
MASTERS THESIS

From Knowledge Graph to Cognitive Model:
A Method for Identifying Task Skills

Author: Supervisors:
Ivana Akrum, BSc C. Hoekstra, MSc

Prof. Dr. N.A. Taatgen

A thesis submitted in fulfilment of the requirements
for the degree of Master of Science in

Computational Cognitive Science

July 18, 2022

i

UNIVERSITY OF GRONINGEN

Abstract
From Knowledge Graph to Cognitive Model:

A Method for Identifying Task Skills
by Ivana Akrum, BSc

When we learn new tasks, rather than starting from scratch, we often reuse skills that we have learned
previously. By integrating these previously learned skills in a new way, we can learn how to do new
tasks with little effort. In this research, I test a method aimed at identifying the skills reused between
tasks. More specifically, I use a knowledge graph as a tool for identifying reused skills. From this
knowledge graph, I built a cognitive model that shows how the identified skills can be integrated to
solve a new task. The final cognitive model could successfully solve a variety of related but distinct
tasks. This shows it is possible to use knowledge graphs to identify the skills reused between tasks.
This ability could have far-reaching implications: Knowing, in advance, the skills needed to success-
fully complete a new task may allow us to learn said task in an easier, more focused manner. Although
the validity of the described method should be further examined, the method provides a promising
step towards revolutionising education and how we approach learning.

ii

Acknowledgements
Generally, I am a very independent person. I do my work, and when I come across a pitfall, I try
to solve the problem by myself first and foremost. In a project such as this, where you are expected
to make your own decisions on how you tackle your work, proper guidance is nonetheless unmiss-
able. Even as an independent worker, I would not have been able to produce this thesis without the
help of my supervisors. I would like to thank Niels Taatgen primarily for always being available to
brainstorm with me. His quick correspondence was well-appreciated and although our meetings often
went overtime, Niels made the time for me. His input was invaluable and I appreciate it greatly.

I furthermore want to thank my second supervisor Corné Hoekstra for being there to offer a fresh
point of view. This was especially important in the cases where Niels and I were so well-aligned, we
could not see what the project would like from an outside point of view. Explaining my project and
my decisions to Corné helped me tremendously in making sense of it all. Importantly, it helped me
make sure my reasoning was sound and that my explanations were accessible.

Finally, I would like to thank my boyfriend for his support throughout my project. When things got
tough, he helped me centre myself. Thank you.

iii

Contents
Abstract i

Acknowledgements ii

1 Introduction 1

2 Theoretical Background 2
2.1 What Is a Skill? . 2
2.2 Why Identify Reused Skills? . 4
2.3 How to Identify Reused Skills? . 6

3 Problem Context 9
3.1 Description of the Dataset . 9
3.2 Pre-Processing . 11
3.3 Subsets of the Data . 13

4 Knowledge Graph 15
4.1 Original Knowledge Graph Algorithm . 15

4.1.1 The Logic Behind the Algorithm . 15
4.1.2 Its Core Functions . 17
4.1.3 The Main Workings of the Algorithm . 21
4.1.4 Drawing the Graph . 24

4.2 Intermediate Results . 25
4.2.1 Dataset 1 . 25
4.2.2 The Remaining Three Datasets . 30

4.3 Compensating for Order . 34
4.4 The Final Knowledge Graph . 35

5 Cognitive Modelling 39
5.1 Representing the Problems . 40
5.2 Model 0 . 43

5.2.1 Version 1 . 44
5.2.2 Version 2 . 48

5.3 Model 8 . 55
5.3.1 Finding Skill 8 . 56
5.3.2 Creating the Model . 58

5.4 Model Performance . 64

6 Discussion 67
6.1 Evaluation of Proposed Method . 67

6.1.1 The Knowledge Graph Algorithm . 67
6.1.2 The Cognitive Models . 69

6.2 Main Contributions . 72
6.3 Conclusion . 73

iv

Appendices 77
A Addendum to the Intermediate Results . 78

A.1 Problem 42: POGS . 78
A.2 The Circle Problems . 79

B Node Content of the Final Knowledge Graph . 83
B.1 Node 0 (0000000) . 83
B.2 Node 8 (0001000) . 84
B.3 Node 9 (0001001) . 85
B.4 Node 11 (0001011) . 86
B.5 Node 25 (0011001) . 87
B.6 Node 27 (0011011) . 88
B.7 Node 108 (1101100) . 89
B.8 Node 91 (1011011) . 90
B.9 Node 95 (1011111) . 91
B.10 Node 123 (1111011) . 92
B.11 Node 127 (1111111) . 93

C Model Code . 94
C.1 Model 0: Version 1 . 94
C.2 Model 0: Version 2 . 101
C.3 Model 8 . 113

1

1 Introduction
Life is a perpetual cycle of growth. Each time we learn something new, we are guided by our ex-
periences of the past (Middleton & Baartman, 2013; National Research Council, 2000; Thorndike,
1914/1999). The new experience, in turn, moves on to be a building stone for yet another learning
opportunity, and in this way, our minds continue to expand for the majority of our lives (Anokhin
et al., 1996; Costandi, 2016; Kempermann, 2006).

To optimise the learning process, it would be helpful to know which of a person’s previous experi-
ences are relevant when learning a new task. With a wide array of previous experiences, it is unlikely
that all will be relevant for any one task. If, however, it were possible to somehow identify the skills
that are being reused across tasks, this would greatly simplify the learning process. Learning a new
task would become a matter of comparing the skills one already possesses from previous experiences
to those they have yet to learn.

To that end, this thesis proposes a new method for identifying the reused skills underlying tasks. In
particular the method proposed in this thesis relies on using knowledge graphs as a tool for identify-
ing the skills reused between tasks. By building a cognitive model from the skills identified by the
knowledge graph, this thesis aims to answer the research question: “Can knowledge graphs be used
to identify the skills reused between tasks?”

If a cognitive model can successfully be built on the basis of the skills identified by the knowledge
graph, it is suggested that indeed, knowledge graphs can be used to identify the skills reused between
tasks.

In the rest of this thesis, the full method is outlined for using knowledge graphs in this novel way.
Particularly, the thesis will begin with an overview of the theoretical background. As will be shown,
this theory neatly aligns with the proposed method in this thesis, while also highlighting the impor-
tance of furthering our understanding of skill reuse between tasks.

After the theoretical background leading up to this thesis has been established, the rest of the thesis
will focus on using knowledge graphs as a tool for identifying task skills. In Section 3 Problem
Context, the data set that was used in this thesis is given. An overview is given of what the data
looked like, and it is explained how the data was processed for the subsequent data analysis. The
data analysis procedure is discussed further in Section 4. This section outlines how the knowledge
graph was created and what the final knowledge graph looked like. Section 5 goes on to explain how
the information from the knowledge graph was used to create a set of two cognitive models. After
an analysis of the results of the cognitive models, the Discussion couples these results back to the
research question proposed here. At the end of this section, some concluding remarks are given about
the quality of the thesis and the future of the proposed method therein.

2

2 Theoretical Background
2.1 What Is a Skill?

If the aim of this thesis is to identify the skills underlying tasks, then it is imperative we begin by es-
tablishing a sound and concise definition of what a skill is. In The skill approach in education: From
theory to practice, Güneş (2018) gives one such definition. She explains how the definition of a skill
has changed over time from a “collection of behaviours” to “a collection of knowledge and cognitive
processes” (p. 2). This shift in the concept of what a skill is closely aligns with the equivalent shift
in the field of psychology as a whole, which moved away from behaviourism in the late 1900s in
favour of the cognitive movement (Miller, 2003). Following this shift in its definition, Güneş (2018)
concludes that a skill can be defined as “the ability to transfer knowledge into practice to perform a
task or duty” (p. 4).

This definition touches upon some interesting characteristics of a skill. Firstly, it highlights that there
is some knowledge component to a skill, but that this knowledge component on its own does not
define a skill. In fact, Güneş is neither the first nor the last to propose this distinction between knowl-
edge and skills.

In long-term memory, for example, it has long been proposed that factual knowledge is stored sep-
arately from procedural knowledge in different memory systems (Marilee, 1999). A distinction is
made between semantic memory, the general information one knows about the world, and procedural
memory, memories about sequences of actions that work towards some goal. Equating this to the
definition of a skill as given by Güneş (2018), the idea of semantic memory matches more closely to
Güneş’ definition of knowledge, while the idea of procedural memory aligns better with her definition
of a skill. Not only does the definition of procedural memory align with Güneş’ definition of a skill,
it also concretizes this definition further. It moves away from a vague sense of “some ability” to a
concrete set of actions: procedures. Procedures are instructions on how to turn theoretical knowledge
into practice, and as such, it is possible to define skills in terms of procedural knowledge.

In fact, many cognitive architectures (frameworks for unified theories of cognition; Newell, 1990)
take precisely this approach to defining skills. From SOAR (Newell, 1990) to ACT-R (Anderson
et al., 2004) to EPIC (Kieras & Meyer, 1997), cognitive models written in these architectures have
the same commonality: they all express skills through procedures or production rules (Chong et al.,
2007; Kotseruba & Tsotsos, 2020). Such production rules typically consist of conditions and actions.
They trigger when their conditions are met, and once triggered, they execute their associated actions.

Yet despite of the fact that many cognitive architectures thus implicitly define skills through produc-
tion rules, those same architectures do not make this definition explicit. There is no explicit mention
of ‘skills’ at all in either ACT-R, SOAR, or EPIC (Anderson et al., 2004; Kieras & Meyer, 1997;
Newell, 1990). Rather, the production rules work directly towards achieving the desired task, and
there is no need for defining how the production rules relate to the concept of skills. For the develop-
ment of these cognitive architectures, that is arguably a worry less, but for defining what a skill is, it
is clearly a cause for concern.

Luckily, there are cognitive architectures that do explicitly define skills. Two examples of such ar-
chitectures are PRIMs (Taatgen, 2013) and ICARUS (Langley & Choi, 2006). In PRIMs, skills are

2 THEORETICAL BACKGROUND 3

defined by a set of production rules (which are called operators in the PRIMs terminology). Listing
1 shows an example of a PRIMs skills. Specifically, the example is showing the iterate skill, which
is one of four skills that make up a counting model (a model that can count from 1 up to 10). The
skill is intentionally general, so that it is also applicable outside the counting model it was designed
for. In the listing, the content of the operators is intentionally left out, but each operator consists of a
set of conditions and a set of actions (as per the description of a production rule). This explicit skill
definition re-iterates the idea of defining skills through procedural knowledge, but it is not the only
way skills can be defined.

Listing 1: Schematic of an example skill in the PRIMs architecture, adapted from Taatgen (2022).

1 define skill iterate {
2 // Start iteration
3 operator start -iteration {
4 ...
5 }
6
7 // Do something with the current items
8 operator do-sub-skill {
9 ...

10 }
11
12 // Iterate as long as the goal is not met
13 operator retrieve -next {
14 ...
15 }
16
17 // Stop when reaching final match
18 operator final {
19 ...
20 }
21
22 // If the iteration fails, do something else
23 operator final -fail {
24 ...
25 }
26 }

To give an alternative, In ICARUS, skills are characterised by their objective (Langley & Choi, 2006).
Once an ICARUS skill has been executed, it will have had a predefined effect on the state of its model.
Through that effect, the skill achieves its objective. However, not all ICARUS skills can be executed.
ICARUS makes a crucial distinction between primitive and non-primitive skills. Only the primitive
skills can be executed, and they are defined by a set of actions that occur once their conditions are
met (and are thus comparable to production rules).

The non-primitive skills cannot be executed. Rather than actions, these skills are defined through sub-
goals that must be achieved in a certain order to actualize the skill’s objective. Each of the sub-goals,
in turn, corresponds to the objective of a different, predefined skill. The objective of a non-primitive

2 THEORETICAL BACKGROUND 4

skill can thus be achieved by going through the skills that can realize its sub-goals until a primitive
skill is reached that can be executed.

The distinction made between primitive and non-primitive skills is particularly interesting because it
addresses the problem of scope. It is useful to be able to define a skill through procedures. However,
in defining skills in this way, another question becomes evident. Namely: How do we know how
many procedures go into one skill? Which procedures belong to which skills, and, more generally,
how can the scope of a skill be determined? ICARUS tackles this problem by making a distinction
between primitive and non-primitive skills. PRIMs uses a different approach.

Originally, PRIMs was designed to address the phenomenon of skill transference (Taatgen, 2013).
It has been hypothesised since the times of Ancient Greece that there is some type of transfer that
occurs between tasks. Plato (257BC/2003, as cited by Inglis & Attridge, 2017) surmised that the
study of mathematics also helps students develop their general thinking abilities. Later on, Thorndike
(1914/1999) insisted that such transfer only occurs if the knowledge elements between the different
tasks are identical. In his work, Thorndike gives various examples of situations that would and would
not incur transfer, according to this theory of identical elements. Singley & Anderson (1985) further
investigated transfer in the context of text-editing in the hopes of better understanding the identical
elements proposed by Thorndike. They postulate that production rules form this identical element,
and that transfer occurs when two tasks rely on the same set of production rules. Finally, we return to
Taatgen (2013), which argues that the production rules are too specific to form Thorndike’s identical
element. Cognitive architectures that rely solely on production rules, Taatgen argues, are proficient
at showing the cognitive processes behind single tasks but are not designed to show how skills can
be reused between tasks. Taatgen himself proposes the primitive information processing elements
(PRIMs) as the unit of cognitive skills and designed the PRIMs architecture specifically to study skill
transfer in more detail.

Regardless of what the identical element is that causes transfer to happen between tasks, what all
these theories have in common is that they show, in the first place, that there is such a thing as transfer
between tasks. Although the exact make-up of a skill (down to its smallest element) is still under
debate, what is unequivocal is that skills are reused between tasks. Not only that, there is also a
consensus in the literature that skills, at some dimension, consist of procedures. As such, this thesis
will not attempt to define skills down to their smallest unit. Instead, a skill is defined as the largest
unit of procedural knowledge that can be reused between tasks (Hoekstra et al., 2020). This
definition of skill will be upheld throughout this thesis.

2.2 Why Identify Reused Skills?

Having defined what a skill is, the next question to address is: How can we identify which skills
are reused between tasks? This is an important question to tackle, because research shows that skill
transfer does not always have a positive effect on the main task.

A famous example of this is the Stroop effect. By presenting participants with two concurrent but
conflicting stimuli, Stroop (1935) showed how two tasks (identifying a colour and reading a word)
can effect each other negatively. There exist a variety of theories as for why this negative effect occurs
(see e.g. Stirling, 1979, or Cohen et al., 1990).

2 THEORETICAL BACKGROUND 5

One interesting theory is given by Besner et al. (1997). Although the main purpose of Besner et al.
was to contest the theory of automaticity as an explanation for the Stroop effect, in their concluding
remarks, they state that, evidently, the literal context of the task is more powerful than the instruc-
tions the participants were given. Potentially attributing the Stroop effect to the transfer appropriate
processing theory (Morris et al., 1977), Besner et al. hypothesise that the task context of the Stroop
task activates the “mental set” for reading rather than for identifying colours. Of course, they concede
that this theory begets more questions than it does answers, on accounts of the need to then identify
exactly what such a mental set might look like.

This thesis argues that mental set is characterised (at least partially) by skills. Evidence for this theory
comes from Hoekstra et al. (2020), who investigated skill reuse within the attentional blink paradigm.
The attentional blink is a phenomenon that has been observed to occur in Rapid Serial Visual Pre-
sentation (RSVP) tasks. Raymond et al. (1992) showed that participants were likely to miss a probe
if it was presented between 180 to 450 milliseconds after a target stimuli within a visual stream of
distractors. This phenomenon was dubbed the ‘attentional blink’.

In lieu of the discovery of the attentional blink, Ferlazzo et al. (2007) found that the phenomenon
could be mitigated through strategy. By manipulating the experimental instructions participants were
given, they showed (over a series of three experiments) that the attentional blink could be reduced by
promoting participants to use one strategy over another. In this way, the occurrence of the attentional
blink can be likened to the Stroop effect, in that both phenomena are evidently influenced by the task
context.

The question that naturally arises from this influence of the task context is ‘why?’ Why does a change
in instructions have an effect on whether negative transfer does or does not occur? As per Hoekstra
et al. (2020), one explanation is that instructions influence the set of skills that participants choose
to use. Through a cognitive model built in PRIMs, Hoekstra et al. show that the occurrence of the
attentional blink is dependent on the skills the model reuses from other tasks. Thus, negative transfer
could be explained by people reusing skills that are not beneficial for the new task context.

Following this possible explanation, it becomes evident that it is quite important to know which skills
people reuse between tasks. After all, the choice of reused skills could make the difference between
succeeding or failing at a task.

Since skills are fundamentally a cognitive phenomenon (or, a collection of knowledge and cognitive
processes, as per Güneş, 2018), it makes sense that they are often identified through cognitive models.
However, as was explained in the previous subsection, most cognitive models do not make the skills
that go into a task explicit. They rely rather on sets of instructions like procedures to explain how
tasks can be completed. Although there are such cognitive architectures that do make skills explicit
(and in doing so, make it easier to model transfer), there is at least one limitation to identifying skills
through cognitive modelling alone.

The work of Hoekstra et al. (2020) highlights this limitation well. The attentional blink model Hoek-
stra et al. create is made up of four general skills. These general skills were identified on the basis
of previous work done on the attentional blink paradigm. Since the attentional blink is a well-known
phenomenon, there is a lot of literature that dissects the cognitive and neuronal basis of the attentional
blink, and as such, the model built by Hoekstra et al. has a strong theoretical basis. Yet what of tasks

2 THEORETICAL BACKGROUND 6

that lack such a strong body of literature? In those cases, and from a general perspective as well,
modellers will have to make careful considerations about what skills they include in their cognitive
models, and what theories they base these skills on.

Mainly, cognitive models are examples of deductive research. They are built off existing theories
about how certain cognitive phenomena work. Through the cognitive model, the existing theories
can be tested by comparing the performance of the model against human performance. In this way,
cognitive models (that simulate human intelligence) are designed to test existing theories, rather than
generate new ones. What this means within the context of skills is that a cognitive modeller does not
know in advance what skills should go into their model. The purpose of the model is rather to test a
set of skills, once they have been identified through a different method.

Finding a method for identifying reused skills is thus not only useful from a learning perspective, it
could also play an important role for skill-based cognitive modelling.

2.3 How to Identify Reused Skills?
If cognitive models are not an appropriate tool for identifying skills, then what other methods could
be used for this purpose? Returning to the definition of a skill, it was claimed that a skill could be
defined through procedural knowledge. While procedural knowledge can indeed be modelled through
cognitive models, knowledge overall can also be represented by knowledge graphs.

Knowledge graphs, or knowledge bases (depending on whether there is a graphical or textual repre-
sentation), are commonly-used methods for providing structure to knowledge (Ji et al., 2022). Figure
1 show how these methods achieve that. Factual knowledge is broken down into a subject, an object,
and a predicate that connects these two. Knowledge bases then represent this knowledge in the form
of triplets, while knowledge graphs use a visual representation that is shaped like a graph structure.

JI et al.: SURVEY ON KNOWLEDGE GRAPHS: REPRESENTATION, ACQUISITION, AND APPLICATIONS 495

Fig. 1. Example of knowledge base and knowledge graph. (a) Factual triples
in knowledge base. (b) Entities and relations in knowledge graph.

it can be taken as a knowledge base for interpretation
and inference over facts [8]. Examples of knowledge base
and knowledge graph are illustrated in Fig. 1. Knowl-
edge can be expressed in a factual triple in the form of
(head, relation, tail) or (subject, predicate, object)
under the resource description framework (RDF), for example,
(Albert Einstein, WinnerOf, Nobel Prize). It can also be
represented as a directed graph with nodes as entities and
edges as relations. For simplicity and following the trend of
the research community, this article uses the terms knowledge
graph and knowledge base interchangeably.

Recent advances in knowledge-graph-based research focus
on knowledge representation learning (KRL) or knowledge
graph embedding (KGE) by mapping entities and relations
into low-dimensional vectors while capturing their semantic
meanings [5], [9]. Specific knowledge acquisition tasks include
knowledge graph completion (KGC), triple classification,
entity recognition, and relation extraction. Knowledge-aware
models benefit from the integration of heterogeneous infor-
mation, rich ontologies and semantics for knowledge repre-
sentation, and multilingual knowledge. Thus, many real-world
applications, such as recommendation systems and ques-
tion answering, have been brought about prosperity with
the ability of commonsense understanding and reasoning.
Some real-world products, for example, Microsoft’s Satori and
Google’s Knowledge Graph [3], have shown a strong capacity
to provide more efficient services.

This article conducts a comprehensive survey of current lit-
erature on knowledge graphs, which enriches graphs with more
context, intelligence, and semantics for knowledge acquisition
and knowledge-aware applications. Our main contributions are
summarized as follows.

1) Comprehensive Review: We conduct a comprehensive
review of the origin of knowledge graphs and modern
techniques for relational learning on knowledge graphs.
Major neural architectures of knowledge graph repre-
sentation learning and reasoning are introduced and
compared. Moreover, we provide a complete overview
of many applications in different domains.

2) Full-View Categorization and New Taxonomies: A
full-view categorization of research on knowledge graph,
together with fine-grained new taxonomies, is pre-
sented. Specifically, at the high level, we review the
research on knowledge graphs in four aspects: KRL,
knowledge acquisition, temporal knowledge graphs, and
knowledge-aware applications. For KRL, we further pro-
pose fine-grained taxonomies into four views, including
representation space, scoring function, encoding models,
and auxiliary information. For knowledge acquisition,
KGC is reviewed under embedding-based ranking, rela-
tional path reasoning, logical rule reasoning, and metare-
lational learning; entity acquisition tasks are divided into

entity recognition, typing, disambiguation, and align-
ment; and relation extraction is discussed according to
the neural paradigms.

3) Wide Coverage on Emerging Advances: We pro-
vide wide coverage on emerging topics, including
transformer-based knowledge encoding, graph neural
network (GNN)-based knowledge propagation, rein-
forcement learning (RL)-based path reasoning, and
metarelational learning.

4) Summary and Outlook on Future Directions: This survey
provides a summary of each category and highlights
promising future research directions.

The remainder of this survey is organized as follows. First,
an overview of knowledge graphs, including history, notations,
definitions, and categorization, is given in Section II. Then,
we discuss KRL in Section III from four scopes. Next, our
review goes to tasks of knowledge acquisition and tempo-
ral knowledge graphs in Sections IV and V. Downstream
applications are introduced in Section VI. Finally, we discuss
future research directions, together with a conclusion in the
end. Other information, including KRL model training and
a collection of knowledge graph data sets and open-source
implementations, can be found in the appendixes.

II. OVERVIEW

A. Brief History of Knowledge Bases

Knowledge representation has experienced a long-period
history of development in the fields of logic and AI. The
idea of graphical knowledge representation first dated back to
1956 as the concept of semantic net proposed by Richens [10],
while the symbolic logic knowledge can go back to the
General Problem Solver [1] in 1959. The knowledge base
is first used with knowledge-based systems for reasoning
and problem-solving. MYCIN [2] is one of the most famous
rule-based expert systems for medical diagnosis with a knowl-
edge base of about 600 rules. Later, the community of
human knowledge representation saw the development of
frame-based language, rule-based, and hybrid representations.
Approximately at the end of this period, the Cyc project1

began, aiming at assembling human knowledge. RDF2 and
Web Ontology Language (OWL)3 were released in turn and
became important standards of the Semantic Web.4 Then,
many open knowledge bases or ontologies were published,
such as WordNet, DBpedia, YAGO, and Freebase. Stokman
and Vries [7] proposed a modern idea of structure knowledge
in a graph in 1988. However, it was in 2012 that the concept
of knowledge graph gained great popularity since its first
launch by Google’s search engine,5 where the knowledge
fusion framework called Knowledge Vault [3] was proposed
to build large-scale knowledge graphs. A brief road map of
knowledge base history is illustrated in Fig. 1 in Appendix A in
the Supplementary Material. Many general knowledge graph
databases and domain-specific knowledge bases have been
released to facilitate research. We introduce more general and
domain-specific knowledge bases in Appendixes F-A1 and
F-A2 in the Supplementary Material.

1http://cyc.com
2Released as W3C recommendation in 1999 available at

http://w3.org/TR/1999/REC-rdf-syntax-19990222
3http://w3.org/TR/owl-guide
4http://w3.org/standards/semanticweb
5http://blog.google/products/search/introducing-knowledge-graph-things-not

Authorized licensed use limited to: University of Groningen. Downloaded on March 23,2022 at 14:08:52 UTC from IEEE Xplore. Restrictions apply.

(a) Knowledge base.

JI et al.: SURVEY ON KNOWLEDGE GRAPHS: REPRESENTATION, ACQUISITION, AND APPLICATIONS 495

Fig. 1. Example of knowledge base and knowledge graph. (a) Factual triples
in knowledge base. (b) Entities and relations in knowledge graph.

it can be taken as a knowledge base for interpretation
and inference over facts [8]. Examples of knowledge base
and knowledge graph are illustrated in Fig. 1. Knowl-
edge can be expressed in a factual triple in the form of
(head, relation, tail) or (subject, predicate, object)
under the resource description framework (RDF), for example,
(Albert Einstein, WinnerOf, Nobel Prize). It can also be
represented as a directed graph with nodes as entities and
edges as relations. For simplicity and following the trend of
the research community, this article uses the terms knowledge
graph and knowledge base interchangeably.

Recent advances in knowledge-graph-based research focus
on knowledge representation learning (KRL) or knowledge
graph embedding (KGE) by mapping entities and relations
into low-dimensional vectors while capturing their semantic
meanings [5], [9]. Specific knowledge acquisition tasks include
knowledge graph completion (KGC), triple classification,
entity recognition, and relation extraction. Knowledge-aware
models benefit from the integration of heterogeneous infor-
mation, rich ontologies and semantics for knowledge repre-
sentation, and multilingual knowledge. Thus, many real-world
applications, such as recommendation systems and ques-
tion answering, have been brought about prosperity with
the ability of commonsense understanding and reasoning.
Some real-world products, for example, Microsoft’s Satori and
Google’s Knowledge Graph [3], have shown a strong capacity
to provide more efficient services.

This article conducts a comprehensive survey of current lit-
erature on knowledge graphs, which enriches graphs with more
context, intelligence, and semantics for knowledge acquisition
and knowledge-aware applications. Our main contributions are
summarized as follows.

1) Comprehensive Review: We conduct a comprehensive
review of the origin of knowledge graphs and modern
techniques for relational learning on knowledge graphs.
Major neural architectures of knowledge graph repre-
sentation learning and reasoning are introduced and
compared. Moreover, we provide a complete overview
of many applications in different domains.

2) Full-View Categorization and New Taxonomies: A
full-view categorization of research on knowledge graph,
together with fine-grained new taxonomies, is pre-
sented. Specifically, at the high level, we review the
research on knowledge graphs in four aspects: KRL,
knowledge acquisition, temporal knowledge graphs, and
knowledge-aware applications. For KRL, we further pro-
pose fine-grained taxonomies into four views, including
representation space, scoring function, encoding models,
and auxiliary information. For knowledge acquisition,
KGC is reviewed under embedding-based ranking, rela-
tional path reasoning, logical rule reasoning, and metare-
lational learning; entity acquisition tasks are divided into

entity recognition, typing, disambiguation, and align-
ment; and relation extraction is discussed according to
the neural paradigms.

3) Wide Coverage on Emerging Advances: We pro-
vide wide coverage on emerging topics, including
transformer-based knowledge encoding, graph neural
network (GNN)-based knowledge propagation, rein-
forcement learning (RL)-based path reasoning, and
metarelational learning.

4) Summary and Outlook on Future Directions: This survey
provides a summary of each category and highlights
promising future research directions.

The remainder of this survey is organized as follows. First,
an overview of knowledge graphs, including history, notations,
definitions, and categorization, is given in Section II. Then,
we discuss KRL in Section III from four scopes. Next, our
review goes to tasks of knowledge acquisition and tempo-
ral knowledge graphs in Sections IV and V. Downstream
applications are introduced in Section VI. Finally, we discuss
future research directions, together with a conclusion in the
end. Other information, including KRL model training and
a collection of knowledge graph data sets and open-source
implementations, can be found in the appendixes.

II. OVERVIEW

A. Brief History of Knowledge Bases

Knowledge representation has experienced a long-period
history of development in the fields of logic and AI. The
idea of graphical knowledge representation first dated back to
1956 as the concept of semantic net proposed by Richens [10],
while the symbolic logic knowledge can go back to the
General Problem Solver [1] in 1959. The knowledge base
is first used with knowledge-based systems for reasoning
and problem-solving. MYCIN [2] is one of the most famous
rule-based expert systems for medical diagnosis with a knowl-
edge base of about 600 rules. Later, the community of
human knowledge representation saw the development of
frame-based language, rule-based, and hybrid representations.
Approximately at the end of this period, the Cyc project1

began, aiming at assembling human knowledge. RDF2 and
Web Ontology Language (OWL)3 were released in turn and
became important standards of the Semantic Web.4 Then,
many open knowledge bases or ontologies were published,
such as WordNet, DBpedia, YAGO, and Freebase. Stokman
and Vries [7] proposed a modern idea of structure knowledge
in a graph in 1988. However, it was in 2012 that the concept
of knowledge graph gained great popularity since its first
launch by Google’s search engine,5 where the knowledge
fusion framework called Knowledge Vault [3] was proposed
to build large-scale knowledge graphs. A brief road map of
knowledge base history is illustrated in Fig. 1 in Appendix A in
the Supplementary Material. Many general knowledge graph
databases and domain-specific knowledge bases have been
released to facilitate research. We introduce more general and
domain-specific knowledge bases in Appendixes F-A1 and
F-A2 in the Supplementary Material.

