
Bachelor Thesis in Computing Science

Hoare Logics for Skeletal Semantics

Bachelor Candidate Supervisor

Laura-Andrea Schimbător Dr. Dan Frumin
Student ID 4103580 University of Groningen

Co-supervisor

Prof. Dr. Jorge Pérez
University of Groningen

Academic Year
2021/2022

Abstract

Proving the correctness of programs is essential for programming languages. A
widely used approach for proving the partial correctness of programs is Hoare
logic, a concrete formal system using axioms and rules. It is sound and complete,
and has since been adapted for numerous languages. A drawback of the system is
its low modularity, meaning any alteration of the semantics influences the sound-
ness of the Hoare logic. This implies that a separate Hoare logic must be derived
and proved for each individual programming language.
A modular way for representing programming languages is skeletal semantics. It
was introduced as a meta-language for describing languages specified from natu-
ral semantics and has been used to derive correct-by-construction interpreters. In
this project we provide a comprehensive presentation of Hoare logic and skeletal
semantics. We introduce an imperative language While, and prove the soundness
property of its skeletal semantics with respect to Hoare logic. Lastly, we make the
first step towards a general way to describe correct-by-construction Hoare logic
from skeletal semantics by providing a heuristic for mapping skeletons to Hoare
logic rules.

Contents

List of Tables vii

1 Introduction 1

2 Background 3
2.1 Hoare Logic . 3
2.2 Skeletal Semantics . 4

3 Analysis 9
3.1 Language While . 9

3.1.1 Syntax . 9
3.1.2 Semantics of Expressions . 10
3.1.3 Definitions . 12

3.2 Formal Definitions of Filters . 13
3.3 Soundness of Expressions . 14

3.3.1 Soundness of Arithmetic Expressions 14
3.3.2 Soundness of Boolean Expressions 17

3.4 Soundness of Statements . 19
3.5 Additional Rules . 25
3.6 Suggestions for Interpreting Skeletons 30

4 Conclusions and Future Works 31

References 33

Acknowledgments 37

v

List of Tables

3.1 Hoare Logics While . 13
3.2 Skeletal Semantics While . 14
3.3 Formal Filter Definitions . 15

vii

1
Introduction

Programming languages are the building blocks of applied computer science.
Although only part of them are widely used, hundreds of programming languages
exist [2]. Naturally, as building blocks, we want to have the certainty they are
reliable enough to build on top of them. Therefore, for every programming
language, there is a need for formal verification as a means to prove the correctness
of programs. In order to ensure the reliable behaviour of a program, we ought
to define its specifications and develop a thorough method to prove they are
satisfied [4].

One of the most used formal approaches for proving soundness with respect
to a certain semantics is Hoare logic, an axiomatic formal system. However, these
proofs have little modularity, meaning that even small changes in the semantics
of a language affect the soundness of the Hoare logic. Thus, it is necessary
to develop a separate Hoare logic for each programming language, which can
become a laborious task.

Skeletal semantics is a concept that has been recently introduced in the field
of programming languages semantics [3]. It represents a framework for defining
languages specified in natural semantics. It uses a modular approach, meaning
some common structures are shared by the languages formalized in skeletal se-
mantics, and only the language-specific atoms must be defined for each language.
Although not yet extensively researched, skeletal semantics has tremendous po-
tential for automatic derivations. Currently, the framework allows correct-by-
construction interpreters to be instantiated for programming languages described

1

using skeletal semantics [1].

The previously mentioned considerations represent the foundation of our moti-
vation. We believe the process of describing Hoare-style logic can be automated to
some extent and generalised, as long as the targeted programming languages are
formalised consistently. More specifically, we propose to investigate the formal
way to describe a Hoare-style logic for languages defined using skeletal seman-
tics, and examine the possibility of deriving correct-by-construction Hoare logic
for these languages. We investigate this possibility by first proving the soundness
of a simple imperative language called While. We then present a heuristic for
mapping skeletal semantics constructs to Hoare-style logic rules. We expect our
research will prompt the interest of the program verification community and will
direct their attention to the possibilities offered by skeletal semantics with regard
to the provable correctness of programs.

In this project, we first explore the related work and provide the necessary
background information on Hoare logic and skeletal semantics in Chapter 2. In
Chapter 3, we introduce the syntax and semantics of the imperative language
While in section 3.1. We then provide the formal definitions of filters in 3.2,
before proceeding to proving the soundness of expressions in 3.3 and statements,
in 3.4. In section 3.5, we extend the language with new rules, and in 3.6 we
introduce a heuristic for mapping skeletal semantics to Hoare logic. Lastly, we
analyze possible future work in Chapter 4.

2

2
Background

2.1 Hoare Logic

The objective of any program is to perform a particular function decided by the
programmer. This function is called the behaviour of the program. There are
two options to assess whether the program exhibits the expected behaviour. A
program can possess the partial correctness property, which expresses that if the
program terminates, a certain condition will be met in the final state. A program
can also have the total correctness property, which adds to the notion of partial
correctness the condition that the program will terminate [11].

Proving the correctness of programs is one of the most challenging and resource-
consuming tasks in computing science [9]. A formal system for proving pro-
gram correctness by means of rules and axioms was developed by Hoare [6].
This axiomatic system has revolutionised the discipline, prompting the develop-
ment of numerous applications of Hoare logic in diverse fields: provable concur-
rency laws [7], correctness conditions for non-linearizable concurrent objects [13],
verification-focused formal genetic programming systems [5], information flow
control [10]. Since the interest in the topic grew, attempts at automating the pro-
cess of proving program correctness have been made, but mostly separately for
each language [8, 12], due to their lack of modularity.

The most important characteristic of the system is the Hoare triple. It has the
form: {𝑃} 𝑆 {𝑄}, where 𝑃 is called the precondition, 𝑄 - the postcondition, and

3

2.2. SKELETAL SEMANTICS

𝑆 is the command. 𝑃 and 𝑄 are also called assertions or predicates. The triple
expresses that if the precondition is met, the postcondition will be satisfied after
executing the command. Hoare triples can be applied to prove only the partial
correctness of programs.

The system contains rules and axioms. Both contain a precondition, command,
and postcondition. The difference between them is that rules have premises,
while axioms don’t. Equation 2.1 shows the skip axiom, while 2.2 is the rule for
composition. The two premises of the rule are above the line: {𝑃} 𝑆1 {𝑄} and
{𝑄} 𝑆2 {𝑅}. For each rule, if the premises are met, executing the command in
an initial state in which the precondition holds results in a state in which the
postcondition is met.

{𝑃} skip {𝑃} (2.1)

{𝑃} 𝑆1 {𝑄} {𝑄} 𝑆2 {𝑅}
{𝑃} 𝑆1; 𝑆2 {𝑅}

(2.2)

2.2 Skeletal Semantics

Hoare logic is an example of a semantics. The semantics of a programming
language is concerned with the meaning, or behaviour, of grammatically correct
programs, as opposed to syntax, which represents the grammatical structure of
programs [11]. The most important semantics for programming languages are
operational semantics, denotational semantics, and axiomatic semantics - represented
by Hoare logic.

In this project, we are particularly interested in operational semantics, which
describes the meaning of programs as executions of sequences of steps. It can
be further divided into natural semantics, describing how the overall results of
computations are obtained; and structural operational semantics, describing how
the individual steps of executions are evaluated [11]. If any partial correctness
property that can be proved using a certain inference system also holds according
to the semantics, the semantics is said to be sound. Using the Hoare logic system,
we want to prove this property for skeletal semantics.

4

CHAPTER 2. BACKGROUND

Skeletal semantics is a meta-language used for describing languages specified
from natural semantics [3]. It has been introduced as a solution for systematically
constructing both concrete and abstract semantics, while proving general consis-
tency results. The semantics proposes the notion of skeletons, which describe the
behaviour of reusable language constructs. Based on them, the generic interpre-
tations derive semantic judgements. Skeletal semantics can be interpreted using
non-deterministic and deterministic abstract machines [1]. In addition, for any
language, a certified OCaml interpreter can be instantiated [1].

Recently, a language-independent framework has been proposed as a solution
for automatically generating correct-by-construction program verifiers for oper-
ational semantics [14]. It has been tested on real-world languages (C, Java, and
JavaScript) and proved their functional correctness. Both interpreters and ver-
ifiers are exceptionally useful, and the groundwork for automatically deriving
them has already been laid. However, a similarly challenging task - automatically
deriving a Hoare-style logic for languages formalised in skeletal semantics, has
not yet been investigated.

Skeletal semantics uses terms, which can either base terms - corresponding to
basic blocks of syntax, term variables, or constructors applied to terms. Each
term has its own sort, representing its “type”, which can be a base sort, for base
terms, or a program sort, otherwise. We assume a set of term variables and a set of
constructors, ranged over by 𝑥𝑡 and 𝑐, respectively.

Term variables together with flow variables form the set of skeletal variables.
The purpose of flow variables is to hold semantic values, such as states and
intermediate values. Similarly to terms, flow variables have flow sorts. We write
t : s or Sort(t) = s to denote that 𝑠 is the base sort of the base term 𝑡, and 𝑣 : 𝑠 or
Sort(v) = s to denote that value 𝑣 has the flow sort 𝑠. For a program sort 𝑠, we
write 𝑖𝑛(𝑠) for its input flow sort and 𝑜𝑢𝑡(𝑠) for its output flow sort.

The semantics of each constructor 𝑐 is given by a skeleton. A skeleton has the
form Name(𝑐(𝑥𝑡1 ..𝑥𝑡𝑛)) := 𝑆, where Name is the name of the skeleton, 𝑥𝑡1 ..𝑥𝑡𝑛 are
term variables and 𝑆 is the skeleton body. Formula 2.3 is an example of a skeleton
defining the If statement of an imperative language. Here 𝑥𝑡1 , 𝑥𝑡2 , 𝑥𝑡3 are term
variables, while all other variables are flow variables. Among these, we notice 𝑥𝜎

5

2.2. SKELETAL SEMANTICS

- the input state, and 𝑥𝑜 - the output state of the skeleton. The skeleton name is If,
and the skeleton body is contained in the square brackets.

If(𝑖 𝑓 𝑥𝑡1 𝑥𝑡2 𝑥𝑡3) :=
𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1); isBool(𝑥 𝑓1)? ⊲ 𝑥 𝑓1′ ;

(
isTrue(𝑥 𝑓1′);𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥𝑜)
isFalse(𝑥 𝑓1′);𝐻(𝑥𝜎 , 𝑥𝑡3 , 𝑥𝑜)

)
{𝑥𝑜}

(2.3)

The body of a skeleton is composed of bones, which can be either hooks, filters, or
sets of branches. Hook judgements represent required subcomputations, or recursion.
They are built from an input flow variable, a term to be hooked, and an output
flow variable. For example in 2.3, hook 𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1) has input 𝑥𝜎 - the state of
the program, term 𝑥𝑡1 , and output 𝑥 𝑓1 . During the interpretation of the hook, the
constructor of term 𝑥𝑡1 will be applied with the input state bound to 𝑥𝜎, and the
output state will be bound to 𝑥 𝑓1 .

The filters in skeletal semantics have the form F(𝑥1..𝑥𝑛)? ⊲ (𝑦1..𝑦𝑚), where F is
the filter name, 𝑥 and 𝑦 range over skeletal variables, with input variables 𝑥1..𝑥𝑛
and output variables 𝑦1..𝑦𝑚 . Filters test whether the values of the input variables
satisfy a certain condition, and bind the result to the output variables. In 2.3, the
𝑖𝑠𝐵𝑜𝑜𝑙 filter checks if the value of 𝑥 𝑓1 is a boolean, and binds the result to 𝑥 𝑓1′ . A
filter with no output variables, such as 𝑖𝑠𝑇𝑟𝑢𝑒 in 2.3, acts like a predicate and is
written F(𝑥1..𝑥𝑛).

A set of branches represents the set of possible pathways in the derivation when
the control flow splits. Each branch is itself a sequence of bones. A set of branches
has a set 𝑉 of shared skeletal variables that must be defined by each branch,
written to the right of the branching. In example 2.3, there is one set of branches
with two pathways, depending on the value of 𝑥 𝑓1′ . Here the set 𝑉 has a single
element - 𝑥𝑜 .

There are three interpretations defined for skeletal semantics. The well-formedness
interpretation ensures that all bones in the skeletons use terms of the correct sorts.
The concrete interpretation always picks one branch from a set of branches, and the
variables in 𝑉 take the values of the variables in the branch. The abstract inter-
pretation evaluates all possible paths in a branching, and if one or more branches

6

CHAPTER 2. BACKGROUND

succeed, the variables in 𝑉 are set to ⊤. The three interpretations of skeletal
semantics are proven to be consistent [3].

The interpretations are represented by triple sets of the form (state, term, result).
For the concrete interpretation, the input state is a pair (Σ, 𝑇). Here Σ is an
environment, mapping term variables to closed terms and flow variables to values,
and 𝑇 is a set of triples of value, closed term, and value, representing already
known subderivations. Just like the environmentΣ, the result of the interpretation
maps term variables to closed terms and flow variables to values.

The set 𝑇 is used in the interpretation of hooks. 𝑇 is the input for the immediate
consequence ℋ , which is a function from triple sets to triple sets, deriving new
judgements based on already known ones. For a triple (𝜎, 𝑡 , 𝑣) to be in ℋ(𝑇),
a few conditions must be met. First, the term 𝑡 must be a constructor applied
to terms, such that 𝑡 = 𝑐(𝑡1..𝑡𝑛) and 𝑆𝑜𝑟𝑡(𝑡) = 𝑠, where 𝑠 is the input sort for 𝜎.
Next, if the skeleton Name(𝑐(𝑥𝑡1 ..𝑥𝑡𝑛)) := 𝑆 is evaluated in the initial environment
Σ = 𝑥𝜎 → 𝜎 + 𝑥𝑡1 → 𝑡1 + .. + 𝑥𝑡𝑛 → 𝑡𝑛 , the output environment is Σ′, which binds
𝑥𝑜 to 𝑣. In other words, ⟦𝑆⟧(Σ, 𝑇) ⇓ Σ′, and Σ′(𝑥𝑜) = 𝑣.

In this context, the symbol ⇓ represents concrete semantics of the language. The
concrete semantics ⇓ is defined to be the smallest fixpoint of ℋ , formally written
⇓ =

⋃
n ℋn(∅). The definition is derived using the Kleene fixpoint theorem, from

the facts that function ℋ is monotone and continuous [3].

