, I will also include
a comparison of various models and their influence
on the resulting f-score. For now, we have decided
to use paraphrase-MiniLM-L12-v2 which appears
to be a good combination of the size of the model
(hence its speed performance) and its quality (how
well it performs on various NLP tasks).

The encode() function is computationally expen-
sive since it has to feed the word through the (gen-
erally large) neural network architecture and obtain
a feature vector. This means that we are expecting
a significant increase in time complexity.

9.4 Cluster centroids
After redefining the Question and Candidate
classes we override the Cluster class. Cluster holds
all the candidate objects and now it will also hold
their embeddings. This means that from the per-
pective of semantic similarity and feature vectors,

we can perceive a cluster as a distribution of n-
dimensional feature vectors in a vector space. This
is, by itself, very useful since it allows us to study
the mathematical attributes of these distributions.

9.4.1 Centroid

One important property of a cluster is its "cen-
troid" vector. We define a centroid vector as a
vector v ∈ Rn whose sum of cosine distances to all
other vectors within the cluster is minimal. As is
standard practice, we use cosine distances to mea-
sure the similarity of two high-dimensional vectors
(for low dimensions other metrics can be used as
well). Nice property of this vector is that it de-
scribes a set of features that are best descriptive
of all the candidates. The centroid is computed by
defining an array of embeddings from all the can-
didates, summing all the vectors component-wise
and dividing by their amount. We took use of the
numpy library and the pseudocode is shown in 9.1.

Algorithm 9.1 Compute cluster centroid
Require: Cluster object

sum_vec ⇐ 0
for every cluster candidate embedding emb do

sum_vec ⇐ sum_vec + emb
end for
centroid ⇐ sum_vec

#embeddings
return centroid

9.4.2 Cohesion

Another important property of a cluster is the
shape of the distribution itself, its cohesion.
Cohesion is a floating point number given by the
mean of the cosine distances of all candidates
from a cluster centroid. If this cohesion value
is large, this means that the average distance
from the centroid vector is large. On the other
hand, low cohesion coefficient means that the
average distance of a candidate to centroid is small,
hence the cluster distribution is more "packed
together". The reason for computing the centroid
and cohesion will be described in section 9.5

The computation of cohesion is also straightfor-
ward: we first compute the centroid and take the
mean distance of all the candidates to the cen-
troid 9.2. Note that the word "cohesion" here has
a counter-intuitive meaning since high cohesion
generally means that the cluster is strongly "tied
together" - the word density would be more appro-
priate.

16

Algorithm 9.2 Compute cluster cohesion
Require: Cluster object

centroid ⇐ compute_centroid()
dist_arr ⇐ []
for every cluster candidate embedding emb do

dist_arr.append(cosine(emb, centroid))
end for
return the mean of dist_arr

9.5 Adding semantically similar can-
didates to clusters

The core idea of enhancing the clusters is to loop
over all the candidates from all the clusters and
add a candidate to a cluster if the cosine distance
between the candidate embedding and the cluster
centroid is "sufficiently small". This procedure
should ensure that even candidates that do not
share a common stem and hence are in a different
cluster, but are semantically similar to candidates
in other cluster, will be added. As an example,
a candidate laptop will be added to a cluster
[computer, cisco computers, computing devices]
even though it does not share a common stem
with any of the candidates.

Before we start comparing the cosine distances
and adding the candidates, we first perform a
similar operation of merging semantically similar
clusters. During testing we noticed that there are
some semantically similar clusters that should be
merged into one larger cluster (eg. [price, high
price, pricey] and [cost, big cost, costly] - these
two clusters should be merged into one since they
are both semantically very similar despite not
sharing a common stem).

This led to the introduction of
cluster_clusters() (by my supervisor Daniela)
functions which, despite its unfortunate naming,
does exactly what it says - it clusters or merges
clusters together. We first create a matrix X
containing all the centroids of all clusters, a
result is an array of vectors. These vectors are
clustered using agglomerative clustering with
average linkage and a threshold of 0.4. Lastly,
candidates are connected to these centroids and
new cluster objects are formed. This algorithm
allows us to fully merge those clusters whose cosine
distance of the average of their feature vectors
is small - resulting in cost and price clusters to
become one cluster (or topic).

(Cluster clusters was merely an experiment and
after some investigation we realized that no matter
the clustering threshold (inside the function), the
F-scores were significantly lower (by a half) then
originally. The reason for this is still to be deter-

mined and further investigation is needed. For now,
we have decided to leave this function out.)

