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Abstract

This thesis concerns itself with resonances as arising from 1D scattering ex-
periments in quantum systems, and explores their relation to transparencies.
An introduction is given to (the interpretation of) complex energies, and the
resolvent operator—whose poles are by definition resonances—is defined. Reso-
nances are then redefined as poles of the transmission amplitude S(k), and some
further properties of S(k) are proven. Explicit formulae for S(k) are obtained
for i) symmetric piecewise-constant potentials, and ii) symmetric potentials for
which WKB may be applied. The latter shows that Bohr-Sommerfeld quan-
tization plays a role despite the exclusion of bound states. Finally, quantum
normal forms (QNFs) are discussed, which describe S(k) when the energy is
approximately that of a local maximum of the potential. This may bridge the
gap between energy various energy regions in which WKB is applicable.
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1 Introduction

In classical mechanics, qualitatively a resonance occurs when a system has the uncanny
ability to absorb the energy supplied to it, as a function of some parameter. As the
prototypical, we have the damped-driven harmonic oscillator

ẍ+ γẋ+ ω2
0x = F0m

−1 cos(ωt). (1.1)

We are interested in how much energy this oscillator will have for any given driving
frequency ω (with energy given as E = mω2

0a
2/2 for amplitude of oscillation a), once

the oscillator has reached equilibrium.
Intuitively, for ω � ω0, the driving force should have no net effect and the total

energy goes to zero due to the damping factor. In contrast, for ω � ω0 the driving
force will be almost constant and we can solve to find that E = F 2

0 /(2mω
2
0).1 There

is nothing to indicate other than a steady decline of E should take place as ω grows.
It turns out that the energy for general ω is given by

E(ω) =
ω2
0F

2
0

2m

1

(ω2
0 − ω2)2 + (γω)2

, (1.2)

which agrees with our intuitions on the large and small ω scales (for details, see [15,
(9)]). However, we note that there is a local maximum at ω =

√
ω2
0 − γ2/2. At this

frequency, the oscillator is able to take “the most advantage” of the driving force and
obtain the greatest amount of energy. One says that this choice of driving frequency
puts the oscillator in resonance with the driving force, at the resonance frequency
ωres :=

√
ω2
0 − γ2/2.

We can examine the energy around the peak of ωres more closely. Assuming γ � 1,
the peak will be around ωres ≈ ω0, and E(ω) takes the form

E(ω) ≈ F 2
0

2mγ2
(γ/2)2

(ω − ω0)2 + (γ/2)2
. (1.3)

Here ω0 determines the center of the peak, and γ controls the height and width of the
peak: the larger γ, the lower and wider the peak will be.

The peak described above has a very particular shape, which is known as a Fock-
Breit-Wigner- (FBW-) distribution.2 In its general form, we can write it as

FBW(x) = A× (Γ/2)2

(x− x0)2 + (Γ/2)2
, (1.4)

where A is the maximum height of the distribution. (As is the case in (1.3), A may
depend on Γ.) The parameter x0 determines the center of the peak, and Γ controls
its width: the larger Γ, the wider the peak will be—see Figure 1.1 for an illustration.
These peaks are most pronounced for smaller values of Γ: the width of the peaks
decreases, making the resonance effect more stark a contrast with the “usual” behavior.
FBW-distributions occur in many physical situations in which resonances are present,
and as such could also be taken as “defining feature” of a resonance.

1Notice a particular solution is given by xpart = Fm−1ω−2
0 , and that xhom → 0 as t→ 0.

2Other names include the Lorentzian or Cauchy function/distribution.
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Figure 1.1: FBW distributions around x0 = 0 with A = 1, and with different values
of Γ to illustrate the peak’s width thereupon.

(a) Linear scale (b) Logarithmic scale

Figure 1.2: Transmission through a potential barrier of height V0 = 30 and width 1,
both with linear (a) and logarithmic (b) scales for the y-axis.