In the process of deriving ℋ(𝑇), all known evaluations (𝜎, 𝑡 , 𝑣) ∈ 𝑇 will be com-
bined using the applicable constructors of the language to obtain new judgements.
For a short running example, we assume we know the results of evaluating two
arithmetic expressions in 𝑇 = ℋ k(∅), namely (𝜎, 𝑎1, 𝑣1) ∈ 𝑇 and (𝜎, 𝑎2, 𝑣2) ∈ 𝑇.
Then, we will be able to derive new judgements based on the constructors in
our language that require two input variables. If the language used has the rule
for arithmetic expression addition, 𝑎1 + 𝑎2, then from (𝜎, 𝑎1, 𝑣1) ∈ ℋ k(∅) and
(𝜎, 𝑎2, 𝑣2) ∈ ℋ k(∅), we can derive a new judgement for evaluating the sum of
the expressions. The new triple, (𝜎, 𝑎1 + 𝑎2, 𝑣3), will be part of ℋ(𝑇), otherwise
written as (𝜎, 𝑎1 + 𝑎2, 𝑣3) ∈ ℋ k+1(∅). Here, the value of 𝑣3 will be the sum of the
values of 𝑣1 and 𝑣2.

7

2.2. SKELETAL SEMANTICS

Similarly, we assume the rule for checking if two expressions are equal, 𝑎1 = 𝑎2,
is present in our language. Then, from (𝜎, 𝑎1, 𝑣1) ∈ ℋ k(∅) and (𝜎, 𝑎2, 𝑣2) ∈ ℋ k(∅),
we will be able to derive a new triple (𝜎, 𝑎1 = 𝑎2, 𝑣4) ∈ ℋ k+1(∅), where 𝑣4 contains
the truth value of the equality 𝑣1 = 𝑣2.

8

3
Analysis

This chapter represents the main part of our report. We first describe the
simple imperative language While in 3.1. We provide the syntax in 3.1.1 and
introduce functions defining the semantics of expressions in 3.1.2. In subsection
3.1.3, we present the Hoare logic and skeletal semantics, and in 3.2 we provide
the formal definitions of the filters in the language. We then proceed by proving
the soundness of the language While, first for expressions, in section 3.3, then for
statements, in section 3.4. We follow by extending the language with two new
rules in section 3.5, for which we also prove the soundness property. Lastly, in
section 3.6, we describe a heuristic for mapping skeletons to Hoare logic rules.

3.1 Language While

We want to prove the soundness property for a simple imperative language
called While. For this, we first describe the language by presenting its syntax,
semantics and the corresponding Hoare logic rules.

3.1.1 Syntax

The language While contains expressions and statements. Expressions evaluate
to values, while statements modify the state of the program. We have the following
categories:

9

3.1. LANGUAGE WHILE

𝑛 − ranging over integers,Z

𝑥 − ranging over arithmetic variables

𝑦 − ranging over boolean variables

𝑎 − ranging over arithmetic expressions

𝑏 − ranging over boolean expressions

𝑆 − ranging over statements

The syntax of the language While is then:

𝑎 :== 𝑛 | 𝑥 | 𝑎1 + 𝑎2

𝑏 :== true | false | 𝑦 | 𝑏1 = 𝑏2 | ¬𝑏1

𝑆 :== skip | 𝑥 := 𝑎 | 𝑆1; 𝑆2 | if 𝑏 then 𝑆1 else 𝑆2 | while 𝑏 do 𝑆

3.1.2 Semantics of Expressions

Now that we know the syntax of the language, we proceed by presenting its
semantics. First, we want to provide the meaning of arithmetical and boolean
expressions. These expressions will always be evaluated in a certain state of the
program. This means that the state has to be an input parameter of the semantic
functions of expressions.

It is also important to mention the sorts in the While language. The base sorts
are ident for identifiers (strings) and lit for literals (integers). The program sorts are
expr for expressions and stat for statements. The flow sorts are val for values, int
for integers, bool for booleans, and store for variable store, which is a function from
strings to val. When evaluating expressions, the output flow sort is val, while the
output flow sort of statements is store [3]. Here val is instantiated with the disjoint
union int+bool. For example, if 𝑛1 : 𝑖𝑛𝑡 and 𝑏1 : 𝑏𝑜𝑜𝑙, then the corresponding
values 𝑛2 : 𝑣𝑎𝑙 and 𝑏2 : 𝑣𝑎𝑙 are 𝑛2 = 𝑖𝑛𝑡(𝑛1) and 𝑏2 = 𝑏𝑜𝑜𝑙(𝑏2).

10

CHAPTER 3. ANALYSIS

Function A

We introduce the semantic function 𝒜 : (expr × state) → int, defining the
meaning of arithmetic expressions:

𝒜⟦𝑛⟧(𝜎) = 𝑛 if 𝑛 ∈ 𝑍

𝒜⟦𝑥⟧(𝜎) = 𝑛 if 𝜎(𝑥) = 𝑖𝑛𝑡(𝑛), 𝑛 ∈ 𝑍

𝒜⟦𝑎1 + 𝑎2⟧(𝜎) = 𝒜⟦𝑎1⟧(𝜎) + 𝒜⟦𝑎2⟧(𝜎)

Function𝒜 is not total, as it is not defined for boolean expressions. The function
can take the arguments one at a time. If we only provide the first parameter -
the expression, we obtain a function with one parameter, the state. The semantic
function evaluates arithmetic expressions in a certain state, and returns its integer
value.

Function B

We introduce the semantic function ℬ : (expr × state) → bool, defining the
meaning of boolean expressions. The function evaluates a boolean expression in
a particular state and returns its boolean value:

ℬ⟦𝑥⟧(𝜎) = 𝑏 if 𝜎(𝑥) = 𝑏𝑜𝑜𝑙(𝑏), 𝑏 ∈ {true, false}

ℬ⟦𝑎1 = 𝑎2⟧(𝜎) =

true if 𝒜⟦𝑎1⟧(𝜎) = 𝒜⟦𝑎2⟧(𝜎)
false if 𝒜⟦𝑎1⟧(𝜎) ≠ 𝒜⟦𝑎2⟧(𝜎)

ℬ⟦¬𝑏⟧(𝜎) =

true if ℬ⟦𝑏⟧(𝜎) = false

false if ℬ⟦𝑏⟧(𝜎) = true

Similarly to function 𝒜, function ℬ is not total, as it is not defined for arithmetic
expressions. The function also doesn’t require both parameters, and providing
only the expression leads to function ℬ⟦𝑏⟧ : state → bool.

11

3.1. LANGUAGE WHILE

Function E

Lastly, we introduce the semantic function ℰ : (expr × state) → val:

ℰ⟦𝑥⟧(𝜎) =

𝑖𝑛𝑡(𝒜⟦𝑥⟧(𝜎)) if 𝒜⟦𝑥⟧(𝜎) is defined

𝑏𝑜𝑜𝑙(ℬ⟦𝑥⟧(𝜎)) otherwise

Unlike functions 𝒜 and ℬ, function ℰ is total on expressions, as it is defined
for both arithmetic and boolean expressions. Similarly to 𝒜 and ℬ, ℰ becomes
a function on states if we only provide the first argument. Function ℰ has the
purpose of transforming expressions to 𝑣𝑎𝑙 outputs, so it transforms the results
of functions 𝒜 and ℬ using 𝑣𝑎𝑙 wrappers.

3.1.3 Definitions

The functions we defined in 3.1.2 are an important prerequisite for the Hoare
logic of the language. In this subsection we first introduce a notation for predi-
cates, which we then use in the Hoare logic rules of While. Lastly, we provide
the skeletal semantics for the language, for which we will prove the soundness
property in future sections.

Predicates

We introduce the following notation for reasoning on predicates:

𝑃1 ∧ 𝑃2 for 𝑃 where 𝑃(𝜎) = 𝑃1(𝜎) and 𝑃2(𝜎)
¬𝑃 for 𝑃′ where 𝑃′(𝜎) = ¬𝑃(𝜎)
𝑃[𝑥 ↦→ ℰ⟦𝑎⟧] for 𝑃′ where 𝑃′(𝜎) = 𝑃(𝜎[𝑥 ↦→ ℰ⟦𝑎⟧(𝜎)])

When the predicate is of the form ℬ⟦𝑏⟧, we say the predicate is true if function
ℬ is defined on expressions 𝑏, and the result of the evaluation is 𝑡𝑟𝑢𝑒.

Hoare Logic

The Hoare logic for the language While [11] is given in Table 3.1.

12

CHAPTER 3. ANALYSIS

[asn] {𝑃[𝑥 ↦→ ℰ⟦𝑎⟧]} 𝑥 := 𝑎 {𝑃}[
skip

] {𝑃} skip {𝑃}[
comp

] {𝑃} 𝑆1 {𝑄} {𝑄} 𝑆2 {𝑅}
{𝑃} 𝑆1; 𝑆2 {𝑅}

[if] {ℬ⟦𝑏⟧ ∧ 𝑃} 𝑆1 {𝑄} {¬ℬ⟦𝑏⟧ ∧ 𝑃} 𝑆2 {𝑄}
{𝑃} if 𝑏 then 𝑆1 else 𝑆2 {𝑄}

[while] {ℬ⟦𝑏⟧ ∧ 𝑃} 𝑆 {𝑃}
{𝑃} while 𝑏 do 𝑆 {¬ℬ⟦𝑏⟧ ∧ 𝑃}

[cons] {𝑃′} 𝑆 {𝑄′} 𝑃 ⇒ 𝑃′ 𝑄′ ⇒ 𝑄

{𝑃} 𝑆 {𝑄}
Table 3.1: Hoare Logics While

Skeletal Semantics

The Skeletal Semantics of the language [3] is presented in Table 3.2. Each
language construct is represented by one skeleton.

3.2 Formal Definitions of Filters

Bodin et al. [3] describe the sorts of filters in the language While. They do not,
however, provide their definitions. While hooks and branching sets do not depend
on the programming language, the filters in the skeletons are language-specific
atoms. Filters have the role of evaluating relations between variables and bind
new results to variables, so in order to complete derivations in skeletal semantics,
we require their definition. Thus, we will provide the formal definitions of filters
in Table 3.3. Special attention will be drawn to predicates 𝑖𝑠𝑇𝑟𝑢𝑒 and 𝑖𝑠𝐹𝑎𝑙𝑠𝑒.
They will return () if their input has the right value, i.e. the input of 𝑖𝑠𝑇𝑟𝑢𝑒 is true
and the input of 𝑖𝑠𝐹𝑎𝑙𝑠𝑒 is false. Otherwise, they will not return, not allowing
the execution to continue.

13

3.3. SOUNDNESS OF EXPRESSIONS

Lit(𝑐𝑜𝑛𝑠𝑡(𝑥𝑡)) :=
[
litInt(𝑥𝑡)? ⊲ 𝑥 𝑓1 ; intVal(𝑥 𝑓1)? ⊲ 𝑥𝑜

]
Var(𝑣𝑎𝑟(𝑥𝑡)) :=

[
read(𝑥𝑡 , 𝑥𝜎)? ⊲ 𝑥𝑜

]
Add(𝑥𝑡1 + 𝑥𝑡2) :=

[
𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1); isInt(𝑥 𝑓1)? ⊲ 𝑥 𝑓 ′1 ;𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥 𝑓2);

isInt(𝑥 𝑓2)? ⊲ 𝑥 𝑓 ′2 ; add(𝑥 𝑓 ′1 , 𝑥 𝑓 ′2)? ⊲ 𝑥 𝑓3 ; intVal(𝑥 𝑓3)? ⊲ 𝑥𝑜

]

Eq(𝑥𝑡1 = 𝑥𝑡2) :=

[
𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1); isInt(𝑥 𝑓1)? ⊲ 𝑥 𝑓 ′1 ;𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥 𝑓2);

isInt(𝑥 𝑓2)? ⊲ 𝑥 𝑓 ′2 ; eq(𝑥 𝑓 ′1 , 𝑥 𝑓 ′2)? ⊲ 𝑥 𝑓3 ; boolVal(𝑥 𝑓3)? ⊲ 𝑥𝑜

]
Neg(¬𝑥𝑡) :=

[
𝐻(𝑥𝜎 , 𝑥𝑡 , 𝑥 𝑓1); isBool(𝑥 𝑓1)? ⊲ 𝑥 𝑓2 ; neg(𝑥 𝑓2)? ⊲ 𝑥 𝑓3 ; boolVal(𝑥 𝑓3)? ⊲ 𝑥𝑜

]
Skip(𝑠𝑘𝑖𝑝) := [id(𝑥𝜎)? ⊲ 𝑥𝑜]

Asn(𝑥𝑡1 := 𝑥𝑡2) :=
[
𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥 𝑓1); write(𝑥𝑡1 , 𝑥𝜎 , 𝑥 𝑓1)? ⊲ 𝑥𝑜

]
Seq(𝑥𝑡1 ; 𝑥𝑡2) :=

[
𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1);𝐻(𝑥 𝑓1 , 𝑥𝑡2 , 𝑥𝑜)

]
If(𝑖 𝑓 𝑥𝑡1 𝑥𝑡2 𝑥𝑡3) :=

[
𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1); isBool(𝑥 𝑓1)? ⊲ 𝑥 𝑓1′ ;

(
isTrue(𝑥 𝑓1′);𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥𝑜)
isFalse(𝑥 𝑓1′);𝐻(𝑥𝜎 , 𝑥𝑡3 , 𝑥𝑜)

)
{𝑥𝑜}

]

While(𝑤ℎ𝑖𝑙𝑒 𝑥𝑡1 𝑥𝑡2) :=

𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1); isBool(𝑥 𝑓1)? ⊲ 𝑥 𝑓1′ ;(

isTrue(𝑥 𝑓1′);𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥 𝑓2);𝐻(𝑥 𝑓2 , 𝑤ℎ𝑖𝑙𝑒 𝑥𝑡1 𝑥𝑡2 , 𝑥𝑜)
isFalse(𝑥 𝑓1′); 𝑖𝑑(𝑥𝜎)? ⊲ 𝑥𝑜

)
{𝑥𝑜}

Table 3.2: Skeletal Semantics While

3.3 Soundness of Expressions

We now have all the necessary information for proving the soundness prop-
erty for the skeletons that evaluate expressions. We do this by introducing two
Lemmas, one for arithmetic and one for boolean expressions.

3.3.1 Soundness of Arithmetic Expressions

We will first prove the partial correctness of arithmetic expressions with respect
to function 𝒜. We will do this by induction.