Final stage of this process is to add specific
candidates to other clusters. We iterate over all
the candidates present in an event and compare
their embedding with every cluster centroid. If
the cosine distance is "small enough", we add
the candidate to the cluster. We also increase
the frequency of the cluster and for analytic
purposes we store the representative of a cluster
the candidate is originally from. Let us now dive
deeper into what does "small enough" distance
mean.

Cosine distance is a number from the interval
[−1, 1] so a reasonable first attempt is to use a
constant threshold E of, say, E = 0.5. However,
not all clusters have the same shape and density. It
should be more difficult for a candidate to be added
to a very dense cluster then to a "loose" cluster, see
figure 9.1.

Figure 9.1: Two clusters with different density
with candidate (red) having the same distance
from both centroids but should be added to the
left cluster.

Hence, we can refine the threshold E to take
into consideration both the constant value and the
cluster density ρ, yielding:

E(c) = C + ρ(c)
2

where C is the constant value and ρ(c) is the density
of a cluster c. It is difficult to say whether these two
components should have the same weight. In some
scenarios the cluster density can contribute only
little while the constant might be more important.
We introduce weight w which allows us to vary the
importance of the two components yielding:

E(c) = (w ∗ C) + (1 − w) ∗ ρ(c)

where w ∈ [0, 1]. Now the equation is almost com-
plete but there is another problem - for some set
of weights, say, w = 0.5, if the cluster is "too loose
and spread out" it will likely get all the candidates.
Hence we want to penalize clusters that are "too

17

loose". We do so by taking the logarithm of the
density, yielding the final equation:

E(c) = (w ∗ C) +
(
(1 − w) ∗ log2(1 + ρ(c))

)
(9.1)

The behavior of this equation will be further stud-
ied and analysed in section 10.0.1

10 Results

This section presents evaluation benchmarks for
the Embeddings extension presenting the F1@k
scores with different parameters of the algorithm.
We use the MK-DUC-01 dataset and f-score with
k values of {1, 5, 10, 20}. Parameters we will be
comparing are the language models and the weight
and constant in equation 9.1.

10.0.1 Hyperparameter search

The parameters weight and constant in the
equation 9.1 determine which candidates and
how many of them will be added to which
cluster. To further investigate the influence of
these parameters on the f-scores, I performed a
large-scale hyperparameter search using a fast
language model paraphrase-MiniLM-L3-v2 with
the focus on F1@20.

For each value of C ∈ [0.0, 0.1, . . . , 0.5] we
measure the F1@20 for every value of w ∈
[0.0, 0.1, . . . , 1.0]. There are two reasons for C be-
ing capped at 0.5.

1. Large values of C lead to almost "uncontrolled"
adding of candidates to clusters which will
likely negatively modify the original structure
of the clusters generated by SlidoRank

2. Running the tests for large values of C simply
takes too much time. It took a couple of hours
to generate a single row of values for C = 0.5.
Running the tests for the entire range of C
would likely take in the order of a few days.
(This will likely remain as future work as well
as testing different values for k in the F1@k
metric)

Results of this hyperparameter search are graph-
ically expressed in figures 10.1 and 10.2.

Figure 10.1: Cost landscape for combinations
of w and C for all topics from the MK-DUC-01
dataset. The z-values are the F1@20 scores.

Figure 10.2: The same cost landscape zoomed
onto the peak value of w = 0.4 and C = 0.4 with
an F 1@20 = 15.517.

We can clearly observe from figure 10.1 that
larger values of C (say, 0.5) lead to a worse f-score
on average than smaller values of C. However,
the landscape peaks at values w = 0.4, C = 0.4
with F1@20 = 15.517. Although there is a
fundamental limitation in C being capped at 0.5
and the "definition" of the landscape (total number
of points), the Embeddings algorithm with values
w = 0.4, C = 0.4 slightly outperforms SlidoRank
(which is essentially the Embeddings algorithm
with values w = 1, C = 0).

The cost landscape indicates that the idea of
adding semantically similar candidates to clusters
works if one uses the correct values in the equation
E(c) = (w ∗ C) + (1 − w) ∗ ρ(c). However, one
must take into consideration the language model
for which the cost landscape will likely differ in
shape and the remaining metrics F1@1, F1@5, and
F1@10 (these remain as future work).