1http://cyc.com
2Released as W3C recommendation in 1999 available at

http://w3.org/TR/1999/REC-rdf-syntax-19990222
3http://w3.org/TR/owl-guide
4http://w3.org/standards/semanticweb
5http://blog.google/products/search/introducing-knowledge-graph-things-not

Authorized licensed use limited to: University of Groningen. Downloaded on March 23,2022 at 14:08:52 UTC from IEEE Xplore. Restrictions apply.

(b) Knowledge graph.

Figure 1: Generic examples of knowledge representation through knowledge graphs/bases (Ji et al.,
2022). These examples represent factual knowledge on Albert Einstein.

Although Figure 1 thus shows that knowledge graphs can be used to represent factual knowledge, the
interest of this thesis is in procedural knowledge rather than factual knowledge. Thankfully, Falmagne
et al. (1990) show that knowledge graphs can also be used to represent knowledge states. Falmagne
et al. describe a knowledge state as the set of problems an individual is capable of solving. Following

2 THEORETICAL BACKGROUND 7

this definition, the knowledge space of a specific individual is defined as the collection of all their
knowledge states. Although Falmagne at al. do not attach a cognitive interpretation to their concepts
of knowledge space and knowledge states, they do concede that it is possible to interpret a knowledge
space in terms of its underlying skills.

In this interpretation, it is assumed that each problem has an underlying set of skills that are required
to solve said problem. This interpretation gives way to the idea of a hierarchy among the problems. If
an individual has all the skills to solve a problem p, and a problem p′ relies on that same set of skills,
then observing that the individual can solve the problem p will automatically imply that they should
also be able to solve the problem p′.

If the concept of a ‘problem’ is replaced by that of a task, then it is evident from this interpretation of
the knowledge space that identifying the skills reused between tasks requires one to first identify the
relationship between the tasks themselves. In other words, it is necessary to first build the knowledge
space, before it is possible to make inferences about the skills underlying the knowledge space.

Falmagne et al. (1990) propose that the knowledge space can be built by a combination of expert
knowledge and empirical evidence. For the expert knowledge, they propose that an expert answers
the question: Does failing task t entail that an individual will also fail task t ′? In lieu of (or in addition
to) an expert, the empirical evidence can be used to answer this question. Performance data can be
analysed to see which tasks are often solved together and which tasks do not appear to be related.

Rozestraten (2021) achieves precisely this. Rozestraten creates an algorithm that uses accuracy data
to determine the hierarchy between tasks. Specifically, she looks at three different data sets, each
of which contains a variety of mathematical problems. For each data set, Rozestraten generates a
knowledge graph that represents the hierarchy between the problems.

5 KNOWLEDGE GRAPH ALGORITHM APPLIED TO MULTIPLE DATA SETS

Figure 17: Knowledge graph of the TIMSS math workbook 1 train set that was clustered into 622 clusters
and a value of 4 for strictness was applied. The nodes represent each question in the workbook. The
directed edges illustrate how the questions are related to each other: a question is prior knowledge to
another if it has an out-going edge to another question.

Figure 18: Knowledge graph of the TIMSS math workbook 1 test set that was clustered into 622 clusters
and a value of 4 for strictness was applied. The nodes represent every question in the workbook. The
directed edges illustrate how the questions are related to each other: a question is prior knowledge to
another if it has an out-going edge to another question.

35

(a) The knowledge graph Rozestraten (2021) gener-
ated on the basis of the TIMSS data set (Interna-
tional Association for the Evaluation of Educational
Achievement (IEA), 2008).

5 KNOWLEDGE GRAPH ALGORITHM APPLIED TO MULTIPLE DATA SETS

Data
set Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

Train 0.46 0.45 0.22 0.24 0.64 0.49 0.57 0.72 0.85 0.39 0.75 0.8 0.6
Test 0.46 0.46 0.21 0.23 0.64 0.48 0.56 0.72 0.85 0.39 0.75 0.78 0.59

Data
set Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25

Train 0.46 0.47 0.57 0.43 0.56 0.54 0.61 0.49 0.41 0.38 0.64 0.55
Test 0.46 0.45 0.55 0.44 0.57 0.54 0.62 0.5 0.43 0.38 0.61 0.55

Table 3: Accuracy scores from TIMSS math workbook 1 train and test data set.

that question 9 serves as prior knowledge to questions in which the same skill is required and therefore
the questions are expected to be similar but more difficult. Table 4 (Appendix B), illustrates that the
questions 18-23 are all labelled in the content domain as Geometric Shapes and Measures. In both
graphs (Figures 17 and 18), question 9 has outgoing edges to the questions: 18, 19, 20 and 21. Questions
22 and 23 receive an in-going edge from question 20 (Figure 19), which implies that the skills required
for answering question 9 and question 20 together are required for solving the questions 22 and 23. The
connection from 20 to 22 can be explained because the questions 19-22 are follow-up questions (e.g.,
1A-1D) for which the same introduction story was used. For the questions 19-22, the subjects were given
six cardboard figures of two unique shapes, and the subjects were expected to create four different figures
that fulfilled the given requirements. The questions 21 and 22 were found to be more challenging than

Figure 19: Overview of the questions that serve as prior knowledge to the questions 22 and 23 in both
train en test results. Each assignment of the questions is briefly described. Other in- or out-going edges
from the questions 9, 8, 11, 12, and 20 are not included for clarity.

36

(b) A subset of some of the problems in the knowl-
edge graph (2a) and their relationships.

Figure 2: Some results from Rozestraten (2021).

Figure 2 shows the results for one of the three data sets Rozestraten (2021) analysed. Figure 2a shows

2 THEORETICAL BACKGROUND 8

the knowledge graph that was generated on the basis of the TIMSS data set (International Associa-
tion for the Evaluation of Educational Achievement (IEA), 2008). Each node represents a problem
in the data. Figure 2b takes a closer look at a specific subset of the problems and includes the actual
problems students saw for reference.

While Figure 2a clearly demonstrates the hierarchy between the questions through directed edges,
Figure 2b is especially useful for the interpretation of this hierarchy. It is visible that question 9 is
required to solve question 20, and that question 20, in turn, is required to solve questions 22 and
23. Other questions that contribute to questions 22 and 23 are questions 8, 11, and 12. From a skill
perspective, this means that some of the skills from questions 20, 8, 11, and 12 are all reused to solve
questions 22 and 23.

The hierarchical property as explained by Falmagne et al. (1990) is also visible in the results from
Rozestraten (2021). After all, it can be concluded from Figure 2b that someone that could e.g. solve
question 20 could also solve question 9. The underlying explanation for this is that question 9 evi-
dently relies on a subset of the skills that question 20 relies on.

Rozenstraten’s analysis already goes a long way in achieving the outcome desired from this thesis.
Figure 2 shows that knowledge graphs can be used to a) create a knowledge space and b) show how
tasks reuse skills. Rozestraten herself concludes, however, that knowledge graphs are not sufficient
for identifying the skills reused between tasks. They can show the task hierarchy, but from this, con-
crete skills cannot be identified (Rozestraten, 2021).

In this thesis, I propose that this limitation of knowledge graphs might be overcome by combining
the knowledge graph approach with cognitive modelling. If skills can be identified on the basis of
knowledge graphs generated from performance data, then cognitive models may be used to validate
these skills. In this way, it might be possible to use knowledge graphs after all to identify the skills
reused between tasks.

To answer the research question “Can knowledge graphs be used to identify the skills reused be-
tween tasks?”, I will build onto the work done by Rozestraten (2021). A new version is created of
the knowledge graph algorithm (the algorithm that generates the knowledge graph), which is subse-
quently tested with a new data set. Skills will be identified on the basis of the generated knowledge
graph (if possible), and they will be validated using cognitive models. If the method proposed in this
thesis shows that knowledge graphs can be used as effective tools to identify the skills reused between
tasks, this would not only be beneficial for how people approach learning, it would also help guide
cognitive modellers in their task of building skill-based cognitive models.

9

3 Problem Context
3.1 Description of the Dataset

As was explained in the Theoretical Background transfer happens between a variety of tasks, both in
positive and negative contexts. Given this property of transfer, the hope is that the method described
in this thesis will be applicable for a variety of task domains. Nonetheless, for the creation and testing
of the method, a specific task domain must be chosen. Ideally, the chosen task domain should be
small in scope with a very specific focus. It is hypothesised that tasks in more focused task domains
reuse a smaller number of skills between them, making those skills easier to identify. Since the skills
identified by the knowledge graph must also be validated through cognitive models, it would be useful
to only tackle a small set of skills for the sake of feasibility. If the method proposed in this thesis is
shown to work well for a small task domain that contains relatively little skills, future work could
investigate its use for larger task domains as well.

Given the desire to first test the described method on a smaller task domain, this thesis focuses on the
domain of geometry. Specifically, the knowledge graph method is tested using the ‘Geometry Area
(1996-97)’ data set, which is available for public use via DataShop (Koedinger et al., 2010). The data
set contains data from the area unit of a Geometry Cognitive Tutor course that was given to students in
the school year 1996 to 1997. Figure 3 shows a more recent version of that Geometry Cognitive Tutor
course. The program offers students an environment for solving various geometry problems, while
simultaneously keeping track of their cognitive progress (i.e. what factual/procedural knowledge they
possess at any given point in time).

Figure 2. A screen shot of the problem Circle N present in the area unit of the Geometry Cognitive Tutor. In Question 1, students are
given the area of the circle and must find the radius, diameter, and circumference. In Question 2, students are given the circumference
and must find the radius, diameter, and area. The Hint message is in response to a student hint request for the highlighted cell.

“smoothness” criteria. The decompose KC learning curve appears
to be declining in error rate and, correspondingly, the slope
parameter is greater than zero indicating an improvement in the
model. The Subtract KC curve is not declining but it is already at
a low error rate from the start, so this also indicates an
improvement in the model. Such a pattern indicates the KC is
already known and mastered, therefore, little to no learning is
expected. The story for the new compose-by-addition KC is mixed
– while smoother, it is not declining and not already low. It might
be possible to make further improvements in this KC.

The decompose KC results are quite different from the other two
newly labeled KCs and the original KC (ALT:COMPOSE-BY-
ADDITION) with a much higher initial error rate (57%) and a
declining curve (intercept = .36, slope = .15). Given these results
and the lack of mastery on the decompose KC after six
opportunities, we recommend a higher concentration of
decomposition problems with additional instructional aids such as
worked examples, specific hints, and problems that isolate
practice on this skill [15]. These results also indicate less practice
is needed on the Subtract KC and corresponding problem steps
could be reduced or even eliminated from the curriculum.

The statistical fit (shown in the blue lines in Figure 3) is based on
the Additive Factors Model described above. Models are
evaluated using AIC, BIC, and 10-fold cross validation. We report
the root mean-square error (RMSE) averaged over the ten test sets
in the cross validation.

For this dataset, the best models according to BIC and cross
validation are ones that incorporate the distinction between
unscaffolded (decompose) and scaffolded problem steps. More
complexity, (e.g., models with 12 and 13 KCs) pays off relative to
a simpler model with 10 KCs. But more complexity is not always

better. The Original production rule model in the tutor had 15
skills, yet according to BIC and cross validation measures the
simpler models with 12 and 13 skills are better predictors.

Figure 3. A knowledge component (KC) with a non-smooth
learning curve (see top half of the figure) is replaced in an
improved student model with three new KCs with smoother
curves (see bottom half of the figure).

There are a couple instructional consequences of the fact that the
decompose skill was confounded with performing scaffolded
decomposition and, even, with simple subtraction. First, students
were able to give the appearance of mastery because they were
essentially given credit for this more complex skill when they
successfully performed the two simpler skills. It is possible for
students to graduate on the merged skill by only getting scaffolded
decomposition and subtraction steps correct and never or rarely
getting an unscaffolded decompose step correct (the tutor’s
knowledge tracing algorithm allows for an occasional slip).

Figure 3: A screenshot of (a more recent version) of the Geometry Cognitive Tutor course that was
used to generate the Geometry Area (1996-97) data set (Koedinger et al., 2012).

3 PROBLEM CONTEXT 10

Figure 3 furthermore shows the cognitive tutor offers a hints system. In the generation of the Geom-
etry Area (1996-97) data set, this hint function was not used. Instead, students would be shown the
correct answer if they answered a problem incorrectly. They would then get another attempt at the
problem at a later point in time.

In total, the data set contains performance data of 59 students on 40 problems. Each problem consists
of one or multiple questions. These questions, in turn, consist of one or multiple steps, as depicted in
Figure 3 in the worksheet (the table at the bottom of the figure). Each column in the worksheet corre-
sponds to one step in the question. For some of the steps, the answer is already given in the problem
description. In that case, filling in the step is only a matter of copying the provided information. The
data set only contains performance data for those steps that students had to solve themselves. In total,
the data set contained 78 steps.

These 78 steps were not unique to the questions or the problems. For example, Question 1 in Figure
3 is asking students to calculate the circumference of the depicted circle. The associated step, accord-
ing to the naming conventions used in the data set, would be “Circumference Question 1”. However,
“Circumference Question 2” and “Circumference Question 3” also exist in the data, showing that the
circumference step is not unique to question 1. Similarly, the “Circumference Question 1” step can
be asked for the problem CIRCLE-N-ABC (depicted in Figure 3), but it could also occur for a different
circle problem, such as the DOG_TIED_TO_TREE problem shown in Figure 4. In this way, the steps are
not unique to the problems either.

Figure 4: The DOG_TIED_TO_TREE problem in the Geometry Area (1996-97) data set.

Although the steps are not unique to the problems, there are still some constraints to the possible
problem-step combinations. Figure 5, for example, shows a square and a circle problem from the data
set. It is visible that each shape has its own applicable steps. A student solving a square problem
would never be asked to solve a circumference step. Vice versa, a square-area step would never occur

3 PROBLEM CONTEXT 11

for a circle problem. Clearly, some problem-step combinations are valid, while others are not.

In total, there are 139 valid problem-step combinations1. While all of these problem-step combi-
nations are performed by at least one student, there is no such student that has answered all 139
problem-step combinations, nor is there a student that has answered all 40 problems. The data is
therefore unbalanced. Additionally, the order of the problems is randomised for each student, which
is a characteristic of the data set that may also cause problems in its subsequent analysis.

Figure 5: The SQUARE_ABCD and LAWN_SPRINKLER problems from the Geometry Area (1996-97) data
set.

Regardless of the quality of the data, in order for it to be used as input for the knowledge graph
algorithm (which will be described in more detail in the subsequent section), it first needs to be trans-
formed into a usable format. The next section will describe how the original data set was transformed
into a format that the knowledge graph algorithm knows how to process.

3.2 Pre-Processing

As a first step, the original data set must be pruned for relevant and irrelevant data. This pruning
(and other subsequent transformations of the data) was done using R version 4.1.1 (R Core Team,
2021). The raw data set, as loaded into R, contains 6778 observations over 191 variables. Clearly,
not all these variables will contain information that is relevant for the knowledge graph algorithm.
For example, of the 191 variables, the last 161 correspond to previous analyses done by other people.
Each of the columns represents its own analysis, and the observations in each column correspond to
the knowledge components these analyses identified for each of the problem-steps. Since the methods
behind these analyses cannot be verified, all 161 of these variables are discarded.

1The full problem set (i.e. all problem-step combinations) can be downloaded via https://pslcdatashop.web.cmu.edu/
DatasetInfo?datasetId=76. Note that an account is needed to access this information.

https://pslcdatashop.web.cmu.edu/DatasetInfo?data setId=76
https://pslcdatashop.web.cmu.edu/DatasetInfo?data setId=76

3 PROBLEM CONTEXT 12

Of the remaining 27 variables, 8 contain no observations and are filled with NAs. Five contain no
unique values, with each observation corresponding to the same value. An example of such a variable
is the Level..Unit variable. This variable always corresponds to Area, as this data set contains only
the area unit of the Geometry Cognitive Tutor course. There are two variables that contain the same
information, namely Step.Name and Selection. Of these, only one needs to remain in the data set.
Finally, there are six variables that are deemed uninformative with an eye on the research question.
These are administrative variables, such as the session IDs of the student’s interaction with the cogni-
tive tutor, as well as information pertaining to time (e.g. time stamps and response times). The latter
variables are considered uninformative because, according to the description on DataShop, the values
for these variables are simulated rather than measured. With all of the above-mentioned variables
removed, the data set contains only 6 variables of interest. These variables are: Anon.Student.Id,
Step.Name, Problem.Name, Problem.View, Attempt.At.Step, and Outcome.

For some of these variables, the name is sufficient to convey its meaning. The Anon.Student.Id vari-
able, for example, is an anonymized identifier. It is a repeating variable, where each of the 50 students
has one unique identifier tied to all their observations. The Step.Name and Problem.Name variables
represent the step and problem respectively, as they are explained in the Description of the Dataset
(i.e. Problem.Name represents one of the 40 problems, while Step.Name represents a step within
one of the problem questions). The Outcome variable holds the actual performance of the students.
Students can either have solved a problem-step correctly or incorrectly.

The two variables that require some additional explanation are the Problem.View and Attempt.At.Step
variable. Since the problems in the data set were presented to students in a cognitive tutor, students
would not only be presented with the same problem multiple times, they would also be given the op-
portunity to try and solve said problem multiple times. Given this characteristic of the cognitive tutor,
the Problem.View variable keeps track of how often a student has been presented with a problem. The
Attempt.At.Step variable, in turn, tracks how often a student has attempted to solve a problem. The
latter variable is dependent on the former, in the way demonstrated in Table 1. Each time a student
viewed a problem, they were allowed multiple attempts to solve it before moving on.

Problem Name Step Name Problem View Attempt at Step Outcome

TRAPEZOID_AREA (AREA QUESTION 1) 1 1 INCORRECT
TRAPEZOID_AREA (AREA QUESTION 1) 1 2 CORRECT
TRAPEZOID_AREA (AREA QUESTION 1) 2 1 CORRECT
TRAPEZOID_AREA (AREA QUESTION 1) 3 1 INCORRECT
TRAPEZOID_AREA (AREA QUESTION 1) 3 2 CORRECT
TRAPEZOID_AREA (AREA QUESTION 1) 4 1 CORRECT
TRAPEZOID_AREA (AREA QUESTION 1) 5 1 CORRECT

Table 1: One student’s attempts to solve the TRAPEZOID_AREA problem.

Next to the relationship between the Problem.View and Attempt.At.Step variables, Table 1 also
clearly demonstrates the effects of these variables. Cognitive tutors are meant to help students im-
prove their skills, and as such, students are evidently shown a problem until it is clear that they have
learned the skill underlying the problem (as evidenced by multiple, subsequent correct attempts). For

3 PROBLEM CONTEXT 13

identifying the skills re-used between problems, this setup is less than ideal.

The idea behind the creation of the knowledge space (as explained in the Theoretical Background)
is that the relationship between the problems can be identified by comparing the performance across
them. If it is observed that failing one problem p often leads to failing another problem p′, this indi-
cates that these problems likely rely on the same (or a similar) set of skills. If students have learned
all skills (and thus solve all problems correctly) by the end of their interaction with the cognitive tutor,
this information is lost. As such, it is important that only the first Problem.View and Attempt.At.Step
are considered for the identification of the skills underlying the problems. A subset first.attempts
is created, which contains, for each student, only their first attempts at each problem-step.

Furthermore, to simplify the data set, the Problem.Name and Step.Name variables are combined
into one variable called Problem.Step in the f irst.attempts subset. At the end of the pruning, the
original data set of 191 variables has been reduced to a data set that contains only 3 variables: the
Problem.Step, the Anon.Student.ID, and the Outcome.

These remaining 3 variables are transformed into a data frame that has the problem-steps as its
columns and the students as its rows. Each square in the data frame contains the outcome of a student
x for a problem-step y. The outcome is encoded into 1s and 0s, where a 1 indicates a student had a
problem-step correct, while a 0 indicates the problem-step was incorrect. From this point forward,
this data frame will be referred to as the cleaned data.

3.3 Subsets of the Data
Using the cleaned data directly for the knowledge graph algorithm proved too computationally ex-
pensive. As a solution, only a subset of the cleaned data was used. To be more precise, the knowledge
graph algorithm was tested with a variety of subsets drawn from the cleaned data. These subsets were:

• Dataset 1: The 69 problem-steps that contained the most observations. This data set contains
the information of 57 students, meaning 2 students are excluded from this data set for not having
enough data.

• Dataset 2: The first questions only of each problem. These questions correspond to 66 of
the original 139 problem-steps. No students are excluded from this data set, meaning it has
observations for 59 students.

• Dataset 3: The first questions only of a subset of the problems. The subset of the problems
was chosen so that there were no duplicate problems. That is to say, there are such problems
in the data set that consist of the same or near identical problem-steps. Given their similarity,
some learning could take place between these problems. As such, for each of these duplicate
problems, only the problem that contained the most observations was saved. Some additional
problematic problems were also removed, such as those that contained confusing/erroneous
documentation. The final data set contained observations for 59 students over 46 problem-
steps.

• Dataset 4: A subset of the problems only. This data set contains the same subset of problems
as Dataset 3. However, in this data set, no distinction is made between the different steps.
Looking only at question 1, a problem is considered correct if all of its steps are done correctly.

3 PROBLEM CONTEXT 14

Otherwise, it is considered incorrect. This data set contains 20 (of the original 40) problems
and has observations for all 59 students.

Regardless of which of the four data sets was used, at the start of the knowledge graph algorithm,
an additional pruning is performed where all problems/problem-steps that contain less than 10 ob-
servations are removed. The data frame is transformed into a transposed matrix, so that the columns
represent the students and the rows represent the problems. For simplicity’s sake, ’problems’ is used
here (and from hereon) as an encompassing term for either the overarching problems or the problem-
steps, depending on the data set used (see explanation above on the content of each data set). After
transforming the chosen data set into a transposed matrix, the data can be used directly by the knowl-
edge graph algorithm.

15

4 Knowledge Graph
The largest contribution of this thesis is the knowledge graph algorithm. It is a newer version of the al-
gorithm used by Rozestraten (2021) (though it shares little overlap with hers). As with her algorithm,
it was built in collaboration with N.A. Taatgen. The purpose of the algorithm is to build a knowledge
space from performance data. Here, the term knowledge space is used according to the definition
from Falmagne et al. (1990). The knowledge space shows sets of tasks that are solved together (i.e.
when one task is solved correctly, so is another). In the knowledge graph, this is visualised by having
each set in its own node. It is assumed that tasks within one node have a shared, underlying skill
set, and that skill reuse occurs both between the tasks within one node and across nodes. Given this
assumption, it is investigated whether knowledge graphs can be used to identify the reused skills.

If skills can be identified on the basis of the knowledge graph, cognitive models will be built to evalu-
ate these skills. The models will hopefully show how the identified skills integrate with each other to
correctly solve a variety of tasks, thereby answering the research question. The cognitive models will
be discussed in further detail in Section 5. In the current section, it is explained how the knowledge
graph itself was generated.

The explanation is broken down into four parts. First, the original knowledge graph algorithm is
explained as it was used to generate the knowledge graph. After some intermediate results, it will
become clear that the original knowledge graph algorithm is insufficient for identifying the skills
reused between tasks. Thus, on the basis of these intermediate results, an alteration is made to the
original algorithm. New results are generated with the altered algorithm, and at the end, the final
knowledge graph is shown.

4.1 Original Knowledge Graph Algorithm
4.1.1 The Logic Behind the Algorithm

A knowledge graph consists of nodes and edges. In this thesis, the idea is to populate the nodes of the
knowledge graph with the problems from the geometry data set, so that the skill hierarchy between
the problems becomes clear. To be more concrete, the final knowledge graph should encapsulate all
the problems within its nodes, while adhering to the following constraints:

1. Problems that rely on the same skills should be put in the same node.

2. If problem Px relies on a superset of the skills of problems Py, then problem Px should be lower
in the knowledge graph than problem Py.

3. Vice versa, if problem Py relies on a subset of the skills of problem Px, then problem Py should
be higher in the knowledge graph.

4. Finally, if two problems rely on the same number of skills, but the skills relied on are different,
these problems should be on the same level in the knowledge graph but inside different nodes.

From these written rules, it is not necessarily clear what such a knowledge graph may look like. For
this reason, an example is given. Table 2 shows some hypothetical outcomes for four students across
four problems. Here, a 1 indicates a problem was performed correctly, while a 0 indicates that a
problem was solved incorrectly. In terms of skills, it is assumed that a student who solves a problem

4 KNOWLEDGE GRAPH 16

correctly possesses all the skills that underlie said problem.

Given this assumption, Table 2 shows that the first three students possess the skills to solve both
the RECTANGLE_ABCD problem and the SQUARE_ABCD problem. The last student can solve neither
of the problems, and therefore possesses none of the skills they require. This observation can be
interpreted in two ways. The first interpretation assumes that RECTANGLE_ABCD and SQUARE_ABCD
rely on different skills. In this case, it is simply a coincidence that students 1 to 3 possess both the
skills for the RECTANGLE_ABCD problem and those for the SQUARE_ABCD problem, while student 4
possesses none of the required skills. With a data set consisting of four students, this interpretation
seems quite plausible.

PROBLEM NAME S1 S2 S3 S4
RECTANGLE ABCD 1 1 1 0

SQUARE ABCD 1 1 1 0
ONE CIRCLE IN SQUARE 0 1 0 1

TWO CIRCLES IN SQUARE 1 1 0 0

Table 2: Example outcomes for four students across four problems in the data.

However, what if Table 2 held the outcomes of 100 students, and across all these students, the same
pattern is observed? If across 100 students, a student can either solve both problems correctly or
solve neither of them, then suddenly, chance feels like a less likely explanation. A more likely hy-
pothesis, in such a case, is that the RECTANGLE_ABCD and SQUARE_ABCD problems rely on the same
skill set. From that interpretation, it would be easy to explain why students can either do both prob-
lems or can do neither. In the former situation, the student possesses the skills that are reused across
the two problems, while in the latter, they do not. Assuming the second hypothesis holds true, then
the RECTANGLE_ABCD and SQUARE_ABCD problems should be put in the same node in the knowledge
graph, as per the constraints given prior.

Looking at the two remaining problems, ONE_CIRCLE_IN_SQUARE and TWO_CIRCLES_IN_SQUARE,
Table 2 shows that neither of these problems follow the same pattern as observed for the RECTANGLE_
ABCD and SQUARE_ABCD problems. From this observation, it follows that the circle-in-square problems
must rely on different skills than the rectangle and square problems. If they did not, the performance
across these two sets of problems should have been the same.

Furthermore, it is visible that the circle-in-square problems have a lower performance compared to the
RECTANGLE_ABCD and SQUARE_ABCD problems. This indicates that the circle-in-square problems have
a higher difficulty. Worded differently, a student that has the skills to solve the RECTANGLE_ABCD and
SQUARE_ABCD problems does not have the skills to solve the circle-in-square problems. The circle-in-
square problems are thus thought to require a superset of the rectangle and square skills. Given this
property, the constraints given prior state that both circle-in-square problems should be placed lower
in the knowledge graph than the rectangle and square problems.

When comparing the ONE_CIRCLE_IN_SQUARE and TWO_CIRCLES_IN_SQUARE problems to each other,
there is no one problem that outperforms the other. Although the problems both demonstrate a 50%
accuracy, the set of students that got each problem correct differs. From this, it can be concluded that
these two problems must rely on different skills. If they relied on the same skills, then students who

4 KNOWLEDGE GRAPH 17

had one problem correct should also have had the other problem correct (and vice versa with incorrect-
ness). From this, it can be concluded that the ONE_CIRCLE_IN_SQUARE and TWO_CIRCLE_IN_SQUARE
problems should be placed in different nodes of the knowledge graph, but that these different nodes
should still be on the same level of the graph.

Figure 6 shows the knowledge graph that Table 2 would result in. The graph consists of three nodes
and is two levels in its depth. The first node contains the RECTANGLE_ABCD and SQUARE_ABCD
problems. The second and third node contain the circle-in-square problems. It is visible that the
size of the node reflects the number of problems inside said node. This visual hint is intentional,
and it will be upheld by the algorithm as a guideline for the design of the final knowledge graph.

RECTANGLE ABCD
SQUARE ABCD

ONE CIRCLE
IN SQUARE

TWO CIRCLE
IN SQUARE

Figure 6: The knowledge graph that can
be derived from Table 2.

This will be discussed further in Section 4.1.4.

What is furthermore visible is that the top node
is connected to the lower nodes by edges. The
edges in the knowledge graph indicate a subset/su-
perset relationship between the nodes. The lower
nodes in the graph are thought to be supersets of
the higher nodes they are connected to. In this
case, the knowledge graph indicates that the circle-in-
square nodes are supersets of the rectangle and square
node.

Overall, the transformation from Table 2 to Figure 6
roughly shows the task the knowledge graph algorithm
has to accomplish. In the subsequent subsections, it
is explained in more detail how exactly the knowledge
graph algorithm goes about accomplishing this task.

4.1.2 Its Core Functions

The example shown in the previous section gives some idea of the task the knowledge graph needs to
accomplish. Of course, the actual process of generating the knowledge graph from the performance
data is not as deterministic as implied above.

For one thing, the real-life performance data is much more noisy than the hypothetical data shown in
Table 2. Students can answer questions incorrectly, even when they do theoretically possess the skills
required to solve a problem. This can happen, for example, when a question is interpreted incorrectly
or a given number is not copied correctly. In general, the patterns in the real-life data will be a lot
less clear-cut and easy-to-interpret as in Table 2. As such, the knowledge graph algorithm will have
to find a way to find the relationships between the problems, even when there is some noise involved
in the data.