Lemma 1: If (𝜎, 𝑒 , 𝑖𝑛𝑡(𝑣)) ∈ ⇓, where 𝑒 is an expression, then 𝒜⟦𝑒⟧(𝜎) = 𝑣.
Proof:

14

CHAPTER 3. ANALYSIS

Filter Definition

litInt {(𝑙𝑖𝑡(𝑥) → 𝑥)| 𝑥 : 𝑖𝑛𝑡}

intVal {(𝑥 → 𝑖𝑛𝑡(𝑥))| 𝑥 : 𝑖𝑛𝑡}

isInt {(𝑖𝑛𝑡(𝑥) → 𝑥)| 𝑥 : 𝑖𝑛𝑡}

add {((𝑥, 𝑦) → (𝑥 +𝑖𝑛𝑡 𝑦))| 𝑥, 𝑦 : 𝑖𝑛𝑡}

boolVal {(𝑡𝑟𝑢𝑒 → 𝑏𝑜𝑜𝑙(𝑡𝑟𝑢𝑒)),
(𝑓 𝑎𝑙𝑠𝑒 → 𝑏𝑜𝑜𝑙(𝑓 𝑎𝑙𝑠𝑒))}

isBool {(𝑏𝑜𝑜𝑙(𝑥) → 𝑥)| 𝑥 : 𝑏𝑜𝑜𝑙}

isTrue {𝑡𝑟𝑢𝑒 → ()}
isFalse { 𝑓 𝑎𝑙𝑠𝑒 → ()}

eq {((𝑥, 𝑦) → 𝑡𝑟𝑢𝑒)|𝑥, 𝑦 : 𝑖𝑛𝑡, 𝑥 =𝑖𝑛𝑡 𝑦}∪
{((𝑥, 𝑦) → 𝑓 𝑎𝑙𝑠𝑒)|𝑥, 𝑦 : 𝑖𝑛𝑡, 𝑥 ≠𝑖𝑛𝑡 𝑦}

neg {(𝑡𝑟𝑢𝑒 → 𝑓 𝑎𝑙𝑠𝑒), (𝑓 𝑎𝑙𝑠𝑒 → 𝑡𝑟𝑢𝑒)}
read {(𝑖𝑑, 𝑠𝑡) → 𝑠𝑡(𝑖𝑑)| 𝑠𝑡 : 𝑠𝑡𝑜𝑟𝑒 , 𝑖𝑑 : 𝑖𝑑𝑒𝑛𝑡}
write {(𝑖𝑑, 𝑠𝑡 , 𝑣) → 𝑠𝑡′ | 𝑖𝑑 : 𝑖𝑑𝑒𝑛𝑡, 𝑠𝑡 : 𝑠𝑡𝑜𝑟𝑒 , 𝑣 : 𝑣𝑎𝑙,

𝑠𝑡′ : 𝑠𝑡𝑜𝑟𝑒 , 𝑠𝑡′(𝑖𝑑) = 𝑣,∀𝑖𝑑′.𝑖𝑑′ ≠ 𝑖𝑑 ⇒ 𝑠𝑡′(𝑖𝑑′) = 𝑠𝑡(𝑖𝑑′)}
id {𝑠𝑡 → 𝑠𝑡 | 𝑠𝑡 : 𝑠𝑡𝑜𝑟𝑒}

Table 3.3: Formal Filter Definitions

1. The first base case is 𝑒 = 𝑐𝑜𝑛𝑠𝑡(𝑛1) for 𝑛1 = 𝑙𝑖𝑡(𝑛), 𝑛 ∈ Z: For skeletal
semantics we have skeleton:

Lit(𝑐𝑜𝑛𝑠𝑡(𝑥𝑡)) :=
[
litInt(𝑥𝑡)? ⊲ 𝑥 𝑓1 ; intVal(𝑥 𝑓1)? ⊲ 𝑥𝑜

]
We examine the skeleton, starting with initial environment Σ = 𝑥𝜎 →

𝜎, 𝑥𝑡 → 𝑛1, with 𝜎 - the initial state. Assume 𝑇 = ℋ 𝑛(∅) for some 𝑛,
such that ⟦litInt(𝑥𝑡)? ⊲ 𝑥 𝑓1⟧(Σ, 𝑇) ⇓ (Σ1, 𝑇), with Σ1 = Σ + 𝑥 𝑓1 → 𝑣, where
⟦litInt⟧(Σ(𝑥𝑡)) ⇓ 𝑣, or ⟦litInt⟧(𝑛1) ⇓ 𝑣. Since 𝑛1 = 𝑙𝑖𝑡(𝑛), we can conclude
𝑛 = 𝑣.

Next, we have filter: ⟦intVal(𝑥 𝑓1)?⊲𝑥𝑜⟧(Σ1, 𝑇) ⇓ (Σ2, 𝑇), where ⟦intVal⟧(𝑣) ⇓
𝑣′ andΣ2 = Σ1+𝑥𝑜 → 𝑣′. Lastly, the empty skeleton returns its environment,
Σ2. By the definition of 𝑖𝑛𝑡𝑉𝑎𝑙, 𝑣′ will be 𝑖𝑛𝑡(𝑣), the same as 𝑖𝑛𝑡(𝑛). Thus,
we can apply the definition for 𝒜 and conclude 𝒜⟦𝑛⟧(𝜎) = 𝑛.

2. The second base case is 𝑒 = 𝑥, where 𝑥 is an identifier: In this case for
skeletal semantics we have skeleton:

Var(𝑣𝑎𝑟(𝑥𝑡)) := [read(𝑥𝑡 , 𝑥𝜎)? ⊲ 𝑥𝑜]

15

3.3. SOUNDNESS OF EXPRESSIONS

We analyse the filter comprising the skeleton. Let the initial environment
be Σ = 𝑥𝜎 → 𝜎 + 𝑥𝑡 → 𝑥, where 𝜎 is the initial state. We assume 𝑇 = ℋ 𝑛(∅)
for some 𝑛, such that ⟦read(𝑥𝑡 , 𝑥𝜎)?⊲𝑥𝑜⟧(Σ, 𝑇) ⇓ (Σ1, 𝑇), withΣ1 = Σ+𝑥𝑜 →
𝑣, where ⟦read⟧(Σ(𝑥𝑡),Σ(𝑥𝜎)) ⇓ 𝑣, or ⟦read⟧(𝑥, 𝜎) ⇓ 𝑣, and 𝑣 = 𝜎(𝑥). Next,
the empty skeleton returns its environment, Σ1, ending the derivation.

𝜎(𝑥) returns 𝑣𝑎𝑙, or in other words, 𝑖𝑛𝑡(𝑛) or 𝑏𝑜𝑜𝑙(𝑏), for 𝑛 : 𝑖𝑛𝑡 and
𝑏 : 𝑏𝑜𝑜𝑙. We will examine the first case here, and the second one in the proof
for Lemma 2. We assume 𝜎(𝑥) = 𝑖𝑛𝑡(𝑛). We can then directly apply the
definition of 𝒜, and conclude 𝒜⟦𝑥⟧(𝜎) = 𝑛.

3. 𝑒 = (𝑎1 + 𝑎2) : We have the corresponding skeleton:

Add(𝑥𝑡1 + 𝑥𝑡2) :=
[

𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1); isInt(𝑥 𝑓1)? ⊲ 𝑥 𝑓1′ ;𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥 𝑓2);
isInt(𝑥 𝑓2)? ⊲ 𝑥 𝑓2′ ; add(𝑥 𝑓1′ , 𝑥 𝑓2′)? ⊲ 𝑥 𝑓3 ; intVal(𝑥 𝑓3)? ⊲ 𝑥𝑜

]
If we use the definition of 𝒜, we see that 𝒜⟦𝑎1 + 𝑎2⟧(𝜎) = 𝒜⟦𝑎1⟧(𝜎) +𝒜⟦𝑎2⟧(𝜎). We introduce our induction hypothesis. We assume

(𝜎, 𝑎1, 𝑖𝑛𝑡(𝑘1)) ∈ ℋ 𝑛(∅) =⇒ 𝒜⟦𝑎1⟧(𝜎) = 𝑘1

and (𝜎, 𝑎2, 𝑖𝑛𝑡(𝑘2)) ∈ ℋ 𝑛(∅) =⇒ 𝒜⟦𝑎1⟧(𝜎) = 𝑘2
for some 𝑛. Now we want to show that

(𝜎, 𝑎1 + 𝑎2, 𝑖𝑛𝑡(𝑘)) ∈ ℋ 𝑛+1(∅) =⇒ 𝒜⟦𝑎1 + 𝑎2⟧(𝜎) = 𝑘

We start to evaluate the skeleton. We take the initial environment
Σ = 𝑥𝜎 → 𝜎 + 𝑥𝑡1 → 𝑎1 + 𝑥𝑡2 → 𝑎2.

• First, we have a hook. Assume there exists 𝑇 = ℋ 𝑛(∅) such that
⟦𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1)⟧(Σ, 𝑇) ⇓ (Σ1, 𝑇), where (Σ(𝑥𝜎),Σ(𝑥𝑡1), 𝑣1) = (𝜎, 𝑎1, 𝑣1) ∈
𝑇 and Σ1 = Σ + 𝑥 𝑓1 → 𝑣1. This means that 𝜎(𝑎1) = 𝑣1.

• Next we have ⟦isInt(𝑥 𝑓1)?⊲𝑥 𝑓1′⟧(Σ1, 𝑇) ⇓ (Σ2, 𝑇)withΣ2 = Σ1+𝑥 𝑓1′ → 𝑣2,
where ⟦isInt⟧Σ1(𝑥 𝑓1) ⇓ 𝑣2. Since Σ1(𝑥 𝑓1) = 𝑣1, we have ⟦isInt⟧𝑣1 ⇓ 𝑣2.
By the definition of 𝑖𝑠𝐼𝑛𝑡, this means that 𝑣1 = 𝑖𝑛𝑡(𝑣2). We can thus
apply the induction hypothesis and conclude 𝒜⟦𝑎1⟧(𝜎) = 𝑣2.

• For the next hook, we have ⟦𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥 𝑓2)⟧(Σ2, 𝑇) ⇓ (Σ3, 𝑇), where
(Σ2(𝑥𝜎),Σ2(𝑥𝑡2), 𝑣3) = (𝜎, 𝑎2, 𝑣3) ∈ 𝑇 and Σ3 = Σ2 + 𝑥 𝑓2 → 𝑣3. Note that
Σ(𝑥𝜎) = Σ2(𝑥𝜎), Σ(𝑥𝑡2) = Σ2(𝑥𝑡2), and 𝜎(𝑎2) = 𝑣3.

• We then have again a filter: ⟦isInt(𝑥 𝑓2)? ⊲ 𝑥 𝑓2′⟧(Σ3, 𝑇) ⇓ (Σ4, 𝑇) with
Σ4 = Σ3 + 𝑥 𝑓2′ → 𝑣4, where ⟦isInt⟧Σ3(𝑥 𝑓2) ⇓ 𝑣4. Since Σ3(𝑥 𝑓2) = 𝑣3,
we have ⟦isInt⟧𝑣3 ⇓ 𝑣4. By the definition of 𝑖𝑠𝐼𝑛𝑡, we see that 𝑣3 =
𝑖𝑛𝑡(𝑣4). We can then apply the induction hypothesis again, and say
that 𝒜⟦𝑎2⟧(𝜎) = 𝑣4.

16

CHAPTER 3. ANALYSIS

• The next filter we have, ⟦add(𝑥 𝑓1′ , 𝑥 𝑓2′)? ⊲ 𝑥 𝑓3⟧(Σ4, 𝑇) ⇓ (Σ5, 𝑇) will
define Σ5 = Σ4 + 𝑥 𝑓3 → 𝑣5, where ⟦add⟧(Σ4(𝑥 𝑓1′),Σ4(𝑥 𝑓2′)) ⇓ 𝑣5. We
note that 𝑣5 will be Σ4(𝑥 𝑓1′) + Σ4(𝑥 𝑓2′) = 𝑣2 + 𝑣4, or in other words,
𝒜⟦𝑎1⟧(𝜎) + 𝒜⟦𝑎2⟧(𝜎).

• Our last bone is the 𝑖𝑛𝑡𝑉𝑎𝑙 filter. We evaluate ⟦intVal(𝑥 𝑓3)?⊲𝑥𝑜⟧(Σ5, 𝑇) ⇓
(Σ6, 𝑇), with Σ6 = Σ5 + 𝑥𝑜 → 𝑣6, where ⟦intVal⟧Σ5(𝑥 𝑓3) ⇓ 𝑣6. Since
Σ5(𝑥 𝑓3) = 𝑣5, we get ⟦intVal⟧𝑣5 ⇓ 𝑣6. Looking at the definition of
𝑖𝑛𝑡𝑉𝑎𝑙, we see that 𝑣6 = 𝑖𝑛𝑡(𝑣5).

• Lastly, we have the empty skeleton, which simply returns its environ-
ment: ⟦⟧(Σ6, ∅) ⇓ Σ6, marking the end of the derivation. We conclude
(𝜎, 𝑥𝑡1 + 𝑥𝑡2 , 𝑣6) ∈ ℋ 𝑛+1(∅). But since 𝑣5 is 𝒜⟦𝑎1⟧(𝜎) + 𝒜⟦𝑎2⟧(𝜎) and
𝑣6 = 𝑖𝑛𝑡(𝑣5), we conclude 𝒜⟦𝑎1 + 𝑎2⟧(𝜎) = 𝑣5.

3.3.2 Soundness of Boolean Expressions

Here we prove by induction the partial correctness of boolean expressions with
respect to function ℬ.

Lemma 2: If (𝜎, 𝑒 , 𝑏𝑜𝑜𝑙(𝑣)) ∈ ⇓, where 𝑒 is an expression, then ℬ⟦𝑒⟧(𝜎) = 𝑣.
Proof:
1. The first base case is 𝑒 = 𝑥, when 𝑥 is an identifier. In this case for skeletal

semantics we have skeleton:
Var(𝑣𝑎𝑟(𝑥𝑡)) := [read(𝑥𝑡 , 𝑥𝜎)? ⊲ 𝑥𝑜]

We analyse the filter comprising the skeleton. Let the initial environment
be Σ = 𝑥𝜎 → 𝜎 + 𝑥𝑡 → 𝑥, where 𝜎 is the initial state. We assume 𝑇 = ℋ 𝑛(∅)
for some 𝑛, such that ⟦read(𝑥𝑡 , 𝑥𝜎)?⊲𝑥𝑜⟧(Σ, 𝑇) ⇓ (Σ1, 𝑇), withΣ1 = Σ+𝑥𝑜 →
𝑣, where ⟦read⟧(Σ(𝑥𝑡),Σ(𝑥𝜎)) ⇓ 𝑣, or ⟦read⟧(𝑥, 𝜎) ⇓ 𝑣, and 𝑣 = 𝜎(𝑥). Next,
the empty skeleton returns its environment, Σ1, ending the derivation.