18

10.0.2 Language model influence

There is a variety of language models that can be
used for generating the embeddings. For testing, we
have decided to use three models from the sBERT
website which includes a table comparing the per-
formance of various sBERT models. The difference
between the all- models and the paraphrase- mod-
els is that all- models were trained on all available
training datasets while paraphrase- were trained
only on a subset of the available datasets. To
investigate whether the size of the model has an
influence on the f-scores we will use three variations
of the all- models including the small paraphrase-
which was used at the hyperparameter search:

1. paraphrase-MiniLM-L3-v2 as the fastest
and smallest model used for the cost landscape
computation (61MB)

2. all-MiniLM-L6-v2 as the fastest and small-
est model among the all- models (80MB)

3. all-distilroberta-v1 as a mid-sized model
(290MB)

4. all-mpnet-base-v2 as the best performing
and largest model (420MB)

Table 10.1 shows the f-scores of the Embeddings
algorithm using different language models with
parameters of the equation 9.1 clamped at w = 0.4
and C = 0.4.

According to table 10.1 a clear pattern of the
influence of the size of the model to the f-scores is
not evident. The differences between model sizes
is large but the difference between the f-scores
is rather small. This rejects our hypothesis that
larger models with "deeper understanding" of
language will generate "more accurate" feature
vectors which lead to more accurate process of
cluster-candidate regrouping. What comes as
a surprise is the fact that the smallest model
paraphrase-MiniLM-L3-v2 has better F1@10 and
F1@20 scores then any other model tested. It
appears that rather than the size of the model,
it might be the model’s architecture or the train-
ing set that might have a more significant influence.

The good performance of the paraphrase-
MiniLM-L3-v2 made me create another benchmark
table 10.2 testing three variations of this model L3,
L6, L12.

However, the dependence of the F-scores on the
language model size does is not evident at all. The
largest model has the best F1@1 and F1@20 but
the smallest model leads in F1@5 and F1@10.

10.0.3 SlidoRank (Mk. II) vs. Embeddings
vs. TopicRank

To conclude this section we present a comparison
of the three algorithms, original TopicRank, the
significantly faster SlidoRank (Mk. II) and the
Embeddings algorithm. Our hypothesis was that
by introducing language models and feature vectors
we group semantically similar keyphrases resulting
in an increase of the f-scores. As shown in figure
10.1, it is possible to obtain better F1@20 score
with the appropriate language model and parame-
ters of the equation E(c) = (w ∗ C) + (1 − w) ∗ ρ(c).
A constant value of C = 0.4 and weight w = 0.4 it
is possible to increase F1@20, however, many other
combinations of w and C lead to a decrease of
F1@20. We can also conclude that the distribution
of candidate embeddings in feature space (cluster
cohesions) does matter for the final keyphrase
extraction.

Table 10.3 shows a comparison of the three algo-
rithms with SlidoRank (Mk. II) and Embeddings
with the best configuration I found:

• Tf-Idf : original configuration as it is imple-
mented in the pke library

• TextRank: original configuration as it is im-
plemented in the pke library

• TopicRank: original configuration as it is
implemented in the pke library

• SlidoRank: threshold=0.54, link-
age=’average’, len(lexical_form) > 1,
representative=’our’

• Embeddings: weight=0.4, constant=0.4,
model=’paraphrase-MiniLM-L12-v2’

Note: TopicRank, SlidoRank and Em-
beddings use the same set of POS tags:
{′NOUN ′,′ PROPN ′,′ ADJ ′}

11 Conclusion
11.1 Discussion
It is important to note that for the Slido use-case,
the candidates in a topic and their associated
questions are equally important, if not more, than
representative selection. When the user clicks
on a topic, he/she wants to see all associated
questions with that topic. As an example, whether
a user sees Tunnels or Underground tunnels as
a topic, it is not as relevant as whether all the
associated candidates and questions are present
in it. However, this is simply too difficult to test
and to the best of our knowledge, there exists no
large evaluation dataset for this specific case. All

19

https://www.sbert.net/docs/pretrained_models.html#sentence-embedding-models/
https://www.sbert.net/docs/pretrained_models.html#sentence-embedding-models/

F-scores (Language Models)

Model f1@1 f1@5 f1@10 f1@20

paraphrase-MiniLM-L3-v2 (61MB) 1.9 8.27 14.02 15.52

all-MiniLM-L6-v2 (80MB) 1.9 8.27 12.68 15.02

all-distilroberta-v1 (290MB) 2.22 8.54 12.68 14.68

all-mpnet-base-v2 (420MB) 1.59 7.47 10.9 15.01

Table 10.1: F-score comparison of the Embeddings algorithm with three different language models.