Additionally, it is important to point out that Figure 6 assumes, based on the data, that there are
three skills underlying the four problems. It is possible this is not a correct assumption, and it is
therefore vital that the number of skills underlying a data set are determined prior to generating the
full knowledge graph. The knowledge graph algorithm determines the number of skills underlying a
data set through an empirical process. To understand this process, it is necessary to first understand

4 KNOWLEDGE GRAPH 18

the core functions of the knowledge graph algorithm. These functions are explained in this subsection.

As in the example shown, the knowledge graph algorithm begins by comparing the problems from the
chosen data set. It compares the problems on three dimensions: sameness, moreness, and lessness.
Each problem is compared with each other problem, which results in three comparison matrices (one
for each dimension).

S1 S2 S3 S4
0 1 0 1
1 1 0 NA

↓ results in
0 1 1 NA

(a) same.as

S1 S2 S3 S4
0 1 NA 1
1 1 0 0

↓ results in
0 0 NA 1

(b) more.than

S1 S2 S3 S4
0 NA 0 1
1 NA 0 0

↓ results in
1 NA 0 0

(c) less.than

Table 3: The results of comparing problems on the dimensions of sameness, moreness, and lessness
(in that order).

The comparison matrices are generated through three functions named same.as, more.than, and
less.than. Each function corresponds to one of the three dimensions mentioned prior and is used to
compare a rowi with a row j on said dimension. This comparison, when applied to two rows, results
in a vector of 1s and 0s of length C (where C is the number of columns, or students, in the data set).
Each entry in this vector corresponds to the result of one specific student. A 1 in the vector means
that the relevant function returned as “true” for that student for the two rows compared. A 0 means
the function returned as “false” for said student.

What this indication of true or false means depends on the function. The same.as function returns
true when the two compared performances are the same, meaning they are both 1s or both 0s. The
more.than function returns true when the performance from rowi is more than the performance from
row j. In other words: It returns true when rowi is correct and row j is incorrect. The less.than func-
tion does the opposite of the more.than function. It returns true when rowi is incorrect, but row j is
correct. All functions return as NA (not applicable) if either rowi or row j has a missing value (which
means a student did not do the corresponding problem).

Table 3 shows a visual summation of these rules by comparing two rows of hypothetical outcomes.
By comparing all rows in a data set, the N-by-N comparison matrices are created. Here, N equals the
number of rows, or problems, in the data set. An example of such a comparison matrix is shown in Ta-
ble 4.

P1 P2 P... PN

P1 1 0
P2 0 1
P...
PN 0.25 0.64 ... 1

Table 4: The schema of the sameness matrix
filled with some arbitrary numbers.

Table 4 specifically shows the sameness matrix
(identifiable by a problem always being 100% the
same as itself). However, the moreness and lessness
matrix use the same schema and thus look similar to
Table 4. Notice that a square in a comparison ma-
trix indicates the proportion of students for which
the relevant function (i.e. same.as, more.than, or

4 KNOWLEDGE GRAPH 19

less.than) returned true. This proportion is given
on a scale of 0 to 1, with a 0 indicating the function was not true for any of the students and a 1
indicating the function was true for all of the students.

The comparison matrices are not used directly by the algorithm. Rather, they are used to create the
penalty matrices. The penalty matrices serve to determine the fit of the knowledge graph generated
by the knowledge graph algorithm. That is to say, they evaluate how well the final knowledge graph
fits the data. There are four penalty matrices, each bound to a specific condition:

• p.S: this penalty matrix is applied when two problems Px and Py are put in the same node. It is
equal to the sum of the moreness and lessness matrices (i.e. all the cases where Px and Py do
not have the same performance).

• p.L: this penalty matrix is applied when a problem Px is thought to rely on a superset of the
skills of a problem Py (and thus be a more difficult problem). It is equal to the moreness matrix
(i.e. all the cases Px was performed better than Py).

• p.M: this penalty matrix is applied when a problem Px is thought to rely on a subset of the skills
of a problem Py (and thus be an easier problem). It is equal to the lessness matrix (i.e. all the
cases Px was performed worse than Py).

• p.D: this penalty matrix is applied when two problems are considered to belong to different
nodes of the same level. It is equal to the sameness matrix (i.e. all the cases where Px and Py
have the same performance).

If these conditions sound familiar, it is because they directly incorporate the constraints given in The
Logic Behind the Algorithm. In fact, the knowledge graph algorithm can be summarised as such: The
algorithm tries to adhere to the constraints given in The Logic Behind the Algorithm. Each time it
puts a problem Pz in one of its nodes, it evaluates how well it is matching these constraints through
a calculation of its fit. This fit is determined by penalties that, at their core, reflect the proportion
of cases where the algorithm is wrong about its chosen node. In simple terms, the penalty matrices
say: according to this proportion, Pz should not be in that node at all. Of course, this description is a
simplification of the algorithm’s full workings. Listing 2 shows the function through which the fit of
the algorithm is actually determined.

Listing 2 shows that, rather than calculating the fit of one problem only, the calc.fit function always
calculates the total fit. The total fit is calculated by comparing each problem to each other problem
and then summing up each of the individual penalties. The problem comparison is done through the
use of for-loops in line 4 and 5 of the listing.

The nodes vector used in these for-loops contains the nodes the algorithm has placed each problem
in. The position (or index) of the vector identifies the problem, while the actual value gives its node.
For example, nodes[3] = 5 says that the third problem in the data set is put in node 5 of the knowl-
edge graph.

Each problem comparison begins by confirming that i and j are not the same value. This ensures that
a problem is not compared with itself. If the two problems that are being compared are unique, the
algorithm considers the four conditions given prior through if-statements. The first condition is easy

4 KNOWLEDGE GRAPH 20

Listing 2: The calc.fit function.

1 calc.fit <- function(nodes , p.S, p.L, p.M, p.D) {
2 nodes <- as.integer(nodes)
3 fit = 0
4 for (i in 1:(length(nodes))) {
5 for (j in (1:length(nodes))) {
6 if (i != j) {
7 if (nodes[i] == nodes[j]) {
8 fit = fit + p.S[i,j]
9 } else if (bitwOr(nodes[i], bitwNot(nodes[j])) == -1) {

10 fit = fit + p.L[i,j] * hamming.distance(intToBits(nodes[i]),
intToBits(nodes[j])

11 } else if (bitwOr(nodes[j], bitwNot(nodes[i])) == -1) {
12 fit = fit + p.M[i,j] * hamming.distance(intToBits(nodes[i]),

intToBits(nodes[j]))
13 } else {
14 fit = fit + p.D[i,j]
15 }}
16 }
17 }
18 return(fit)
19 }

to check through a logical equals comparison. The comparison checks if two values, in this case two
nodes, are the same. Similarly, the last condition, if two nodes are different, is also easy to check.
This condition is considered to be true if none of the other conditions were (line 13 and 14 of the
listing).

The second and third condition (lines 9 to 13) are more difficult to check. They try to determine
whether one node relies on the superset (or subset) of another node’s skills. To do this, they rely on
a fundamental property of the knowledge graph: Each node has a unique numerical value, and that
decimal value has a unique binary counterpart. The binary representation of the node 5 given earlier,
for example, would be 0101 (using 4 bits) 2. In this thesis, each bit of this binary representation is
interpreted to correspond to one skill in the data set. According to this interpretation, node 5 thus
represents two skills: one at position 0 and one at position 2 of the binary representation.

This property makes it possible to determine whether one node relies on the superset (or subset) of
another node’s skills by comparing the binary representations. If the binary representation of node j
contains at least 1 more 1-bit than that of node i, then node j relies on a superset of node i’s skills
(and vice versa). The expression bitwOr(nodes[i], bitwNot(nodes[j])) == -1 in line 9 and 11
of Listing 2 is used to do this check. For these two conditions, a multiplier is applied to the penalty
matrix that is equal to the number of 1-bits that node i and j differ in. Thus, if node j is thought to
rely on a much bigger skill set than node i (as in line 11), the penalty for all the cases where this is
false is heavier.

2See Dube (2022) for a refresher on reading binary.

4 KNOWLEDGE GRAPH 21

Given that the total fit is determined by the penalties and their weights, a lower fit score is, in the
case of the calc.fit function, considered to represent a better fit to the data. A fit of 0 would (in
theory) mean that no penalties were applied, and that the generated knowledge graph thus perfectly
fits the data. To generate a good knowledge graph, the calc.fit function and the penalty matrices
are therefore crucial aspects of the knowledge graph algorithm.

4.1.3 The Main Workings of the Algorithm

The knowledge graph algorithm generates its knowledge graph through the improve.fit function
shown in Listing 3.

Listing 3: The improve.fit function.

1 improve.fit <- function(nodes , oldfit , p.S, p.L, p.M, p.D, n.skills , n.
cycles = 500) {

2 for (i in 1:n.cycles) { # run for n.cycles or until break
3 bestfit = oldfit
4 bestnode = -1
5 bestproblem = -1
6
7 # go through each problem in the nodes vector
8 for (problem in 1:length(nodes)) {
9 oldnode = nodes[problem]

10
11 # try to put that problem in each possible node
12 for (node in 0:(2ˆn.skills -1)) {
13 nodes[problem] = node
14 newfit = calc.fit(nodes , p.S, p.L, p.M, p.D)
15
16 # move the problem to the new node if it improves the fit
17 if (newfit < bestfit) {
18 bestfit = newfit
19 bestnode = node
20 bestproblem = problem
21 }
22 }
23 nodes[problem] = oldnode # reset problem to its original node
24 }
25
26 # move the problem to the node that resulted in the best fit
27 if (bestnode != -1) {
28 nodes[bestproblem] = bestnode
29 oldfit = bestfit
30 } else {
31 break # break if local optimum is found
32 }
33 }
34 return(nodes)
35 }

4 KNOWLEDGE GRAPH 22

Although the 35 lines of code may give the opposite impression, the improve.fit function is actu-
ally quite simple in its functionality in that it resembles a Hill-Climbing algorithm (Russel & Norvig,
2003). In principle, it consists of a loop in which the function continually looks for the move that
results in the best improvement to the knowledge graph fit. Once it finds that optimal move, it breaks
out of its loop and executes it. It then returns the distribution of problems into nodes that resulted in
the best fit according to the best move.

To describe the function in more detail, its input variables are explained first. First and foremost,
the improve.fit function requires a nodes vector, which contains the initial division of problems
into nodes. This is the same nodes vector required by the calc.fit function. Before running the
improve.fit function, the knowledge algorithm sets this vector to zero, meaning it places all the
problems into a node 0. Most likely, this initial vector will not result in a great fit. Its fit is calculated
through calc.fit and stored in the old f it variable. The improve.fit function will, as its name
implies, try to improve upon this old f it variable.

To improve upon the old f it, the improve.fit function moves the problems around to alternative
nodes. After moving one problem to one new node, the function will re-calculate the fit through the
calc.fit function. For this, the improve.fit function requires the penalty matrices p.S, p.L, p.M,
and p.D as input as well.

The two final variables the improve.fit function needs to know are the number of skills in the data
set (n.skills) and the number of cycles it should maximally run (n.cycles). The improve.fit function
will move problems around until it reaches a local optimum, meaning there is no problem left it can
move to a new position to get a better fit, or until it reaches the n.cyles variable. This variable is set
to 500 by default.

With its input variables clear, the improve.fit function goes through all the problems in the nodes
vector and finds, for each problem, the node that results in the best fit (lines 8 to 24 of Listing 3). The
nodes it can choose from are given in line 12. The range goes from 0 to maximally 2ˆn.skills-1. Since
each node has a corresponding binary representation, the maximum value given here corresponds to
the highest possible binary value (i.e., all bits are 1) given a certain number of skills. To give an
example, if a data set consists of 5 skills in total, then the highest binary value would be 1111, which
corresponds to 31 in the decimal system. Within this range, there are 32 possible nodes to place a
problem in (including 0), and each node corresponds to its own unique combination of 1s and 0s in
the 5-bit binary string.

Clearly, to use this range, the total number of skills in the data set must be known prior to running the
improve.fit function. This is precisely what the algorithm does: It determines the total number of
skills empirically before it runs the improve.fit function. A range is checked of 1 to maximally 32
skills (capped at 32 for computational reasons). For each n.skills value, the improve.fit function is
run to get the best fit for that number of skills. Once the fit plateaus (meaning it no longer improves
even if the numbers of skills are increased), that number of skills is chosen as the correct number of
skills for the chosen data set. Figure 7 shows this empirical determination of the correct number of
skills for Dataset 1.

Given the full range of nodes available, in each cycle of the improve.fit function, the best node is
determined for each of the N problems. However, not every problem is moved to its best node. Only

4 KNOWLEDGE GRAPH 23

1 2 3 4 5

75
0

80
0

85
0

90
0

95
0

Fit as a function of skills

Skills

F
it

Figure 7: The fit as a function of the number of skills for Dataset 1. This data set is thought to have 3
underlying skills.

the problem that resulted in the highest fit is moved to its new best node. Then, a new cycle starts,
and the improve.fit function goes through all of the problems again to find the next best problem
to move. As was said prior, this goes on until the 500th cycle is reached, or until there is no move that
will result in an improvement in the fit.

By improving the fit in this way, the algorithm generates a final knowledge graph that best fits the
data according to a local optimum. Since the algorithm never makes a move that results in a higher
fit, it is possible it misses a global optimum. Sometimes making a worse move in one cycle can result
in an overall better fit in the long run. To try and find a global optimum, simulated annealing is used
as per the GenSA function from version 1.1.7 of the equivalent GenSA package (Xiang et al., 2013) in
R. The function is called as:

GenSA(nodes, p.S, p.L, p.M, p.D, fn = calc.fit, lower=minval,upper = maxval,
control=list(max.time=600*n.skills,verbose=FALSE))

In this function call, minval is the same as the initial nodes vector. Namely, a vector of size N that
consists of all zeroes. The maxval variable holds the opposite vector, which puts each problem in
the maximum node possible (where the maximum node possible is again given by 2ˆn.skills-1). The
calc.fit function is passed to the GenSA function to optimise, and the function is given 600*n.skills
seconds to find the optimum (i.e. 10 minutes per skill).

If given enough time, the generalised simulated annealing will find a global optimum through the use
of an artificially induced temperature variable T . This temperature variable controls the probability
that the simulated annealing algorithm will allow for a “bad move” (i.e., a move that increases the
fit). The temperature starts off high, but becomes lower over time. Thus, the probability of accepting

4 KNOWLEDGE GRAPH 24

a bad move decreases over time. In practice, this means that, once the algorithm is close to finding
a global optimum, it is unlikely to allow for a bad move. While it still has a lot of space to find the
optimum, however, it is much more likely to allow for a bad move.

Through empirical testing, it was found that, if the max.time variable was set high enough, the GenSA
function always resulted in the same or a better fit than the improve.fit function. Nonetheless, it
cannot be guaranteed that the fit returned by the GenSA function is the global optimum, since it is
not known in advance what value of max.time is “enough” to guarantee the global optimum has been
found. The comparison between the improve.fit and GenSA results do imply that a max.time of 10
minutes per skill is an appropriate rule of thumb, if the value of n.skills is set.

When the value of n.skills is variable, such as when the optimal number of skills is being deter-
mined, then having the max.time variable depend on the number of skills is not appropriate. Since in
that case, the differences between the fits in each cycle could be attributed to the differences in the
max.time, rather than the difference in n.skills.

Rather, the max.time variable should be kept constant when the number of skills is being determined.
Additionally, the value chosen for max.time should be large enough so that it is enough time for the
algorithm to find (or approach) the global optimum both for the smallest number of skills, as for
the largest number of skills. If the 10 minutes per skill rule of thumb is adhered to, that means the
max.time should be set to a constant value of 320 minutes (with 32 being the maximum number of
skills that is tested for) when determining the optimal number of skills. This approximates to about 5
hours. Clearly, running the GenSA algorithm for 5 hours for each value of n.skills is inefficient.

Consequently, the decision was made to use the improve.fit function for determining the optimal
number of skills. After the optimal number of skills have been determined, two node distributions
are generated. One by the improve.fit algorithm, and one by the GenSA algorithm. The node
distribution that resulted in the lowest fit is chosen as the best node distribution.

4.1.4 Drawing the Graph

Once the best node distribution has been established, either by the generalised simulated annealing or
by the improve.fit function, the distribution is used to draw a graph. The graph is drawn through
version 1.2.6 of the igraph package (Csardi & Nepusz, 2006).

In order to draw a graph, the final nodes vector is first transformed to a table. This table gives all the
unique nodes used (not every node in the full range will necessarily have been used) and the number
of problems in each node. The length of this table L is used to initially set up a graph with L nodes
and no edges.

After, the algorithm loops through all the nodes and compares them with each other to determine if
edges need to be drawn to connect certain nodes. This comparison works the same as the second and
third condition of the calc.fit function. That is to say, if nodei has more 1-bits than node j in its
binary representation, then an edge is drawn between those nodes. An average fit is calculated which
compares all the problems in nodei with those in node j, and this average fit is used as a label for the
edge.

4 KNOWLEDGE GRAPH 25

After the edges are determined, the graph is plotted with its determined nodes and edges. As was also
mentioned in The Logic Behind the Algorithm, the nodes are drawn in size to be proportional to the
number of problems in said node.

The graph at this step is not yet the final graph, as there is still a pruning step that is performed. The
pruning step removes all superfluous edges. To understand this pruning step, it is important to realise
that the nodes in the knowledge graph are transitive. Accordingly, if nodei is a subset of the skills used
by node j, and node j is, again, a subset of the skills used by nodek, then nodei is, through its transitive
nature, also a subset of the skills in nodek. The graph that is drawn initially will have explicit edges
between nodei and node j, node j and nodek and nodei and nodek. The edges like the one between
nodei and nodek are superfluous, since the connection between nodei and node j and node j and nodek
already establishes that nodei is a subset of nodek. After the previous step, there are quite a few of
these superfluous edges left, and it is these edges that are removed in the pruning step to end with a
clean, clear final graph. No example is given here, as the next section will show the final knowledge
graphs generated by the knowledge graph algorithm for the various data sets.

4.2 Intermediate Results

4.2.1 Dataset 1

Dataset 1 consisted of the 69 problem-steps from the ‘Geometry Area (1996-97)’ data set that con-
tained the most observations. According to the skill optimisation procedure (shown in Figure 7),
this data set contained three underlying skills. Figure 8 shows the accompanying knowledge graph.

0.15

0.37

0.45

0.43

0.45

0

1

3

5
7

Figure 8: The knowledge graph generated
from Dataset 1.

The knowledge graph in Figure 8 consists of
5 nodes. Node 0 (which corresponds to the
bit-string of 000) contains all the problems that
students could solve by relying on their prior
knowledge only. After Node 0, each node at
depth d + 1 in the knowledge graph requires one
skill more than the node at depth d. Thus,
Node 1 contains the problems that require one
skill, Node 3 and 5 those that require two,
and Node 7 contains the problems that require
all three of the skills that underlie this problem
set.

Although the average fit shown on the labelled edges
of the knowledge graph gives some indication of how
well this knowledge graph fits the data (lower is, in
theory, better), to fully understand what the knowl-

edge graph is showing, the problems within each of the nodes must be analysed.

The difficulty in analysing the problems within each node is that there is no ‘answer-sheet’ for the
correct distribution. There is no ground truth to compare the knowledge graph against, because the
skills that underlie the problem set are not known in advance. It is, however, possible to assess the
knowledge graph qualitatively on the basis of its intuitive correctness.

4 KNOWLEDGE GRAPH 26

Intuition would state that, if the knowledge graph is correct in its distribution of problems across its
nodes, then problems that are fundamentally the same should be in the same node. A problem is
considered the same as another problem if it consists of the same steps within the same shape.

Figure 9: The PAINTING_THE_WALL problem in Dataset 1.

Figure 28 shows an example of such identical problems. Each question of the PAINTING_THE_WALL
problem is considered its own problem in Dataset 1. Clearly, each of these questions is the same,
save from different values used for the various variables. The questions consist of the same steps,
which are shown in Table 6. The table also shows which node each step was placed in according to
the colour scheme shown in Table 5.

Nodes 0 1 3 5 7

Table 5: Legend for the colour coding of each node in Figure 8.

Table 6 shows that most of the steps from the PAINTING_THE_WALL problem are placed in Node 0.
This would match with our intuition, which expects each identical step to be placed within the same
node. There are two steps, however, that do not match this intuition. Calculating the area of the wall

4 KNOWLEDGE GRAPH 27

is placed in Node 1 for Question 1, and calculating the shaded region (the area to be painted) is placed
in Node 3. If the knowledge graph was accurate in its depiction of the skills underlying the various
steps, then these two steps should have been placed in Node 0 as well, assuming that the steps do not
rely on any of the skills that underlie this data set.

Area of Wall ABCD Area of Door EFGH Area of shaded region
Units sq. feet sq. feet sq.feet

Question 1 450 122.5 327.5
Question 2 500 160 340
Question 3 512.5 160 352.5

Table 6: The steps of the three questions of PAINTING_THE_WALL, plus their correct answers.

If this step distribution is further analysed, it actually seems, intuitively, that the distribution of steps
in Question 1 makes more sense than the distribution of the steps in Question 2 and 3. Calculating
the area of the door is arguably the easiest step in the PAINTING_THE_WALL problem, since all the
information necessary to complete this step is given. Calculating the area of the wall, by contrast,
requires a student to first calculate the base of the wall. It makes sense that this additional step would
make calculating the area of the wall a more complicated cognitive undertaking than calculating the
area of the door. The same holds for calculating the area of the shaded region, a step that requires, at
minimum, that the other two steps are completed first.

As with the idea that identical steps should belong in the same node, intuition also states that more
complicated steps (i.e. steps that consist of multiple sub-steps) should be placed in lower levels of
the knowledge graph. Thus, the distribution of steps in Question 1 matches well with what feels,
intuitively, correct, but the distributions of Question 2 and 3 do not.

That is, unless there is some element of learning that takes place here. The knowledge graph is gen-
erated based entirely on student performance expressed by their accuracy. It makes sense that, after
correctly performing Question 1, students know how to perform its steps by Question 2 and 3. This
especially holds because of the cognitive tutor’s behaviour, since it will show students the correct an-
swer to the steps they had wrong, until they get these steps correct. Clearly, there is a strong learning
effect at play here, which causes the knowledge graph to change how it classifies certain steps over
time.

Of course, making this conclusion on the basis of only one problem is rather premature. In Appendix
A, another example is given that is similar to the PAINTING_THE_WALL problem, where the same step
is classified into a different node for each subsequent question.

Next to identical steps within the same problem, the learning effect is also seen for identical steps
across problems. Figure 10 shows the TRAPEZOID_ABCD problem, which asks students to calculate
the area, the other base, and the height of a trapezoid in question 1, 2, and 3 respectively.

In addition to this TRAPEZOID_ABCD problem, Dataset 1 contains the problems TRAPEZOID_AREA,
TRAPEZOID_BASE, and TRAPEZOID_HEIGHT (shown in Figure 11). Clearly, the latter three problems
correspond directly to question 1, 2, and 3 of the TRAPEZOID_ABCD problem, though, as with the three

4 KNOWLEDGE GRAPH 28

questions in PAINTING_THE_WALL, they use different values for their variables.

Figure 10: The TRAPEZOID_ABCD problem, which consists of three questions.

Yet despite of the overlap between the question of TRAPEZOID_ABCD and the problems in Figure 11,
each problem is classified differently in terms of its node distribution. Table 7 shows the node distri-
bution of each of the trapezoid problems. For TRAPEZOID_ABCD, there are three questions that each
correspond to one of three possible steps: trapezoid area, trapezoid longer base, and trapezoid height.
The remaining three problems all require students to perform only one of those three steps.

It is visible that for TRAPEZOID_ABCD, each step is placed in Node 7. For the TRAPEZOID_AREA prob-
lem, however, the trapezoid area step is placed in Node 1 instead. Similarly, the trapezoid longer
base step is placed in Node 3 for the TRAPEZOID_BASE problem, while it is placed in Node 7 for
TRAPEZOID_ABCD. The only step that is classified consistently is the trapezoid height step.

With the different classifications, it is difficult to say which nodes the three steps most accurately
belong in (where accuracy is defined by the knowledge graph’s fit to the data). If it is assumed that
students typically see TRAPEZOID_ABCD before they see the other three problems, however, then these

Trapezoid ABCD Trapezoid Area Trapezoid Base Trapezoid Height
Question 1 96cm2 224cm2

Question 2 7cm 58cm
Question 3 11cm 16cm

Table 7: The node distribution of the steps for each trapezoid problem. Each step is represented by
one of the questions of TRAPEZOID_ABCD. Steps that are not applicable for a problem are greyed out.

4 KNOWLEDGE GRAPH 29

results can, once again, be explained by a learning effect. If TRAPEZOID_AREA and TRAPEZOID_BASE
are shown to students after the TRAPEZOID_ABCD problem, then students will already know how to
solve these problems, and they will receive higher accuracies on them.

Figure 11: Three Trapezoid problems that each represent one question of the TRAPEZOID_ABCD prob-
lem.

4 KNOWLEDGE GRAPH 30

Of course, this analysis only holds if TRAPEZOID_ABCD was shown to students prior to the other
trapezoid problems. The fact that the trapezoid height step was classified consistently into Node 7
counteracts this assumption. If TRAPEZOID_ABCD was shown to students before TRAPEZOID_HEIGHT,
then the trapezoid height step should have been placed in a higher node in the knowledge graph for
the TRAPEZOID_HEIGHT problem, as also occurs for the trapezoid area and trapezoid longer base steps.

In the Description of the Dataset, it is mentioned that the order of the problems was, in fact, ran-
domised across students. Table 8 shows this as well for three chosen students. It is visible that
some students saw TRAPEZOID_ABCD before the other trapezoid problems, while others saw the
problems in the direct opposite order. These students saw the other trapezoid problems before the
TRAPEZOID_ABCD problem. Additionally, S3 (who only did the TRAPEZOID_ABCD problem) shows
there are those students that did not see all four problems at all. This means that some students had
the opportunity to learn from TRAPEZOID_ABCD (or vice versa), while others did not. The learning
effect across problems is thus much more difficult to quantify. Nonetheless, the trapezoid problems
do show that there is a possibility the node distribution is influenced by the order of the problems.

S1 S3 S8

TRAPEZOID_AREA TRAPEZOID_ABCD TRAPEZOID_ABCD

TRAPEZOID_HEIGHT TRAPEZOID_AREA

TRAPEZOID_BASE TRAPEZOID_HEIGHT

TRAPEZOID_ABCD TRAPEZOID_BASE

Table 8: The order of the trapezoid problems for three chosen students.

Clearly, there is a strong learning effect across questions and a possible learning effect across prob-
lems (see Appendix A for another example of possible learning across problems). This learning effect
can cause the students’ performance to change over time. The original knowledge graph algorithm,
which generates its knowledge graph based on said performance, is not equipped to incorporate the
learning effect. Crucially, it assumes that the accuracies directly indicate the possession of the under-
lying skills in the data set (i.e., a 1 means a student possesses a skill, a 0 means they do not). The
algorithm furthermore assumes that this skill possession does not change across data points.

Following these assumptions and the results of Dataset 1, it is clear that the learning effect has to be
mitigated for the knowledge graph algorithm to accurately identify the skills underlying the various
problems. As a first attempt at mitigating the learning effect, Dataset 2, 3, and 4 were created.

4.2.2 The Remaining Three Datasets

Dataset 2 contained only the first questions of each problem. After the pre-processing, this data con-
sisted of 60 problem-steps for 59 students. By removing the other questions for the relevant problems
(i.e., those with more than one question), the learning effect across questions is eliminated.

Unfortunately, the learning effect across problems persists in the results of Dataset 2. The data set is
determined to have 4 underlying skills, which are divided across 6 nodes as per Figure 12.

4 KNOWLEDGE GRAPH 31

0.11

0.31

0.460.43

0.430.39

0

2

6

714

15

Figure 12: The knowledge graph generated
from Dataset 2.

To investigate the learning effect, the trapezoid prob-
lems are analysed once more. Dataset 2 contains
only (question 1 of) the TRAPEZOID_ABCD problem
and the TRAPEZOID_AREA problem. Since these
two problems still overlap, it is expected that the
area step of these questions is placed in the same
node. This is not the case, however. For the
TRAPEZOID_ABCD problem, the area step is placed
in Node 15. For the TRAPEZOID_AREA prob-
lem, on the other hand, the same step is placed
in Node 6. Dataset 2 thus follows the same
pattern as Dataset 1 did for the trapezoid prob-
lems.

For completeness sake, two additional problems are
analysed, namely PENTAGON and PENTAGON_ABCDE
(depicted in Figure 13). In Dataset 2, only the first

question of each problem is included in the data. This question asks for the area of the pentagon
and is identical across the two problems (save for different numerical values). Yet as with the trape-
zoid problems, the area step of these two problems are not placed in the same node. The area step
of the PENTAGON problem is placed in Node 14, while that same step is placed in Node 7 for the
PENTAGON_ABCDE problem.

Although Dataset 2 thus succeeds in eliminating the learning effect, it does not remove the learning
effect across problems. Dataset 3 goes one step further in its restrictions: problems that are similar to
each other (like PENTAGON_ABCDE and PENTAGON) are removed from the data set. Dataset 3 contained
the first questions of each problem only and additionally contained but one problem for each basic
shape (i.e., one circle problem, one square problem, one triangle problem, et cetera). The data set did
still include the more complex problems like PAINTING_THE_WALL (which combine multiple shapes).