𝜎(𝑥) returns 𝑣𝑎𝑙, or in other words, 𝑖𝑛𝑡(𝑛) or 𝑏𝑜𝑜𝑙(𝑏), for 𝑛 : 𝑖𝑛𝑡 and
𝑏 : 𝑏𝑜𝑜𝑙. We will examine the second case here, as we already addressed the
first one in the proof for Lemma 1. We assume 𝜎(𝑥) = 𝑏𝑜𝑜𝑙(𝑏). We can then
directly apply the definition of ℬ, and conclude ℬ⟦𝑥⟧(𝜎) = 𝑏.

2. The second base case is 𝑒 = (𝑎1 = 𝑎2). We have the skeleton:

Eq(𝑥𝑡1 = 𝑥𝑡2) :=
[

𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1); isInt(𝑥 𝑓1)? ⊲ 𝑥 𝑓1′ ;𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥 𝑓2);
isInt(𝑥 𝑓2)? ⊲ 𝑥 𝑓2′ ; eq(𝑥 𝑓1′ , 𝑥 𝑓2′)? ⊲ 𝑥 𝑓3 ; boolVal(𝑥 𝑓3)? ⊲ 𝑥𝑜

]
If we use the definition of ℬ, we see that

ℬ⟦𝑎1 = 𝑎2⟧(𝜎) =
{true if 𝒜⟦𝑎1⟧(𝜎) = 𝒜⟦𝑎2⟧(𝜎)
false if 𝒜⟦𝑎1⟧(𝜎) ≠ 𝒜⟦𝑎2⟧(𝜎)

17

3.3. SOUNDNESS OF EXPRESSIONS

So if the evaluation of 𝒜⟦𝑎1⟧(𝜎) is equal to that of 𝒜⟦𝑎2⟧(𝜎),
ℬ⟦𝑎1 = 𝑎2⟧(𝜎) will be true, and false otherwise. By Lemma 1, we know

(𝜎, 𝑎1, 𝑖𝑛𝑡(𝑘1)) ∈ ℋ 𝑛(∅) =⇒ 𝒜⟦𝑎1⟧(𝜎) = 𝑘1

and (𝜎, 𝑎2, 𝑖𝑛𝑡(𝑘2)) ∈ ℋ 𝑛(∅) =⇒ 𝒜⟦𝑎1⟧(𝜎) = 𝑘2
for some 𝑛. Now we want to show that

(𝜎, Eq(𝑎1 = 𝑎2), 𝑏𝑜𝑜𝑙(𝑘)) ∈ ℋ 𝑛+1(∅) =⇒ ℬ⟦𝑎1 = 𝑎2⟧(𝜎) = 𝑘

We start to evaluate the skeleton. We take the initial environment for the
derivation Σ = 𝑥𝜎 → 𝜎 + 𝑥𝑡1 → 𝑎1 + 𝑥𝑡2 → 𝑎2.

• First, we have a hook. There exists𝑇 = ℋ 𝑛(∅) such that ⟦𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1)⟧(Σ, 𝑇) ⇓
(Σ1, 𝑇), where (Σ(𝑥𝜎),Σ(𝑥𝑡1), 𝑣1) = (𝜎, 𝑎1, 𝑣1) ∈ 𝑇 andΣ1 = Σ+𝑥 𝑓1 → 𝑣1.
This means that 𝜎(𝑎1) = 𝑣1.

• Next we have ⟦isInt(𝑥 𝑓1)?⊲𝑥 𝑓1′⟧(Σ1, 𝑇) ⇓ (Σ2, 𝑇)withΣ2 = Σ1+𝑥 𝑓1′ → 𝑣2,
where ⟦isInt⟧Σ1(𝑥 𝑓1) ⇓ 𝑣2. Since Σ1(𝑥 𝑓1) = 𝑣1, we have ⟦isInt⟧ 𝑣1 ⇓ 𝑣2.
By the definition of 𝑖𝑠𝐼𝑛𝑡, 𝑣1 = 𝑖𝑛𝑡(𝑣2). We can apply Lemma 1 and
conclude 𝒜⟦𝑎1⟧(𝜎) = 𝑣2.

• For the next hook, we have ⟦𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥 𝑓2)⟧(Σ2, 𝑇) ⇓ (Σ3, 𝑇), where
(Σ2(𝑥𝜎),Σ2(𝑥𝑡2), 𝑣3) = (𝜎, 𝑎2, 𝑣3) ∈ 𝑇 and Σ3 = Σ2 + 𝑥 𝑓2 → 𝑣3. Note that
Σ(𝑥𝜎) = Σ2(𝑥𝜎), Σ(𝑥𝑡2) = Σ2(𝑥𝑡2), and 𝜎(𝑎2) = 𝑣3.

• We then have again a filter: ⟦isInt(𝑥 𝑓2)? ⊲ 𝑥 𝑓2′⟧(Σ3, 𝑇) ⇓ (Σ4, 𝑇) with
Σ4 = Σ3 + 𝑥 𝑓2′ → 𝑣4, where ⟦isInt⟧Σ3(𝑥 𝑓2) ⇓ 𝑣4. Since Σ3(𝑥 𝑓2) = 𝑣3, we
have ⟦isInt⟧𝑣3 ⇓ 𝑣4. By the definition of 𝑖𝑠𝐼𝑛𝑡, we see that 𝑣3 = 𝑖𝑛𝑡(𝑣4).
We can then apply Lemma 1 again, and say that 𝒜⟦𝑎2⟧(𝜎) = 𝑣4.

• The next filter we have, ⟦eq(𝑥 𝑓1′ , 𝑥 𝑓2′)? ⊲ 𝑥 𝑓3⟧(Σ4, 𝑇) ⇓ (Σ5, 𝑇) will define
Σ5 = Σ4 + 𝑥 𝑓3 → 𝑣5, where ⟦eq⟧(Σ4(𝑥 𝑓1′),Σ4(𝑥 𝑓2′)) ⇓ 𝑣5. 𝑣5 will be 𝑡𝑟𝑢𝑒
if Σ4(𝑥 𝑓1′) and Σ4(𝑥 𝑓2′) are equal, or 𝑣2 = 𝑣4, and 𝑓 𝑎𝑙𝑠𝑒 otherwise. In
other words, 𝑣5 is 𝑡𝑟𝑢𝑒 if 𝒜⟦𝑎1⟧(𝜎) = 𝒜⟦𝑎2⟧(𝜎) and 𝑓 𝑎𝑙𝑠𝑒 otherwise.

• Our last bone is the 𝑏𝑜𝑜𝑙𝑉𝑎𝑙 filter. We evaluate ⟦boolVal(𝑥 𝑓3)?⊲𝑥𝑜⟧(Σ5, 𝑇) ⇓
(Σ6, 𝑇), with Σ6 = Σ5 + 𝑥𝑜 → 𝑣6, where ⟦boolVal⟧Σ5(𝑥 𝑓3) ⇓ 𝑣6. Since
Σ5(𝑥 𝑓3) = 𝑣5, we get ⟦boolVal⟧𝑣5 ⇓ 𝑣6. Looking at the definition of
𝑏𝑜𝑜𝑙𝑉𝑎𝑙, we see that 𝑣6 = 𝑏𝑜𝑜𝑙(𝑣5).

• Lastly, we have the empty skeleton, which simply returns its envi-
ronment: ⟦⟧(Σ6, ∅) ⇓ Σ6, marking the end of the derivation. We
conclude (𝜎, Eq(𝑥𝑡1 = 𝑥𝑡2), 𝑣6) ∈ ℋ 𝑛+1(∅). But since 𝑣5 is 𝑡𝑟𝑢𝑒 if
𝒜⟦𝑎1⟧(𝜎) = 𝒜⟦𝑎2⟧(𝜎) and 𝑓 𝑎𝑙𝑠𝑒 otherwise, and 𝑣6 = 𝑏𝑜𝑜𝑙(𝑣5) we
conclude ℬ⟦𝑎1 = 𝑎2⟧(𝜎) = 𝑣5.

3. 𝑒 = (¬𝑏): We have the skeleton
Neg(¬𝑥𝑡) :=

[
𝐻(𝑥𝜎 , 𝑥𝑡 , 𝑥 𝑓1); isBool(𝑥 𝑓1)? ⊲ 𝑥 𝑓2 ; neg(𝑥 𝑓2)? ⊲ 𝑥 𝑓3 ; boolVal(𝑥 𝑓3)? ⊲ 𝑥𝑜

]
18

CHAPTER 3. ANALYSIS

Using the definition for ℬ:

ℬ⟦¬𝑏⟧(𝜎) =
{true if ℬ⟦𝑏⟧(𝜎) = false
false if ℬ⟦𝑏⟧(𝜎) = true

So if the evaluation of ℬ⟦𝑏⟧(𝜎) is 𝑓 𝑎𝑙𝑠𝑒, ℬ⟦¬𝑏⟧(𝜎) will be 𝑡𝑟𝑢𝑒, and 𝑡𝑟𝑢𝑒
otherwise. We introduce our induction hypothesis: we assume

(𝜎, 𝑏, 𝑏𝑜𝑜𝑙(𝑘1)) ∈ ℋ 𝑛(∅) =⇒ ℬ⟦𝑏⟧(𝜎) = 𝑘1

for some 𝑛. Now we want to show that
(𝜎,Neg(¬𝑏), 𝑏𝑜𝑜𝑙(𝑘2)) ∈ ℋ 𝑛+1(∅) =⇒ ℬ⟦¬𝑏⟧(𝜎) = 𝑘2

We start to evaluate the skeleton. We take the initial environment
Σ = 𝑥𝜎 → 𝜎 + 𝑥𝑡 → 𝑏.

• First, we have a hook. Assume there exists 𝑇 = ℋ 𝑛(∅) such that
⟦𝐻(𝑥𝜎 , 𝑥𝑡 , 𝑥 𝑓1)⟧(Σ, 𝑇) ⇓ (Σ1, 𝑇), where (Σ(𝑥𝜎),Σ(𝑥𝑡), 𝑣1) = (𝜎, 𝑏, 𝑣1) ∈ 𝑇
and Σ1 = Σ + 𝑥 𝑓1 → 𝑣1. This means that 𝜎(𝑏) = 𝑣1.

• Next we have ⟦isBool(𝑥 𝑓1)? ⊲ 𝑥 𝑓2⟧(Σ1, 𝑇) ⇓ (Σ2, 𝑇) with Σ2 = Σ1 +
𝑥 𝑓2 → 𝑣2, where ⟦isBool⟧Σ1(𝑥 𝑓1) ⇓ 𝑣2. Since Σ1(𝑥 𝑓1) = 𝑣1, we have
⟦isBool⟧𝑣1 ⇓ 𝑣2. By the definition of 𝑖𝑠𝐵𝑜𝑜𝑙, 𝑣1 = 𝑏𝑜𝑜𝑙(𝑣2). We can
thus apply the induction hypothesis and say that ℬ⟦𝑏⟧(𝜎) = 𝑣2.

• The next filter we have, ⟦neg(𝑥 𝑓2)? ⊲ 𝑥 𝑓3⟧(Σ2, 𝑇) ⇓ (Σ3, 𝑇) will define
Σ3 = Σ2 + 𝑥 𝑓3 → 𝑣3, where ⟦neg⟧Σ2(𝑥 𝑓2) ⇓ 𝑣3. 𝑣3 will be 𝑡𝑟𝑢𝑒 if Σ2(𝑥 𝑓2),
which is 𝑣2, is 𝑓 𝑎𝑙𝑠𝑒, or in other words, ℬ⟦𝑏⟧(𝜎) = 𝑓 𝑎𝑙𝑠𝑒, and 𝑣3 will
be false 𝑓 𝑎𝑙𝑠𝑒 if ℬ⟦𝑏⟧(𝜎) = 𝑡𝑟𝑢𝑒.

• Our last bone is the 𝑏𝑜𝑜𝑙𝑉𝑎𝑙 filter. We evaluate ⟦boolVal(𝑥 𝑓3)?⊲𝑥𝑜⟧(Σ3, 𝑇) ⇓
(Σ4, 𝑇), with Σ4 = Σ3 + 𝑥𝑜 → 𝑣3, where ⟦boolVal⟧Σ3(𝑥 𝑓3) ⇓ 𝑣4. Since
Σ3(𝑥 𝑓3) = 𝑣3, we get ⟦boolVal⟧𝑣3 ⇓ 𝑣4. By the definition of 𝑏𝑜𝑜𝑙𝑉𝑎𝑙, we
know 𝑣4 = 𝑏𝑜𝑜𝑙(𝑣3).

• Lastly, we have the empty skeleton, which simply returns its environ-
ment: ⟦⟧(Σ4, ∅) ⇓ Σ4, marking the end of the derivation. We conclude
(𝜎,Neg(¬𝑥𝑡), 𝑣4) ∈ ℋ 𝑛+1(∅). But since 𝑣3 is 𝑡𝑟𝑢𝑒 if ℬ⟦𝑥𝑡⟧(𝜎) = 𝑓 𝑎𝑙𝑠𝑒
and 𝑓 𝑎𝑙𝑠𝑒 otherwise, and 𝑣4 = 𝑏𝑜𝑜𝑙(𝑣3), we conclude ℬ⟦¬𝑥𝑡⟧(𝜎) = 𝑣3.

3.4 Soundness of Statements

We have proven the soundness property for skeletons evaluating expressions.
Since expressions are needed for evaluating statements, we can now proceed with
proving the property for skeletons evaluating statements. We define a partial
correctness assertion {𝑃}𝑆{𝑄} to be valid if and only if for all input states 𝜎, if

19

3.4. SOUNDNESS OF STATEMENTS

𝑃(𝜎) = 𝑡𝑟𝑢𝑒 and (𝜎, 𝑆, 𝜎′) ∈ ⇓ for some 𝜎′ then 𝑄(𝜎′) = 𝑡𝑟𝑢𝑒. We will next show
the assertion is valid for all rules and axioms in Table 3.1.

Asn Axiom

Asn axiom:
{𝑃[𝑥 ↦→ ℰ⟦𝑎⟧]} 𝑥 := 𝑎 {𝑃}

Asn skeleton:

Asn(𝑥𝑡1 := 𝑥𝑡2) :=
[
𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥 𝑓1); write(𝑥𝑡1 , 𝑥𝜎 , 𝑥 𝑓1)? ⊲ 𝑥𝑜

]
Assume initial state 𝜎 such that 𝑃[𝑥 ↦→ ℰ⟦𝑎⟧] = 𝑡𝑟𝑢𝑒. In other words,

𝑃(𝜎[𝑥 ↦→ ℰ⟦𝑎⟧(𝜎)]) = 𝑡𝑟𝑢𝑒. Take environment Σ = 𝑥𝜎 → 𝜎 + 𝑥𝑡1 → 𝑥 + 𝑥𝑡2 → 𝑎.