F-scores for paraphrase-MiniLM models

Model f1@1 f1@5 f1@10 f1@20

paraphrase-MiniLM-L3-v2 1.9 8.27 14.02 15.52

paraphrase-MiniLM-L6-v2 2.22 7.74 12.9 15.35

paraphrase-MiniLM-L12-v2 2.54 8.0 12.45 16.35

Table 10.2: F-score comparison of the Embeddings algorithm using three variations of the paraphrase-
MiniLM

F-scores comparison of the default and proposed algorithms

Algorithm f1@1 f1@5 f1@10 f1@20

Tf-Idf 0.32 2.67 5.56 6.5

TextRank 0.63 4.0 5.33 9.17

TopicRank 0.95 6.67 9.56 11.67

SlidoRank (Mk. II) 2.54 8.54 14.02 15.01

Embeddings 2.54 8.0 12.45 16.35

Table 10.3: F-score comparison of all algorithms tested on the MK-DUC-01 dataset (truncated).
Values are in % and "our" representative selection algorithm was used in SlidoRank (Mk II) and
Embeddings.

20

things considered, the F-score on the MK-DUC-01
dataset is the best evaluation we currently have
and we will continue using it in the future.

SlidoRank (Mk. II) turned out to be a great
success in outperforming TopicRank in both speed
and F-scores based on the MK-DUC-01 dataset.
Furthermore, when run with specific parameter
configuration, SlidoRank (Mk. II) outperforms
almost all of its competitors (PositionRank being
equally as good). The speed improvements done
for the first generation of SlidoRank allowed
us to scale the questions-by-topics feature to
very big events (almost arbitrarily big) with
sustained quality of extracted keyphrases. (It is
also important to note that the algorithm itself is
just one component of a larger pipeline; SlidoRank
is zipped and sent to AWS as a lambda function
and the internal processes are stored and further
sped up using Elastic Search.)

The primary hypothesis of increased F-scores
by introducing semantic similarity turned out to
be plausible only in a specific configuration of the
equation 9.1 and a good language model. However,
the Embeddings extension has a greater influence
on which candidates "fall under" which topic rather
than the topics itself. This can be very beneficial
to Slido users (since the questions under each topic
seem more related) despite the increase in F-scores
on the MK-DUC-01 dataset being minimal. The
Embeddings approach might soon find its way into
production of Slido Q&A section or to Open Text
Polls.

11.2 Dataset bias
It is important to note that all the parameters have
been found and tested only on the MK-DUC-01
dataset. The average number of keyphrases per
topic as well as average keyphrase size was known
beforehand and the fine-tuning process was done
with these statistics in mind. This is a clear case of
overfitting and there is absolutely no guarantee that
the high F-scores of SlidoRank will remain high
across multiple different datasets. However, the
MK-DUC-01 is the first high-quality benchmark
dataset in a true Multi-Document setting published
in October, 2021 and to the best of my knowledge
still remains the only one.

11.3 Streamlit demo
As a neat addition to the Thesis, I made a simple
web application demo using Streamlit visualizing
three different algorithms (side-by-side) and the
topics generated by them (see figure 11.1).

To see the results, the user must first either input
text into the text-box or upload a .csv file.

The demo currently includes SlidoRank + Em-
beddings with two different language models and
an EmbedRank algorithm. Although EmbedRank
with Maximal Marginal Relevance (MMR) is also
a promising algorithm worth writing about, due to
the scope of this Thesis I have decided to skip its
description and simply provide an implementation
in the Streamlit app.

11.4 Summary
Despite hard efforts, we did not manage to obtain
the exact same results for Tf-Idf, TextRank and
TopicRank as in table 5.1. However, we managed
to obtain scores as close as 1 − 2 percentage
points (or 0.01 − 0.02 in f-score) difference from
the ones in table 5.1. However, for some F-scores
we managed to obtain the exact values so we
conclude that the results in table 5.1 are partially
(or almost) reproducible.

Our first proposed algorithm SlidoRank outper-
forms the state-of-the-art algorithm TopicRank
in both speed performance (on the MK-DUC-01
dataset with 1140 sentences from 30sec to only 5)
and the quality of extracted keyphrases (higher
F1@k scores at 1, 5, 10, 20). Moreover, SlidoRank
also outperforms other widely used algorithms
such as YAKE, TextRank, and others (see table
11.2).