Dataset 3 resulted in a knowledge graph that contained 3 skills like Dataset 1, but with different nodes
(e.g. Dataset 3 contained a Node 6 in its final knowledge graph while Dataset 1 did not). The data set
further contained 43 problem-steps after pre-processing for 59 students. The amount of data that the

Figure 13: The pentagon problems from the Geometry Area (1996-97) data set.

4 KNOWLEDGE GRAPH 32

knowledge graph algorithm can use to generate its knowledge graph noticeably decreases with each
subsequent data set.

Removing the duplicate problems from Dataset 3 ensured that learning as it seemed to occur across
the pentagon and trapezoid problems could no longer occur for this data set. Nonetheless, some odd
results (that contradicted intuition) persisted. Specifically, problems that appeared to be more difficult
were placed in lower nodes than their simpler counterparts.

To illustrate, Figure 14 shows the CIRCLE_O problem (a simple problem that consists of only one
shape) in comparison with the TWO-CIRCLES-IN-A-CIRCLE problem (which consists of two shapes
within another shape). Dataset 3 contained only the first question of CIRCLE_O, which asks stu-
dents to calculate the radius, the area, and the circumference of the circle, given the diameter. The
TWO-CIRCLES-IN-A-CIRCLE problem consists of one question with many steps, and it involves
(amongst other things) calculating the area of the bread plate (circle O) and dinner plate (circle S).

Figure 14: A basic circle problem versus a more complex problem with two circles inside a larger
circle.

Intuition would not only assume that the CIRCLE_O problem is a simpler problem by comparison,
it would also assume that the skills necessary for CIRCLE_O would be prerequisites for solving
TWO-CIRCLES-IN-A-CIRCLE. At best, one could argue that both situations require solving the area of
a circle, and that these steps should thus be inside the same node. This is not the case. The knowledge
graph algorithm places the area step of the CIRCLE_O problem in Node 7 (the highest node of Dataset
3’s knowledge graph), while the area step for circle S and circle O are placed in Node 0 and Node 2
respectively.

A telling difference between the two problems is that students start off with the diameter in the
CIRCLE_O problem, while they are given the radius of the circle S and circle O of the TWO-CIRCLES-IN
-A-CIRCLE problem. This could explain why calculating the areas of circle S and circle O is easier
for students than calculating the area for the CIRCLE_O problem. However, the radius step of the
CIRCLE_O problem is placed in Node 2. Thus, if finding the radius from the diameter is not so dif-
ficult (and requires only 1 skill; given that the bit-string of Node 2 is 010), this difference does not
explain why the area step of the CIRCLE_O problem is thought to require all three skills in the data
set, while the area steps of circle S and O are thought to require no skills and 1 skill respectively.

4 KNOWLEDGE GRAPH 33

Clearly, something is still not right with the classification of the problems into their respective nodes.
As a final attempt to mitigate any learning that may occur across problems, Dataset 4 looked only
at the problems (rather than the problem-steps) and again, removed any duplicate problems (for the
basic shapes). This data set resulted in the node classification shown in Table 9.

Problem Node Accuracy

PARALLELOGRAM_ABDE 0 0.93
RECTANGLE_ABCD 0 0.91
SQUARE_ABCD 0 1
TRIANGLE_ABC 0 0.85

BUILDING_A_SIDEWALK 1 0.70
DOG_ON_A_ROPE 1 0.63
LAWN_SPRINKLER 1 0.63

TRIANGLE_TRIANGLE 1 0.61
LAWN_SPRINKLER_2 3 0.47

ONE_CIRCLE_IN_SQUARE 3 0.5
PAINTING_THE_WALL 3 0.44
WATERING_VEGGIES 3 0.5
COVERING_POOL 5 0.35

TWO_CIRCLES_IN_SQUARE 5 0.28
CIRCLE_O 7 0.32

ONE_CIRCLE_IN_CIRCLE 7 0.37
PENTAGON 7 0.41

TRAPEZOID_ABCD 7 0.30
TRIANGLE_RECTANGLE 7 0.3

TWO_CIRCLES_IN_CIRCLE 7 0.31

Table 9: The node classification of Dataset 4, plus the average accuracies (rounded to 2 decimals) for
each problem.

Some of the nodes in Table 9 match well with what would intuitively feel like a correct classification.
Very simple shapes like rectangles, squares, and triangles are all placed in Node 0. It would not be
strange to conceive that students already have some prior knowledge on how to solve for these shapes
and would thus not require the underlying skills of Dataset 4 to solve these problems. Generally, the
progression of the nodes for these problems makes some sense (e.g. that the LAWN_SPRINKLER_2
problem relies on skills needed for the LAWN_SPRINKLER problem or that pentagon and trapezoid
shapes come later in the knowledge graph than the triangle and rectangle shapes).

However, there are also still classifications that make less sense, such as why the CIRCLE_O problem
is lower in the knowledge graph than the ONE_CIRCLE_IN_SQUARE and TWO_CIRCLES_IN_SQUARE
problems (intuition would dictate that both the square problem and the circle problem would be pre-
requisites for these problems). With information about the steps removed through aggregation, the

4 KNOWLEDGE GRAPH 34

node classifications are harder to analyse. Information is missing about what exactly (i.e. which steps)
cause a problem to be perceived as more difficult (or, requiring more skills) by the knowledge graph
algorithm. Additionally, the data set consists of only 20 problems, meaning some information may
be lost between problems. Overall, aggregating over the steps does not seem like the best solution to
the learning effect problem.

In fact, none of the data sets seem to succeed entirely in mitigating the learning effect. Even if the
learning effect is less pronounced for some data sets compared to others, it is clear that the order
of the problems and the questions does influence the final knowledge graph that is generated by the
knowledge graph algorithm. The best solution for this problem, as this subsection demonstrated, is
not to further subset the original data, but to adjust the knowledge graph algorithm to compensate for
order.

4.3 Compensating for Order

When compensating for the order of the problems, the one property of the data that comes back is
that the order is randomised across students. It is thus not possible to compensate for a global order;
the compensation has to be done for each student separately.

P1 P2 P... PN

S1 1 2 ... N
S2 NA 4 ... 21
S...
SM 2 1 ... NA

Table 10: The schema of the order data frame
filled with some arbitrary numbers.

First, the order each student did each problem in is
recorded in a separate data frame. This data frame
has the problems as its columns and the students as
its rows. Each cell contains an index that represents
when a student S did a problem P. The index was
determined through the match function in base R
and compared the problem names with the student
data. If a student did not do a certain problem, an
NA is recorded for that student and problem combi-
nation. Table 10 provides a visual aid for what this
order data frame looked like.

Once created, the order data frame is utilised in the knowledge graph algorithm to compensate for the
learning effect. Specifically, the order is considered in the problem comparison on the dimensions of
sameness, moreness, and lessness. New rules are applied for determining when two problems are the
same, when one problem is more than another, or when one problem is less than another. These rules
are:

1. Two problems Px and Py are the same only if they are both incorrect. When the problems are
both correct, it is possible that Px has been learned since the occurrence of Py, or vice versa.

2. A problem Px is considered more than a problem Py when Px is correct and Py incorrect. This
only holds if Px occurred before Py. Otherwise, it is possible that Px has been learned since the
occurrence of Py.

3. A problem Px is considered less than a problem Py when Px is incorrect and Py correct. This only
holds if Px occurred after Py. Otherwise, it is possible Py has been learned since the occurrence
of Px.

4 KNOWLEDGE GRAPH 35

The rules remove the effect of learning by taking into account that, if a problem occurred later in time,
it could have since been learned. Table 11 shows that the new rules reduce the data the comparison
matrices can account for from 100% to about 35.8%. With the original algorithm, all problems were
either classified as being the same, being more, or being less than each other. With the new algorithm,
65.2% of the problems cannot be classified into any of the comparison matrices. Consequently, the
algorithm cannot take these problems into account when creating its knowledge graph.

M(sameness) M(moreness) M(lessness) Total Sum

original algorithm 0.574 0.213 0.213 1
updated algorithm 0.130 0.114 0.114 0.358

Table 11: The mean (M) of each comparison matrix and their addition.

While the method for compensating the order is thus simple in its ease of implementation, it is also
very extreme in the problems it discards due to a possible learning effect. In reality, it is likely learning
does not occur between all problems. Rather, it seems more probable that learning would earlier occur
between problems that are very similar than between problems that are not alike at all. However, to
determine the similarity between problems, some new metric would have to be introduced that, like
the goodness of fit, has no ground truth. Although it seems likely that problems like CIRCLE_O and
TWO-CIRCLES-IN-A-CIRCLE would exhibit more overlap and result in more learning between them,
it is equally possible that practicing multiplication and division for squares and rectangles makes it
easier to solve circle problems as well. Since it is difficult to determine how much learning occurs
between tasks, the simple method implemented by the above rules serves as a good method for miti-
gating any learning that may occur between problems, even if much of the data gets disregarded as a
result.

The new rules are implemented in the same.as, more.than, and less.than functions. Since these
functions lie at the core of the knowledge graph algorithm, the change propagates through to the
comparison matrices, the penalty matrices, and subsequently, to the goodness of fit that determines the
final knowledge graph that comes out of the algorithm. With this change implemented, it is possible
to produce a new knowledge graph for Dataset 1 with the updated knowledge graph algorithm.

4.4 The Final Knowledge Graph
The updated knowledge graph algorithm generated the knowledge graph shown in Figure 15 for
Dataset 1. It is immediately obvious that this knowledge graph looks quite different from the one
shown in Figure 8 (which was generated by the original knowledge graph algorithm). The new knowl-
edge graph contains 7 skills, rather than 3, and consists of 11 nodes. It also shows much lower average
fits between the nodes, although, as was stated in the original analysis, this residual goodness of fit
is not a sufficient metric on its own for determining how well the knowledge graph has identified the
skills underlying the data set.

To get a better idea of how ‘good’ this new knowledge graph is, the problems that showed problem-
atic results initially are re-examined. For the PAINTING_THE_WALL problem, all steps of all questions
are placed in Node 0. Improving on the knowledge graph from Figure 8, the steps are now all placed
in the same node. This matches the intuition that steps which are the same should be in the same node.

4 KNOWLEDGE GRAPH 36

Similarly, the three questions from TRAPEZOID_ABCD are placed in the same node (Node 8) in the new
knowledge graph as the TRAPEZOID_AREA, TRAPEZOID_BASE, and TRAPEZOID_HEIGHT problems. To
some degree, updating the knowledge graph algorithm thus seems to have mitigated some of the
learning effect.

0

0

0

0.060.11

00.02

0.01

0
0.03

0.22

0

0.04

0

8

9

1125

27

91

95

108

123

127

Figure 15: The knowledge graph generated from Dataset 1 with the updated knowledge graph algo-
rithm.

However, there are still classifications that make less sense intuitively. The pentagon problems from
Figure 13 are still classified into different nodes (PENTAGON_ABCDE has steps in Node 25 and 27,
while the PENTAGON steps are all in Node 9). Similarly, the classification of the additional problems
discussed in Appendix A continues to be inconsistent, with identical questions being spread across

4 KNOWLEDGE GRAPH 37

different nodes.

Thus, the updated knowledge graph algorithm seems to have improved the classification of some but
not all problems in terms of the learning effect. For the situations that did not improve, it is difficult to
identify a cause. The updates in the knowledge graph algorithm at least rule out learning as a possible
cause, but there are many other reasons why certain contradictions to intuition might be observed. To
give just one: it is possible that the order randomisation is still having an effect on the algorithm. With
the updated algorithm, it becomes possible that two of the same problems are classified differently be-
tween two different students, if those students did said problems in a different order. Thus, a step like
area for the PENTAGON_ABCDE problem might be more than that same step for the PENTAGON problem
for a student Sx, but not more for a different student Sy. Again, since there is no clear ground truth for
the skills underlying the data set, it is hard to say what is happening cognitively when students solve
the various problems.

When looking at intuition, the least that can be said is that the knowledge graph from Figure 15 ap-
pears to improve on the one from Figure 8. It notably removes the learning effect observed in some
problems, and it also shows a good progression of the problem difficulty. Unlike the knowledge graph
generated from Dataset 4, the knowledge graph in Figure 15 places most of the basic shape problems
before their more complex variants that include shapes within shapes. For example, all basic circle
problems are placed in nodes higher in the knowledge graph than the TWO-CIRCLES-IN-SQUARE and
TWO-CIRCLES-IN-CIRCLE problems (which are in Node 127).

Node 0

0000000

From:
To: 8

Knowledge Graph about:blank

1 van 11 17-2-2022 13:25

Figure 16: Node 0 of the knowledge graph contains all steps of the PAINTING_THE_WALL problem.

Given this apparent improvement (visible also in the lower fit scores), the knowledge graph generated

4 KNOWLEDGE GRAPH 38

from Dataset 1 with the updated knowledge graph algorithm is considered the final knowledge graph.
Although it still shows some discrepancies when observed intuitively, it also shows the best fit to date.
Furthermore, since a definite cause behind the remaining discrepancies cannot be identified, there are
no straightforward ways left to improve the knowledge graph algorithm (from this available data).

Having generated a final knowledge graph that shows a decent fit to both the data and intuition, the
knowledge graph will next be used to create a set of cognitive models. The cognitive models are
meant to make the skills identified by the knowledge graph concrete, as well as to show how these
skills integrate with one another to solve the relevant problems. The next section will explain in more
detail how the cognitive models are created from the knowledge graph given here. For time reasons,
the cognitive models will focus on Node 0 and 8 from the knowledge graph. The content of these
nodes can be seen in Figures 16 and 17 respectively. The full distribution of problems into nodes for
the final knowledge graph can be found in Appendix B.

0001000

Node 8

To: 9

From: 0

Knowledge Graph about:blank

2 van 11 17-2-2022 13:25

Figure 17: Node 8 contains 4 trapezoid problems and 2 triangle problems.

39

5 Cognitive Modelling
Two cognitive models were made on the basis of the final knowledge graph from Section 4. The
models were made in the PRIMs cognitive architecture (Taatgen, 2013). At its core, PRIMs works by
defining the skills that make up a task. Each skill consists of its own operators (as also explained in
the Theoretical Background), and each tasks consists of various skills. A model in PRIMs is always
meant to reproduce the cognition behind one task, but the skills defined in each task are meant to be
general enough for reuse between different tasks.

When a cognitive model in PRIMs is run, it continuously checks its internal state to see which skills
it can execute. By executing its skills in the correct order, the model can successfully complete its
tasks. It is also possible for the model to fail to complete its task. This can happen when the model
executes its skills in an incorrect order, when it fails to successfully execute one of its skills, or when
it is missing a skill that is required to successfully complete its task.

Given the inner workings of the PRIMs cognitive architecture, it is a well-suited architecture for cre-
ating the cognitive models in this thesis. These models after all, serve two critical purposes. Firstly,
they are meant to make the identified skills from the knowledge graph concrete. PRIMs allows for
this through its explicit skill definition. Secondly, by creating general skills as PRIMs intends, the
models can be used to show how these skills can be reused between different nodes (which each con-
tain different tasks).

Since the models are thus meant to show how skills can be reused between tasks, rather than one
cognitive model, two cognitive models are created in this section. The first model identifies the skills
necessary to solve the problems from Node 0. It is assumed Node 0 does not contain any of the un-
derlying skills in the data set (i.e., the associated binary string is 0000000), and as such, the skills in
this first model are considered the students’ prior knowledge.

The second model, on the other hand, will contain one of the skills underlying the data set. Specifi-
cally, it will contain the skill 0001000 (read: skill 8), which lies at the core of Node 8. The purpose
of this second model is thus to solve all the problems in Node 8 by successfully identifying this skill.
Since the knowledge graph shows a one skill difference between Node 0 and Node 8, the model of
Node 8 cannot contain any other additional skills than skill 0001000. All the other skills it may need,
it should be able to reuse from Node 0.

In this section, first it will be explained how the model for Node 0 was set up. This first model went
through two iterations, and both of its versions will be explained in the relevant subsections. After
describing the model for Node 0, the model for Node 8 will be given. An important subsection is
dedicated to identifying skill 0001000, before the model of Node 8 can be explained.

After both models have been described, some results are given that show how the models performed.
Importantly, the model performance is expected to provide answers for the research question: “Can
knowledge graphs be used to identify the skills reused between tasks?”. If the model performance is
sufficient (i.e., the models can each solve their respective problems), this supports the use of knowl-
edge graphs as tools for identifying the skills reused between tasks. If the model performance is in-
sufficient (the models fail to solve one of the problems in their respective nodes), this would indicate
the skills identified by the knowledge graph were not accurate enough for the successful completion

5 COGNITIVE MODELLING 40

of the relevant tasks.

5.1 Representing the Problems

The tasks the models will set out to complete are the problem-steps in their respective nodes. In order
to solve these tasks, both Model 0 and Model 8 require an internal representation of these tasks. This
internal representation can take different forms, but it will always be in the visual buffer of the model.
The visual buffer is how the model sees the world.

In simple situations, a visual cue for a subject can be stored in a single chunk in the visual buffer.
This chunk will have various, numbered slots, so (with an eye on Figure 16) V 1 might be set to the
outer wall of the PAINTING_THE_WALL problem, while V 2 might contain a representation of the door.
Each slot of the visual chunk represents a single piece of information, akin to a single fact (or a single
string in programming lingo). Together, the various slots can be used to represent a whole visual input.

Figure 18: The set-up of Experiment 1 in Hoekstra et al. (2020). This experiment has a simple visual
input.

As was said, if the visual input is simple, then a single chunk is sufficient to represent this input.
A paradigm like the attentional-blink, for example, (discussed in the Theoretical Background in the
context of Hoekstra et al., 2020) can be represented by a single chunk, because its visual cues (shown
in Figure 18) can be as simple as single letters and digits. This visual input could thus be captured by
a single chunk, which furthermore would only need to consist of a single slot.

Figure 19: The visual cue that needs
to be internalised by the model for the
PAINTING_THE_WALL problem.

The issue that comes up with representing the problems of
Dataset 1, however, is that their associated visual input is
never particularly simple. Each problem in the data set has
a corresponding shape that students are given as a visual
aid, and each shape consists, at the very least, of multi-
ple segments (where a segment is a line denoted by two or
more letters). Some problems can even consist of multi-
ple shapes within each other, and each of these shapes will
again consist of its own segments. Figure 19 shows how

5 COGNITIVE MODELLING 41

complex such a visual input can be.

At the top level, Figure 19 consists of a rectangle with a base made up by AB and a height of AD.
Within that rectangle, there is another rectangle with the base EF and the height EH. Clearly, there
is a hierarchy to this visual input. If each segment is then stored in its own slot, information about
this hierarchy is lost. Ideally, the visual cue would thus be internalised by a representation that can
capture its hierarchy.

In PRIMs, capturing this hierarchy is possible by defining a visual input that consists of multiple
chunks. Each chunk represents a different item in the hierarchy of the visual input, as shown in Fig-
ure 20. The highest level of this hierarchy is always a screen, as defined in Listing 4.

Screen1

Rect1

Base1 Rect2 Base2

V3

V3

V2 V2

Figure 20: The hierarchy of the visual cue shown in Figure 19.

Generally, Listing 4 shows the definition of the visual input via multiple visual chunks. Each visual
chunk is proceeded by a unique identifier. After this identifier, slot V 1 holds information about what
the chunk is representing. In the case of Figure 19, a chunk can be either a screen, a rectangle, or a
base. With an eye on problems other than the PAINTING_THE_WALL problem, visual chunks can also
represent different shapes (like triangles and trapezoids) and heights (on top of bases).

Listing 4: An example that shows how the visual hierarchy from Figure 20 can be defined in the
cognitive model.

1 define visual {
2 // Screen for question 1 of the painting-the-wall problem
3 (screen1 screen nil rect1 shaded -area)
4 (rect1 rectangle nil base1 nil 22.5 nil)
5 (base1 base rect2 nil 3 nil)
6 (rect2 rectangle base2 nil 7 17.5 nil)
7 (base2 base nil nil 10 nil)
8 }

Beyond the V 1 slot, the V 2 and V 3 slots hold information about the hierarchy of the items in the
visual input. The V 2 slot holds the next item on the same level of the hierarchy, as shown between

5 COGNITIVE MODELLING 42

e.g. Base1 and Rect2 in Figure 20. The V 3 slot holds the next item one-level down from the current
item, like with Screen1 and Rect1. Whether to the next item of the same level or of a level down, the
>> operator allows for the cognitive model to shift its visual focus to the next item in the hierarchy.
Vice versa, the << operator allows the visual focus to be brought back to the top-level item (i.e., the
item that sprouted the current level of the hierarchy).

While the V 2 and V 3 slots thus control the hierarchy of the visual input, the remaining slots of each
visual chunk define it. The number of slots and their content depend crucially on what each chunk is
representing (the V 1 slot). The V 4 slot of a screen, for example, holds the goal for that screen. In the
case of the PAINTING_THE_WALL problem, the goal is to find the shaded region, which is the area to
be painted. Bases and heights will have a base and height respectively (with the inapplicable slot set
to nil). Shapes, like the rectangles of Figure 19, will have a base, a height, and an area. Some shapes,
like trapezoids, can have two bases. In these cases, each base is represented by its own chunk and
connected to its main shape through the V 3 slot.

If information is missing (as e.g. the full base of the wall is for the PAINTING_THE_WALL questions),
it is set to nil in the visual chunk until the student solves for that problem-step. Once a student has
written down a solution, the visual chunk is updated to reflect this. Additionally, a slot is also set to
nil if it is not applicable for a certain item (e.g. when it is the last item of a hierarchy or the height
slot of a base).

Having defined the structure of the various chunks in Listing 4, the visual input defined therein can
now be coupled back to Figure 19. The height of the wall DA is set in slot V 5 of Rect1 (and equal to
22.5 feet for question 1 of the PAINTING_THE_WALL problem). The full base of the wall (AB) is not
given in question 1 (and thus set to nil in Listing 4), but it is visible that this base consists of the base
of the door plus segments AE and FB. Segments AE and FB are given by Base1 and Base2 respec-
tively. The base of the door is given by slot V 4 of Rect2. Its height is stored in its slot V 5. Finally, the
task assigned by question 1 (to find the shaded area) is encapsulated by the V 4 slot of the screen chunk.

Separately, each of the chunks in Listing 4 represents only one part of the visual input. By looking at
these visual chunks as a holistic whole, however, the chunks can effectively be used to represent the
problems of Dataset 1. Given this problem representation, the next subsections tackle how the two
models use this problem representation to solve the problems of their respective nodes.

5 COGNITIVE MODELLING 43

5.2 Model 0

Model 0 represents the cognition behind the problems in Node 0. As Figure 16 shows, this node
contains only one problem: the PAINTING_THE_WALL problem. In Dataset 1, this problem is distin-
guished by three steps: finding the area of the door, finding the area of the wall, and finding the area
of the shaded region of Figure 19. The latter area is the area that needs to be painted, according to the
problem statement of the questions.

Figure 21: Question 1 of the PAINTING_THE_WALL problem.

Figure 21 shows the first question of the the PAINTING_THE_WALL problem. Question 2 and question
3 are identical to this question, save from that they contain different values for the various vari-
ables. Each question consists of the same three steps mentioned in the previous paragraph, and each
question-step combination has its own entry in Dataset 1.

The model for Node 0 must thus be able to perform these three steps, and it must be able to do so
regardless of the values of the variables.

Version 1 of Model 0 approaches the steps directly. The model is created so that it can exactly repro-
duce all questions of the PAINTING_THE_WALL problem. Version 2 of Model 0, however, is created to
serve as a basis for Model 8. It is more general in its skills and its overall approach. The following
two subsections will explain Version 1 and Version 2 of Model 0 respectively.

Regardless of the version, both models start with the same task definition, which sets the model’s
initial goal and its parameters. The task definition is given by Listing 5 for reproducibility. For a full
explanation of the different parameters, consult Taatgen (2022).

Listing 5: The task definition of Model 0.

1 define task shaded -area {
2 initial -goals: (read -task) // the skill the model starts with
3 default -activation: 1.0 // All chunks defined in this model receive a

fixed baselevel activation of 1.0
4 ol: t // optimised-learning
5 rt: -2.0 // retrieval-threshold
6 lf: 0.2 // latency-factor
7 default -operator -self -assoc: 0.0
8 egs: 0.05 // utility noise
9 retrieval -reinforces: t

10 }

5 COGNITIVE MODELLING 44

5.2.1 Version 1

Version 1 of Model 0 is designed specifically to solve the questions of the PAINTING_THE_WALL prob-
lem. It does so in a direct way and is designed entirely by looking at what skills would be required to
solve the questions.

Before any questions can be solved, it is necessary for the model to read the questions and from them,
gain an understanding of its task. For this reason, Model 0 (regardless of its version) is always ini-
tialised with the read-task skill (through the initial-goals variable in Listing 5). Through this
initialisation, it is guaranteed that the read-task skill will always execute first at the start of a model
run.

The read-task skill is defined by one, relatively simple, operator, as shown in Listing 6. The operator
reads the task out of the V 4 slot of the screen and places it in the model’s G1 slot. The G1 slot contains
the model’s current goal. It is originally set to read-task (by the task definition), but will be set to
shaded-area (the content of slot V 4 as shown in Listing 4) after the read-task skill has executed
successfully. The shaded-area goal tells the model that its overall task is to find the area of the
shaded region of the wall shown in Figure 19.

Listing 6: The first version of the read-task skill.

1 define goal read -task {
2 operator read {
3 V1 = screen
4 V4 <> nil
5 ==>
6 V4 -> G1
7 >>V3 // shift focus to the first shape
8 }
9 }

The goal of the model guides it through its skill execution. By changing the goal, the model can be
nudged towards certain skills over others. This ‘nudging’ consists of two elements. Firstly, skills
can be bound to specific goals. When the model has to execute its next skill, the goal binding limits
the skills it can choose from. Skills with goals that do no match its current goal cannot be executed
successfully. In this way, the model is encouraged towards skills that either match its current goal or
to those that do not have goal restrictions.

Secondly, when a skill’s name matches the model’s current goal, the skill receives a spreading activa-
tion from the goal. Without going into the concept of activation in too much detail, in simple terms,
the spreading activation makes it more likely for the model to choose a skill whose name matches
with its current goal. By changing the goal to shaded-area, it is thus very likely the model will
execute the shaded-area skill after it finishes reading its task.

The shaded-area skill is a high-level skill. It tells the model exactly how to calculate the shaded area.
It does so in three parts. First, it tells the model which information it needs to calculate the shaded
area. If the model has this information, or can read it off the screen, the skill next tells the model what

5 COGNITIVE MODELLING 45

to do with said information. If the model successfully completes the required actions, it will end up
with the calculation of the shaded area and it will thereby complete its task. The shaded-area skill
also tells the model what to do if it is missing the information it needs. In that case, the skill guides
the model to other skills, which can be used to find the missing information.

Listing 7: The operators of the shaded-area skill.

1 // Find a shaded area, i.e. the area of a shape minus the other areas
within that shape

2 define goal shaded -area {
3 // Find the area of the top shape
4 operator top-area {
5 ...
6 }
7
8 // If an area is missing, find that first
9 operator missing -area {

10 ...
11 }
12
13 // Subtract intermediate areas from the top area
14 operator subtract -area {
15 ...
16 }
17
18 // Move on to the next shape within the top shape
19 operator next -shape {
20 ...
21 }
22
23 // This runs if the next V2-level item is not a shape but e.g. a base

or height
24 operator not-a-shape {
25 ...
26 }
27
28 // Keep WM1 as the total of the shaded-area calculations
29 operator update -shaded -area {
30 ...
31 }
32
33 // Finish the shaded area calculation and signal the writing action
34 operator end-shaded -area {
35 ...
36 }
37 }

Listing 7 shows the exact operators of the shaded-area skill. The skill consists of seven operators in
total. Each operator represents a different part of the process of finding the area of a shaded region.

5 COGNITIVE MODELLING 46

It is assumed a shaded region highlights one part of a top shape. Other shapes within that shape must
be retracted from the top shape to find the shaded region.

As such, the shaded-area skill begins by looking at the area of the top shape. If that area is given
in the visual input, then the skill can move on to the next shape within that top shape (through the
next-shape operator). The skill iterates over all shapes and subtracts the area of said shape from the
area of the top shape. When there are no more shapes to iterate over, the model has finished calcu-
lating the shaded area. The end-shaded-area operator triggers and the shaded area is written down
through the writing action.

If the area of any of the shapes is missing, however, the missing-area operator will trigger. This
operator changes the goal from shaded-area to area. As with the shaded-area skill, there exists
an area skill that triggers when the goal is set to area.

The area skill works similarly to the shaded-area skill in that it has a success scenario and a failure
scenario. In the success scenario, a base-times-height operator executes successfully. It takes the
base and a height stored in the V 4 and V 5 slots of its current visual focus and multiplies them. For
the multiplication (as for the subtraction in the shaded-area skill), a separate math skill is used. The
math skill is triggered by setting a fact-type variable to multiply-fact and by storing the base
and height in the first and second slot of the working memory buffer (which represents the brain’s
short-term, or, working memory) respectively.

The math skill is in charge of actually performing mathematical operations. In this model, said perfor-
mance is simplified to “remembering” the correct answer. It is assumed that students were able to use
some type of aid (like a calculator) to solve the math problems. This assumption was made because
no clear difference was found between easier and more difficult calculations in the node analysis.
Additionally, cognitive tutors try to limit students from performing cognitive actions that the tutor
cannot keep track of (i.e. something the student does without interacting with the tutor). Thus, it is
unlikely students were expected to solve the mathematical equations themselves.

As such, in the cognitive model, all answers to the mathematical equations are stored in the declar-
ative memory of the model (the model’s long-term memory). The math skill simply asks the model
to remember the answer to a specified equation. Given the base-level activation of these memories
(specified in the task definition as 1.0) and the time the model runs, it is very unlikely it will not know
the answer to any of the mathematical equations it needs to solve.