First, we have a hook. Assume there exists 𝑇 = ℋ 𝑛(∅) for some 𝑛 such
that ⟦𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥 𝑓1)⟧(Σ, 𝑇) ⇓ (Σ1, 𝑇), where (Σ(𝑥𝜎),Σ(𝑥𝑡2), 𝑣) = (𝜎, 𝑎, 𝑣) ∈ 𝑇 and
Σ1 = Σ+ 𝑥 𝑓1 → 𝑣. It is clear that 𝑣 is a value, since 𝜎(𝑎) = 𝑣. If 𝑎 is an arithmetical
expression, then 𝑣 will be 𝑖𝑛𝑡(𝒜⟦𝑎⟧(𝜎)), using Lemma 1. If 𝑎 is a boolean expres-
sion, using Lemma 2, we know 𝑣 = 𝑏𝑜𝑜𝑙(ℬ⟦𝑎⟧(𝜎)). Now applying the definition
of ℰ, we see that 𝑣 = ℰ⟦𝑎⟧(𝜎).

Next we have ⟦write(𝑥𝑡1 , 𝑥𝜎 , 𝑥 𝑓1)? ⊲ 𝑥𝑜⟧(Σ1, 𝑇) ⇓ (Σ2, 𝑇) with Σ2 = Σ1 + 𝑥𝑜 → 𝜎′,
where ⟦write⟧(Σ1(𝑥𝑡1),Σ1(𝑥𝜎),Σ1(𝑥 𝑓1)) ⇓ 𝜎′, or ⟦write⟧(𝑥, 𝜎, 𝑣) ⇓ 𝜎′. From this,
we know that 𝜎′ = 𝜎[𝑥 ↦→ 𝑣], or 𝜎[𝑥 ↦→ ℰ⟦𝑎⟧(𝜎)]. Lastly, the empty skeleton
simply returns its environment,Σ2. Now, we want to show that𝑃(𝜎′) = 𝑡𝑟𝑢𝑒. Since
𝑃(𝜎′) = 𝑃(𝜎[𝑥 ↦→ ℰ⟦𝑎⟧(𝜎)]), and our assumption was 𝑃(𝜎[𝑥 ↦→ ℰ⟦𝑎⟧(𝜎)]) = 𝑡𝑟𝑢𝑒,
we immediately see that 𝑃(𝜎′) = 𝑡𝑟𝑢𝑒.

Skip Axiom

Skip axiom:
{𝑃} skip {𝑃}

Skip skeleton:
Skip(𝑠𝑘𝑖𝑝) := [id(𝑥𝜎)? ⊲ 𝑥𝑜]

20

CHAPTER 3. ANALYSIS

Assume that 𝑃(𝜎) = 𝑡𝑟𝑢𝑒. Then there exists 𝜎′ such that (𝜎, 𝑠𝑘𝑖𝑝, 𝜎′) ∈ ℋ 𝑛(∅),
for some 𝑛. Since there is no recursion in the rule (there are no hooks), we can
take 𝑛 = 0, such that ℋ 𝑛(∅) = ∅.

Take 𝜎 such that 𝑃(𝜎) = 𝑡𝑟𝑢𝑒 and Σ = 𝑥𝜎 → 𝜎. According to the concrete
interpretation of filters, we have ⟦id(𝑥𝜎)?⊲𝑥𝑜⟧(Σ, ∅) ⇓ (Σ1, ∅), forΣ1 = Σ+𝑥𝑜 → 𝜎′,
where ⟦id⟧Σ(𝑥𝜎) ⇓ 𝜎′. Now we have the empty skeleton, which simply returns
its environment: ⟦⟧(Σ1, ∅) ⇓ Σ1, marking the end of the derivation. Using the
definition for 𝑖𝑑, we see that ⟦id⟧Σ(𝑥𝜎) ⇓ Σ(𝑥𝜎). But this means that Σ1(𝑥𝑜) =

Σ(𝑥𝜎) = 𝜎, so 𝜎 = 𝜎′ and Σ1 = Σ + 𝑥𝑜 → 𝜎. Since we know 𝑃(𝜎) = 𝑡𝑟𝑢𝑒, and
𝜎 = 𝜎′, we can conclude 𝑃(𝜎′) = 𝑡𝑟𝑢𝑒 and (𝜎, 𝑠𝑘𝑖𝑝, 𝜎) ∈ ℋ 1(∅).

Comp Rule

Comp rule:
{𝑃}𝑆1{𝑄} {𝑄}𝑆2{𝑅}

{𝑃}𝑆1; 𝑆2{𝑅}
Seq skeleton:

Seq(𝑥𝑡1 ; 𝑥𝑡2) :=
[
𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1);𝐻(𝑥 𝑓1 , 𝑥𝑡2 , 𝑥𝑜)

]
Assume initial state 𝜎 such that 𝑃(𝜎) = 𝑡𝑟𝑢𝑒. Take environment Σ = 𝑥𝜎 →

𝜎+ 𝑥𝑡1 → 𝑆1+ 𝑥𝑡2 → 𝑆2. We start with the first hook. We assume 𝑇 = ℋ 𝑛(∅) exists
for some 𝑛, such that ⟦𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1)⟧(Σ, 𝑇) ⇓ (Σ1, 𝑇), where (Σ(𝑥𝜎),Σ(𝑥𝑡1), 𝜎′) ∈ 𝑇

and Σ1 = Σ + 𝑥 𝑓1 → 𝜎′. By the first premise, it is true that 𝑄(𝜎′) = 𝑡𝑟𝑢𝑒.

Moving on to the second hook, we have ⟦𝐻(𝑥 𝑓1 , 𝑥𝑡2 , 𝑥𝑜)⟧(Σ1, 𝑇) ⇓ (Σ2, 𝑇), where
(Σ1(𝑥 𝑓1),Σ1(𝑥𝑡2), 𝜎′′) ∈ 𝑇 and Σ2 = Σ1 + 𝑥 𝑓2 → 𝜎′′. Since Σ1(𝑥 𝑓1) = 𝜎′ and 𝑄(𝜎′) =
𝑡𝑟𝑢𝑒, we use the second premise to conclude 𝑅(𝜎′′) = 𝑡𝑟𝑢𝑒. Lastly, the empty
skeleton returns its environment: ⟦⟧(Σ2, 𝑇) ⇓ Σ2. Since𝑃(𝜎) = 𝑡𝑟𝑢𝑒, 𝑅(𝜎′′) = 𝑡𝑟𝑢𝑒,
and 𝜎′′ is the output state of the derivation, we can conclude that, given the
premises hold, {𝑃} 𝑆1; 𝑆2 {𝑅} holds.

If Rule

If rule:
{ℬ⟦𝑏⟧ ∧ 𝑃} 𝑆1 {𝑄} {¬ℬ⟦𝑏⟧ ∧ 𝑃} 𝑆2 {𝑄}

{𝑃} if 𝑏 then 𝑆1 else 𝑆2 {𝑄}

21

3.4. SOUNDNESS OF STATEMENTS

If skeleton:

If(𝑖 𝑓 𝑥𝑡1 𝑥𝑡2 𝑥𝑡3) :=
𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1); isBool(𝑥 𝑓1)? ⊲ 𝑥 𝑓1′ ;

(
isTrue(𝑥 𝑓1′);𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥𝑜)
isFalse(𝑥 𝑓1′);𝐻(𝑥𝜎 , 𝑥𝑡3 , 𝑥𝑜)

)
{𝑥𝑜}

Assume initial state 𝜎 such that 𝑃(𝜎) = 𝑡𝑟𝑢𝑒. Take environment Σ = 𝑥𝜎 →

𝜎 + 𝑥𝑡1 → 𝑏 + 𝑥𝑡2 → 𝑆1 + 𝑥𝑡3 → 𝑆2. First, we have a hook. There exists 𝑇 = ℋ 𝑛(∅)
for some 𝑛 such that ⟦𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1)⟧(Σ, 𝑇) ⇓ (Σ1, 𝑇), where (Σ(𝑥𝜎),Σ(𝑥𝑡1), 𝑣1) ∈ 𝑇

and Σ1 = Σ + 𝑥 𝑓1 → 𝑣1.

Next we have ⟦isBool(𝑥 𝑓1)? ⊲ 𝑥 𝑓1′⟧(Σ1, 𝑇) ⇓ (Σ2, 𝑇) with Σ2 = Σ1 + 𝑥 𝑓1′ → 𝑣2,
where ⟦isBool⟧Σ1(𝑥 𝑓1) ⇓ 𝑣2. Now, according to the definition of 𝑖𝑠𝐵𝑜𝑜𝑙, 𝑥 𝑓1′ will
either be 𝑡𝑟𝑢𝑒 or 𝑓 𝑎𝑙𝑠𝑒. This is the evaluation of 𝑥𝑡1 in skeletal semantics, so we
choose to regard Σ(𝑥𝑡1) as 𝑏 and Σ1(𝑥 𝑓1′) as ℬ⟦𝑏⟧, using Lemma 2.

Assuming 𝑥 𝑓1′ evaluates to 𝑡𝑟𝑢𝑒, meaning 𝑖𝑠𝑇𝑟𝑢𝑒 should not block, we conclude
(ℬ⟦𝑏⟧ ∧ 𝑃)(𝜎) = 𝑡𝑟𝑢𝑒. According to the premises of the rule, this means that ∀𝜎′
such that (𝜎,Σ2(𝑥𝑡2), 𝜎′) ∈ 𝑇, 𝑄(𝜎′) = 𝑡𝑟𝑢𝑒. We continue with the first branch, and
evaluate ⟦isTrue(𝑥 𝑓1′)⟧(Σ2, 𝑇) ⇓ (Σ2, 𝑇). The environment doesn’t change, since
𝑖𝑠𝑇𝑟𝑢𝑒 returns (), meaning no fresh flow variable is added. Now we perform
⟦𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥𝑜)⟧(Σ2, 𝑇) ⇓ (Σ3, 𝑇), where (Σ2(𝑥𝜎),Σ2(𝑥𝑡2), 𝜎′) ∈ 𝑇 and Σ3 = Σ2 +
𝑥𝑜 → 𝜎′. From the premise, 𝑄(𝜎′) = 𝑡𝑟𝑢𝑒.

Assuming 𝑥 𝑓1′ evaluates to 𝑓 𝑎𝑙𝑠𝑒, meaning 𝑖𝑠𝐹𝑎𝑙𝑠𝑒 should not block, we con-
clude (¬ℬ⟦𝑏⟧ ∧ 𝑃)(𝜎) = 𝑡𝑟𝑢𝑒. According to the premises of the rule, this means
that if (𝜎,Σ2(𝑥𝑡3), 𝜎′′) ∈ 𝑇, then 𝑄(𝜎′′) = 𝑡𝑟𝑢𝑒. We choose the second branch,
and evaluate ⟦isFalse(𝑥 𝑓1′)⟧(Σ2, 𝑇) ⇓ (Σ2, 𝑇). The environment doesn’t change,
since 𝑖𝑠𝐹𝑎𝑙𝑠𝑒 returns (), meaning no fresh flow variable is added. Now we
perform ⟦𝐻(𝑥𝜎 , 𝑥𝑡3 , 𝑥𝑜)⟧(Σ2, 𝑇) ⇓ (Σ4, 𝑇), where (Σ2(𝑥𝜎),Σ2(𝑥𝑡3), 𝜎′′) ∈ 𝑇 and
Σ4 = Σ2 + 𝑥𝑜 → 𝜎′′. From the premise, 𝑄(𝜎′′) = 𝑡𝑟𝑢𝑒.

Using the concrete interpretation for merging branches, we evaluate the entire
branching part: �(

isTrue(𝑥 𝑓1′);𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥𝑜)
isFalse(𝑥 𝑓1′);𝐻(𝑥𝜎 , 𝑥𝑡3 , 𝑥𝑜)

)�
(Σ2, 𝑇) ⇓ (Σ5, 𝑇)

22

CHAPTER 3. ANALYSIS

whereΣ5 = Σ2+Σ3
|{𝑥𝑜} orΣ5 = Σ2+Σ4

|{𝑥𝑜}. From this, we concludeΣ5 = Σ2+𝑥𝑜 → 𝜎′

or Σ5 = Σ2 + 𝑥𝑜 → 𝜎′′. Lastly, we have the empty skeleton ⟦⟧(Σ5, 𝑇) ⇓ Σ5. Since
𝑄(𝜎′) = 𝑡𝑟𝑢𝑒, 𝑄(𝜎′′) = 𝑡𝑟𝑢𝑒 and either 𝜎′ or 𝜎′′ is the output state of the derivation,
we can conclude that, given that the premises hold, {𝑃} if 𝑏 then 𝑆1 else 𝑆2 {𝑄}
also holds.

While Rule

While rule:
{ℬ⟦𝑏⟧ ∧ 𝑃} 𝑆 {𝑃}

{𝑃} while 𝑏 do 𝑆 {¬ℬ⟦𝑏⟧ ∧ 𝑃}
While skeleton:

While(𝑤ℎ𝑖𝑙𝑒 𝑥𝑡1 𝑥𝑡2) :=

𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1); isBool(𝑥 𝑓1)? ⊲ 𝑥 𝑓1′ ;(

isTrue(𝑥 𝑓1′);𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥 𝑓2);𝐻(𝑥 𝑓2 , 𝑤ℎ𝑖𝑙𝑒 𝑥𝑡1 𝑥𝑡2 , 𝑥𝑜)
isFalse(𝑥 𝑓1′); id(𝑥𝜎)? ⊲ 𝑥𝑜

)
{𝑥𝑜}

For this proof, we will proceed by strong induction on the depth of recursion

𝑛, from ℋ 𝑛(∅). The 𝑖𝑠𝐹𝑎𝑙𝑠𝑒 branch will serve as the base case, while the 𝑖𝑠𝑇𝑟𝑢𝑒

branch will represent the induction step. The induction hypothesis:

∀𝜎, 𝜎′ : (𝑃(𝜎) ∧ (𝜎,while 𝑏 do 𝑆, 𝜎′) ∈ ℋ 𝑛(∅)) =⇒ (¬ℬ⟦𝑏⟧(𝜎′) ∧ 𝑃(𝜎′))

We will now start to analyse the skeleton. We take the initial environment:
Σ = 𝑥𝜎 → 𝜎 + 𝑥𝑡1 → 𝑏 + 𝑥𝑡2 → 𝑆. We assume 𝑃(𝜎) = 𝑡𝑟𝑢𝑒.