Systems with uncanny abilities concerning some of their properties are not limited to
classical mechanics only. Coming from quantum mechanics, one of the more famous
examples is that of particles encountering a potential barrier, in which we are interested
in the transmission, i.e. the proportion of particles going “through/over,” as a function
of their energy. Classically, this would be very dull: either the particle has enough
energy to make it over, in which transmission would be 1, or it does not, in which case
transmission is 0.

However, quantum mechanically things are more interesting. For a shallow barrier,
we have the transmission spectrum as in Figure 1.2. We notice foremost the effect
of (quantum) tunneling, where the transmission is non-zero even though the energy
is smaller than the height of the barrier. This is a well-understood phenomenon.
However, this makes it more mysterious that full transmission T = 1 can occur, as it
does for E ≈ 40: should there not also be “anti-tunneling” that would prevent this?
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That is to say, if T > 0 than zero, indicating there is always tunneling, why is there
not always reflection?

Even more intriguing is the phenomenon of resonant tunneling, whereby full trans-
mission is reached at an energy (far) lower than the maximum of the potential barrier.
This is not seen in this example, as it requires a specific geometry of the potential for
it to appear.

These tunneling phenomena turn out to be intimately related to resonances, which
in quantum mechanics have a crisp, mathematical definition. The precise relation
cannot easily be summed up in a few sentences (indeed, a central tenet of this thesis
is the exploration of the relationship between the two), but suffice it to say that to
each such full transmission occurrence there is a resonance hiding in the background,
effecting it.

Knowledge of resonances in quantum systems (and thus of transmission rates, to
some extent) may be used academically for research into the behavior of particles
inside complicated, 2- or 3D potential landscapes.

In this thesis, the first order of business will be to introduce some preliminaries that are
necessary for (particular parts) of the text, namely some quantum and Hamiltonian
mechanics, classical normal form theory, and the WKB approximation.

After this, we shall delineate the model we will use for the rest of this thesis. We
will introduce and discuss the concept of complex energies, define resonances by means
of the resolvent operator, and link this definition to the transmission amplitude S(k),
whose absolute valued-squared is T . Finally, we prove meromorphicity of S(k), and
extend the interpretation to a broader class of potentials.

We then find explicit formulae for S(k), for i) piecewise constant & symmetric po-
tentials, and ii) symmetric potentials for which we can apply the WKB approximation.
These are found in such a way that they can be applied to all such potentials. By
means of some examples (the square well, Gaussian barrier, and sinc potential) we are
able to derive properties of the transmission amplitudes for the potentials of which
they are representatives, including verifying ones that we had proven in general in the
preceding section.

Finally we investigate a method to handle the breakdown of the WKB approxima-
tion, which happens when the energy of the particle matches that of a barrier. This we
do by means of quantum normal forms. This is an adaptation of classical (Birkhoff-
Gustavson) normal form theory, which may be used to analyze motion around a saddle
equilibrium in phase space. This we then export to the quantum realm, and are so
able to calculate transmission amplitudes. Here too we strive to illustrate the theory
by means of examples.

In the appendix we detail how we calculated the scattering matrices (from which
the transmission amplitude can be read off) for the calculations performed in this
thesis.
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2 Preliminaries

2.1 Crash courses

Quantum Mechanics

In quantum mechanics (QM), instead of considering particles as “point-like,” they
are described using wave mechanics. As such, particles are described by means of a
wavefunction, commonly denoted as Ψ(x, t), which holds all the information available
concerning said particle. Of special importance is the “location” of the particle: this
is found using Born’s rule, which states that |Ψ(x, t)|2 should be interpreted as a
probability density function (pdf) for the particle’s location at time t. Importantly,
this also implies that for all t, Ψ(x, t) should be square integrable in x for it to be

a wavefunction. This then allows for a normalization Ψ → Ψ̃ s.t.
∫
|Ψ̃|2 dx = 1, to

complete the interpretation as pdf.
Naturally, we want to know how the wavefunction evolves in space and time—enter

the famous Schrödinger equation:

i~
∂Ψ

∂t
= HΨ, (2.1)

a linear PDE, first order in time t and (generally) second order in space. Here H is a
self-adjoint operator known as the Hamiltonian. As we will stick to a one-dimensional,
non-free setting, the Hamiltonian for us will read

H =
−~2

2m

∂2

∂x2
+ V (x), (2.2)

so the Schrödinger equation (2.1) becomes

i~
∂Ψ

∂t
=

[
−~2

2m

∂2

∂x2
+ V (x)

]
Ψ, (2.3)

where m is the mass of the particle under consideration. The function V is the potential
function, and it is that which encodes the particular situation we are considering. As
such, it will take center stage for the lion’s share of the thesis.