The second proposed algorithm, the Embedding
approach, has the potential to increase the F-scores
even further for a specific parameter configuration
described in section 9 but the use of a language
model significantly slows down the process.

The speed and quality improvements that Sli-
doRank offers allows Multi-Document Keyphrase
Extraction to be performed even on very large
datasets with high topic variance. This opens new
doors for commercial or other use cases (questions-
by-topics in Slido).

12 Future work
Slido is aiming at becoming the default go-to
application for public events and private meetings
with millions of monthly active users all over the
world. There is always room for improvement for
these algorithms and in the future we are planning
to collect candidates that are in the wrong cluster
and use these data to change the parameters of
the equation 9.1.

There is a long-term vision to replace the
’all-MiniLM-L6-v2’ language model by our own
in-house language model trained on Slido data.

21

Figure 11.1: Streamlit demo with SlidoRank and EmbedRank. Not deployed due to legal issues
but available at request.

Figure 11.2: SlidoRank and Embeddings in comparison with other widely used algorithms

22

Although we do have a fine-tuned Slido model, it
does not outperform the standard models yet.

Even more long-term vision is to have a large
benchmark dataset with Slido events and a list of
golden topics together with their representatives,
candidates, and associated questions. Such dataset
would be a significant help in developing and
evaluating our algorithms. Moreover, if the dataset
becomes large enough, it might open doors to new
approaches like supervised learning.

Lastly, I would like to further analyse the
behavior of SlidoRank by testing the algorithm
in ’merge mode’ instead of only ’concat mode’,
evaluate precision & recall values, parallelize
the evaluator and test all combinations of all
parameters.

13 Acknowledgements
Finally, I would like to thank Daniela Jašš for all
her support and help during this Thesis and my
time at Slido. I also want to thank my colleagues
baran, kitkat, sweco, virpo and the rest of the Data
Team for their guidance, contributions and code
reviews and mrshu for being the best team leader.
Lastly I want to thank Dr. George Azzopardi and
Dr. Fadi Mohsen for academical supervision and
their feedback.

23

References
Random sentence generator. https:
//randomwordgenerator.com/sentence.php.
Accessed: 2022-05-01.

Roy hung, jaccard’s index in practice. https:
//royhung.com/jaccard-index. Accessed: 2022-
05-01.

Adrien Bougouin, Florian Boudin, B. D. (2013).
Topicrank: Graph-based topic ranking for
keyphrase extraction. International Joint Confer-
ence on Natural Language Processing (IJCNLP),
pages 543–551.

Berend, G. and Farkas, R. (2013). Singledoc-
ument keyphrase extraction for multidocument
keyphrase extraction. Computación y Sistemas,
page 17(2):179–186.

Bulgarov, F. and Caragea, C. (2015). A compar-
ison of supervised keyphrase extraction models.
In Proceedings of the 24th International Confer-
ence on World Wide Web, WWW ’15 Companion,
page 13–14, New York, NY, USA. Association for
Computing Machinery.

Campos, R., Mangaravite, V., Pasquali, A., Jorge,
A., Nunes, C., and Jatowt, A. (2020). Yake! key-
word extraction from single documents using mul-
tiple local features. Information Sciences, 509:257–
289.

Christian, H., Agus, M. P., and Suhartono, D.
(2016). Single document automatic text summa-
rization using term frequency-inverse document
frequency (tf-idf). ComTech: Computer, Math-
ematics and Engineering Applications, 7(4):285–
294.

Farnoush Bayatmakou, A. A. and Mohebi, A.
(2017). Automatic query-based keyword and
keyphrase extraction. In 2017 Artificial Intel-
ligence and Signal Processing Conference (AISP),
IEEE, page 325–330.

Hinton, G. E. (2012). A practical guide to train-
ing restricted boltzmann machines. In Neural
networks: Tricks of the trade, pages 599–619.
Springer.

Hulth, A. (2003). Improved automatic keyword
extraction given more linguistic knowledge. In
Proceedings of the 2003 Conference on Empirical
Methods in Natural Language Processing, page
216–223.

Khaled M Hammouda, D. N. M. and Kamel, M. S.
(2005). Corephrase: Keyphrase extraction for
document clustering. International workshop on
machine learning and data mining in pattern recog-
nition, Springer, page 265–274.