After the math skill has found the answer, an end-area operator is triggered in the area skill which
instructs the model to write down the area it has found. The writing action is executed which results
in a change in the visual input. This concludes a successful scenario for the area skill.

In the failure scenario, the base-times-height operator in the area skill cannot execute correctly.
In the context of the PAINTING_THE_WALL problem, this occurs once for each question, since the base
of the wall is always missing. Without a base and a height, the base-times-height skill will not
execute. In this case, there is a missing-base operator in the area skill that will execute instead.
This operator passes the baton along (once more) to a base skill.

The base skill is used to calculate a base from various segments. The skill iterates over the items on

5 COGNITIVE MODELLING 47

the V 2 level of the visual hierarchy. If those items have a base (which will be stored in the V 4 slot),
then it adds these bases up to a total base. This total base is assumed to be the base of the top shape.
Once there are no more items on the V 2 level to iterate over, the end-base operator is executed. It
triggers the writing action, and the found base is written down (with its associated update of the
visual input).

After an answer has been written down, the visual focus of the model is reset to the top shape. The
model starts at the shaded-area skill, sees if it now has the information it needs, and if it does not, it
follows the same path it did before. It tries the area skill to find the area, and if that fails, it tries the
base skill to find its missing base. Figure 22 gives a schematic overview of this strategy.

top-area area? next-shape
Yes

base-times-
height

missing-
area

No

 base? Yes
end-area

missing-
base

No

next
shape?

Yes

end-shaded-
area

No

area? Yes subtract-
area

first-base

No

base? next-base
next

base?
Yes Yes

end-base

add-base

AREA

SHADED-AREA

BASE

No

Figure 22: A schematic overview of the workings of version 1 of Model 0. The rectangles represent
operators, while the diamonds represent variable checks (is variable X available, yes or no?).

By writing down each intermediate answer (and thereby updating the visual input), the model will
eventually be able to successfully execute the shaded-area skill. In this way, it can solve the overar-
ching task, which boils down to solving all three questions of the PAINTING_THE_WALL problem.

5 COGNITIVE MODELLING 48

The strength of version 1 of Model 0 is that it aligns well with how the students solve the problems
in the cognitive tutor. There, students were also allowed (and requested) to write down intermediate
answers (in the worksheet shown in Figure 3). By writing down their intermediate answers, the cog-
nitive load of each problem is lowered, because students have less information they need to remember
at any one point in time.

The weakness of this first version of Model 0 is that it is very specific. The area skill has an op-
erator for finding a base, but it does not have an operator for finding a height. It does not have this
operator because this scenario does not occur for the PAINTING_THE_WALL problem. Additionally,
the shaded-area and base skills do essentially the same thing: they iterate over items in the visual
hierarchy and do some mathematical operation with these items to find a total value.

In PRIMs, skills are meant to represent the largest unit of procedural knowledge that can be reused
between tasks. As such, they rely on a delicate balance between being specific enough to solve a
current task but general enough to also apply to other tasks. From this viewpoint, the skills defined
in version 1 of Model 0 are too specific. This version of the model can certainly be used to solve
all three questions of the PAINTING_THE_WALL problem. It cannot do much else. Hence, a second
version of Model 0 was created which aimed to be overall more general, in the hopes of it becoming
a building block for Model 8. The full code of version 1 of Model 0 can be found in Appendix C.1.

5.2.2 Version 2

Version 2 of Model 0 was created with two purposes. Firstly, it was meant to be a more general model.
Secondly, it was meant to serve as a building block for Model 8. At times, these two purposes would
overlap, and making the model more general would also make it a better building block for Model 8.

What is meant by a more general model is a model that is able to solve for a wider breath of tasks,
without changing the purpose of the model. To be more precise, Version 1 of Model 0 could only
solve the full PAINTING_THE_WALL problem. It stands to reason, however, that the model should be
able to solve for its intermediary steps as well. If asked to calculate only the area of the door, Model
0 should be able to do so, since it has the area skill. Despite of this, version 1 of Model 0 cannot do
this task.

The reason for this lies in the read-task skill. In version 1 of Model 0, the read-task skill reads
its task off the V 4 slot of the screen chunk in the visual input. It assumes this task is bound to the top
shape in the visual hierarchy. If the goal is changed to area, the model would thus try to calculate the
area of the wall, rather than that of the door.

An easy solution to this problem is to add an optional value to a new slot (V 5) in the screen chunk.
This slot could, in theory, be used to specify a shape or segment within the visual hierarchy that the
task is bound to. Of course, adding this slot means nothing if the model does not know how to process
said slot. For version 2 of Model 0, it is therefore necessary to adjust the read-task skill to allow for
more general task assignments.

The read-task skill is given two additional operators in version 2 of Model 0. They can be found in
Listing 8. The original read operator shown in Listing 6 is renamed to read-simple-goal for this
second iteration of the read-task skill.

5 COGNITIVE MODELLING 49

Listing 8: The two additional operators of the read-task skill, version 2.

1 // A complex goal has a shape specified as focus (e.g. area rect5 asks to
find the area of rect5 in the visicon)

2 operator read -complex -goal {
3 G1 = read -task
4 V1 = screen
5 V4 <> side
6 V5 <> nil
7 ==>
8 search -visual -> G1 // Before we get to the top goal, we first need

to find the specified shape
9 V4 -> G2 // The top goal is stored in G2

10 V5 -> WM1 // The specified shape gets placed in WM1 so that we can
iterate until it’s found

11 >>V3 // shift focus to the first shape
12 }
13
14 // If the goal is to find a side, V5 will specify which side we are

interested in
15 operator read -side {
16 G1 = read -task
17 V1 = screen
18 V4 = side
19 V5 <> nil
20 ==>
21 V4 -> G1
22 V5 -> *side // save the specified side as a variable
23 >>V3 // shift focus to the first shape
24 }

The new operators of the read-task skill allow the model to solve two additional task types. It can
either solve for the area of a specified shape, or it can solve for the side of the top shape. The side
task must be further specified to refer to either a base or a height. These two additional task types
allow the model to complete all the intermediary steps of the PAINTING_THE_WALL problem (namely,
calculating the area of the door or calculating the base of the wall), when prompted.
What immediately stands out about the new operators is that they are visibly more complex than the
original read operator in Listing 6. They have more conditions (lines before the arrow), and some
new results (lines after the arrow) that have not been used prior.

In terms of conditions, a goal slot is now specified to streamline how the skills are setup (recall that
the shaded-area skill also had a goal slot specification) and to further ensure that the read-task
skill is executed anytime the student returns to the screen chunk. Additionally, the conditions now
check the new V 5 slot of the the screen chunk, which will hold either a target shape or a base or height
specification. The existence of the V 5 slot is what sets the conditions of the read-complex-goal and
read-side operators apart from the read-simple-goal operator.

5 COGNITIVE MODELLING 50

In the new operator results, the read-complex-goal operator shows the use of two goal slots, rather
than a single one. The G1 slot holds the immediate goal, while the G2 slot holds the overarching goal.
When a task is read that specifies a certain target (but not a side), then the immediate goal becomes to
find that target. The target can be found with a new search-visual skill.

The search-visual skill consists of two operators: one for when the desired target is found, and
one for when a visual item is not the target. When the target is found, the overarching goal that was
temporarily placed in the G2 slot is moved to the G1 slot. The G2 slot is then cleared, and the model
continues with its overarching goal. The use of two goal slots is unique to version 2 of Model 0, but
it is only used in this instance: to process more complex goals.

The read-side operator shows another mechanic unique to version 2 of Model 0. In its results, the
content of the V 5 slot (which will specify whether the task is to find a height or a base) is passed on to
a variable called *side. It is clear from the asterisk that this variable is different from constants like
screen and side, which the conditions check for. In fact, the asterisk denotes that this variable is a
binding. Bindings are, as their name imply, bound to a certain value. In this case the *side binding
is bound to the contents of the V 5 slot.

The use of bindings allows for the creation of more general models. The *side binding makes it
possible to use one skill (called side) for finding either a base or a height. Within the skill, different
operators can be defined for dealing with the different values of the *side variable. This obviously
allows for more versatile skills, but it is fair to wonder if the use of bindings is cognitively sound.

To answer that question, the side skill is analysed in more detail. The side skill is very simple in
version 2 of Model 0, because the only way to find a side in this model is through segments. There
is no evidence in the PAINTING_THE_WALL problem alone that students could also use e.g. the area to
find a side. Thus, the only proven way students can determine sides (if they can solve Node 0), is by
adding segments together. As such, the side skill has but one operator (side-by-segments) which
changes the goal to segments.

The segments skill in version 2 of Model 0 corresponds to the base skill of version 1. Unlike its
version 1 iteration, however, the segments skill can be used to find either a base or a height. Its
only requirement is that the relevant side can be found by adding segments together. Listing 9 shows
the two operators of the segments skill that encapsulate the difference between finding a height and
finding a base. It is a matter of looking in a different visual slot (V 5 for a base, V 6 for a height).
Beyond that, the operators are the same, and the segments skill goes about finding a base in the exact
same way as it goes about finding a height.

If the *side binding had not existed, each operator in the segments skill would have needed two
variants: one for when the task was to find a height, and one for when the task was to find a base.
Alternatively, it would be possible to create two separate skills, one for finding a base and one for
finding a height. These two scenarios are identical in that they make little sense. The process for
finding a base is the same as the process for finding a height. The only difference, as Listing 9 in-
dicates, is where a student needs to look to read the height or base off their visual input. Given this
small difference, it makes no sense to have separate operators or even separate skills for this identical
process. The *side binding (and all other bindings used in version 2) allows the operators to be used
in a more versatile way, without them being bound to very specific constants.

5 COGNITIVE MODELLING 51

Listing 9: The operators that allow the segments skill to differentiate between finding a base and
finding a height.

1 // If we’re trying to find a base, read the width of a segment/shape
2 operator read -width {
3 G1 = segments
4 *side = base
5 *item = none
6 *done -iterate = no
7 V5 <> nil
8 ==>
9 V5 -> *item

10 }
11
12 // If we’re trying to find a height, read the height of a segment/shape
13 operator read -height {
14 G1 = segments
15 *side = height
16 *item = none
17 *done -iterate = no
18 V6 <> nil
19 ==>
20 V6 -> *item
21 }

Together, bindings and multiple goal slots allow version 2 of Model 0 to be much more generic. The
repetition of steps seen in version 1 of the shaded-area and base skills is solved by creating a more
generic iterate-over skill that can only work because of the use of bindings. Overall, version 2
of Model 0 allows the model to do more, not by creating additional skills, but by breaking down the
skills there are into their specific and generic components.

Ultimately, such a generic version of the model is more cognitively sound precisely because it relies
on the reuse of (component) skills between tasks. To draw a comparison, say there was a table with
oranges on one side and apples on the other. Version 1 of Model 0 can be thought of as a model
created to count oranges. It could count the oranges, but it could not do anything with the apples,
even though it knows how to count. It is so specific it can only work in the exact conditions for which
it was created. Version 2 of the model is then a version that can count irrespective of the item it needs
to count. Version 2 of the model is still made to solve the PAINTING_THE_WALL problem (which en-
compasses the full content of Node 0). The difference is, it can also solve problems that rely on the
same skills it needs for the PAINTING_THE_WALL problem (like calculating a rectangle area, adding
two bases, et cetera). It is this quality to apply the same skills to different scenarios that make the
second version of the model better aligned with human cognition.

While thus being an improvement over version 1 in terms of generality, there is another requirement
for version 2 of Model 0. It also needs to serve as a building block for Model 8. The driving power
behind the knowledge graph approach is that it identifies the skills underlying a data set. The final

5 COGNITIVE MODELLING 52

knowledge graph in the Knowledge Graph section is very clear in its assessment that Node 8 differs
from Node 0 by only one skill. If this assessment is adhered to strictly, then it means the model of
Node 0 should be written in such a way that the Model of Node 8 can solve all its problems by reusing
the skills defined in Model 0, in combination with its one additional skill.

In many ways, making version 2 of Model 0 more generic already helped in improving its function
as a building block for Model 8. The search-visual and side skills are skills that were added
to Model 0 in part because Model 8 would need them. Similarly, the additional operators in the
read-task skill were added for that same reason. The addition of the skills and operators was justi-
fied, because it could be shown that Model 0 could also already do these things, as evidenced by the
PAINTING_THE_WALL problem. Furthermore, by virtue of Node 0 representing the prior knowledge of
a student coming into the data set, it was possible to fine-tune the necessary skill set without worrying
about restrictions regarding the number of skills.

Following this line of thinking, three more skills were added to the model. These skills were addition,
multiplication, and subtraction; all skills which the PAINTING_THE_WALL problem indicates students
possess if they can correctly solve said problem. The addition, multiplication, and subtraction skills
could be thought of as higher levels of the math skill. In functionality, they are all the same in that
they set the fact-type binding to their associated values (e.g. the multiplication skill sets the
fact-type to multiply-fact). After setting the fact-type, the rest of the mathematical operation
is done by the math skill (which remains virtually the same as its version 1 variant). As with version
1, all math is still simplified as a remembering process.

Separating the different mathematical operations from the higher-level shaded-area, area, and base
skills make sense in the same way it makes sense that the iterate-over skill is not tied to the
shaded-area and base skills. The mathematical operations should be independent skills that are
not tied to specific instances of use. While separating them was thus done because it would prove
necessary for Model 8, it again aligns with making the model more generic and through that, more
human.

Listing 10: The full content of the missing-area operator (a part of the shaded-area skill).

1 // If an area is missing, find that first
2 operator missing -area {
3 G1 = shaded -area
4 V1 = rectangle
5 V6 = nil
6 ==>
7 area -> G1
8 nil -> WM0
9 }

The final change that was made to Model 0 to establish it as a building block for Model 8 was a change
to its visual input. Node 8 contains trapezoids and triangles, but Model 0 was designed to function
only with rectangles. Listing 10 shows that the model uses the rectangle constant in its conditions to
determine whether it is dealing with a missing area or whether the current item does not have an area
at all (like a screen or a base). To make sure the model could also deal with other shapes, the visual

5 COGNITIVE MODELLING 53

input was changed according to Listing 11. Items were categorised as either shapes or segments.

Listing 11: An updated version of the visual input used for version 2 of Model 0 and for Model 8.

1 // Define the visual with a graph representation. V2 holds same-level
items. V3 holds lower-level items

2 // V4 is a further specification of the V1 type. V5 is width, V6 is
height. V7 is area for shapes

3 define visual {
4 // Screen for question 1
5 (screen1 screen nil rect1 shaded -area)
6 (rect1 shape nil base1 rectangle nil 22.5 nil)
7 (base1 segment rect2 nil base 3 nil)
8 (rect2 shape base2 nil rectangle 7 17.5 nil)
9 (base2 segment nil nil base 10 nil)

After this update to the visual input, skills like the shaded-area skill check whether an item is a
shape, rather than specifically a rectangle. Although Model 0 only has rectangle shapes and base
segments, the adaptation of a two-type specification for the items makes a wider variety of shape and
segment definitions possible.

With that final update to version 2 of Model 0, Model 0 is complete. This is a version of Model 0
that is both generic and capable of serving as a building block for Model 8. Its full code can be found
in Appendix C.2. As a visual aid, Figure 23 shows a schematic (partial) overview of the model’s
operators and skills, as discussed in this section.

5 COGNITIVE MODELLING 54

init-area base?

missing-
base

No

height base-times-
height

missing-
height

end-area

No

ITERATE-
OVER

SUBTRACT

ADD
init-

segment
*side? read-side

next seg-
ment?

Yes

end-base

No

SEGMENTS

AREA

Yes

Yes Yes

Yes

next
shape?

end-shaded-
area

init-shaded-
area

area?

missing-
area

area-of-
shape

Yes

No No

SHADED-AREA

init-shaded-
area

missing-
area

area-of-
shape

end-shaded-
area

next
shape?area?

 base? height

missing-
base

missing-
height

init-area

Figure 23: A schematic overview of the workings of version 2 of Model 0. Rounded rectangles
represent operators, square rectangles represent skills, and diamonds represent variable checks (is
variable X available, yes or no?). Starred variables represent bindings, which can be set to specific
values to check for.

5 COGNITIVE MODELLING 55

5.3 Model 8
Similar to Model 0, Model 8 was built to represent the cognition behind the problems in Node 8. For
simplicity’s sake, these problems are repeated in Figure 24. It is visible that Node 8 contains six prob-
lems. Of these six problems, four are trapezoid problems. Specifically, they are the TRAPEZOID_ABCD,
TRAPEZOID_HEIGHT, TRAPEZOID_BASE, and TRAPEZOID_AREA problems. These problems should be
familiar, since they were also discussed in the Knowledge Graph Section.

The two new problems in Node 8 are TRIANGLE_TRIANGLE and TRIANGLE_ABC (at the top of Figure
24). The former problem asks students to find the area of the shaded region; it consists of a triangle
shape within a larger triangle. For the latter problem, only the first two questions are included in Node
8. These questions ask for the area of the triangle, given its base and height, and for the height, given
the base and the area.

0001000

Node 8

To: 9

From: 0

Knowledge Graph about:blank

2 van 11 17-2-2022 13:25

Figure 24: The problems in Node 8 (repetition of Figure 17).

5 COGNITIVE MODELLING 56

The goal of Model 8 is to solve all six of these problems. To accomplish this, the model will be given
one additional skill compared to Model 0. The rest of the skills it may need to solve these problems,
it will have to reuse from Model 0. This setup ensures Model 8 adheres to the data analysis and the
conclusions from the knowledge graph.

Although it is simple to say Model 8 will be given only one additional skill, it is much more difficult
to determine what that skill should be. By analyzing the skills Model 0 already possesses, Section
5.3.1 will try to determine what the skill is that underlies Node 8. Having determined skill 0001000,
Section 5.3.2 then uses this skill to build Model 8.

5.3.1 Finding Skill 8

To determine the skill Model 8 requires to solve the problems of Node 8, it is important to map the
capabilities Model 0 already possesses. Although Model 0 does not know how to solve for triangle
or trapezoid shapes, there are many aspects of the problems in Node 8 that Model 0 can already tackle.

For example, the TRIANGLE_TRIANGLE problem asks for the area of a shaded region. This is precisely
what Model 0 needs to do for the PAINTING_THE_WALL problem. Thus, while the model does not
know how to calculate the area of a triangle, it does know how to subtract two areas from each other
to find a shaded region.

In fact, the shaded-area skill is not the only skill Model 0 can reuse to solve the problems of Node 8.
Specifically, it can also apply the segments skill to all questions that involve trapezoids. Trapezoids
are characterised by having two bases: a long base (AB) and a short base (DC). Even if both bases are
given, to calculate anything for a trapezoid (a height or an area), the bases will have to be added first
to get the trapezoid’s total base. Through the segments (and add) skill, Model 0 is already capable
of performing this addition.

From these observations, it is clear Model 0 has some skills that are both useful and necessary for
solving the problems in Node 8. Unfortunately, Model 0’s biggest shortcoming is that it only knows
how to do calculations for rectangle shapes. The primary reason for this is that it has only one op-
erator for calculating the area of a shape: the base-times-height operator. This operator works
specifically by multiplying a shape’s base with its height. Through that multiplication, it determines
the area of the shape. For rectangles, that is all there is to it. For triangle and trapezoids problems,
this multiplication of the base times the height is insufficient.

Although insufficient, it is not wrong. That is to say, to calculate the area of a triangle or a trapezoid,
the base and height must still be multiplied with each other. For triangles, the area that comes out
of this multiplication must next be divided by two. For trapezoids, the same applies, but its base is
made up of two bases that must be added together first (before the total base can be multiplied with
the height). In simple terms, calculating the area of a triangle and a trapezoid is simply calculating
the area of a rectangle with some additional steps.

For the purpose of identifying skill 0001000, this is a good discovery. If the process of identifying the
area were entirely different for the different shapes, then it would stand to reason that each shape thus
has a unique skill for calculating its area. While this is theoretically still possible, the data analysis
done indicates this is not the case, since it proposes there is but a singular skill that differentiates Node

5 COGNITIVE MODELLING 57

0 from Node 8. If this data analysis is adhered to, then it would not be correct to add two new skills
to Model 8: one for calculating the area of a triangle, and one for calculating the area of a trapezoid.

Following this reasoning, it is good that there are steps that clearly repeat when calculating the area
of rectangles, triangles, and trapezoids. Since there is such overlap, these steps could be considered
as new operators for the area skill, rather than separate skills on their own. In this case, the skill is the
same area skill, but its new operators teach the model how to apply that skill in new circumstances.

By updating the area skill with new operators, the model should be able to calculate the areas of tri-
angles and trapezoids. However, there remains one obstacle for the model to be able to succeed in this
calculation: Model 0 does not know how to do division! Recall that for triangles and trapezoids, the
intermediate area must be divided by two for the final area. Since the PAINTING_THE_WALL problem
does not require the use of division, Model 0 has no skill for this.

The model does have skills for multiplication, addition, and subtraction. These are mathematical op-
erations that are clearly necessary for the PAINTING_THE_WALL problem, and thus Model 0 was given
these skills to be able to solve the problems in Node 0. Since division is now clearly necessary to
solve the problems of Node 8, Model 8 will therefore need a division skill.

Such a division skill will not only allow Model 8 to calculate the area of trapezoids and triangles, it
will also allow the model to solve the other remaining questions of Node 8. These other questions ask
students to solve for a side (a height or a base), given an area and the other relevant side. Clearly, if
the model knows how to do division, it can also solve these types of questions.

To conclude, if the skills from Model 0 are accessible to Model 8 as well, then the only truly new skill
Model 8 needs to solve the problems of Node 8 is the division skill. Although some skills from Model
0 will need to be adjusted to teach Model 8 how to handle new circumstances, these adjustments can
be implemented through additional operators. In this way, the data analysis is adhered to and Model
0 and 8 only differ in one skill.

Listing 12: The divide skill added to Model 8.

1 // This skill has the knowledge of how to do division
2 define goal divide {
3 operator divide -action {
4 WM1 <> nil
5 WM2 <> V0
6 WM3 = nil
7 *action = divide
8 *fact -type = none
9 ==>

10 divide -fact -> *fact -type
11 }
12 }

5 COGNITIVE MODELLING 58

5.3.2 Creating the Model

Listing 12 shows the divide skill that is added to Model 8. Like the multiply, add, and subtract
skills, this skill itself does not do much. It sets the *fact-type binding to divide-fact, so that the
math skill knows what type of fact it is looking for in its memory (remember that math is simplified
in this model as remembering the answer of a mathematical operation).

While the skill itself is thus not very involved, the more important changes to Model 8 lie in how
this new skill is applied. The way the skill integrates with the math, area, and side skills is, in fact,
where Model 8 differs the most from Model 0.

To begin with, Listing 13 shows how the divide skill was integrated with the area skill to calculate
the area of triangles. The first operator area-triangle is designed to trigger after the base-times-
height operator. This operator is not in Model 8, but the model can reuse it from Model 0.

Listing 13: The operators added to the area skill for triangles.

1 // If we’re looking a triangle, divide the previously found area by 2
2 operator area -triangle(activation=10.0) {
3 G1 = area
4 WM3 <> nil
5 V4 = triangle
6 *action = multiply
7 ==>
8 WM3 -> WM1
9 *two -> WM2

10 nil -> WM3
11 divide -> *action
12 }
13
14 // If we have the answer in WM3 and we did the area-triangle operator,

write the answer
15 operator end-area -triangle(activation=10.0) {
16 G1 = area
17 WM3 <> nil
18 V4 = triangle
19 *action = divide
20 ==>
21 G1 -> *task
22 WM3 -> *answer
23 write -> G1
24 none -> *action // Reset the action since we are finished with the

goal
25 }

The second operator end-area-triangle tells the model when it is finished with calculating the area
of a triangle. This triggers after the area-triangle operator. Notice how both these operators have
an activation specified. Activation has been mentioned twice prior in this section, once in reference

5 COGNITIVE MODELLING 59

to the spreading activation from the goal, and once in reference to the base-level activation.

Generally, activation determines whether the model can retrieve its chunks. In PRIMs, operators are
stored as chunks in the model’s declarative memory in the same way facts are. Following this design,
activation plays an important role in which operator the model decides to execute at any given point
in time. The conditions of the operators are meant to ensure the model executes its operators in an
order that leads to the successful completion of its task. However, in a situation where the conditions
of multiple operators are met, it is the activation of each operator that decides which operator will
be executed. To be more precise, the model will execute the operator whose conditions are met and
whose activation is the highest of all possible operators.

Activation can be increased with use. The more a chunk is recalled, the higher its activation will be
(given that the retrieval-reinforces parameter is set to true; which it is for Model 8). This causes
problems when new operators are introduced, as is the case for Model 8, because old operators are
likely to have higher activation (if they have been used in the past). In other words, the operators
Model 8 reuses from Model 0 are likely to have higher activation than the new operators that are
being introduced for Model 8. Translating this to practice, what can happen is that the model does not
calculate the area of a triangle correctly, because it decides to use the old operators it has from Model
0 instead. These operators (in version 2 of Model 0) do not mention they are specific to rectangles,
because that was not necessary for Model 0. This means that the operators conditions are met for any
shape, and if their activation is higher, the model will choose to execute these operators rather than its
new operators. The result of which is that the model does not correctly calculate the area of a triangle
(or a trapezoid).

The solution to this problem is to have the new operators start off with a higher activation (activation
= 10.0). This is, of course, a very crude solution, because the model is, in a sense, forced to use the
new operators. If approached more organically, the model would instead be allowed to make its mis-
takes and learn from them. It would see that each time it used the old operators, it would not succeed
in its task, and over time (through another PRIMs property known as associative learning), it would
start to use its new operators in favour of the old ones.

Although this approach would show an interesting aspect of cognition (and learning specifically), the
models described in this section do not focus on the learning process itself. They simulate the brain
when the desired skills are already mastered. This is also noticeable in how the models are not made
to make/simulate mistakes. From the data available, it would not be possible to include this aspect of
cognition, because Dataset 1 does not include the actual answers students gave; it is not known what
types of mistakes they made, and as such, mistakes cannot be simulated by the models.

Without incorporating mistakes, the higher activation allows Model 8 to simulate mastery of the
updated versions of Model 0’s skills. Consequently, all new operators introduced in Model 8 for ex-
isting skills will have their activation set to 10, unless these operators do not need to compete with
the old operators. The side skill, for example, does not have many operators in Model 0. Since
Model 0 could not divide, the model could only find sides through the segments skill. As a condi-
tion, the side-by-segments operator postulates that there is no area available. The new operators
added to Model 8, which work precisely when an area is available, do not need to compete with the
segments-by-sides operator. These operators then do not need a higher base activation.

5 COGNITIVE MODELLING 60

Before moving on to the side skill, there are also the trapezoid operators to consider for the area
skill. Notably, there is a trapezoid variant for both the area-triangle and end-area-triangle
operators. The area-trapezoid and end-area-trapezoid operators are identical to their triangle
counterparts, save for their conditions. These ask for a trapezoid in slot V 4, rather than a triangle.
Although the operators are otherwise identical, each shape has its own set of operators because they
depict different circumstances, and the model must know what to do in each unique circumstance.

To further highlight this, the add-trapezoid-bases and base-of-trapezoid operators (depicted
in Listing 14) are unique to trapezoid shapes. The operators tell the model how to calculate the full
base of a trapezoid (through the addition of its short and long base). They are meant to be executed
before the base-times-height operator, since the latter only triggers if a shape’s base and height are
known. The circumstances surrounding these operators are very specific, and their conditions reflect
as much.

Listing 14: The operators that tell the model how to determine the full base of a trapezoid shape.

1 // Since trapezoids don’t have a single base, get the total base by
adding its base1 and base2

2 operator add-trapezoid -bases(activation=10.0) {
3 G1 = area
4 V4 = trapezoid
5 WM1 = nil
6 ==>
7 G1 -> G2 // Save the original goal so it can be returned to
8 segments -> G1
9 base -> *side // Set the focus to base

10 add -> *action
11 nil -> WM0
12 >>V3 // Move down to the segments that make up the trapezoid base
13 }
14
15 // This skill triggers after the trapezoid bases have been added
16 operator base -of-trapezoid(activation=10.0) {
17 G1 = area
18 WM1 <> nil
19 *action = add
20 V<< // Returning from segments, look at the trapezoid again rather

than the last base
21 V4 = trapezoid
22 ==>
23 none -> *action
24 }

To go into further detail, the operators are designed specifically for a certain visual input. Trape-
zoids are represented in the visual input according to Listing 15. Their base is set to nil by de-
fault, and instead, they have two base segments one level down in their visual hierarchy. The
add-trapezoid-bases operator in Listing 14 shifts the visual focus down to these segments so
that the bases can be added together through the segments and add skills. Unlike other intermediate

5 COGNITIVE MODELLING 61

answers, the worksheet of the cognitive tutor does not give students a space to write down the trape-
zoid’s full base. This means the students (and therefore the cognitive model) will have to remember
this intermediate answer in-between calculations (in the model, it is stored in the working memory
slot WM1). After the bases have been added together, the base-of-trapezoid operators shifts the
focus back to the trapezoid chunk so that the rest of the area calculation can be done.

Listing 15: The definition of a trapezoid in the model’s visual input.

1 (trapezoid1 shape nil base4 trapezoid nil 7 nil)
2 (base4 segment base5 nil base 31 nil)
3 (base5 segment nil nil base 33 nil)

Although the V 7 slot of the trapezoid chunk can thus be updated to incorporate the calculated area,
the V 4 slot, which reflects the base, will always be nil for trapezoids. As a result, the missing-base
operator from Model 0 must be adjusted to reflect this (since it normally triggers precisely when slot
V 4 is equal to nil). Among its operators, Model 8 is given a new version of the missing-base op-
erator with updated conditions. These conditions specify that the operator should only execute if the
shape is not a trapezoid.