Notation 2.1 (Mass normalization). To make our lives easier, we will set 2m ≡ 1 for
the rest of this thesis.

The Schrödinger equation allows a powerful method for solving it, namely by means
of separation of variables. We make the ansatz Ψ(x, t) = φ(t)ψ(x), and substitute; the
result will be two decoupled equations

i~
dφ

dt
= Eφ (2.4a)

and

−~2d
2ψ

dx2
+ V (x)ψ = Eψ, (2.4b)

where here E is a separation constant. Due to its appearance as the eigenvalue of the
Hamiltonian operator (indeed, (2.4b) is simply Hψ = Eψ), it may be interpreted as
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being the energy of the system/particle. This is also convenient, as E is guaranteed
to be real number due to the self-adjointness of H.

The former equation (2.4a) can readily be solved: φ = exp(−i~−1Et). The game
then becomes to solve for ψ in equation (2.4b)—a non-trivial task, as there are no
conditions put on V at this stage. Crucially, once you have described ψ, you hope
that it converges: you divide by the answer to normalize it (as is necessary following
Born’s rule). We will have then found the stationary wavefunction ψ.

Due to the importance of (2.4b), it has its own name: the time-independent or
stationary Schrödinger equation. (Whence also the name for ψ.)

Notation 2.2 (Naming conventions). Since we will be working exclusively in the
time-independent domain, we will

• refer to (2.4b) as the Schrödinger equation;

• any solving function ψ as its solution; and

• ψ as a wavefunction when it is moreover normalizable.

The solution of the time-independent Schrödinger dictates the evolution of the
whole wavefunction in time, as it is an eigenstate and we know its evolution through
(2.4a). In that way we can readily propagate (linear combinations, i.e. superpositions,
of) eigenstates forward and backward in time,

Ψ(x, 0) =
N∑
j=1

αjψj(x) =⇒ Ψ(x, t) =
N∑
j=1

αj exp
(
−i~−1Ejt

)
ψj(x), (2.5)

where Ej, ψj are such that Hψj = Ejψj. In the case of a continuous spectrum of the
Hamiltonian, we obtain the so-called wavepacket formalism:

Ψ(x, 0) =

∫ ∞
−∞

ρ(E)ψE(x) dE =⇒ Ψ(x, t) =

∫ ∞
−∞

ρ(E) exp
(
−i~−1Et

)
ψE(x) dE ,

(2.6)
where ψE indicates the wavefunction with energy E, and ρ is the initial distribution
in energy space.

For further reading, there are many textbooks on introductory quantum mechanics,
such as Griffiths [8], Merzbacher [12], and Galindo & Pascual [7].

Hamiltonian Mechanics

We define the quantities q,p ∈ Rd to be the position and momentum of a body,
respectively, living in the phase space S := Rd×Rd. In addition, we define a quantity
H : S → R as the Hamiltonian (function) of our system. The Hamiltonian dictates
the motion of the body, in that the derivatives w.r.t. of the phase space quantities are
given by

dqk
dt
≡ ∂H

∂pk
and

dpk
dt
≡ −∂H

∂qk
, for k = 1, 2, · · · , d. (2.7)

That is to say, the Hamiltonian determines the equations of motion (eoms) of the body.
If we create the large vector z =

(
q1 · · · qd p1 · · · pd

)ᵀ
, we can summarize the

7
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above Hamiltonian equations by means of a single matrix equation:

dz

dt
=

(
0 I
−I 0

)(
∂H

∂z

)T
. (2.8)

Naturally we want to say something about the motion of the body, and one ap-
proach is by examining the state space S. Namely, if we could find a state space
function A : S → R which we could show to remain constant as the body moves,
then we would conclude that the motion has to be restricted to A−1(a) ⊆ S, for the
particular value a ∈ R. We then call A a constant of motion, and if a is a regular value
of A, A−1(a) will be dimension 2d − 1. This is of a lower dimension than the whole
phase space S, and hence our problem is simplified.