First, we have a hook. Assume there exists 𝑇 = ℋ 𝑛(∅) for some 𝑛 such that
⟦𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1)⟧(Σ, 𝑇) ⇓ (Σ1, 𝑇), where (Σ(𝑥𝜎),Σ(𝑥𝑡1), 𝑣1) = (𝜎, 𝑏, 𝑣1) ∈ 𝑇 and
Σ1 = Σ + 𝑥 𝑓1 → 𝑣1. Next we have ⟦isBool(𝑥 𝑓1)? ⊲ 𝑥 𝑓1′⟧(Σ1, 𝑇) ⇓ (Σ2, 𝑇) with
Σ2 = Σ1 + 𝑥 𝑓1′ → 𝑣2, where ⟦isBool⟧Σ1(𝑥 𝑓1) ⇓ 𝑣2. According to the definition of
𝑖𝑠𝐵𝑜𝑜𝑙, 𝑣1 = 𝑏𝑜𝑜𝑙(𝑣2). Using Lemma 2, we view Σ2(𝑥 𝑓1′) as ℬ⟦𝑏⟧, and conclude
that ℬ⟦𝑏⟧(𝜎) = 𝑣2.

We start with the base case, and assume 𝑣2 = 𝑓 𝑎𝑙𝑠𝑒. We choose the second
branch, and evaluate ⟦isFalse(𝑥 𝑓1′)⟧(Σ2, 𝑇) ⇓ (Σ2, 𝑇). The environment doesn’t
change, since 𝑖𝑠𝐹𝑎𝑙𝑠𝑒 returns (), meaning no fresh flow variable is added. Now we
perform ⟦id(𝑥𝜎)⟧(Σ2, 𝑇) ⇓ (Σ3, 𝑇), where Σ3 = Σ2 + 𝑥𝑜 → 𝜎′. Using the definition

23

3.4. SOUNDNESS OF STATEMENTS

for 𝑖𝑑, we see that ⟦id⟧Σ2(𝑥𝜎) ⇓ Σ2(𝑥𝜎). But this means that Σ3(𝑥𝑜) = Σ2(𝑥𝜎) = 𝜎,
so 𝜎 = 𝜎′ and Σ3 = Σ2 + 𝑥𝑜 → 𝜎. We assumed ℬ⟦𝑏⟧(𝜎) = 𝑓 𝑎𝑙𝑠𝑒 and 𝑃(𝜎) = 𝑡𝑟𝑢𝑒.
We concluded that 𝜎 = 𝜎′, meaning 𝑃(𝜎′) = 𝑡𝑟𝑢𝑒. From this, we can conclude
{¬ℬ⟦𝑏⟧(𝜎′) ∧ 𝑃(𝜎′)}.

Now, for the inductive step, we assume 𝑣2 = ℬ⟦𝑏⟧(𝜎) = 𝑡𝑟𝑢𝑒, and evaluate the
first branch. We take ⟦isTrue(𝑥 𝑓1′)⟧(Σ2, 𝑇) ⇓ (Σ2, 𝑇). The filter returns (), so the
environment doesn’t change. Next we have hook ⟦𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥 𝑓2)⟧(Σ2, 𝑇) ⇓ (Σ4, 𝑇),
where (Σ2(𝑥𝜎),Σ2(𝑥𝑡2), 𝜎′′) = (𝜎, 𝑆, 𝜎′′) ∈ 𝑇 and Σ4 = Σ2 + 𝑥 𝑓2 → 𝜎′′. Since
𝑣2 = 𝐵⟦𝑏⟧(𝜎) = 𝑡𝑟𝑢𝑒 and 𝑃(𝜎) = 𝑡𝑟𝑢𝑒, we can use the premise to conclude
𝑃(𝜎′′) = 𝑡𝑟𝑢𝑒.

Following is another hook evaluation: ⟦𝐻(𝑥 𝑓2 , 𝑤ℎ𝑖𝑙𝑒 𝑥𝑡1 𝑥𝑡2 , 𝑥𝑜)⟧(Σ4, 𝑇) ⇓
(Σ5, 𝑇), where (Σ4(𝑥 𝑓2),Σ4(𝑤ℎ𝑖𝑙𝑒 𝑥𝑡1 𝑥𝑡2), 𝜎3) = (𝜎′′,while 𝑏 do 𝑆, 𝜎3) ∈ 𝑇 and
Σ5 = Σ4 + 𝑥𝑜 → 𝜎3. Since we already know 𝑃(𝜎′′) = 𝑡𝑟𝑢𝑒, using our induc-
tion hypothesis, we can conclude that 𝑃(𝜎3) = 𝑡𝑟𝑢𝑒 and ℬ⟦𝑏⟧(𝜎3) = 𝑓 𝑎𝑙𝑠𝑒, or
{¬ℬ⟦𝑏⟧(𝜎3) ∧ 𝑃(𝜎3)}.

Using the concrete interpretation for merging branches, we evaluate the entire
branching part:�(

isTrue(𝑥 𝑓1′);𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥 𝑓2);𝐻(𝑥 𝑓2 , 𝑤ℎ𝑖𝑙𝑒 𝑥𝑡1 𝑥𝑡2 , 𝑥𝑜)
isFalse(𝑥 𝑓1′); id(𝑥𝜎)? ⊲ 𝑥𝑜

)�
(Σ2, 𝑇) ⇓ (Σ6, 𝑇)

whereΣ6 = Σ2+Σ3
|{𝑥𝑜} orΣ6 = Σ2+Σ5

|{𝑥𝑜}. From this, we concludeΣ6 = Σ2+𝑥𝑜 → 𝜎′

or Σ5 = Σ2 + 𝑥𝑜 → 𝜎3. Lastly, we have the empty skeleton ⟦⟧(Σ6, 𝑇) ⇓ Σ6.

Since {¬ℬ⟦𝑏⟧(𝜎′) ∧ 𝑃(𝜎′)}, {¬ℬ⟦𝑏⟧(𝜎3) ∧ 𝑃(𝜎3)} and either 𝜎′ or 𝜎3 is the
output state of the derivation, we can conclude that, given that the premise holds,
{𝑃} while 𝑏 do 𝑆 {¬ℬ⟦𝑏⟧ ∧ 𝑃} also holds.

Cons Rule

Consequence rule:

{𝑃′} 𝑆 {𝑄′} 𝑃 ⇒ 𝑃′ 𝑄′ ⇒ 𝑄

{𝑃} 𝑆 {𝑄}

24

CHAPTER 3. ANALYSIS

We want to show that if (𝜎, 𝑆, 𝜎′) ∈ ℋ 𝑛(∅) and 𝑃(𝜎) = 𝑡𝑟𝑢𝑒, then 𝑄(𝜎′) = 𝑡𝑟𝑢𝑒.
We start our proof with the assumption 𝑃(𝜎) = 𝑡𝑟𝑢𝑒, where 𝜎 is our initial state.
Using the second precondition, we see that (𝑃(𝜎) = 𝑡𝑟𝑢𝑒) ⇒ (𝑃′(𝜎) = 𝑡𝑟𝑢𝑒). This
means that we can now apply the first precondition and obtain 𝑄′(𝜎′) = 𝑡𝑟𝑢𝑒.
Lastly, we apply the third precondition and conclude 𝑄(𝜎′) = 𝑡𝑟𝑢𝑒, completing
our proof.

3.5 Additional Rules

The soundness of all rules and axioms in the language While has been proven.
In this section, we go beyong the language While, and extend it with two addi-
tional rules by providing their skeletons. We prove their soundness with respect
to the Hoare logic rules.

Repeat Rule

Repeat rule:
{𝑃} 𝑆 {𝑃}

{𝑃} repeat 𝑆 until 𝑏 {ℬ⟦𝑏⟧ ∧ 𝑃}
Repeat skeleton:

Repeat(𝑟𝑒𝑝𝑒𝑎𝑡 𝑥𝑡1 𝑥𝑡2) :=

𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1);𝐻(𝑥 𝑓1 , 𝑥𝑡2 , 𝑥 𝑓2); isBool(𝑥 𝑓2)? ⊲ 𝑥 𝑓2′ ;(

isTrue(𝑥 𝑓2′); id(𝑥 𝑓1)? ⊲ 𝑥𝑜
isFalse(𝑥 𝑓2′); 𝐻(𝑥 𝑓1 , 𝑟𝑒𝑝𝑒𝑎𝑡 𝑥𝑡1 𝑥𝑡2 , 𝑥𝑜)

)
{𝑥𝑜}

Similarly to the While rule, the Repeat rule represents a loop construct. Here

statement 𝑆 is executed once, and then expression 𝑏 is evaluated. If the evaluation
returns 𝑓 𝑎𝑙𝑠𝑒, the entire process is repeated, while if 𝑏 evaluates to 𝑡𝑟𝑢𝑒, the
execution ends. We will use again strong induction on the depth of recursion 𝑛,
in ℋ 𝑛(∅). The 𝑖𝑠𝑇𝑟𝑢𝑒 branch will serve as the base case, while the 𝑖𝑠𝐹𝑎𝑙𝑠𝑒 branch
will represent the induction step. The induction hypothesis:

∀𝜎, 𝜎′ : (𝑃(𝜎) ∧ (𝜎, repeat 𝑆 until 𝑏, 𝜎′) ∈ ℋ 𝑛(∅)) =⇒ (ℬ⟦𝑏⟧(𝜎′) ∧ 𝑃(𝜎′))

We will now start to analyse the skeleton. We take the initial environment:
Σ = 𝑥𝜎 → 𝜎 + 𝑥𝑡1 → 𝑆 + 𝑥𝑡2 → 𝑏. We assume 𝑃(𝜎) = 𝑡𝑟𝑢𝑒. First, we have a hook.

25

3.5. ADDITIONAL RULES

Assume there exists 𝑇 = ℋ 𝑛(∅) for some 𝑛 such that ⟦𝐻(𝑥𝜎 , 𝑥𝑡1 , 𝑥 𝑓1)⟧(Σ, 𝑇) ⇓
(Σ1, 𝑇), where (Σ(𝑥𝜎),Σ(𝑥𝑡1), 𝜎′) = (𝜎, 𝑆, 𝜎′) ∈ 𝑇 and Σ1 = Σ + 𝑥 𝑓1 → 𝜎′. Since
𝑃(𝜎) = 𝑡𝑟𝑢𝑒, by using the premise we conclude 𝑃(𝜎′) = 𝑡𝑟𝑢𝑒.

For the next hook, we have ⟦𝐻(𝑥 𝑓1 , 𝑥𝑡2 , 𝑥 𝑓2)⟧(Σ1, 𝑇) ⇓ (Σ2, 𝑇), where
(Σ(𝑥 𝑓1),Σ(𝑥𝑡2), 𝑣1) = (𝜎′, 𝑏, 𝑣1) ∈ 𝑇 and Σ2 = Σ + 𝑥 𝑓2 → 𝑣1. Next we have
⟦isBool(𝑥 𝑓2)?⊲𝑥 𝑓2′⟧(Σ2, 𝑇) ⇓ (Σ3, 𝑇)withΣ3 = Σ2+𝑥 𝑓2′ → 𝑣2, where ⟦isBool⟧Σ2(𝑥 𝑓2) ⇓
𝑣2. According to the definition of 𝑖𝑠𝐵𝑜𝑜𝑙, 𝑣1 = 𝑏𝑜𝑜𝑙(𝑣2). Using Lemma 2, we view
Σ3(𝑥 𝑓2′) as ℬ⟦𝑏⟧, and conclude that ℬ⟦𝑏⟧(𝜎′) = 𝑣2.

We start with the base case, and assume 𝑣2 = 𝑡𝑟𝑢𝑒. We choose the first branch,
and evaluate ⟦isTrue(𝑥 𝑓2′)⟧(Σ3, 𝑇) ⇓ (Σ3, 𝑇). The environment doesn’t change,
since 𝑖𝑠𝐹𝑎𝑙𝑠𝑒 returns (), meaning no fresh flow variable is added. Now we perform
⟦id(𝑥 𝑓1)⟧(Σ3, 𝑇) ⇓ (Σ4, 𝑇), where Σ4 = Σ3 + 𝑥𝑜 → 𝜎′′.

Using the definition for 𝑖𝑑, we see that ⟦id⟧Σ3(𝑥 𝑓1) ⇓ Σ3(𝑥 𝑓1). But this means
that Σ4(𝑥𝑜) = Σ3(𝑥 𝑓1) = 𝜎′, so 𝜎′ = 𝜎′′ and Σ4 = Σ3 + 𝑥𝑜 → 𝜎′. We assumed
ℬ⟦𝑏⟧(𝜎′) = 𝑡𝑟𝑢𝑒 and 𝑃(𝜎′) = 𝑡𝑟𝑢𝑒. We concluded that 𝜎′ = 𝜎′′, meaning 𝑃(𝜎′′) =
𝑡𝑟𝑢𝑒. From this, we can conclude {ℬ⟦𝑏⟧(𝜎′′) ∧ 𝑃(𝜎′′)}.

Now, for the inductive step, we assume 𝑣2 = ℬ⟦𝑏⟧(𝜎′) = 𝑓 𝑎𝑙𝑠𝑒, and evalu-
ate the second branch. We take ⟦isFalse(𝑥 𝑓2′)⟧(Σ3, 𝑇) ⇓ (Σ3, 𝑇). The filter re-
turns (), so the environment doesn’t change. Following is a hook evaluation:
⟦𝐻(𝑥 𝑓2 , 𝑟𝑒𝑝𝑒𝑎𝑡 𝑥𝑡1 𝑥𝑡2 , 𝑥𝑜)⟧(Σ3, 𝑇) ⇓ (Σ5, 𝑇), where (Σ3(𝑥 𝑓1),Σ3(𝑟𝑒𝑝𝑒𝑎𝑡 𝑥𝑡1 𝑥𝑡2), 𝜎3) =
(𝜎′, repeat 𝑆 until 𝑏, 𝜎3) ∈ 𝑇 and Σ5 = Σ3 + 𝑥𝑜 → 𝜎3. Since we already know
𝑃(𝜎′) = 𝑡𝑟𝑢𝑒, using our induction hypothesis, we can conclude that 𝑃(𝜎3) = 𝑡𝑟𝑢𝑒

and ℬ⟦𝑏⟧(𝜎3) = 𝑡𝑟𝑢𝑒, or {ℬ⟦𝑏⟧(𝜎3) ∧ 𝑃(𝜎3)}.