Similarly, the end-segments operator of the segments skill must be updated to reflect that the an-
swer is not written down in the case of trapezoid bases. As it is not possible from the segment chunks
to know what the top-level shape is, a G2 slot is utilised to distinguish between when and when not to
write down the segments answer. The trapezoid-bases operator saves the overarching area goal
to the G2 slot, and a new end-segments-alt operator is triggered in the cases where the G2 slot is
not nil. If there is some overarching goal for the segments skill to return to in Model 8, it will do
so over writing down its intermediate answer. Like the new area operators, the end-segments-alt
(and updated end-segments) operators are given a base activation of 10.

In addition to the end-segments-alt and updated end-segments operators, the segments skill in
Model 8 is given two additional operators: skip-height and skip-base. These operators are not
given a higher base activation, because they are added to the segments skill primarily so that Model
8 knows how to deal with a wide variety of circumstances. In the cases where the model is looking
for a specific side, but the current item in its visual focus is missing information on this side, it will
skip the item as a rule of thumb. This ensures the model does not get stuck (something that occurs
when there is no operator whose conditions are being met).

To further ensure the model does not get stuck, the side skill from Model 0 must be updated for
Model 8 as well. In this case, the added operators do not need a higher activation, because they will
not be competing against older operators from Model 0’s version of the side skill. In total, twelve
new operators are added to the side skill for Model 8. These operators largely mirror those of the
area skill. There are three general operators that are used by all shapes. These operators give instruc-
tions on how to read the area and the other side, which should both be given to calculate the desired
side. The area-by-other-side operator next tells the model how to get the desired side by dividing
the area with the given side.

On top of these three general operators, each shape has its own ending operator. This operator lets the
model know when it is done calculating its desired side for the shape of interest.

5 COGNITIVE MODELLING 62

Contrasting the other two shapes, the trapezoid shape actually has two ending operators: one for the
height and one for the base. The trapezoid shape requires two operators, because finding the side of
a trapezoid is a much more involved process. Where the side of a rectangle can be found through
the three general operators, and the side of a triangle needs but one extra operator (side-triangle),
the trapezoid shape requires four extra operators for calculating one of its sides. All of these extra
operators deal with the fact that a trapezoid shape has two bases. They instruct the model on how to
deal with this trapezoid characteristic, for example by having the model subtract its found total base
by the given other base.

It is clear from this description that the side skill is where Model 8 and Model 0 differ the most, with
the area skill following closely. The updates made to the segments skill are the least impactful.

The description of Model 8’s new operators given in this section does not only show how Model 8 and
Model 0 differ, it also shows how they are alike. Skills such as search-visual and iterate-over
are left unaltered for Model 8. The model will use these skills as they are from Model 0 if it requires
them. While the model includes new operators for three of Model 0’s pre-existing skills, there is but
one skill added to Model 8 that is entirely new: the division skill. As with the previous models,
the full code for Model 8 can be found in Appendix C (specifically C.3) and Figure 25 provides a
schematic overview of the Model 8 operators discussed in this section.

5 COGNITIVE MODELLING 63

add-trapezoid-
bases

base-of-
trapezoid

end-area-rect

area-triangle end-area-
triangle

base-of-shape height-of-shape base-times-
height

end-area-
trapezoidarea-trapezoid

AREA

read-bases-of-
trapezoid

other-side-height-
trapezoid

end-side-rect

side-triangle end-side-
triangle

other-side* area-by-other-
side

end-side-
trapezoid*side-trapezoid

SIDE

SEGMENTS

end-segments end-segments-
alt

skip-base skip-height

Figure 25: A schematic overview of the new operators in Model 8 (coloured; white operators are
those Model 8 can reuse from Model 0). Rounded rectangles represent operators. The border of each
operator is shape-dependent. Rectangles have an uninterrupted border, trapezoids a dashed border,
and triangles a dotted border. The starred operators visible are binding-specific, meaning there is a
version available of this operator for each binding value.

5 COGNITIVE MODELLING 64

5.4 Model Performance
The previous two sections describe how two cognitive models were built on the basis of the knowl-
edge graph that came out of the data analysis. The models, Model 0 and Model 8 respectively, were
built to solve the problems of Node 0 and Node 8. The fact the models could be built in the first
place already says something about the validity of the skills the knowledge graph identified. After all,
if the results from the knowledge graph had been unintelligible, it would not have been possible to
transform these results into functional cognitive models.

In this case, functionality is the key word. While being able to built the models in the first place is a
good sign, the skills identified by the knowledge graph cannot be accepted unless they can result in
the successful completion of their desired tasks (i.e. all problems in Node 0 and Node 8).

To test whether the models could successfully complete their desired tasks, multiple model runs are
performed. Model 0 is checked for all three questions of the PAINTING_THE_WALL problem. For
computational reasons, Model 8 is checked for all Node 8 problems except TRIANGLE_TRIANGLE and
TRAPEZOID_ABCD. It is assumed that the model’s performance on the other problems is sufficient to
determine its success for the whole task (which is all of Node 8).

Figure 26: The performance of Model 0 in terms of response time. The three questions on the x-axis
represent the three questions of the PAINTING_THE_WALL problem.

Figure 26 shows the model performance of Model 0. The model performance is expressed in re-
sponse time, which represents how long it took the model to answer each of the three questions of the
PAINTING_THE_WALL problem. Firstly, it is good to note that the model indeed succeeds at answering
all three questions. It can be concluded that the model succeeded at its task of solving all problems in
Node 0.

Another interesting observation that can be made on the basis of Figure 26 is that, although learning
was not a priority of these models, it does take place. The model performance improves with each
subsequent question. Under the hood, this performance increase can be explained through a PRIMs

5 COGNITIVE MODELLING 65

property called production compilation.

When a model uses its operators for the first time, it is not efficient at them yet. Its checks each
condition separately and runs one result at a time. As the model executes its operators, it learns how
to check multiple conditions at once and how to run results in batches. Together, the conditions and
results make up the production rules of each operator. Through the compilation of new, more efficient
production rules, the model becomes faster at using its operators.

Since Model 0 is asked to solve each of the PAINTING_THE_WALL questions in order, it has a chance to
learn better production rules over time. Subsequently, the model is more proficient with its operators
(and thereby its skills) by the time it gets to question 2, and again for question 3. Through practice,
the model becomes more efficient at answering the shaded-region questions, and this is reflected in
its faster response time.

Figure 27: The performance of Model 8 in terms of response time. Question 1 on the x-axis is a
repetition of question 3 of the PAINTING_THE_WALL problem. Question 2 and 3 represent the first two
questions of the TRIANGLE_ABC problem. The remaining questions represent the TRAPEZOID_HEIGHT,
TRAPEZOID_AREA, and TRAPEZOID_BASE problems (in that order).

Given this effect of practice that is observed in Model 0, the performance of Model 8 makes a distinc-
tion between the performance with- and without training. In the without training condition, Model 8
can access the Model 0 skills, but Model 0 itself is never run. In the training condition, Model 0 is
run before Model 8, so that Model 8 can inherit the more efficient production rules that Model 0 has
compiled from practice.

Figure 27 shows the performance of Model 8 for six questions. These questions span the TRIANGLE_ABC,
TRAPEZOID_HEIGHT, TRAPEZOID_AREA, and TRAPEZOID_BASE problems. Additionally, the first ques-
tion (Q1) is a repetition of question 3 of the PAINTING_THE_WALL problem. Since Model 8 can reuse
the skills from Model 0, it should also be able to solve this question.

5 COGNITIVE MODELLING 66

Indeed, Figure 27 confirms Model 8 cannot only solve problems from Node 8, it can also solve the
problems from Node 0. In other words, Model 8 encompasses all the skills a student should have if
they can successfully solve the Node 8 problems. While the model performance in Figure 27 does not
include the TRIANGLE_TRIANGLE and TRAPEZOID_ABCD problems, it stands to reason that the model
would be successful in answering these questions as well, since its success with Q1 indicates it can
solve for shaded regions and its success with the other trapezoid problems indicates it could equally
solve the TRAPEZOID_ABCD problem.

Thus, it can be concluded that Model 8, like Model 0, is successful in completing its task. How-
ever, the dark, without-training line in Figure 27 shows that Model 8 is, initially, less efficient at
solving its question than Model 0. Model 0 needs less than 300 seconds to solve question 3 of the
PAINTING_THE_WALL problem, while Model 8 needs over 400 seconds to do the same.

This is not a strange finding. Model 8 has an additional 22 operators. In practice, this means it
will need more time to decide which operator to choose at any given time compared to Model 0.
If Model 0 has had a chance to do a full run before Model 8 is executed, however, then Model 8
gets a head-start from Model 0’s increased expertise. It knows better which operators to execute
at which time to increase the chances of it successfully completing its task. This expertise results
in the dashed, with-training line. With training (that is to say: if Model 0 has had a full run before
Model 8 is executed), Model 8 reaches about the same performance as Model 0 near the end of its run.

An additionally interesting observation from Figure 27 is the striking difference in performance be-
tween the different questions. As with the difference between with- or without training, the dif-
ference in performance between questions is also not strange. In fact, it is visible that the model
performance is directly proportionate to the number of steps a question requires. Question 3 of the
PAINTING_THE_WALL problem is a very involved question that consists of three steps. Question 1 and
2 of the TRIANGLE_ABC problem, in contrast, are easier problems that require only two steps. Question
4, 5, and 6 have an increased performance time again because trapezoids have that extra requirement
regarding its two bases. The performance time, in this sense, aligns well with expectations.

Unfortunately, Dataset 1 does not have any response time available for the students, so the model
performance time cannot be compared to the human performance time. Nonetheless, the results
shown in Figure 26 and Figure 27 are positive indications of how well the knowledge graph was able
to identify the skills underlying Dataset 1.

67

6 Discussion
Going back all the way to Plato (257BC/2003, as cited by Inglis & Attridge, 2017), researchers (like
Thorndike, 1914/1999, Singley & Anderson, 1985, and Taatgen, 2013) have found there is some type
of transfer that occurs between tasks. Although a consensus has not yet been reached on what the unit
of this transfer would be, this thesis proposes (in alignment with Taatgen, 2013 and Hoekstra et al.,
2020) that transfer between tasks can be (partially) explained through skill reuse.

Defining skills as the largest unit of procedural knowledge that can be reused between tasks (Hoekstra
et al., 2020), this thesis sets out to identify said skills. Particularly, knowledge graphs are proposed as
tools for identifying the skills reused between tasks. A method is described in this thesis for generat-
ing a knowledge graph for this purpose and evaluating its proposed skills through cognitive models.
The underlying research question throughout this process was: “Can knowledge graphs be used to
identify the skills reused between tasks?”

The results from the cognitive models show that it is possible to extract skills from the knowledge
graph that underlie a certain data set. These skills are shown to lead to the successful completion of
a specific set of geometry tasks. While there is not enough evidence to conclude the identified skills
are definitive and exclusive (i.e. it is possible a different set of skills could have produced the same
results), the results do suggest that it is possible to use knowledge graphs to identify possible skills
that are reused between tasks.

6.1 Evaluation of Proposed Method
Although the results in this thesis are positive in regards to the research question, further validation
of the proposed method in this thesis is a vital constraint for its future applications. The method
proposed is rather new (built off the work of Rozestraten, 2021), and if only for this reason, it still
requires much work.

6.1.1 The Knowledge Graph Algorithm

The first place where the method requires more work is with the knowledge graph algorithm. The
final knowledge graph that was accepted was not accepted because it was perfect, but because it was
the best of the generated results.

The other generated knowledge graphs clearly showed a learning effect. Not only that, their results
were so inconsistent, that it was not possible to generate cognitive models from these results. The
final knowledge graph was the only graph from which skills could be extracted for the creation of the
cognitive models.

Mitigating the learning effect was thus an important undertaking, and it is good that an updated ver-
sion of the knowledge graph algorithm was created which takes the order of the tasks into account.
Nonetheless, the final knowledge graph continued to show oddities like the ones discussed in the
Intermediate Results. The steps of some problems, like DESIGNING-A-QUILT, were spread across
the nodes without a discernible pattern. Others problems that should have been identical (such as
PENTAGON and PENTAGON_ABCDE) were inexplicably placed in different nodes. Simply put, even the
final knowledge graph did not always match with the division of problems among nodes as intuition

6 DISCUSSION 68

would imply.

It is good to note here that intuition is not a ground truth. Sometimes algorithms will make choices
that do not seem logical to the human eye; this does not necessarily make the algorithm wrong.
Analysing the correctness of the knowledge graph through intuition implies that cognitive skills can
be interpreted intuitively. This may not be the case. Since the exact nature of a skill is not known
(what is its smallest unit?), it is possible that there is no straightforward, intuitive interpretation of
skills. If that is the case, then evaluating the knowledge graph through intuition may not be the best
approach. Generally, a better method needs to be designed for the evaluation of knowledge graphs as
tools for identifying skills. Consistent measures are needed so that the evaluation of the knowledge
graph is not dependent on the intuition of the programmer.

In this thesis, such measures are missing, and the intuitive approach suggests the knowledge graph
algorithm used in this thesis could still be improved on. The algorithm used here is an updated version
of the algorithm used in Rozestraten (2021). An interesting dichotomy between the work of Rozes-
traten (2021) and this work is that this work does not do additional clustering over the students and
the problems. However, Rozenstraten’s results indicate that this prior clustering of the data does help
in generating better knowledge graphs. It is therefore possible that the data used in this thesis would
have resulted in a more intuitive knowledge graph if, rather than skills across all problems, skill were
identified across clusters of problems. In such a case, problems that are already similar (or near iden-
tical as PENTAGON and PENTAGON_ABCDE) could be clustered together prior to running the knowledge
graph algorithm. The influence of student ability would furthermore be mitigated by clustering over
students.

The reason clustering could not be applied in this thesis was that the used data set was both small and
unbalanced (some problems were done by as few as four students). Generally, clustering algorithm
do not know how to handle missing data, so in order for clustering to be applied to this data set, the
missing values (i.e. the problems students did not do) would have to be substituted in some way.
Although multiple methods exist to substitute or extrapolate missing values (e.g., Rozestraten, 2021
used a problem’s mean outcome to substitute its missing values), each of these methods has its own
benefits and drawbacks. The knowledge graph algorithm itself, by comparison, does not struggle with
missing data, and therefore it does not requires the substitution of missing values.

Even if all missing values were substituted to make clustering possible, the clustering would still
greatly reduce the available data. This could already be seen across the different data sets, where the
available data decreased from 69 problem-steps in Dataset 1 to 46 in Dataset 3. While generally it
may thus be beneficial to perform additional clustering, not only does this bring with it more design
considerations, it may also not be ideal for all data sets.

Overall, more research should be done into the pre-clustering of the data and the effect this has on the
generated knowledge graph. If the pre-clustering of the data consistently results in better knowledge
graphs, it would show that the method proposed in this thesis may not be suitable for small data sets.
Such a finding would match the beliefs of Falmagne et al. (1990), who already suggest that building
a knowledge space requires a lot of data.

In addition to the size of the data set, the knowledge graph method should be validated further for
data that has a wider variety of tasks. The ‘Geometry Area (1996-97)’ data set used in this thesis was

6 DISCUSSION 69

chosen precisely because of its small scope. Consequently, the results shown in this thesis may not
extrapolate towards data sets that are larger in scope. In general, it would be interesting to investigate
how the scope of the data set affects the knowledge graph generated. It is theoretically possible that
a certain degree of similarity is needed between the tasks for the knowledge graph to identify which
skills are reused among these tasks. Alternatively, it is possible that for larger data sets, the knowledge
graph method will only work well if clustering is also applied. The latter hypothesis aligns best with
the results from Rozestraten (2021).

From the points mentioned here, it is clear there are many aspects of the knowledge graph algorithm
that need further investigation. Since the method is relatively new, it needs to be tested across a variety
of contexts, in order to both determine its validity as well as how different contexts and variables
influence the algorithm.

6.1.2 The Cognitive Models

The same conclusion can be drawn for the cognitive models. One of the most interesting things to
test for the cognitive models is whether grounding them in data did indeed reduce the influence of the
modeller. Although it may be a derivative task, a lot could be learned from having another modeller
set up models from the same knowledge graph generated in this thesis.

In particular, it would be interesting to see whether a different analyst would identify skill 0001000 in
the same way. Some creative liberties were undoubtedly taken in the creation of the cognitive models,
specifically in what skills could go into Model 0. Since Model 0 represented the prior knowledge of
students going into the data set, it served as a buffer for any skills needed, so that Model 0 and Model
8 could be distinguished with only one skill.

For example, the side skill did not originally exist in Model 0. It was added because it would be
needed for Model 8, and because an argument could be made for Model 0 possessing the skill. While
Model 0 could not find sides through division, it could do so through the segments skill, and as such,
there was evidence to support the addition of the side skill. Nonetheless, the primary reason for
adding the side skill to Model 0 rather than introducing it in Model 8 was to ensure that Model 0 and
Model 8 were distinguished by only one skill, as the data analysis suggested.

Of course, this interpretation assumes that the difference between the nodes in the knowledge graph
is explained by a skill according to its PRIMs definition. At the start of this thesis, a skill was rather
defined as the largest unit of procedural knowledge that can be reused between tasks. It is therefore
possible that a PRIMs skill may not be the optimal representation of this definition. The difference
between the nodes in the knowledge graph may just as well be explained by one or multiple operators,
which together form the unit of procedural knowledge that is reused across nodes.

In that alternative interpretation, the conclusion that the 0001000 difference between the nodes cor-
responds specifically to the division skill may be premature. While it does match the data analysis,
the idea that division is what sets Node 0 and Node 8 apart does not match with what one would
expect students to know as prior knowledge. It seems unlikely that, by the time students are handling
geometry problems, they do not yet know how to do division. Although it is possible that students did
not need to apply their division knowledge for Node 0 but they do need it for Node 8, it is undeniable
that the most important changes from Model 0 to Model 8 were implemented by updating existing

6 DISCUSSION 70

skills with new operators, rather than through the division skill.

On the one hand, an argument can be made that perhaps the most important aspect of learning a
new task lies precisely in how old skills need to change in order to incorporate new circumstances.
This view matches that of Salvucci (2013), who explains that skill acquisition is a combination of
skill reuse and skill integration. Integration, he postulates, defines “how skills are fused together
to realise new task behaviours” (p. 830). The changes that needed to be made to create Model 8
strongly overlap with this idea of skill integration. In this way, the design of the cognitive models in
this thesis very much supports the idea that skill integration is an important part of learning a new task.

On the other hand, highlighting division as the missing skill and incorporating the remaining nec-
essary changes into new operators for existing skills can simply be viewed as sticking too closely
to the idea that the difference between the nodes is explained by single skills as they are defined in
PRIMs. It is my belief, however, that there is merit in the strictness of such an approach. If the skills
identified by the knowledge graph are interpreted loosely (i.e. they could indicate multiple operators
or even skill sets), then in some ways, the purpose of the data analysis is undermined. The additional
constraints the data analysis places on the modelling process serve little value if they are subsequently
taken as guidelines rather than proper constraints. If each modeller interprets the skills identified by
the knowledge graph differently, then overall, the influence of the modeller is not reduced.

Yet though there may be a merit to it, it is very much possible that sticking so strongly to the data anal-
ysis is not the best approach, especially given that the knowledge graph algorithm still needs work.
Without proper evaluation methods (which might not be so easily generated since it is not possible
to establish a ground truth), it remains possible that the differences between nodes in the knowledge
graph should not be explained by single skills but rather by multiple operators or through skill sets.
In this interpretation, the knowledge graph is simply not precise enough to be able to distinguish be-
tween the various ways a unit of procedural knowledge may be defined.

As this discussion highlights, there is no clear right approach to interpreting the knowledge graph and
generating the corresponding cognitive models. Precisely for this reason, it would be very interesting
to see how another modeller might approach this dilemma.

Furthermore, it would also be interesting to see how else the models might need to be adjusted if Node
9 was included, and Node 11, and Node 25, and so forth. In theory, the accuracy of the identified skills
should increase with each node, since each node creates a fuller picture of the skills needed to solve
all the problems in the data set. Only by modelling all eleven nodes, would it be possible to identify
all seven underlying skills. Of course, such a modelling undertaking would not be a trivial task, and
it would require a large team of modellers.

This begs the question of whether the method proposed in this thesis is feasible for everyday use (such
as in a classroom). As a counter-argument, it does have to be said that identifying the skills for one set
of tasks only needs to be done once. After that, the underlying skills are known and are not expected
to change.

There is a catch to this expectation. It creates the assumption that the skills are task-specific. This is
not a complete view: Which skills are used to solve a task depend on both the task and the person
undertaking the task. While a task might thus not change, having a new set of people tackle the task

6 DISCUSSION 71

could result in a different set of identified skills.

This is something that the current cognitive models do not take into account. For each task, the cog-
nitive model describes only one way to solve the task. The chosen strategy is one that is guaranteed
to lead to the successful completion of the task, but there are both alternative strategies that could
equally lead to this success, as there are strategies that will not lead to success.

Inadvertently, the models already showed examples of incorrect strategies leading to task failure with
its transition from Model 0 to Model 8. In actuality, people’s prior knowledge is much vaster than
is taken into account for Model 0, and it is thus not at all unlikely a person will choose an incorrect
strategies to try and solve a task it has not seen before. As was mentioned, people will likely learn
from choosing a wrong strategy until eventually (if they continue to practice) they will learn a strat-
egy that works. The models in this thesis intentionally move away from this development in learning.
Nonetheless, the fact that multiple strategies may work is something that is not taken account by the
cognitive models.

In fact, the existence of different strategies might also be one of the confounding factors of the knowl-
edge graph algorithm. If multiple strategies were used by different students, neither the knowledge
graph algorithm nor the cognitive models could incorporate this. In order to adjust to this possibility,
more data would be required on a) the mistakes students made in solving the problems and b) the
strategies they were taught/claimed to use.

The latter might be easy to obtain in the sense that many math questions ask students to show their
steps. The cognitive tutor behind the ‘Geometry Area (1996-97)’ data set did not allow students to
write down their own steps and instead forced them to follow the predefined steps by the tutor. Future
cognitive tutors might benefit from asking students to show their work but allowing them a blank
field to do so. This would, of course, be harder to analyse for future modellers. In this sense, this
suggestion has its benefits and its drawbacks.

As a final shortcoming of the cognitive models, the visual processing must be addressed. In the mod-
els’ visual representation, the different segments of the visual input are immediately coupled to their
correct values. Contradicting this, reading comprehension is often considered a skill of its own, and
building an internal representation of a written problem is not trivial (León & Escudero, 2017).

It is precisely because it is not trivial that it is not included in the cognitive models in this thesis.
Considering the scope of reading comprehension, it would be better if a separate model for was built
for this. Model 0 and Model 8 could then reuse skills from this model just as Model 8 reuses skills
from Model 0.

Abstracting away from reading comprehension, while understandable because of its scope, does cause
potential problems. If reading comprehension is one of the skills that underlie the data set, then the
cognitive models in this thesis, by their design, could not replicate this skill. The fact that problems
with more involved stories are further down in the knowledge graph does indicate reading compre-
hension may play a role in Dataset 1. There are thus a lot of benefits to gain from creating a cognitive
model for reading comprehension.

To summarise, the cognitive models, like the knowledge graph algorithm, require further validation.

6 DISCUSSION 72

It would be particularly interesting to test the models’ reproducibility, and to see whether grounding
the models in data has reduced the influence of the modeller. Other factors that need to be considered
is the existence of multiple strategies to solve the same task and the large undertaking that is reading
comprehension.

6.2 Main Contributions
Despite of the work that is still required both in regards to the knowledge graph algorithm and the
cognitive models, the positive findings of this thesis do provide further evidence for the use of knowl-
edge graphs as tools for identifying (reused) skills. Previously, Rozestraten (2021) found that, while
knowledge graphs were good tools for identifying the hierarchy between tasks, they were insufficient
for identifying the required skills to complete these tasks. In this thesis, it is shown that knowledge
graphs can be used to identify skills, but that they must be combined with cognitive models to do so.

Since this is the first time (as per my knowledge) that these two tools have been combined in this
way, the method proposed in this thesis must be critically validated. If the method is valid, however,
it shows much promise for the future of learning.

On the one hand, the knowledge graph on its own can potentially be used in education to keep track
of the students’ learning and progress. By comparing the problems a student answered correctly
against the “skill map” identified by the knowledge graph, it should theoretically be possible to get
an overview of the skills a student does and does not yet possess. With this overview, it is possible to
provide students with more tailored curricula that focus on teaching them precisely the skills they do
not yet possess. Specifically in combination with a cognitive tutor system (like the one that generated
the data in this thesis), the knowledge graph method could become an important tool in the educative
system.

By combining the knowledge graph with the cognitive model, it is possible to make the skills iden-
tified by the knowledge graph very concrete. If the knowledge graph becomes an integrated tool in
education, this will be especially useful for teachers. Having concrete skills to work with will allow
teachers to understand the knowledge graph better and thereby utilise it in the most effective manner.

Although the knowledge graph thus has hopeful implications for education, this is not the only way
in which the proposed method in this thesis contributes to the existing literature. Firstly, it provides
additional evidence that transfer between tasks can be explained through skill reuse, a stance also
adopted by Taatgen (2013), Hoekstra et al. (2020), and Salvucci (2013).

Secondly, it suggests additional characteristics of skills, beyond that they are transferable. Through
the adaptation of Model 0 to Model 8, it is suggested that skills are malleable. They may have the
ability to change or ‘update’, as they adapt to new circumstances they come across. In fact, this may
be a necessary characteristic of skills, since it is shown (through the overly specific first version of
Model 0) that extreme specificity is only detrimental for explaining skill reuse. This finding well
aligns with the motivations behind the PRIMs cognitive architecture, which was created precisely
because Taatgen (2013) found that the commonly used production rules were too specific to explain
the transfer that occurs between tasks.

This problem of extreme specificity is not limited to the debate on what the unit of transfer is (ACT-

6 DISCUSSION 73

R’s production rules versus PRIMs primitive units). In general, many cognitive models in this day
and age are made to be very specific. They are created to explain the cognition behind a specific task
or phenomenon, like the Stroop effect (Stroop, 1935), and do not generalise beyond that phenomenon.

On the one hand, this is understandable because of scope limitations. The cognitive models in this
thesis are also guilty of this, in that they simplify mathematical operations and do not go into a lot of
depth in terms of visual processing. To understand a specific cognitive phenomenon, it is not strange
to abstract away from the parts of cognition that are less relevant for this phenomenon.

On the other hand, as Allen Newell aptly put in his Unified Theories of Cognition (Newell, 1990),
many small, very specific theories do not the whole of cognition explain. This thesis demonstrates
the use of skill-based cognitive models as a method for explaining a more unified theory of cognition
(Taatgen, 2014). While one model may be specific to one situation, the skill reuse between the models
allows a holistic whole to be created that can demonstrate the cognition over a wider span of tasks
(just as Model 8 was capable of solving both the problems in Node 0 and those in Node 8).

In general, the proposed method here provides an innovative way of building cognitive models. Cog-
nitive models are typically built from the expertise of the modeller (as e.g. Hoekstra et al., 2020
demonstrates). The modeller has to adhere to certain constraints, provide justification for their
choices, and must evaluate their proposed model to confirm its validity. While this method is thus
reliable, it does allow for a wide disparity between models. How a cognitive model turns out is largely
influenced by the modeller that built it. Even in this thesis, the skills extracted from the knowledge
graph were influenced and decided on by the modeller.

What this thesis does propose, however, is a method for potentially reducing this influence of the
cognitive modeller. By grounding the cognitive model in a data analysis, the modeller must adhere
to additional constraints. All the modelling choices made are made around a data analysis that is
performed prior. In this way, the model has a more robust grounding than a typical cognitive model,
which is built from a less quantifiable ‘expertise from the modeller’. As with the potential use of
the knowledge graph in education, further validation of the method proposed in this thesis could thus
prove beneficial for the field of cognitive modelling as a whole.

6.3 Conclusion
To conclude, the work done in this thesis indicates knowledge graphs can successfully be used to
identify the skills reused between tasks. Since the method proposed herein is rather novel, it requires
further validation both in its data analysis and the created cognitive models. If the results from this
thesis can be replicated, however, then the proposed methods could have far-reaching effects both for
the future of education as well as the overall field of cognitive modelling.

74 REFERENCES

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglas, S., Lebiere, C., & Qin, Y. (2004). An integrated

theory of mind. Pyschological review, 111(4), 1036–1060. https: / /doi .org/10.1037/0033-
295X.111.4.1036

Anokhin, A. P., Birbaumer, N., Lutzenberger, W., Nikolaev, A., & Vogel, F. (1996). Age increases
brain complexity. Electroencephalography and clinical neurophysiology, 99(1), 63–68. https:
//doi.org/10.1016/0921-884x(96)95573-3

Besner, D., Stolz, J. A., & Boutilier, C. (1997). The Stroop effect and the myth of automaticity.
Psychonomic Bulletin & Review, 4, 221–225. https://doi.org/10.3758/BF03209396

Chong, H.-Q., Tan, A.-H., & Ng, G.-W. (2007). Integrated cognitive architectures: A survey. Artificial
Intelligence Review, 28, 103–130. https://doi.org/10.1007/s10462-009-9094-9

Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A
parallel distributed processing account of the Stroop effect. Psychological Review, 97(3), 332–
361. https://doi.org/10.1037/0033-295X.97.3.332

Costandi, M. (2016). Neuroplasticity. The MIT Press.
Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. Inter-

Journal, Complex Systems, 1695(5), 1–9. https://igraph.org
Dube, R. (2022, May 10). How to read binary. Lifewire. https://www.lifewire.com/how- to- read-

binary-4692830
Falmagne, J.-C., Koppen, M., Villano, M., Doignon, J.-P., & Johannesen, L. (1990). Introduction to

knowledge spaces: How to build, test, and search them. Psychological Review, 97(2), 201–
224. https://doi.org/10.1037/0033-295X.97.2.201

Ferlazzo, F., Lucido, S., Di Nocera, F., Fagioli, S., & Sdoia, S. (2007). Switching Between Goals
Mediates the Attentional Blink Effect. Experimental Psychology, 54(2), 89–98. https://doi.
org/10.1027/1618-3169.54.2.89

Güneş, F. (2018). Skill based approach and teaching skill. In S. Sidekli (Ed.), The skill approach in
education: From theory to practice (pp. 1–74). Cambridge Scholars Publisher.