A particularly important way of viewing integrals of motion arises from taking
the time derivative of state space functions along a solution curve generated by the
Hamiltonian:

dA

dt
=

d∑
k=1

∂A

∂qk

dqk
dt

+
∂A

∂pk

dpk
dt

=
d∑

k=1

∂A

∂qk

∂H

∂pk
− ∂A

∂pk

∂H

∂qk
=: {A,H}, (2.9)

where {·, ·} is called a Poisson bracket. We also write

adAH ≡ {A,H}, (2.10)

where we might elect the former notation as it allows us to compose the Poisson
bracket more simply. The condition that A be an integral of motion is thus equivalent
to whether its Poisson bracket with H is zero—or, that A is in involution with the
Hamiltonian.

Up to this point we have dealt with q and p living in an arbitrary dimension d.
However, in keeping with the general one dimension trend of this thesis, we shall for
the remainder assume that d = 1, so we have only one q and p with which to contend.

There are many (introductory) treatments available on Hamiltonian mechanics, for
instance Wimberger [17, §3].

2.2 Classical (Birkhoff-Gustavson) normal forms

The below construction of the classical normal form is adapted from [16, §2], though
other resources also exist that go over this construction, see for instance [14].

In essence, the classical normal form attempts to identify approximate constants
of motion, locally around an equilibrium point in phase space. This should then aid
in determining the behavior around said equilibrium point. Before giving the precise
definition, let us first introduce homogeneous orders, as expansion in terms of the
phase space variables q and p is imminent.

Definition 2.3 (Homogeneous orders). We define

Wn := span{qαpβ : α, β ∈ N and α + β = n} over C (2.11)

as the space of functions of homogeneous order (hom. order, ho) n.

8
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Definition 2.4 (Classical Normal Form). Let H have an equilibrium point at z0, i.e.
∇H(z0) = 0, and let H2 be its Taylor expansion up to hom. order 2. We say that H
is in classical normal form (CNF) up to order N around z0 if

{H2, H} = 0 +Oho(N + 1), (2.12)

where we take the order symbol to mean hom. order over q and p.

Hamiltonians are not generally in CNF up to any substantial order. For a concrete
example, assume that at z0 = (0, 0) the standard Hamiltonian H = p2/(2m) + V (q)
has an equilibrium, which is to say that V ′(0) = 0. Making the Maclaurin expansion
of H, we see

H =
p2

2m
+ V (0) + 1

2
V ′′(0)q2︸ ︷︷ ︸

=H2

+
∞∑
j=3

V (j)(0)

j!
qj, (2.13)

so we may calculate

{H2, H} =
∞∑
j=3

V (j)(0)

j!
{H2, q

j} =
−p
m

∞∑
j=3

V (j)(0)

(j − 1)!
qj−1 = Oho(3). (2.14)

Thus, under the assumption that V (3)(0) 6= 0, H is in CNF only up to order 2.
Now the game is to transform the Hamiltonian so that it becomes CNF of arbitrary

order, improving the accuracy of our local constant of motion. Or, more methodically,
we want to find a family of symplectic transformations so that

H −→ H(3) −→ H(4) −→ · · · −→ H(N), (2.15)

where H(m) is in CNF up to order m. (In this way, we see also that H = H(2), and
we use the two interchangeably.) We can think of this number m as the iteration or
generation of transformed Hamiltonian.