Muthmainnah, N. (2019). An effort to improve
students’ activeness at structure class using slido
app. JEES (Journal of English Educators Society),
4(1):1–7.

Pal, S. K. and Mitra, S. (1992). Multilayer per-
ceptron, fuzzy sets, classifiaction.

Rish, I. et al. (2001). An empirical study of the
naive bayes classifier. In IJCAI 2001 workshop
on empirical methods in artificial intelligence, vol-
ume 3, pages 41–46.

Rodríguez, P., Bautista, M. A., Gonzalez, J., and
Escalera, S. (2018). Beyond one-hot encoding:
Lower dimensional target embedding. Image and
Vision Computing, 75:21–31.

Rose, S., Engel, D., Cramer, N., and Cowley,
W. (2010). Automatic keyword extraction from
individual documents. Text mining: applications
and theory, 1(1-20):10–1002.

Shapira, O., Pasunuru, R., Dagan, I., and Ams-
terdamer, Y. (2021). Multi-Document Keyphrase
Extraction: A Literature Review and the First
Dataset. arXiv preprint arXiv:2110.01073.

Shobha S. Raskar, S. H. P. (2014). Keyphrase
extraction using supervise learning. International
Journal of Advanced Research in Computer and
Communication Engineering.

Sun, Chengyu, L. H. S. L. T. L. H. L. and Chi, L.
(2020). A review of unsupervised keyphrase ex-
traction methods using within-collection resources.
Symmetry 12(11).

Ulrich Schäfer, J. R. and Oepen, S. (2012). To-
wards an acl anthology corpus with logical docu-
ment structure. an overview of the acl 2012 con-
tributed task. in proceedings of the acl2012 special
workshop on rediscovering 50 years of discoveries.
Association for Computational Linguistics, page
88–97.

Wan, X. and Xiao, J. (2008). Collabrank: To-
wards a collaborative approach to single-document
keyphrase extraction. In Proceedings of the 22nd
International Conference on Computational Lin-
guistics, page 969–976.

Xing, W. and Ghorbani, A. (2004). Weighted
pagerank algorithm. In Proceedings. Second An-
nual Conference on Communication Networks and
Services Research, 2004., pages 305–314. IEEE.

24

https://randomwordgenerator.com/sentence.php
https://randomwordgenerator.com/sentence.php
https://royhung.com/jaccard-index
https://royhung.com/jaccard-index

A Appendix
Figure A.1 shows quantitative results - keyphrases
extracted from topic d31 from the MK-DUC-01
dataset (truncated at 20) from all five tested algo-
rithms including the golden set.

Figure A.1: Set of extracted keyphrases (trun-
cated version on 20) for all algorithms compared
to the golden set. Tested on topic d31 from the
MK-DUC-01 dataset.

25

	Introduction
	Problem definition and Motivation
	Main scientific challenges
	Aims & Objectives
	Overview of the proposed idea within Slido
	Report structure

	State-of-the-Art
	Search Terms
	Works on Multi-Document KE
	Evaluation of Multi-Document KE
	The state-of-the-art benchmark dataset for MDKE - MK-DUC-01
	Random sentences dataset

	Proposal
	Proposed algorithms
	Research questions

	Methods
	Overview
	Technology

	Experiments and Results
	Results

	Keyphrase Extraction methods
	TopicRank
	Implementation of TopicRank
	Preprocessing
	Candidate Extraction
	Candidate Clustering
	Graph-Based Ranking
	Keyphrase Selection

	TopicRank without PageRank - SlidoRank
	Alternative to the topic graph and PageRank
	Preprocessing and Candidate Extraction
	Candidate Clustering
	Keyphrase Selection
	Evaluation Benchmarks - generation 1

	SlidoRank, Mk. II
	Reject one-token candidates
	Optimizing the clustering threshold using Silhouette scores
	Redefinition of candidates through "Occurrences" class
	Improved jaccard distance computation
	Faster cluster formation
	Representative Selection
	Comparison of different representative selection algorithms
	Final results

	The Embeddings algorithm
	Word Embedding
	Outline of The Embeddings
	Generating candidate embeddings
	Language model selection

	Cluster centroids
	Centroid
	Cohesion

	Adding semantically similar candidates to clusters

	Results
	Hyperparameter search
	Language model influence
	SlidoRank (Mk. II) vs. Embeddings vs. TopicRank

	Conclusion
	Discussion
	Dataset bias
	Streamlit demo
	Summary

	Future work
	Acknowledgements
	References
	Appendix