Hoekstra, C., Martens, S., & Taatgen, N. A. (2020). A skill-based approach to modeling the attentional
blink. Topics in Cognitive Science, 12(3), 1030–1045. https://doi.org/10.1111/tops.12514

Inglis, M., & Attridge, N. (2017). Does mathematical study develop logical thinking?: Testing the
theory of formal discipline. World Scientific.

International Association for the Evaluation of Educational Achievement (IEA). (2008). TIMSS 2007
Technical Report. TIMSS & PIRLS International Study Center, Boston College. https : / /
timssandpirls.bc.edu/TIMSS2007/techreport.html

Ji, S., Pan, S., Cambria, E., Marttinen, P., & Yu, P. S. (2022). A survey on knowledge graphs: Repre-
sentation, acquisition, and applications. IEEE Transactions on Neural Networks and Learning
Systems, 33(2), 494–514. https://doi.org/10.1109/TNNLS.2021.3070843

Kempermann, G. (2006). Adult Neurogenesis. In P. B. Baltes, P. A. Reuter-Lorenz, & F. Rösler (Eds.),
Lifespan Development and the Brain: The Perspective of Biocultural Co-Constructivism (pp. 82–
108). Cambridge University Press. https://doi.org/10.1017/CBO9780511499722.006

Kieras, D. E., & Meyer, D. E. (1997). An Overview of the EPIC Architecture for Cognition and Per-
formance With Application to Human-Computer Interaction. Human-Computer Interaction,
12(4), 391–438.

Koedinger, K. R., de Baker, R. S. J., Cunningham, K., Skogsholm, A., Leber, B., & Stamper, J. (2010).
A Data Repository for the EDM community: The PSLC DataShop. In C. Romero, S. Ventura,
M. Pechenizkiy, & R. Baker (Eds.), Handbook of Educational Data Mining. CRC Press.

https://doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.1016/0921-884x(96)95573-3
https://doi.org/10.1016/0921-884x(96)95573-3
https://doi.org/10.3758/BF03209396
https://doi.org/10.1007/s10462-009-9094-9
https://doi.org/10.1037/0033-295X.97.3.332
https://igraph.org
https://www.lifewire.com/how-to-read-binary-4692830
https://www.lifewire.com/how-to-read-binary-4692830
https://doi.org/10.1037/0033-295X.97.2.201
https://doi.org/10.1027/1618-3169.54.2.89
https://doi.org/10.1027/1618-3169.54.2.89
https://doi.org/10.1111/tops.12514
https://timssandpirls.bc.edu/TIMSS2007/techreport.html
https://timssandpirls.bc.edu/TIMSS2007/techreport.html
https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.1017/CBO9780511499722.006

REFERENCES 75

Koedinger, K. R., McLaughlin, E. A., & Stamper, J. C. (2012). Automated Student Model Improve-
ment [Paper presentation]. 5th International Conference on Educational Data Mining Society
(EDM), Chania, Greece. https://eric.ed.gov/?id=ED537201

Kotseruba, I., & Tsotsos, J. K. (2020). 40 years of cognitive architectures: Core cognitive abilities
and practical applications. Artificial Intelligence Review, 53, 17–94. https://doi.org/10.1007/
s10462-018-9646-y

Langley, P., & Choi, D. (2006). A Unified Cognitive Architecture for Physical Agents. Proceedings
of the 21st National Conference on Artificial Intelligence - Volume 2, 1469–1474. https://doi.
org/10.5555/1597348.1597422

León, J. A., & Escudero, I. (2017). Reading Comprehension in Educational Settings (Vol. 16). John
Benjamins Publishing Company.

Marilee, S. (1999). Learning and Memory : The Brain in Action. ASCD.
Middleton, H., & Baartman, L. K. J. (2013). Transfer, Transitions and Transformations of Learning.

Brill. https://doi.org/10.1007/978-94-6209-437-6
Miller, G. A. (2003). The cognitive revolution: A historical perspective. Trends in Cognitive Sciences,

7(3), 141–144. https://doi.org/10.1016/S1364-6613(03)00029-9
Morris, C. D., Bransford, J. D., & Franks, J. J. (1977). Levels of processing versus transfer appropriate

processing. Journal of Verbal Learning and Verbal Behavior, 16(5), 519–533. https://doi.org/
10.1016/S0022-5371(77)80016-9

National Research Council. (2000). How People Learn : Brain, Mind, Experience, and School: Ex-
panded Edition (Vol. 2). National Academies Press. https://doi.org/10.17226/9853

Newell, A. (1990). Unified theories of cognition. Harvard University Press.
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for

Statistical Computing. Vienna, Austria. https://www.R-project.org/
Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing

in an RSVP task: An attentional blink?. Journal of Experimental Psychology: Human Percep-
tion and Performance, 18(3), 849–860.

Rozestraten, K. (2021). Identifying Underlying Skills in Math Problems - A Data-Driven Approach
(Master’s thesis). Rijksuniversiteit Groningen. http://fse.studenttheses.ub.rug.nl/id/eprint/
26505

Russel, S. J., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach (2nd ed.). Prentice Hall.
Salvucci, D. D. (2013). Integration and Reuse in Cognitive Skill Acquisition. Cognitive Science,

37(5), 829–860. https://doi.org/10.1111/cogs.12032
Singley, M. K., & Anderson, J. R. (1985). The transfer of text-editing skill. Journal of Man-Machine

Interaction, 22, 402–423. http://act-r.psy.cmu.edu/?post type=publications&p=13752
Stirling, N. (1979). Stroop Interference: An Input and an Output Phenomenon. Quarterly Journal of

Experimental Psychology, 31(1), 121–132. https://doi.org/10.1080/14640747908400712
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psy-

chology, 18(6), 643–662. https://doi.org/10.1037/h0054651
Taatgen, N. A. (2013). The nature and transfer of cognitive skills. Psychological Review, 120(3), 439–

471. https://doi.org/10.1037/a0033138
Taatgen, N. A. (2014). Between architecture and model: Strategies for cognitive control. Biologically

Inspired Cognitive Architectures, 8, 132–139. https://doi.org/10.1016/j.bica.2014.03.010
Taatgen, N. A. (2022). PRIMS-Tutorial. https://github.com/ntaatgen/PRIMs-Tutorial
Thorndike, E. L. (1999). Education Psychology: BRIEFER COURSE. Routledge. (Original work pub-

lished 1914)

https://eric.ed.gov/?id=ED537201
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.5555/1597348.1597422
https://doi.org/10.5555/1597348.1597422
https://doi.org/10.1007/978-94-6209-437-6
https://doi.org/10.1016/S1364-6613(03)00029-9
https://doi.org/10.1016/S0022-5371(77)80016-9
https://doi.org/10.1016/S0022-5371(77)80016-9
https://doi.org/10.17226/9853
https://www.R-project.org/
http://fse.studenttheses.ub.rug.nl/id/eprint/26505
http://fse.studenttheses.ub.rug.nl/id/eprint/26505
https://doi.org/10.1111/cogs.12032
http://act-r.psy.cmu.edu/?post_type=publications&p=13752
https://doi.org/10.1080/14640747908400712
https://doi.org/10.1037/h0054651
https://doi.org/10.1037/a0033138
https://doi.org/10.1016/j.bica.2014.03.010
https://github.com/ntaatgen/PRIMs-Tutorial

76 REFERENCES

Xiang, Y., Gubian, S., Suomela, B., & Hoeng, J. (2013). Generalized Simulated Annealing for Global
Optimization: The GenSA Package. The R Journal, 5(1), 13–28. https://doi.org/10.32614/RJ-
2013-002

https://doi.org/10.32614/RJ-2013-002
https://doi.org/10.32614/RJ-2013-002

APPENDICES 77

Appendices
Appendix A contains additional analyses for the generated knowledge graphs. Appendix B gives the
full content of the final knowledge graph nodes. Appendix C corresponds to the code for the cognitive
models designed in the thesis.

APPENDICES

A Addendum to the Intermediate Results
A.1 Problem 42: POGS

This problem shows the same learning effect that is explained in the Intermediate Results of Section
4. An identical step is classified into Node 7 for Question 1, Node 1 for Question 2, and Node 0 for
Question 3.

Figure 28: The POGS problem in Dataset 1.

Area of scrap metal
Units sq. inches

Question 1 3.43
Question 2 13.73
Question 3 30.9

Table 12: The recorded step of the three questions of POGS, with the correct answers.

APPENDICES 79

A.2 The Circle Problems

The four problems in this subsection show a possible learning effect across problems, as explained in
the Intermediate Results of Section 4. The problems CIRCLE_DIAMETER, CIRCLE_AREA, CIRCLE_CIR-
CUMFERENCE correspond to questions 1, 3, and 4 of the CIRCLE_O problem respectively. Since each
question of CIRCLE_O is unique (students are given a different variable to start off with), limited
learning is expected to occur across questions for this problem.

Figure 29: The CIRCLE_O problem, which consists of four questions.

Diameter (CD) Radius (OD) Area of Circle O Circumference
of Circle O

Units cm cm sq. cm cm

Question 1 14 615.75 87.96
Question 3 84 42 263.89
Question 4 112 56 9852.06

Table 13: The node distribution of the steps for the CIRCLE_O problem. Steps that are not in Dataset
1 are greyed out.

APPENDICES

Figure 30 shows the CIRCLE_DIAMETER problem (which corresponds to question 1 of the CIRCLE_O
problem). Table 14 shows that each step for this question is classified into Node 0. This strongly
contrasts the node distribution of Question 1 of the CIRCLE_O problem, where the radius step is
classified as Node 1, and the area and circumference steps are both classified as Node 5. Since the
equivalent steps are classified as higher in the knowledge graph for the CIRCLE_DIAMETER problem,
it is feasible to believe that students saw the CIRCLE_DIAMETER problem only after the CIRCLE_O
problem.

Figure 30: The CIRCLE_DIAMETER problem, which overlaps with Question 1 of the CIRCLE_O prob-
lem.

Diameter (CD) Radius (OD) Area of Circle O Circumference
of Circle O

Units cm cm sq. cm cm

Question 1 22 1520.53 138.23

Table 14: The node distribution of the steps for the CIRCLE_DIAMETER problem. Steps that are not in
Dataset 1 are greyed out.

APPENDICES 81

For the CIRCLE_AREA problem (see Figure 31), the results are more ambiguous. In Table 13, the
diameter step is classified into Node 1, and the radius and circumference step are classified into Node
3. In Table 15, however, the diameter step is perceived as more difficult (i.e. requiring more skills)
and placed in Node 3. Meanwhile, the radius and circumference step are perceived as easier and are
placed in Node 1 each. The perceived difficulty of the steps is, in a matter, flipped. This cannot be
explained by the CIRCLE_O problem occurring before the CIRCLE_AREA problem.

Figure 31: The CIRCLE_AREA problem, which overlaps with Question 3 of the CIRCLE_O problem.

Intuitively, neither classification necessarily makes more sense than the other. Finding the diameter
could be more difficult, because it requires one additional step (finding the radius first - which can be
determined directly from the information given). On the other hand, once the radius is determined,
finding the diameter from this value is not very difficult (multiply the radius by two). Finding the
radius, on the other hand, requires one to reverse the formula for determining the area of a circle,
which seems like the more difficult of the two tasks. Once again, since there is no ground truth
here, it is difficult to say which distribution is correct. However, what is clear is that the differences in
distribution cannot be explained fully by a learning effect. For these problems, it might be more likely
that students on average did not do both problems (and thus these node distributions are independent
of one another).

Diameter (CD) Radius (OD) Area of Circle O Circumference
of Circle O

Units cm cm sq. cm cm

Question 1 234 117 735.13

Table 15: The node distribution of the steps for the CIRCLE_AREA problem. Steps that are not in
Dataset 1 are greyed out.

APPENDICES

The final problem to analyse is CIRCLE_CIRCUMFERENCE, shown in Figure 32. In Table 16 it is appar-
ent that not all steps of this question were in Dataset 1. The question asks for the diameter, the radius,
and the area, but only the radius step is included in Dataset 1. The missing steps are, however, not so
strange, since Dataset 1 contained specifically the 69 most-done problem-steps. If the other steps of
the CIRCLE_CIRCUMFERENCE problem were not done with enough frequency (for whichever reason),
they would not be included in Dataset 1. In any case, the radius step is classified into Node 3. This is
the same node that the radius step of Question 4 from problem CIRCLE_O was classified into. These
problems thus show a consistent classification, which strengthens the belief that the radius step of a
circle problem should be placed into Node 3.

Figure 32: The CIRCLE_CIRCUMFERENCE problem, which overlaps with Question 4 of the CIRCLE_O
problem.

Diameter (CD) Radius (OD) Area of Circle O Circumference
of Circle O

Units cm cm sq. cm cm

Question 1 40

Table 16: The node distribution of the steps for the CIRCLE_CIRCUMFERENCE problem. Steps that are
not in Dataset 1 are greyed out.

This subsection of Addendum to the Intermediate Results is meant to provide additional evidence
for the learning observed across problems in the Intermediate Results of Section 4. Clear evidence of
learning is shown between CIRLCE_O and CIRCLE_DIAMETER, but the other two problems paint more
complex pictures. These results indicate that the effect of learning across problems is more complex
than the effect of learning across questions. It is feasible to think the order the problems are shown
in has some effect on their performance, but since this order is randomised across students, it is more
difficult to strongly quantify this effect.

APPENDICES 83

B Node Content of the Final Knowledge Graph
B.1 Node 0 (0000000)

Node 0

0000000

From:
To: 8

Knowledge Graph about:blank

1 van 11 17-2-2022 13:25

Figure 33: Node 0 of the final knowledge graph. This node contains none of the skills in the underly-
ing data set.

APPENDICES

B.2 Node 8 (0001000)

0001000

Node 8

To: 9

From: 0

Knowledge Graph about:blank

2 van 11 17-2-2022 13:25

Figure 34: Node 8 of the final knowledge graph. This node contains 1 skill.

APPENDICES 85

B.3 Node 9 (0001001)

0001001

Node 9

1. area triangle and area purple

2. area purple and area white

To: 11, 25
From: 8

Knowledge Graph about:blank

3 van 11 17-2-2022 13:25

Figure 35: Node 9 of the final knowledge graph. The red text specifies which steps are included in
the node. This node contains 2 skills.

APPENDICES

B.4 Node 11 (0001011)

Node 11

0001011
To: 27
From: 9

1. white area

2. area triangle

3. area triangle and area white

Knowledge Graph about:blank

4 van 11 17-2-2022 13:25

Figure 36: Node 11 of the final knowledge graph. The red text specifies which steps are included in
the node. This node contains 3 skills.

APPENDICES 87

B.5 Node 25 (0011001)

Node 25

green area for every question

To: 27
0011001

From: 9

Knowledge Graph about:blank

5 van 11 17-2-2022 13:25

Figure 37: Node 25 of the final knowledge graph. The red text specifies which steps are included in
the node. This node contains 3 skills.

APPENDICES

B.6 Node 27 (0011011)

Node 27

0011011

To: 91

From: 11, 25

Knowledge Graph about:blank

6 van 11 17-2-2022 13:25

Figure 38: Node 27 of the final knowledge graph. This node contains 4 skills.

APPENDICES 89

B.7 Node 108 (1101100)

Node 108

1101100

From: 8
To: 127

purple area only

Knowledge Graph about:blank

9 van 11 17-2-2022 13:25

Figure 39: Node 108 of the final knowledge graph. The red text specifies which steps are included in
the node. This node contains 4 skills.

APPENDICES

B.8 Node 91 (1011011)

Node 91

1011011
To: 95, 123
From: 27

Knowledge Graph about:blank

7 van 11 17-2-2022 13:25

Figure 40: Node 91 of the final knowledge graph. This node contains 5 skills.

APPENDICES 91

B.9 Node 95 (1011111)

1011111

Node 95

To: 127
From: 91

Knowledge Graph about:blank

8 van 11 17-2-2022 13:25

Figure 41: Node 95 of the final knowledge graph. This node contains 6 skills.

APPENDICES

B.10 Node 123 (1111011)

Node 123

From: 91
To: 127
1111011

Knowledge Graph about:blank

10 van 11 17-2-2022 13:25

Figure 42: Node 123 of the final knowledge graph. This node contains 6 skills.

APPENDICES 93

B.11 Node 127 (1111111)

missing trogs!

1111111

Node 127

radius only

shaded area only
shaded area and
area square

To:
From: 95, 108, 123

Knowledge Graph about:blank

11 van 11 17-2-2022 13:25

Figure 43: Node 127 of the final knowledge graph. The red text specifies which steps are (or are not)
included in the node. This node contains all skills in the data set.

APPENDICES

C Model Code

C.1 Model 0: Version 1

1 // Model: Painting the wall (find the shaded area)
2 // Written by: I.D.M. Akrum
3 // Date: 07/03/2022
4
5 define task shaded -area {
6 initial -goals: (read -task)
7 default -activation: 1.0 // All chunks defined in this model receive a

fixed baselevel activation of 1.0
8 ol: t
9 rt: -2.0

10 lf: 0.2
11 default -operator -self -assoc: 0.0
12 egs: 0.05
13 retrieval -reinforces: t
14 }
15
16 // read the task from the screen and make it your current goal
17 define goal read -task {
18 operator read {
19 V1 = screen
20 V4 <> nil
21 ==>
22 V4 -> G1
23 >>V3 // shift focus to the first shape
24 }
25 }
26
27 // Write down a previously-found answer and reset the goal and WM
28 define goal do-write {
29 operator write -answer {
30 G1 = write
31 ==>
32 write -> AC1
33 *task -> AC2
34 *answer -> AC3
35 nil -> G1
36 nil -> WM0
37 }
38 }
39
40 // Find a shaded area, i.e. the area of a shape minus the other areas

within that shape
41 define goal shaded -area {
42 // Find the area of the top shape
43 operator top-area {
44 G1 = shaded -area

APPENDICES 95

45 V1 = rectangle
46 V3 <> nil
47 V6 <> nil
48 ==>
49 V6 -> WM1
50 V3 -> WM2
51 >>V3
52 }
53
54 // If an area is missing, find that first
55 operator missing -area {
56 G1 = shaded -area
57 V1 = rectangle
58 V6 = nil
59 ==>
60 area -> G1
61 nil -> WM0
62 }
63
64 // Subtract intermediate areas from the top area
65 operator subtract -area {
66 G1 = shaded -area
67 WM1 <> nil
68 WM2 = V0
69 V1 = rectangle
70 V6 <> nil
71 ==>
72 V6 -> WM2
73 subtract -fact -> *fact -type
74 }
75
76 // Move on to the next shape within the top shape
77 operator next -shape {
78 G1 = shaded -area
79 WM1 <> nil
80 WM2 = nil
81 V2 <> nil
82 ==>
83 V2 -> WM2
84 >>V2
85 }
86
87 // This runs if the next V2-level item is not a shape but e.g. a base

or height
88 operator not-a-shape {
89 G1 = shaded -area
90 WM1 <> nil
91 WM2 = V0
92 V1 <> rectangle
93 ==>

APPENDICES

94 nil -> WM2
95 }
96
97 // Keep WM1 as the total of the shaded-area calculations
98 operator update -shaded -area {
99 G1 = shaded -area

100 WM3 <> nil
101 ==>
102 WM3 -> WM1
103 nil -> WM2
104 nil -> WM3
105 }
106
107 // Finish the shaded area calculation and signal the writing action
108 operator end-shaded -area {
109 G1 = shaded -area
110 WM1 <> nil
111 WM2 = nil // ensures this only happens after an update-shaded-

area call
112 V2 = nil
113 ==>
114 V<< // return to the top shape
115 G1 -> *task
116 WM1 -> *answer
117 write -> G1
118 }
119 }
120
121 // Calculate the area of a rectangle
122 define goal area {
123 // If we have the base and height, multiply them through the math

skill
124 operator base -times -height {
125 G1 = area
126 V4 <> nil
127 V5 <> nil
128 WM1 = nil
129 WM2 = nil
130 ==>
131 V4 -> WM1
132 V5 -> WM2
133 multiply -fact -> *fact -type
134 }
135
136 // If we have the answer in the imaginal buffer, signal the writing

action
137 operator end-area {
138 G1 = area
139 WM3 <> nil
140 ==>

APPENDICES 97

141 G1 -> *task
142 WM3 -> *answer
143 write -> G1
144 }
145
146 // If we miss the base, we switch to the base skill to determine the

base
147 operator missing -base {
148 G1 = area
149 V4 = nil
150 V3 <> nil
151 ==>
152 base -> G1
153 nil -> WM0
154 >>V3
155 }
156 }
157
158 // Find the base of a rectangle, where the base is given by known lines

and/or other shapes
159 define goal base {
160 // Initialise the base as the first known line we come across
161 operator first -base {
162 G1 = base
163 WM1 = nil
164 V1 <> height // we are only interested in lines that make up the

base of the shape
165 V4 <> nil
166 ==>
167 V4 -> WM1
168 }
169
170 // Move on to the next V2-level item if it exists
171 operator next -base {
172 G1 = base
173 WM1 <> nil
174 WM2 = nil
175 V2 <> nil
176 ==>
177 V2 -> WM2 // temporary placeholder to show another number will

come
178 >>V2
179 }
180
181 // Add the base of a line to that in the WM1 slot
182 operator add-base {
183 G1 = base
184 WM1 <> nil
185 WM2 = V0
186 V1 <> height

APPENDICES

187 V4 <> nil
188 ==>
189 V4 -> WM2
190 add-fact -> *fact -type
191 }
192
193 // Keep WM1 as the total of the base calculations
194 operator update -base {
195 G1 = base
196 WM3 <> nil
197 ==>
198 WM3 -> WM1
199 nil -> WM2
200 nil -> WM3
201 }
202
203 // If there are no more lines/shapes, write down the total base
204 operator end-base {
205 G1 = base
206 WM1 <> nil
207 WM2 = nil // ensures this only happens after an update-base call
208 V2 = nil
209 ==>
210 V<< // return to the top shape
211 G1 -> *task
212 WM1 -> *answer
213 write -> G1
214 }
215 }
216
217 // Do some math with slots in the imaginal buffer
218 // Doing math is simply "remembering" the answer
219 define goal math {
220 // start when there’s two numbers in the imaginal buffer but no answer
221 operator start -math {
222 WM1 <> nil
223 WM2 <> nil
224 WM3 = nil
225 RT1 = nil // Don’t start math if we already retrieved something
226 ==>
227 *fact -type -> RT1 // fact-type specifies which math operation we’re

doing e.g. addition or multiplication
228 WM1 -> RT2
229 WM2 -> RT3
230 }
231
232 // End math if we retrieved the answer. Place the answer in WM3 of

imaginal buffer
233 operator end-math {
234 RT4 <> nil

APPENDICES 99

235 WM3 = nil
236 ==>
237 RT4 -> WM3
238 }
239 }
240
241 define action write {
242 latency: 0.3 // min-fitts-movement 0.1 + prep-time 0.05 + init time 0.

05 + punch 2*0.05 (2 burst-movements)
243 noise: 0.1
244 distribution: uniform
245 output: Writing
246 }
247
248 // Contains all the math we need to know to solve the problems
249 define facts {
250 (mf1 multiply -fact 7 17.5 122.5)
251 (mf2 multiply -fact 20 22.5 450)
252 (af1 add-fact 3 7 10)
253 (af2 add-fact 10 10 20)
254 (mf3 multiply -fact 8 20 160)
255 (mf4 multiply -fact 20 25 500)
256 (af3 add-fact 4 8 12)
257 (af4 add-fact 12 8 20)
258 (af5 add-fact 2.5 8 10.5)
259 (af6 add-fact 10.5 10 20.5)
260 (mf5 multiply -fact 20.5 25 512.5)
261 (sf1 subtract -fact 450 122.5 327.5)
262 (sf2 subtract -fact 500 160 340)
263 (sf3 subtract -fact 512.5 160 352.5)
264 }
265
266 // Define the visual with a graph representation. V2 holds same-level

items. V3 holds lower-level items
267 define visual {
268 // Screen for question 1
269 (screen1 screen nil rect1 shaded -area)
270 (rect1 rectangle nil base1 nil 22.5 nil)
271 (base1 base rect2 nil 3)
272 (rect2 rectangle base2 nil 7 17.5 nil)
273 (base2 base nil nil 10)
274 // Screen for question 2
275 (screen2 screen nil rect3 shaded -area)
276 (rect3 rectangle nil base3 nil 25 nil)
277 (base3 base rect4 nil 4)
278 (rect4 rectangle base4 nil 8 20 nil)
279 (base4 base nil nil 8)
280 // Screen for question 3
281 (screen3 screen nil rect5 shaded -area)
282 (rect5 rectangle nil base5 nil 25 nil)

APPENDICES

283 (base5 base rect6 nil 2.5)
284 (rect6 rectangle base6 nil 8 20 nil)
285 (base6 base nil nil 10)
286 }
287
288 define script {
289 screens = ["screen1", "screen2", "screen3"]
290 current_screen = 1
291
292 // Run until we’ve seen all screens (i.e. done all questions)
293 while(current_screen != 4) {
294 trial -start()
295 print("Question ", current_screen , ": ")
296 print("Find the area of the wall to be painted. Do not paint the

door.")
297 screen(screens[current_screen - 1])
298 done = 1
299
300 // Run until the shaded-area has been written
301 while (done) {
302 run-until -action("write")
303 ac = last -action()
304 if(ac[1] == "base") {
305 set-buffer -slot("input", "slot4", ac[2]) // Update V4 (the

base) of the rectangle currently in visual
306 }
307
308 if(ac[1] == "area") {
309 set-buffer -slot("input", "slot6", ac[2]) // Update V6 (the

area) of the rectangle currently in visual
310 }
311
312 if(ac[1] == "shaded -area") {
313 done = 0 // Signal script we are done with this question
314 } else {
315 screen(screens[current_screen - 1]) // Make the top-level of

the visicon (the screen) the visual focus
316 }
317 }
318 issue -reward()
319 purge -bindings()
320 trial -end()
321 current_screen = current_screen + 1
322 }
323 }

APPENDICES 101

C.2 Model 0: Version 2

1 // Model: Node 0 - v4 (final)
2 // Written by: I.D.M. Akrum
3 // Date: 11/03/2022
4
5 define task node0 {
6 initial -goals: (read -task)
7 default -activation: 1.0
8 ol: t
9 rt: -2.0

10 lf: 0.2
11 default -operator -self -assoc: 0.0
12 egs: 0.05
13 retrieval -reinforces: t
14 //bindings-in-dm: t // if bindings are stored to dm, their activation

drops too low and the model doesn’t work because operator
conditions don’t match

15 }
16
17 // read the task from the screen and make it your current goal
18 define goal read -task {
19 // A simple goal assumes the top shape is the focus
20 operator read -simple -goal {
21 G1 = read -task
22 V1 = screen
23 V4 <> nil
24 V5 = nil
25 ==>
26 V4 -> G1
27 >>V3
28 }
29
30 // A complex goal has a shape specified as focus (e.g. area rect5 asks

to find the area of rect5 in the visicon)
31 operator read -complex -goal {
32 G1 = read -task
33 V1 = screen
34 V4 <> side
35 V5 <> nil
36 ==>
37 search -visual -> G1 // Before we get to the top goal, we first

need to find the specified shape
38 V4 -> G2 // The top goal is stored in G2
39 V5 -> WM1 // The specified shape gets placed in WM1 so that we

can iterate until it’s found
40 >>V3 // shift focus to the first shape
41 }
42

APPENDICES

43 // If the goal is to find a side, V5 will specify which side we are
interested in

44 operator read -side {
45 G1 = read -task
46 V1 = screen
47 V4 = side
48 V5 <> nil
49 ==>
50 V4 -> G1
51 V5 -> *side // save the specified side as a constant
52 >>V3 // shift focus to the first shape
53 }
54 }
55
56 // This skill is used for searching the visual until a specified shape is

found
57 // It relies on the one-level-down and next-item operators from the

iterate-over skill
58 define goal search -visual {
59 // If the shape is reached, clear the working memory so that

associated goal skill can fire
60 operator reached -shape {
61 G1 = search -visual
62 WM1 = WM2
63 ==>
64 nil -> WM1
65 nil -> WM2
66 G2 -> G1 // Move on to the top goal
67 nil -> G2
68 }
69
70 // If the shape isn’t reached, clear only WM2 so that the iterate-over

skill can continue firing
71 operator not-the-shape {
72 G1 = search -visual
73 WM1 <> WM2
74 ==>
75 nil -> WM2
76 }
77 }
78
79 // Write down a previously-found answer and reset the goal and WM
80 define goal write {
81 operator write -answer {
82 G1 = write
83 ==>
84 write -> AC1
85 *task -> AC2
86 *answer -> AC3
87 nil -> G1