By transformation we mean transformed by a function Wm ∈ Wm, m ≥ 3, gener-
ating a flow Φt

Wm
, where t is time. The transformation is then H(m) := H(m−1) ◦Φ−1Wm

,
i.e. the pullback of the previous Hamiltonian under the time t = −1 map. It can then
be shown that, as an expansion, the transformation can be written as

H(m) =
∞∑
j=0

(j!)−1(adWm)jH(m−1). (2.16)

Further context (including the derivation of (2.16)) is discussed in [16, §2.1].
The question then becomes to find that Wm so that H(m) is CNF of order m,

for each m. Let us make the following observation, for H2 as from the standard
Hamiltonian, i.e. as indicated in (2.13):

A ∈ Wn =⇒ {H2, A} ∈ Wn. (2.17)

That is to say, if A is hom. order n, then {H2, A} will be of that same hom. order.
This also means that if we want to be in CNF up to some certain order, the adjoint
with H2 will have to cancel the Hamiltonian order by order. Letting a subscript h

9
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indicate the hom. order of the term in the Hamiltonian, we make this mathematically
concrete by following reasoning:

H(m) =
∞∑
h=0

H
(m)
h =⇒ {H(m)

2 , H(m)} =
∞∑
h=0

{H(m)
2 , H

(m)
h }

!
= Oho(m+ 1)

=⇒ {H(m)
2 , H

(m)
h } = 0 for h = 0, 1, · · · ,m. (2.18)

This motivates us to find a relation between the Hamiltonians of different generations
and different orders—which is done in the following Lemma.

Lemma 2.5 (Relation Hamiltonian terms). We have that the relation between Hamil-
tonian terms of different generations and different hom. orders is given by

H
(m)
h =

bh/(m−2)c∑
j=0

(j!)−1(adWm)jH
(m−1)
h−j(m−2). (2.19)

Additionally, we have

(i) H
(m)
h = H

(m−1)
h , for all m ≥ 3 and 0 ≤ h < m, and

(ii) for h = 2, H
(m)
2 = H

(2)
2 for all m ≥ 3.

Proof. Equation (2.19) is (2.36) in [16, §2], and we refer to their reasoning. Also noting
that (ii) follows immediately from (i), we need only show subpoint (i).

Eyeing (2.19), the relation holds for h ≤ m− 3: then bh/(m− 2)c = 0, and so the
sum runs only over j = 0, which yields exactly the relation we want. For h = m− 2,
notice we will have

H
(m)
m−2 = H

(m−1)
m−2 +���

���
��

{Wm, H
(m−1)
0 } = H

(m−1)
m−2 (2.20)

where cancellation holds as H
(m−1)
0 is a constant. Finally, for h = m− 1, we got

H
(m)
m−1 = H

(m−1)
m−1 + {Wm,��

��H
(m−1)
1 } = H

(m−1)
m−1 , (2.21)

where cancellation now holds as H
(m−1)
1 = 0 for all generations m− 1. Thus we have

shown the relation 2.5(i) for all h < m, completing the proof.

This means that, effectively, the transformations Wm do not touch the lower order
homogeneous terms that were previously fixed, and instead only affect the latter terms.
See also Table 2.1 for a “pictoral” representation of this iterative fixing of terms. This
Lemma thus guarantees that the order of CNF only increases as we apply successively
more of the transformations Wm, and moreover that the lower order terms are also
part of the higher order CNF. That is to say, we never “undo” part of our CNF as we
apply more transformations.

We are now in a position to say something about the Wm.

Proposition 2.6 (Condition on WN ’s; homological equation). Assume that H(N−1) is
in CNF up to order N − 1, N ≥ 3. In order to guarantee H(N) is in CNF up to order
N , WN ∈ WN needs to satisfy

H
(N−1)
N −DWN ∈ kerD, (2.22)

where D := {H(2)
2 , ·} :WN →WN is the homological operator; the equation (2.22) is

known as the homological equation.

10
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H = H0,1,2 + H3 + H4 + H5 + H6 + · · ·
W3 ↓

H(3) = H
(3)
0,1,2 + H

(3)
3 + H

(3)
4 + H

(3)
5 + H

(3)
6 + · · ·

W4 ↓
H(4) = H

(4)
0,1,2 + H

(4)
3 + H

(4)
4 + H

(4)
5 + H

(4)
6 + · · ·

W5 ↓
H(5) = H

(5)
0,1,2 + H

(5)
3 + H

(5)
4 + H

(5)
5 + H

(5)
6 + · · ·

W6 ↓
H(6) = H

(6)
0,1,2 + H

(6)
3 + H

(6)
4 + H

(6)
5 + H

(6)
6 + · · ·

W7 ↓
...