Using the concrete interpretation for merging branches, we evaluate the entire
branching part:�(

isTrue(𝑥 𝑓2′); id(𝑥 𝑓1)? ⊲ 𝑥𝑜
isFalse(𝑥 𝑓2′); 𝐻(𝑥 𝑓1 , 𝑟𝑒𝑝𝑒𝑎𝑡 𝑥𝑡1 𝑥𝑡2 , 𝑥𝑜)

)�
(Σ3, 𝑇) ⇓ (Σ6, 𝑇)

whereΣ6 = Σ3+Σ4
|{𝑥𝑜} orΣ6 = Σ3+Σ5

|{𝑥𝑜}. From this, we concludeΣ6 = Σ3+𝑥𝑜 → 𝜎′′

or Σ5 = Σ2 + 𝑥𝑜 → 𝜎3. Lastly, we have the empty skeleton ⟦⟧(Σ6, 𝑇) ⇓ Σ6.

26

CHAPTER 3. ANALYSIS

Since {ℬ⟦𝑏⟧(𝜎′′) ∧ 𝑃(𝜎′′)}, {ℬ⟦𝑏⟧(𝜎3) ∧ 𝑃(𝜎3)} and either 𝜎′′ or 𝜎3 is the out-
put state of the derivation, we can conclude that, given that the premise holds,
{𝑃} repeat 𝑆 until 𝑏 {ℬ⟦𝑏⟧ ∧ 𝑃} also holds.

For Rule

We want to construct a proof for the for-rule. In other words, we want to
repeat the execution of a statement 𝑆 for all possible values of an iterator 𝑥, in an
interval [𝑎1, 𝑎2). We define the rule for values up to and not including the upper
value. So in: for 𝑥 := 𝑎1 to 𝑎2 do 𝑆, the values 𝑥 will take are [𝑎1, 𝑎1 + 1, ..., 𝑎2 − 1].
We also assume 𝑥 doesn’t occur in 𝑆. In this case it is easy to see that the for-rule
is equivalent to the statement: 𝑥 := 𝑎1; while 𝑥 ≠ 𝑎2 do (𝑆; 𝑥 := 𝑥 + 1). Next we
have the following derivation tree:

From the tree, we see that the only derivation step which is not using a rule,
and therefore has to be an assumption is {𝑅 ∧ ℬ⟦𝑥 ≠ 𝑎2⟧} 𝑆 {𝑅[𝑥 → ℰ⟦𝑥 + 1⟧]}.
To be consistent with notation, we write ¬ℬ⟦𝑥 = 𝑎2⟧ instead of ℬ⟦𝑥 ≠ 𝑎2⟧. From
this, we can derive the for-rule:

{𝑅 ∧ ¬ℬ⟦𝑥 = 𝑎2⟧} 𝑆 {𝑅[𝑥 → ℰ⟦𝑥 + 1⟧]}
{𝑅[𝑥 → ℰ⟦𝑎1⟧]} for 𝑥 := 𝑎1 to 𝑎2 do 𝑆 {𝑅 ∧ ℬ⟦𝑥 = 𝑎2⟧}

We introduce the skeleton for the For rule:

For(𝑓 𝑜𝑟 𝑥𝑡1 𝑥𝑡2 𝑥𝑡3 𝑥𝑡4) :=

𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥 𝑓1); isInt(𝑥 𝑓1)? ⊲ 𝑥 𝑓1′ ; write(𝑥𝑡1 , 𝑥𝜎 , 𝑥 𝑓1)? ⊲ 𝑥 𝑓2 ;

𝐻(𝑥 𝑓2 , 𝑥𝑡3 , 𝑥 𝑓3); isInt(𝑥 𝑓3)? ⊲ 𝑥 𝑓3′ ; eq(𝑥 𝑓1′ , 𝑥 𝑓3′)? ⊲ 𝑥 𝑓4 ;©«
isTrue(𝑥 𝑓4); id(𝑥 𝑓2)? ⊲ 𝑥𝑜
isFalse(𝑥 𝑓4); 𝐻(𝑥 𝑓2 , 𝑥𝑡4 , 𝑥 𝑓5);

add(𝑥 𝑓1′ , 1)? ⊲ 𝑥 𝑓6 ; intVal(𝑥 𝑓6)? ⊲ 𝑥 𝑓7 ;

𝐻(𝑥 𝑓5 , 𝑓 𝑜𝑟 𝑥𝑡1 𝑥 𝑓7 𝑥𝑡3 𝑥𝑡4 , 𝑥𝑜)

ª®®®®®®¬{𝑥𝑜}

27

3.5. ADDITIONAL RULES

We proceed with a proof by strong induction on the depth of recursion 𝑛. The
isTrue branch will correspond to the base case, while the isFalse branch will rep-
resent the inductive step. The induction hypothesis is:

∀𝜎, 𝜎′ : (𝑅(𝜎[𝑥 → ℰ⟦𝑎1⟧(𝜎)]) ∧ (𝜎, for 𝑥 := 𝑎1 to 𝑎2 do 𝑆, 𝜎′) ∈ ℋ 𝑛(∅))
=⇒ (ℬ⟦𝑥 = 𝑎2⟧(𝜎′) ∧ 𝑅(𝜎′))

We start evaluating the skeleton in state 𝜎, assuming 𝑅(𝜎[𝑥 → ℰ⟦𝑎1⟧(𝜎)]) =
𝑡𝑟𝑢𝑒. The initial environment is Σ = 𝑥𝜎 → 𝜎 + 𝑥𝑡1 → 𝑥 + 𝑥𝑡2 → 𝑎1 + 𝑥𝑡3 →
𝑎2 + 𝑥𝑡4 → 𝑆. We start with the hook ⟦𝐻(𝑥𝜎 , 𝑥𝑡2 , 𝑥 𝑓1)⟧(Σ, 𝑇) ⇓ (Σ1, 𝑇). We assume
𝑇 = ℋ 𝑛(∅) exists for some 𝑛 such that (Σ(𝑥𝜎),Σ(𝑥𝑡2), 𝑣1) = (𝜎, 𝑎1, 𝑣1) ∈ 𝑇. Here
Σ1 = Σ + 𝑥 𝑓1 → 𝑣1. As 𝑎1 is an expression, 𝑣1 will be a value.

We continue with filter ⟦isInt(𝑥 𝑓1)?⊲𝑥 𝑓1′⟧(Σ1, 𝑇) ⇓ (Σ2, 𝑇). We have ⟦isInt⟧Σ1(𝑥 𝑓1) ⇓
𝑣2, or ⟦isInt⟧𝑣1 ⇓ 𝑣2. Here Σ2 = Σ1+ 𝑥 𝑓1′ → 𝑣2. By the definition of isInt, we know
𝑣1 = 𝑖𝑛𝑡(𝑣2). We can thus apply Lemma 1 and deduce that 𝑣2 = 𝒜⟦𝑎1⟧(𝜎). From
this, we also know 𝑣1 = ℰ⟦𝑎1⟧(𝜎).

Moving on to the next filter, ⟦write(𝑥𝑡1 , 𝑥𝜎 , 𝑥 𝑓1)? ⊲ 𝑥 𝑓2⟧(Σ2, 𝑇) ⇓ (Σ3, 𝑇). We
evaluate ⟦write⟧(Σ2(𝑥𝑡1),Σ2(𝑥𝜎),Σ2(𝑥 𝑓1)) ⇓ 𝜎′. In other words, ⟦write⟧(𝑥, 𝜎, 𝑣1) ⇓
𝜎′. The new environment is Σ3 = Σ2 + 𝑥 𝑓2 → 𝜎′. Following the definition of write,
we know 𝜎′ = 𝜎[𝑥 → 𝑣1] = 𝜎[𝑥 → ℰ⟦𝑎1⟧(𝜎)]. From our initial assumption, we
can deduce 𝑅(𝜎′) = 𝑡𝑟𝑢𝑒. Now since the value of 𝑥 is 𝑣1, we can also conclude
𝒜⟦𝑥⟧(𝜎′) = 𝑣2.

We arrive at another hook: ⟦𝐻(𝑥 𝑓2 , 𝑥𝑡3 , 𝑥 𝑓3)⟧(Σ3, 𝑇) ⇓ (Σ4, 𝑇). Assuming
(Σ3(𝑥 𝑓2),Σ3(𝑥𝑡3), 𝑣3) = (𝜎′, 𝑎2, 𝑣3) ∈ 𝑇, we have Σ4 = Σ3 + 𝑥 𝑓3 → 𝑣3. Next we
have ⟦isInt(𝑥 𝑓3)? ⊲ 𝑥 𝑓3′⟧(Σ4, 𝑇) ⇓ (Σ5, 𝑇). Let ⟦isInt⟧Σ4(𝑥 𝑓3) ⇓ 𝑣4, or ⟦isInt⟧𝑣3 ⇓ 𝑣4,
Σ5 = Σ4 + 𝑥 𝑓3′ → 𝑣4. By the definition of isInt, we know 𝑣3 = 𝑖𝑛𝑡(𝑣4). Applying
Lemma 1, we conclude 𝒜⟦𝑎2⟧(𝜎′) = 𝑣4.

Now we take filter ⟦eq(𝑥 𝑓1′ , 𝑥 𝑓3′)? ⊲ 𝑥 𝑓4⟧(Σ5, 𝑇) ⇓ (Σ6, 𝑇). We get
⟦eq⟧(Σ5(𝑥 𝑓1′),Σ5(𝑥 𝑓3′)) ⇓ 𝑣5, or ⟦eq⟧(𝑣2, 𝑣4) ⇓ 𝑣5, where Σ6 = Σ5 + 𝑥 𝑓4 → 𝑣5.
Since 𝒜⟦𝑥⟧(𝜎) = 𝒜⟦𝑥⟧(𝜎′) = 𝑣2 and 𝒜⟦𝑎2⟧(𝜎′) = 𝑣4, using the definition for ℬ,
𝑣5 = ℬ⟦𝑥 = 𝑎2⟧(𝜎′).

28

CHAPTER 3. ANALYSIS

We start evaluating the branches. We first choose the 𝑖𝑠𝑇𝑟𝑢𝑒 branch, cor-
responding to the base case for our proof. We assume 𝑣5 = 𝑡𝑟𝑢𝑒, so ℬ⟦𝑥 =

𝑎2⟧(𝜎′) = 𝑡𝑟𝑢𝑒. We evaluate the filter: ⟦isTrue(𝑥 𝑓4)⟧(Σ6, 𝑇) ⇓ (Σ6, 𝑇). The filter
doesn’t introduce new flow varibles, so the environment stays the same. Moving
on, we have the filter ⟦id(𝑥 𝑓2)? ⊲ 𝑥𝑜⟧(Σ6, 𝑇) ⇓ (Σ7, 𝑇). Since Σ6(𝑥 𝑓2) = 𝜎′, using
the definition of id, we get ⟦id⟧𝜎′ ⇓ 𝜎′, thus Σ7 = Σ6 + 𝑥𝑜 → 𝜎′. Since we know
𝑅(𝜎′) = 𝑡𝑟𝑢𝑒 and ℬ⟦𝑥 = 𝑎2⟧(𝜎′) = 𝑡𝑟𝑢𝑒, the base case holds.

The second branch represents our inductive step. We assume 𝑣5 = 𝑓 𝑎𝑙𝑠𝑒. This
means ℬ⟦𝑥 = 𝑎2⟧(𝜎′) = 𝑓 𝑎𝑙𝑠𝑒, which is the same as ¬ℬ⟦𝑥 = 𝑎2⟧(𝜎′) = 𝑡𝑟𝑢𝑒. We
evaluate the filter ⟦isFalse(𝑥 𝑓4)⟧(Σ6, 𝑇) ⇓ (Σ6, 𝑇). Again, the environment doesn’t
change.

We continue with hook ⟦𝐻(𝑥 𝑓2 , 𝑥𝑡4 , 𝑥 𝑓5)⟧(Σ6, 𝑇) ⇓ (Σ8, 𝑇). Assuming
(Σ6(𝑥 𝑓2),Σ6(𝑥𝑡4), 𝜎′′) = (𝜎′, 𝑆, 𝜎′′) ∈ 𝑇, we have Σ8 = Σ6 + 𝑥 𝑓5 → 𝜎′′. Since 𝑅(𝜎′) =
𝑡𝑟𝑢𝑒 and ¬ℬ⟦𝑥 = 𝑎2⟧(𝜎′) = 𝑡𝑟𝑢𝑒, we use the premise to conclude 𝑅(𝜎′′[𝑥 →
ℰ⟦𝑥 + 1⟧(𝜎′′)]) = 𝑡𝑟𝑢𝑒.

We now analyse filter ⟦add(𝑥 𝑓1′ , 1)? ⊲ 𝑥 𝑓6⟧(Σ8, 𝑇) ⇓ (Σ9, 𝑇). We have
⟦add⟧(Σ9(𝑥 𝑓1′),Σ9(1)) ⇓ 𝑣6, or ⟦add⟧(𝑣2, 1) ⇓ 𝑣6, where Σ9 = Σ8 + 𝑥 𝑓6 → 𝑣6. We
know 𝑣2 = 𝒜⟦𝑥⟧(𝜎′) = 𝒜⟦𝑥⟧(𝜎′′). From the definitions of function 𝒜 and filter
𝑎𝑑𝑑, we have 𝑣6 = 𝑣2 + 1 = 𝒜⟦𝑥⟧(𝜎′′) + 𝒜⟦1⟧(𝜎′′) = 𝒜⟦𝑥 + 1⟧(𝜎′′).

The next filter is ⟦intVal(𝑥 𝑓6)?⊲𝑥 𝑓7⟧(Σ9, 𝑇) ⇓ (Σ10, 𝑇). We have ⟦intVal⟧Σ9(𝑥 𝑓6) ⇓
𝑣7, or ⟦intVal⟧𝑣6 ⇓ 𝑣7, and Σ10 = Σ9 + 𝑥 𝑓7 → 𝑣7. Since 𝑣6 = 𝒜⟦𝑥 + 1⟧(𝜎′′) and
𝑣7 = 𝑖𝑛𝑡(𝑣6), using the definition of ℰ, we find 𝑣7 = ℰ⟦𝑥 + 1⟧(𝜎′′). We know
𝑅(𝜎′′[𝑥 → ℰ⟦𝑥 + 1⟧(𝜎′′)]) = 𝑡𝑟𝑢𝑒, so 𝑅(𝜎′′[𝑥 → 𝑣7]) = 𝑡𝑟𝑢𝑒.