APPENDICES 103

88 nil -> WM0
89 }
90 }
91
92 // This skill iterates over items in the visicon
93 define goal iterate -over {
94 operator first -item {
95 G1 <> nil
96 WM1 = nil
97 *item <> none
98 ==>
99 *item -> WM1

100 }
101
102 operator second -item {
103 G1 <> nil
104 WM1 <> nil
105 WM2 = V0
106 *item <> none
107 ==>
108 *item -> WM2
109 }
110
111 // Move down to a level by moving to the V3 slot in the visual chunk
112 operator one-level -down {
113 G1 <> nil
114 V3 <> nil
115 V2 = nil // Only go down a level if there’s no items at the same

level
116 WM1 <> nil
117 WM2 = nil
118 ==>
119 >>V3
120 V0 -> WM2 // Place V0 in WM2 to show we are looking at a new

visual chunk that needs to be evaluated
121 none -> *item
122 }
123
124 // Move to the next item at the V2 level
125 operator next -item {
126 G1 <> nil
127 V2 <> nil
128 WM1 <> nil
129 WM2 = nil
130 ==>
131 >>V2
132 V0 -> WM2 // Place V0 in WM2 to show we are looking at a new

visual chunk that needs to be evaluated
133 none -> *item
134 }

APPENDICES

135
136 // Keep WM1 as the total of an iterative calculation
137 operator update -wm {
138 G1 <> nil
139 WM3 <> nil
140 ==>
141 WM3 -> WM1
142 nil -> WM2
143 nil -> WM3
144 }
145
146 // Finish iteration if there’s no more V2 or V3 level items
147 operator end-iterate {
148 G1 <> nil
149 WM1 <> nil
150 WM2 = nil // Only finish iteration after update-wm
151 V2 = nil
152 V3 = nil
153 *done -iterate = no
154 ==>
155 yes -> *done -iterate
156 none -> *item
157 }
158 }
159
160 // This skill has the knowledge of how to do multiplication
161 define goal multiply {
162 operator multiply -action {
163 WM1 <> nil
164 WM2 <> V0
165 WM3 = nil
166 *action = multiply
167 *fact -type = none
168 ==>
169 multiply -fact -> *fact -type
170 }
171 }
172
173 // This skill has the knowledge of how to do subtraction
174 define goal subtract {
175 operator substract -action {
176 WM1 <> nil
177 WM2 <> V0
178 WM3 = nil
179 *action = subtract
180 *fact -type = none
181 ==>
182 subtract -fact -> *fact -type
183 }
184 }

APPENDICES 105

185
186 // This skill has the knowledge of how to do addition
187 define goal add {
188 operator add-action {
189 WM1 <> nil
190 WM2 <> V0
191 WM3 = nil
192 *action = add
193 *fact -type = none
194 ==>
195 add-fact -> *fact -type
196 }
197 }
198
199 // Find a shaded area, i.e. the area of a shape minus the other areas

within that shape
200 define goal shaded -area {
201 // When we start this goal, set the action to subtract
202 operator init -shaded -area {
203 G1 = shaded -area
204 V1 = shape
205 *action = none
206 *done -iterate = na
207 ==>
208 subtract -> *action
209 no -> *done -iterate // We begin iterating and aren’t finished yet
210 }
211
212 // Find the area of a shape and put it in item
213 operator area -of-shape {
214 G1 = shaded -area
215 V1 = shape
216 V7 <> nil
217 *item = none
218 *done -iterate = no
219 ==>
220 V7 -> *item
221 }
222
223 // If an area is missing, find that first
224 operator missing -area {
225 G1 = shaded -area
226 V1 = shape
227 V7 = nil
228 *done -iterate = no
229 ==>
230 area -> G1
231 nil -> WM0
232 none -> *action // Reset the action since we’re changing goals

APPENDICES

233 na -> *done -iterate // Set iterate to NA since we halt the iterate
process

234 }
235
236 // This skill fires when a visual chunk isn’t a shape
237 operator not-a-shape {
238 G1 = shaded -area
239 V1 <> shape
240 WM2 = V0
241 *item = none
242 *done -iterate = no
243 ==>
244 nil -> WM2 // Clear the WM2 slot to continue iteration
245 }
246
247 // Finish the shaded area calculation and signal the writing action
248 operator end-shaded -area {
249 G1 = shaded -area
250 WM1 <> nil
251 *done -iterate = yes
252 ==>
253 V<< // Return from the iteration to the top shape
254 G1 -> *task
255 WM1 -> *answer
256 write -> G1
257 none -> *action // We’re done with this goal, so reset the action
258 na -> *done -iterate // We’re done with the goal, so we’re no

longer in an interation process
259 }
260 }
261
262 // Calculate the area of a rectangle
263 define goal area {
264 // Get the base of the focus shape
265 operator base -of-shape {
266 G1 = area
267 V1 = shape
268 V5 <> nil
269 WM1 = nil
270 ==>
271 V5 -> WM1
272 }
273
274 // Get the height of the focus shape
275 operator height -of-shape {
276 G1 = area
277 V1 = shape
278 V6 <> nil
279 WM2 = nil
280 ==>

APPENDICES 107

281 V6 -> WM2
282 }
283
284 // If we have the base and height, signal we want to multiply them

through the action constant
285 operator base -times -height {
286 G1 = area
287 WM1 <> nil
288 WM2 <> nil
289 WM3 = nil
290 *action = none
291 ==>
292 multiply -> *action
293 }
294
295 // If we have the answer in the imaginal buffer, signal the writing

action
296 operator end-area {
297 G1 = area
298 WM3 <> nil
299 ==>
300 G1 -> *task
301 WM3 -> *answer
302 write -> G1
303 none -> *action // Reset the action since we are finished with

the goal
304 }
305
306 // If we miss the base, we switch to the add-segments skill to

determine the base
307 operator missing -base {
308 G1 = area
309 V1 = shape
310 V5 = nil
311 V3 <> nil
312 WM1 = nil
313 ==>
314 segments -> G1
315 base -> *side // Set the focus to base
316 add -> *action
317 nil -> WM0
318 >>V3 // Move down to the segments that make up this shape
319 }
320
321 // If we miss the height, we switch to the add-segments skill to

determine the height
322 operator missing -height {
323 G1 = area
324 V1 = shape
325 V6 = nil

APPENDICES

326 V3 <> nil
327 WM2 = nil
328 ==>
329 segments -> G1
330 height -> *side // Set the focus to height
331 add -> *action
332 nil -> WM0
333 >>V3 // Move down to the segments that make up this shape
334 }
335 }
336
337 // Skill for finding a side. Since we’re missing a divide skill, the only

way to find a side is through segments
338 define goal side {
339 // Find a side by adding segments
340 operator side -by-segments {
341 G1 = side
342 V7 = nil
343 V3 <> nil
344 ==>
345 segments -> G1
346 add -> *action
347 nil -> WM0
348 >>V3
349 }
350 }
351
352 // Find the specified side of a shape where the side is given by known

segments (i.e. lines or other shapes)
353 // Functions virtually the same as shaded-area, but looks at different

slots and has a different action
354 define goal segments {
355 operator init -segments {
356 G1 = segments
357 *action <> none
358 *done -iterate = na
359 ==>
360 no -> *done -iterate
361 }
362
363 // If we’re trying to find a base, read the width of a segment/shape
364 operator read -width {
365 G1 = segments
366 *side = base
367 *item = none
368 *done -iterate = no
369 V5 <> nil
370 ==>
371 V5 -> *item
372 }

APPENDICES 109

373
374 // If we’re trying to find a height, read the height of a segment/

shape
375 operator read -height {
376 G1 = segments
377 *side = height
378 *item = none
379 *done -iterate = no
380 V6 <> nil
381 ==>
382 V6 -> *item
383 }
384
385 // Clear the WM2 if our current segment isn’t the side we’re

interested in (e.g. a height when we’re looking at bases)
386 operator wrong -segment {
387 G1 = segments
388 *item = none
389 *done -iterate = no
390 V1 = segment
391 V4 <> *side
392 WM2 = V0
393 ==>
394 nil -> WM2
395 }
396
397 // If there are no more lines/shapes, write down the total of the

added segments
398 operator end-segments {
399 G1 = segments
400 WM1 <> nil
401 *done -iterate = yes
402 ==>
403 V<< // Return from the iteration to the top shape
404 *side -> *task
405 WM1 -> *answer
406 write -> G1
407 none -> *action
408 na -> *done -iterate
409 }
410 }
411
412 // Do some math with slots in the imaginal buffer
413 // Doing math is simply "remembering" the answer
414 define goal math {
415 // start when there’s two numbers in the imaginal buffer but no answer
416 operator start -math {
417 WM1 <> nil
418 WM2 <> nil
419 WM3 = nil

APPENDICES

420 RT1 = nil // Don’t start math if we already retrieved something
421 *fact -type <> none // Only start math if we know the fact-type
422 ==>
423 *fact -type -> RT1 // fact-type specifies which math operation we’re

doing e.g. addition or multiplication
424 WM1 -> RT2
425 WM2 -> RT3
426 }
427
428 // End math if we retrieved the answer. Place the answer in WM3 of

imaginal buffer
429 operator end-math {
430 RT4 <> nil
431 WM3 = nil
432 ==>
433 RT4 -> WM3
434 none -> *fact -type // Clear the fact-type since we finished this

math-action
435 }
436 }
437
438 // The write action approximates punching keys on the key board
439 // Since there is no default hand position, it assumes the ACT-R min-

fitts-movement variable (default 0.1) as movement time
440 define action write {
441 latency: 0.4 // min-fitts-movement 0.1 + prep-time 0.05 + init time 0.

05 + punch 4*0.05 (4 burst-movements equals 2 keys)
442 noise: 0.1 // Allows us to reach minimum of 1 key (2 burst-movements

of 0.05) and maximum of 3 keys (6 burst-movements of 0.05)
443 distribution: uniform
444 output: Writing
445 }
446
447 // Contains all the math we need to know to solve the problems
448 define facts {
449 (mf1 multiply -fact 7 17.5 122.5)
450 (mf2 multiply -fact 20 22.5 450)
451 (af1 add-fact 3 7 10)
452 (af2 add-fact 10 10 20)
453 (mf3 multiply -fact 8 20 160)
454 (mf4 multiply -fact 20 25 500)
455 (af3 add-fact 4 8 12)
456 (af4 add-fact 12 8 20)
457 (af5 add-fact 2.5 8 10.5)
458 (af6 add-fact 10.5 10 20.5)
459 (mf5 multiply -fact 20.5 25 512.5)
460 (sf1 subtract -fact 450 122.5 327.5)
461 (sf2 subtract -fact 500 160 340)
462 (sf3 subtract -fact 512.5 160 352.5)
463 }

APPENDICES 111

464
465 // Define the visual with a graph representation. V2 holds same-level

items. V3 holds lower-level items
466 // V4 is a further specification of the V1 type. V5 is width, V6 is

height. V7 is area for shapes
467 define visual {
468 // Screen for question 1
469 (screen1 screen nil rect1 shaded -area)
470 (rect1 shape nil base1 rectangle nil 22.5 nil)
471 (base1 segment rect2 nil base 3 nil)
472 (rect2 shape base2 nil rectangle 7 17.5 nil)
473 (base2 segment nil nil base 10 nil)
474 // Screen for question 2
475 (screen2 screen nil rect3 shaded -area)
476 (rect3 shape nil base3 rectangle nil 25 nil)
477 (base3 segment rect4 nil base 4 nil)
478 (rect4 shape base4 nil rectangle 8 20 nil)
479 (base4 segment nil nil base 8 nil)
480 // Screen for question 3
481 (screen3 screen nil rect5 shaded -area)
482 (rect5 shape nil base5 rectangle nil 25 nil)
483 (base5 segment rect6 nil base 2.5 nil)
484 (rect6 shape base6 nil rectangle 8 20 nil)
485 (base6 segment nil nil base 10 nil)
486 // Screen for question 4 (extra to check that the search-visual goal

works)
487 (screen4 screen nil rect3 area rect4)
488 // Screen for question 5 (extra to check that the side skill works)
489 (screen5 screen nil rect7 side base)
490 (rect7 shape nil base5 rectangle nil 25 nil)
491 }
492
493 define script {
494 screens = ["screen1", "screen2", "screen3"]
495 current_screen = 1
496
497 // Run until we’ve seen all screens (i.e. done all questions)
498 while(current_screen != 4) {
499 trial -start()
500
501 // Initialise the bindings
502 add-binding("item","none")
503 add-binding("action","none")
504 add-binding("fact -type","none")
505 add-binding("done -iterate", "na")
506
507 // Print information on screen for modeller
508 print("Question ", current_screen , ": ")
509 print("Find the area of the wall to be painted. Do not paint the

door.")

APPENDICES

510 screen(screens[current_screen - 1])
511 done = 1
512
513 // Run until the shaded-area has been written
514 while (done) {
515 run-until -action("write")
516 ac = last -action()
517 if(ac[1] == "base") {
518 set-buffer -slot("input", "slot5", ac[2]) // Update V5 (the

base) of the rectangle currently in visual
519 }
520
521 if(ac[1] == "area") {
522 set-buffer -slot("input", "slot7", ac[2]) // Update V7 (the

area) of the rectangle currently in visual
523 }
524
525 screen(screens[current_screen - 1]) // Make the top-level of the

visicon (the screen) the visual focus
526 goal = get-buffer -slot("input", "slot4")
527 sub-goal = get-buffer -slot("input", "slot5")
528
529 // Check if task is complete, if not, read the task and continue

with new information
530 if((ac[1] == goal) || (ac[1] == sub-goal)) {
531 done = 0 // Signal script we are done with this question
532 } else {
533 set-buffer -slot("goal", "slot1", "read -task") // Reset the

goal to reading the task
534 }
535 }
536 issue -reward()
537 purge -bindings()
538 trial -end()
539 current_screen = current_screen + 1
540 }
541 }

APPENDICES 113

C.3 Model 8

1 // Model: Node 8
2 // Written by: I.D.M. Akrum
3 // Date: 14/03/2022
4
5 define task node8 {
6 initial -goals: (read -task)
7 default -activation: 1.0
8 ol: t
9 rt: -2.0

10 lf: 0.2
11 default -operator -self -assoc: 0.0
12 egs: 0.05
13 retrieval -reinforces: t
14 //bindings-in-dm: t // if bindings are stored to dm, their activation

drops too low and the model doesn’t work because operator
conditions don’t match

15 }
16
17 // This skill has the knowledge of how to do division
18 define goal divide {
19 operator divide -action {
20 WM1 <> nil
21 WM2 <> V0
22 WM3 = nil
23 *action = divide
24 *fact -type = none
25 ==>
26 divide -fact -> *fact -type
27 }
28 }
29
30 // Calculate the area of the shapes: rectangle, triangle, and trapezoid
31 // Given that this skill "overloads" the one from model 0, its operators

have a higher activation to promote them over the operators from model
0

32 define goal area {
33 // Since trapezoids don’t have a single base, get the total base by

adding its base1 and base2
34 operator add-trapezoid -bases(activation=10.0) {
35 G1 = area
36 V4 = trapezoid
37 WM1 = nil
38 ==>
39 G1 -> G2 // Save the original goal so it can be returned to
40 segments -> G1
41 base -> *side // Set the focus to base
42 add -> *action
43 nil -> WM0

APPENDICES

44 >>V3 // Move down to the segments that make up the trapezoid base
45 }
46
47 // This skill triggers after the trapezoid bases have been added
48 operator base -of-trapezoid(activation=10.0) {
49 G1 = area
50 WM1 <> nil
51 *action = add
52 V<< // Returning from segments, look at the trapezoid again

rather than the last base
53 V4 = trapezoid
54 ==>
55 none -> *action
56 }
57
58 // If we’re looking a triangle, divide the previously found area by 2
59 operator area -triangle(activation=10.0) {
60 G1 = area
61 WM3 <> nil
62 V4 = triangle
63 *action = multiply
64 ==>
65 WM3 -> WM1
66 *two -> WM2
67 nil -> WM3
68 divide -> *action
69 }
70
71 // Do the same for a trapezoid as we do for a triangle
72 operator area -trapezoid(activation=10.0) {
73 G1 = area
74 WM3 <> nil
75 V4 = trapezoid
76 *action = multiply
77 ==>
78 WM3 -> WM1
79 *two -> WM2
80 nil -> WM3
81 divide -> *action
82 }
83
84 // If we have the answer in WM3 and we’re dealing with a rectangle,

write the answer
85 operator end-area -rect(activation=10.0) {
86 G1 = area
87 WM3 <> nil
88 V4 = rectangle
89 ==>
90 G1 -> *task
91 WM3 -> *answer

APPENDICES 115

92 write -> G1
93 none -> *action // Reset the action since we are finished with

the goal
94 }
95
96 // If we have the answer in WM3 and we did the area-triangle operator,

write the answer
97 operator end-area -triangle(activation=10.0) {
98 G1 = area
99 WM3 <> nil

100 V4 = triangle
101 *action = divide
102 ==>
103 G1 -> *task
104 WM3 -> *answer
105 write -> G1
106 none -> *action // Reset the action since we are finished with

the goal
107 }
108
109 // If we have the answer in WM3 and we did the area-trapezoid operator

, write the answer
110 operator end-area -trapezoid(activation=10.0) {
111 G1 = area
112 WM3 <> nil
113 V4 = trapezoid
114 *action = divide
115 ==>
116 G1 -> *task
117 WM3 -> *answer
118 write -> G1
119 none -> *action // Reset the action since we are finished with

the goal
120 }
121
122 // If we miss the base, we switch to the segments skill to determine

the base
123 operator missing -base(activation=10.0) {
124 G1 = area
125 V1 = shape
126 V4 <> trapezoid // This doesn’t hold for trapezoids since they

don’t have a single base
127 V5 = nil
128 V3 <> nil
129 WM1 = nil
130 ==>
131 segments -> G1
132 base -> *side // Set the focus to base
133 add -> *action
134 nil -> WM0

APPENDICES

135 >>V3 // Move down to the segments that make up this shape
136 }
137 }
138
139 // Skill for finding a side.
140 define goal side {
141 // If we’re trying to determine the base, read the height
142 operator other -side -base {
143 G1 = side
144 *side = base
145 WM2 = nil
146 V6 <> nil
147 ==>
148 V6 -> WM2
149 }
150
151 // If we’re trying to determine the height, read the base
152 operator other -side -height {
153 G1 = side
154 *side = height
155 WM2 = nil
156 V5 <> nil
157 ==>
158 V5 -> WM2
159 }
160
161 // Read the two bases of the trapezoid
162 operator read -bases -of-trapezoid {
163 G1 = side
164 *side = height
165 V4 = trapezoid
166 WM2 = nil
167 ==>
168 >>V3
169 G1 -> G2
170 segments -> G1
171 base -> *side // temporarily change the side to the base for the

addition
172 add -> *action
173 }
174
175 // After we know the total base for the trapezoid, store it in WM2 as

per usual
176 operator other -side -height -trapezoid {
177 G1 = side
178 *side = base
179 *action = add
180 V<< // We are still looking at the last base of the trapezoid, so

return visual focus to trapezoid
181 V4 = trapezoid

APPENDICES 117

182 V7 <> nil
183 WM1 <> nil
184 WM1 <> V7 // Should trigger if we have a value in WM1, but it’s

not the area
185 ==>
186 WM1 -> WM2
187 nil -> WM1
188 height -> *side
189 none -> *action
190 }
191
192 // Put the area in WM1 and divide WM1 by WM2
193 operator area -by-other -side {
194 G1 = side
195 WM1 = nil
196 WM2 <> nil
197 V7 <> nil
198 ==>
199 V7 -> WM1
200 divide -> *action
201 }
202
203 // If we’re dealing with a triangle, we have to multiply the answer

from the division by 2
204 operator side -triangle {
205 G1 = side
206 WM3 <> nil
207 V4 = triangle
208 *action = divide // This triggers after we’ve divided the area by

the other side
209 ==>
210 WM3 -> WM1
211 *two -> WM2
212 nil -> WM3
213 multiply -> *action
214 }
215
216 // As with the area, we also multiply by 2 for trapezoids
217 operator side -trapezoid {
218 G1 = side
219 WM3 <> nil
220 V4 = trapezoid
221 *action = divide
222 ==>
223 WM3 -> WM1
224 *two -> WM2
225 nil -> WM3
226 multiply -> *action
227 }
228

APPENDICES

229 // For a trapezoid, one base will be given. We must subtract the total
base we found by the base already given

230 operator other -base -trapezoid {
231 G1 = side
232 *side = base
233 *action = multiply
234 V4 = trapezoid
235 WM3 <> nil
236 ==>
237 G1 -> G2
238 segments -> G1
239 subtract -> *action
240 WM3 -> WM1
241 nil -> WM2
242 nil -> WM3
243 }
244
245 // The side of rectangle is found after the area has been divided by

the other side
246 operator end-side -rect {
247 G1 = side
248 WM3 <> nil
249 V4 = rectangle
250 *action = divide
251 ==>
252 *side -> *task
253 WM3 -> *answer
254 write -> G1
255 none -> *action
256 }
257
258 // The side of a triangle is found after we’ve multiplied the found

side by two
259 operator end-side -triangle {
260 G1 = side
261 WM3 <> nil
262 V4 = triangle
263 *action = multiply
264 WM2 = *two
265 ==>
266 *side -> *task
267 WM3 -> *answer
268 write -> G1
269 none -> *action
270 }
271
272 // The other base of a trapezoid has been found after the segment

skill is finished
273 // In this case, WM1 will hold the final answer and the action will be

none

APPENDICES 119

274 operator end-base -trapezoid {
275 G1 = side
276 *side = base
277 WM1 <> nil
278 *action = subtract
279 ==>
280 *side -> *task
281 WM1 -> *answer
282 write -> G1
283 none -> *action
284 }
285
286 // The height of a trapezoid has been found after we’ve multiplied the

found side by two (as triangle)
287 operator end-height -trapezoid {
288 G1 = side
289 WM3 <> nil
290 V4 = trapezoid
291 *side = height
292 *action = multiply
293 ==>
294 *side -> *task
295 WM3 -> *answer
296 write -> G1
297 none -> *action
298 }
299 }
300
301 // Find the specified side of a shape where the side is given by known

segments (i.e. lines or other shapes)
302 // Functions virtually the same as shaded-area, but looks at different

slots and has a different action
303 define goal segments {
304 // If we’re interested in bases, but the width of a base isn’t given,

skip it
305 operator skip -base {
306 G1 = segments
307 *side = base
308 V4 = base
309 V5 = nil
310 WM2 = V0
311 ==>
312 nil -> WM2
313 }
314
315 // If we’re interested in heights, but the height of a height segment

isn’t given, skip it
316 operator skip -height {
317 G1 = segments
318 *side = height

APPENDICES

319 V4 = height
320 V6 = nil
321 WM2 = V0
322 ==>
323 nil -> WM2
324 }
325
326 // If G2 isn’t nil, return to the G2 skill rather than writing down

the WM1 answer
327 operator end-segments -alt(activation=10.0) {
328 G1 = segments
329 G2 <> nil
330 WM1 <> nil
331 *done -iterate = yes
332 ==>
333 G2 -> G1
334 nil -> G2
335 na -> *done -iterate
336 }
337
338 // If there are no more lines/shapes, write down the total of the

added segments
339 operator end-segments(activation=10.0) {
340 G1 = segments
341 G2 = nil
342 WM1 <> nil
343 *done -iterate = yes
344 ==>
345 V<< // Return from the iteration to the top shape
346 *side -> *task
347 WM1 -> *answer
348 write -> G1
349 none -> *action
350 na -> *done -iterate
351 }
352 }
353
354 // Contains all the math we need to know to solve the problems
355 define facts {
356 (mf6 multiply -fact 43 33 1419)
357 (df1 divide -fact 1419 2 709.5)
358 (df2 divide -fact 2146 58 37)
359 (mf7 multiply -fact 37 2 74)
360 (af7 add-fact 31 33 64)
361 (mf8 multiply -fact 64 7 448)
362 (df3 divide -fact 448 2 224)
363 (df4 divide -fact 1425 25 57)
364 (mf9 multiply -fact 57 2 114)
365 (sf4 subtract -fact 114 56 58)
366 (af8 add-fact 28 31 59)

APPENDICES 121

367 (df5 divide -fact 472 59 8)
368 (mf10 multiply -fact 8 2 16)
369 }
370
371 // Define the visual with a graph representation. V2 holds same-level

items. V3 holds lower-level items
372 // V4 is a further specification of the V1 type. V5 is width, V6 is

height. V7 is area for shapes
373 define visual {
374 // Screen for question 1 (question 3 from model 0)
375 (screen1 screen nil rect1 shaded -area)
376 (rect1 shape nil base1 rectangle nil 25 nil)
377 (base1 segment rect2 nil base 2.5 nil)
378 (rect2 shape base3 nil rectangle 8 20 nil)
379 (base3 segment nil nil base 10 nil)
380 // Screen for question 2 (triangle_area in node 1)
381 (screen2 screen nil triangle1 area)
382 (triangle1 shape nil nil triangle 43 33 nil)
383 // Screen for question 3 (triangle_height in node 1)
384 (screen3 screen nil triangle2 side height)
385 (triangle2 shape nil nil triangle 58 nil 2146)
386 // Screen for question 4 (trapezoid_area in node 1)
387 (screen4 screen nil trapezoid1 area)
388 (trapezoid1 shape nil base4 trapezoid nil 7 nil)
389 (base4 segment base5 nil base 31 nil)
390 (base5 segment nil nil base 33 nil)
391 // Screen for question 5 (trapezoid_base in node 1)
392 (screen5 screen nil trapezoid2 side base)
393 (trapezoid2 shape nil base6 trapezoid nil 25 1425)
394 (base6 segment base7 nil base 56 nil)
395 (base7 segment nil nil base nil nil)
396 // Screen for question 6 (trapezoid_height in node 1)
397 (screen6 screen nil trapezoid3 side height)
398 (trapezoid3 shape nil base8 trapezoid nil nil 472)
399 (base8 segment base9 nil base 28 nil)
400 (base9 segment nil nil base 31 nil)
401 }
402
403 define script {
404 screens = ["screen1", "screen2", "screen3", "screen6", "screen4", "

screen5"]
405 current_screen = 1
406
407 // Run until we’ve seen all screens (i.e. done all questions)
408 while(current_screen != 7) {
409 trial -start()
410
411 // Initialise the bindings
412 add-binding("item","none")
413 add-binding("action","none")

APPENDICES

414 add-binding("fact -type","none")
415 add-binding("done -iterate", "na")
416 add-binding("two", 2)
417
418 screen(screens[current_screen - 1])
419 done = 1
420
421 goal = get-buffer -slot("input", "slot4")
422 sub-goal = get-buffer -slot("input", "slot5")
423 shape = get-buffer -slot("input", "slot3")
424
425 // Determine the shape of interest
426 if((goal != "side") && (sub-goal != "nil")) {
427 shape = sub-goal
428 }
429
430 // Print information on the screen for modeller
431 print("Question", current_screen , ": ")
432
433 if(goal != "side") {
434 print("Find the", goal , "of", shape)
435 } else {
436 print("Find the", sub-goal , "of", shape)
437 }
438
439 // Run until the goal has been reached and the answer written down
440 while (done) {
441 run-until -action("write")
442 ac = last -action()
443
444 if(ac[1] == "base") {
445 set-buffer -slot("input", "slot5", ac[2]) // Update V5 (the

base) of the current visual chunk
446 }
447
448 if(ac[1] == "height") {
449 set-buffer -slot("input", "slot6", ac[2]) // Update V6 (the

height) of the current visual chunk
450 }
451
452 if(ac[1] == "area") {
453 set-buffer -slot("input", "slot7", ac[2]) // Update V7 (the

area) of the shape currently in visual
454 }
455
456 screen(screens[current_screen - 1]) // Make the top-level of the

visicon (the screen) the visual focus
457
458 // Check if task is complete, if not, read the task and continue

with new information

APPENDICES 123

459 if((ac[1] == goal) || (ac[1] == sub-goal)) {
460 done = 0 // Signal script we are done with this question
461 } else {
462 set-buffer -slot("goal", "slot1", "read -task") // Reset the

goal to reading the task
463 }
464 }
465 issue -reward()
466 purge -bindings()
467 trial -end()
468 current_screen = current_screen + 1
469 }
470 }

	Abstract
	Acknowledgements
	Introduction
	Theoretical Background
	What Is a Skill?
	Why Identify Reused Skills?
	How to Identify Reused Skills?

	Problem Context
	Description of the Dataset
	Pre-Processing
	Subsets of the Data

	Knowledge Graph
	Original Knowledge Graph Algorithm
	The Logic Behind the Algorithm
	Its Core Functions
	The Main Workings of the Algorithm
	Drawing the Graph

	Intermediate Results
	Dataset 1
	The Remaining Three Datasets

	Compensating for Order
	The Final Knowledge Graph

	Cognitive Modelling
	Representing the Problems
	Model 0
	Version 1
	Version 2

	Model 8
	Finding Skill 8
	Creating the Model

	Model Performance

	Discussion
	Evaluation of Proposed Method
	The Knowledge Graph Algorithm
	The Cognitive Models

	Main Contributions
	Conclusion

	Appendices
	Addendum to the Intermediate Results
	Problem 42: POGS
	The Circle Problems

	Node Content of the Final Knowledge Graph
	output-25.cpt
	output-26.cpt
	output-27.cpt
	output-28.cpt
	output-29.cpt
	output-30.cpt
	output-31.cpt
	output-32.cpt
	output-33.cpt
	output-34.cpt
	output-35.cpt

	Model Code
	Model 0: Version 1
	Model 0: Version 2
	Model 8