Now we have hook ⟦𝐻(𝑥 𝑓5 , 𝑓 𝑜𝑟 𝑥𝑡1 𝑥 𝑓7 𝑥𝑡3 𝑥𝑡4 , 𝑥𝑜)⟧(Σ10, 𝑇) ⇓ (Σ11, 𝑇). Here
Σ11 = Σ10 + 𝑥𝑜 → 𝜎3. By the induction hypothesis, since 𝑅(𝜎′′[𝑥 → 𝑣7]) = 𝑡𝑟𝑢𝑒,
and Σ10(𝑥 𝑓7) = 𝑣7, and (𝜎′′, for 𝑥 := 𝑣7 to 𝑎2 do 𝑆, 𝜎3) ∈ 𝑇, we can conclude
{𝑅(𝜎3) ∧ ℬ⟦𝑥 = 𝑎2⟧(𝜎3)}.

29

3.6. SUGGESTIONS FOR INTERPRETING SKELETONS

By the concrete interpretation for merging branches, we evaluate the branching:�������
©«
isTrue(𝑥 𝑓4); id(𝑥 𝑓2)? ⊲ 𝑥𝑜
isFalse(𝑥 𝑓4); 𝐻(𝑥 𝑓2 , 𝑥𝑡4 , 𝑥 𝑓5);

add(𝑥 𝑓1′ , 1)? ⊲ 𝑥 𝑓6 ; intVal(𝑥 𝑓6)? ⊲ 𝑥 𝑓7 ;

𝐻(𝑥 𝑓5 , 𝑓 𝑜𝑟 𝑥𝑡1 𝑥 𝑓7 𝑥𝑡3 𝑥𝑡4 , 𝑥𝑜)

ª®®®®®®¬

������� (Σ6, 𝑇) ⇓ (Σ12, 𝑇)

where Σ12 = Σ6 +Σ7
|{𝑥𝑜} = Σ6 + 𝑥𝑜 → 𝜎′ or Σ12 = Σ6 +Σ11

|{𝑥𝑜} = Σ6 + 𝑥𝑜 → 𝜎3. Lastly,
we have the empty skeleton ⟦⟧(Σ12, 𝑇) ⇓ Σ12.

Since {ℬ⟦𝑥 = 𝑎2⟧(𝜎′) ∧ 𝑅(𝜎′)}, {ℬ⟦𝑥 = 𝑎2⟧(𝜎3) ∧ 𝑅(𝜎3)} and either 𝜎′ or 𝜎3 is
the output state of the derivation, we can conclude that, given that the premise
holds, {𝑅[𝑥 → ℰ⟦𝑎1⟧]} for 𝑥 := 𝑎1 to 𝑎2 do 𝑆 {𝑅 ∧ ℬ⟦𝑥 = 𝑎2⟧} also holds.

3.6 Suggestions for Interpreting Skeletons

In the process of proving the soundness property for the language While, we
developed an intuition about the mapping of skeletons to Hoare logic rules. These
suggestions are intended to act as a heuristic, and do not guarantee that strictly
following them will produce a correct mapping. The observations are:

1. A hook on a term 𝑥𝑡 representing an expression: 𝐻⟦(𝜎, 𝑥𝑡 , 𝑥 𝑓)⟧, followed
by an application of the 𝑖𝑠𝐵𝑜𝑜𝑙 filter on 𝑥 𝑓 and a 𝑖𝑠𝑇𝑟𝑢𝑒/𝑖𝑠𝐹𝑎𝑙𝑠𝑒 branching
on the 𝑏𝑜𝑜𝑙 result suggests the presence of a predicate of the form ℬ⟦𝑏⟧ or
¬ℬ⟦𝑏⟧, respectively.

2. The presence of a branching on the truth value of a (flow) variable suggests
the presence of an 𝑖 𝑓 -statement, or a statement that can be rewritten as an
𝑖 𝑓 -statement, such as 𝑤ℎ𝑖𝑙𝑒, 𝑟𝑒𝑝𝑒𝑎𝑡, 𝑓 𝑜𝑟.

3. The presence of the bone in its own skeleton means the construct is recursive.
This happens in a branching, one of the other branches representing the base
case of the recursion. As an example, in the skeleton for the 𝑤ℎ𝑖𝑙𝑒 rule, we
have hook 𝐻(𝑥 𝑓2 , 𝑤ℎ𝑖𝑙𝑒 𝑥𝑡1 𝑥𝑡2 , 𝑥𝑜).

4. The 𝑖𝑑 filter is usually translated to a 𝑠𝑘𝑖𝑝 axiom, or it is not translated and
represents an unwritten branch, as we have in the 𝑤ℎ𝑖𝑙𝑒 rule.

5. A branching with more than two branches would suggest the use of a
𝑠𝑤𝑖𝑡𝑐ℎ/𝑐𝑎𝑠𝑒 statement, in languages that contain one, or nested 𝑖 𝑓 -statements
otherwise.

6. Two consecutive hooks suggest the use of statement composition, repre-
sented by the 𝑠𝑒𝑞 rule.

30

4
Conclusions and Future Works

The goal of this project was to examine the relation between Hoare logic and
skeletal semantics. We wanted to explore the possibility of building correct-by-
construction Hoare logics for languages formalised using skeletal semantics.

In the paper, we described the relation between Hoare logic and the skeletal
semantics of a simple imperative language called While. We formally introduced
the syntax and semantics of the language and proved the soundness property
with respect to Hoare logic. We did this by proving the partial correctness for all
arithmetic and boolean expressions, and also for all statements in the language -
part which turned out to be the most difficult. We added two additional rules to
the language, deriving their skeletons, and proving their partial correctness.

Lastly, we introduced a short heuristic for mapping skeletons to Hoare logic
rules. The heuristic is incomplete and does not guarantee a correct mapping every
time, but it can be used as an intuition for making the task more straightforward.

Although studying the relation between Hoare logic and a specific language
described using skeletal semantics is the first step, our goal of finding a general
approach still requires more research. Suggested next steps would be enhancing
the language with new, commonly used constructs and proving their soundness.
Examples would be supporting arrays, lists, input/output, selection statements
with more than two branches, exceptions and control transfer statements, such
as try-catch, break, return, etc. Another option would be proving soundness
for more languages, imperative and not only, with the prospect of observing

31

more similarities and ultimately formalising a language-independent theorem for
deriving Hoare logic from skeletal semantics.

32

References

[1] G. Ambal, S. Lenglet, and A. Schmitt. “Certified Abstract Machines for
Skeletal Semantics”. In: Proceedings of the 11th ACM SIGPLAN International
Conference on Certified Programs and Proofs. CPP 2022. Philadelphia, PA, USA:
Association for Computing Machinery, 2022, pp. 55–67. isbn: 9781450391825.
doi: 10.1145/3497775.3503676. url: https://doi-org.proxy-ub.rug.
nl/10.1145/3497775.3503676.

[2] T. F. Bissyandé et al. “Popularity, Interoperability, and Impact of Program-
ming Languages in 100,000 Open Source Projects”. In: 2013 IEEE 37th An-
nual Computer Software and Applications Conference. 2013, pp. 303–312. doi:
10.1109/COMPSAC.2013.55.

[3] M. Bodin et al. “Skeletal Semantics and Their Interpretations”. In: Proc. ACM
Program. Lang. 3.POPL (2019). doi: 10.1145/3290357. url: https://doi-
org.proxy-ub.rug.nl/10.1145/3290357.

[4] S. L. Hantler and J. C. King. “An Introduction to Proving the Correctness
of Programs”. In: ACM Comput. Surv. 8.3 (1976), pp. 331–353. issn: 0360-
0300. doi: 10 . 1145 / 356674 . 356677. url: https : / / doi - org . proxy -
ub.rug.nl/10.1145/356674.356677.

[5] P. He et al. “Hoare logic-based genetic programming”. In: Science China
Information Sciences 54.3 (2011). 623, pp. 623–637. issn: 1674-733X. doi: 10.
1007/s11432-011-4200-4. url: https://doi.org/10.1007/s11432-011-
4200-4.

[6] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In:
Commun. ACM 12.10 (1969), pp. 576–580. issn: 0001-0782. doi: 10.1145/
363235.363259. url: https://doi-org.proxy-ub.rug.nl/10.1145/
363235.363259.

33

https://doi.org/10.1145/3497775.3503676
https://doi-org.proxy-ub.rug.nl/10.1145/3497775.3503676
https://doi-org.proxy-ub.rug.nl/10.1145/3497775.3503676
https://doi.org/10.1109/COMPSAC.2013.55
https://doi.org/10.1145/3290357
https://doi-org.proxy-ub.rug.nl/10.1145/3290357
https://doi-org.proxy-ub.rug.nl/10.1145/3290357
https://doi.org/10.1145/356674.356677
https://doi-org.proxy-ub.rug.nl/10.1145/356674.356677
https://doi-org.proxy-ub.rug.nl/10.1145/356674.356677
https://doi.org/10.1007/s11432-011-4200-4
https://doi.org/10.1007/s11432-011-4200-4
https://doi.org/10.1007/s11432-011-4200-4
https://doi.org/10.1007/s11432-011-4200-4
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi-org.proxy-ub.rug.nl/10.1145/363235.363259
https://doi-org.proxy-ub.rug.nl/10.1145/363235.363259

REFERENCES

[7] T. Hoare and S. van Staden. “In Praise of Algebra”. In: Form. Asp. Comput.
24.46 (2012), pp. 423–431. issn: 0934-5043. doi: 10.1007/s00165-012-0249-
0. url: https://doi-org.proxy-ub.rug.nl/10.1007/s00165-012-0249-
0.

[8] B. Jacobs. “Weakest pre-condition reasoning for Java programs with JML an-
notations”. In: The Journal of Logic and Algebraic Programming 58.1 (2004). For-
mal Methods for Smart Cards, pp. 61–88. issn: 1567-8326. doi: https://doi.
org/10.1016/j.jlap.2003.07.005. url: https://www.sciencedirect.
com/science/article/pii/S1567832603000766.

[9] T. A. Linden. “A Summary of Progress toward Proving Program Correct-
ness”. In: Proceedings of the December 5-7, 1972, Fall Joint Computer Conference,
Part I. AFIPS ’72 (Fall, part I). Anaheim, California: Association for Com-
puting Machinery, 1972, pp. 201–211. isbn: 9781450379120. doi: 10.1145/
1479992.1480019. url: https://doi-org.proxy-ub.rug.nl/10.1145/
1479992.1480019.

[10] H. R. Nielson and F. Nielson. “Content dependent information flow con-
trol”. In: Journal of Logical and Algebraic Methods in Programming 87 (2017),
pp. 6–32. issn: 2352-2208. doi: https://doi.org/10.1016/j.jlamp.2016.
09.005. url: https://www.sciencedirect.com/science/article/pii/
S2352220816301134.

[11] H. R. Nielson and F. Nielson. Semantics with Applications: An Appetizer (Un-
dergraduate Topics in Computer Science). Berlin, Heidelberg: Springer-Verlag,
2007. isbn: 1846286913.

[12] T. Nipkow. “Winskel is (Almost) Right: Towards a Mechanized Semantics
Textbook”. In: Form. Asp. Comput. 10.2 (1998), pp. 171–186. issn: 0934-5043.
doi: 10.1007/s001650050009. url: https://doi-org.proxy-ub.rug.nl/
10.1007/s001650050009.

[13] I. Sergey et al. “Hoare-Style Specifications as Correctness Conditions for
Non-Linearizable Concurrent Objects”. In: SIGPLAN Not. 51.10 (2016), pp. 92–
110. issn: 0362-1340. doi: 10.1145/3022671.2983999. url: https://doi-
org.proxy-ub.rug.nl/10.1145/3022671.2983999.

[14] A. Stefnescu et al. “Semantics-Based Program Verifiers for All Languages”.
In: Proceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications. OOPSLA 2016.

34

https://doi.org/10.1007/s00165-012-0249-0
https://doi.org/10.1007/s00165-012-0249-0
https://doi-org.proxy-ub.rug.nl/10.1007/s00165-012-0249-0
https://doi-org.proxy-ub.rug.nl/10.1007/s00165-012-0249-0
https://doi.org/https://doi.org/10.1016/j.jlap.2003.07.005
https://doi.org/https://doi.org/10.1016/j.jlap.2003.07.005
https://www.sciencedirect.com/science/article/pii/S1567832603000766
https://www.sciencedirect.com/science/article/pii/S1567832603000766
https://doi.org/10.1145/1479992.1480019
https://doi.org/10.1145/1479992.1480019
https://doi-org.proxy-ub.rug.nl/10.1145/1479992.1480019
https://doi-org.proxy-ub.rug.nl/10.1145/1479992.1480019
https://doi.org/https://doi.org/10.1016/j.jlamp.2016.09.005
https://doi.org/https://doi.org/10.1016/j.jlamp.2016.09.005
https://www.sciencedirect.com/science/article/pii/S2352220816301134
https://www.sciencedirect.com/science/article/pii/S2352220816301134
https://doi.org/10.1007/s001650050009
https://doi-org.proxy-ub.rug.nl/10.1007/s001650050009
https://doi-org.proxy-ub.rug.nl/10.1007/s001650050009
https://doi.org/10.1145/3022671.2983999
https://doi-org.proxy-ub.rug.nl/10.1145/3022671.2983999
https://doi-org.proxy-ub.rug.nl/10.1145/3022671.2983999

REFERENCES

Amsterdam, Netherlands: Association for Computing Machinery, 2016, pp. 74–
91. isbn: 9781450344449. doi: 10 . 1145 / 2983990 . 2984027. url: https :
//doi-org.proxy-ub.rug.nl/10.1145/2983990.2984027.

35

https://doi.org/10.1145/2983990.2984027
https://doi-org.proxy-ub.rug.nl/10.1145/2983990.2984027
https://doi-org.proxy-ub.rug.nl/10.1145/2983990.2984027

Acknowledgments

I would like to thank the incredibly skilled and competent Dr. Dan Frumin,
without whom the completion of this project would not have been possible. Thank
you for the constant guidance and support. Special thanks to my best friend
Evghenii - thank you for reviewing my drafts, for your patience and kindness, for
inspiring me and making this process significantly more fun and productive.

37

	List of Tables
	Introduction
	Background
	Hoare Logic
	Skeletal Semantics

	Analysis
	Language While
	Syntax
	Semantics of Expressions
	Definitions

	Formal Definitions of Filters
	Soundness of Expressions
	Soundness of Arithmetic Expressions
	Soundness of Boolean Expressions

	Soundness of Statements
	Additional Rules
	Suggestions for Interpreting Skeletons

	Conclusions and Future Works
	References
	Acknowledgments