. . .

Table 2.1: Illustration of how the various transformations Wm affect the generations
of Hamiltonians. The terms in like colors (excluding black) are equal to each other.

Proof. By Lemma 2.5 we see that H
(N)
h = H

(N−1)
h for h = 0, 1, · · · , N − 1. So,

{H(N)
2 , H

(N)
h } = {H(N−1)

2 , H
(N−1)
h } = 0 for h = 0, 1, · · · , N − 1. (2.23)

We then just need to show that this holds also for h = N . By (2.19), we can find an

expression for H
(N)
N :

H
(N)
N =

1∑
j=0

(j!)−1(adWN
)jH

(b)
N−j(N−2) = H

(N−1)
N + {WN , H

(N)
2 }

= H
(N−1)
N − {H(2)

2 ,WN}
= H

(N−1)
N −DWN . (2.24)

As such, the condition for H(N) to be in CNF up to order N becomes

H(N) CNF ⇐⇒ D
[
H

(N−1)
N −DWN

]
= 0 ⇐⇒ H

(N−1)
N −DWN ∈ kerD, (2.25)

which completes the proof.

Remark 2.7 (Dimensionality D). The action of the homological operator depends on
the dimension of the space WN on which it is acting, yet this is not reflected in the
notation. We omit mention of the relevant dimension, as we take it to be implied.

From this point on, whether we can successively find WN ’s depends heavily on the
nature of the homological operator D. And since it in turn depends non-trivially on
the hom. order under consideration, it is tricky to show that the homological equation
has a solution for any particular H2. Such a solution existing for every hom. order is
called solvability. One particular case in which solvability can be established is if D
can be shown to be diagonal for every hom. order, when expressed as a matrix over
the relevant space and in a suitable basis. Then the splitting Wm = ImD⊕ kerD can
be made, and a suitable Wm can be found.

11
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2.3 Scattering

Since we shall be concerned with the influence of a target on an incoming particle,
there is a need to discuss the mathematics that models this at its core. This is the
mathematics of scattering theory, which aims to describe how the incoming determines
the outgoing, whether discrete particles, or, relevantly for us, waves.

To model our situation we shall utilize the Schrödinger equation (2.4b) featuring a
potential characterized as

V (x) =


0 if x < −ν (left)

f(x) if − ν ≤ x ≤ ν

0 if x > ν (right)

, (2.26)

where ν > 0 is a parameter that indicates the size of the target. Here f represents the
“inner structure” of the target. Though in the later parts of this thesis we will want
to focus on this inner structure, for this section any knowledge of it is not relevant.

As we see from (2.26), our potential will be identically zero for |x| > ν, for some
parameter ν, so that we have free space to the left and right. In free space, we may
readily solve the Schrödinger equation to obtain the solution in these regions. Denoting
these by ψleft and ψright respectively for their validity regions, we see that they will be
given by

ψleft = A exp(ikx) +B exp(−ikx) and ψright = C exp(ikx) +D exp(−ikx), (2.27)

for complex constants A, B, C, and D, and where we introduced the wavenumber
k := ~−1

√
E, E > 0. Important to note is that these constants are not independent

of each other: choosing two of these to have specific values fixes the other two. The
question of how, is precisely that which we intend to answer.

To be able to involve scattering in this story, we need to introduce some notion
of incoming and outgoing. This is provided by involving the relevant time evolution
operator

U(t) = exp
(
−i~−1Ht

) ?
= exp

(
−i~−1Et

)
. (2.28)

Here ? holds if we are evolving an eigenstate of the Hamiltonian with energy E cf.
(2.4a). Supposing we wish to evolve the planar wave ξ(x) = exp(ikx) in time, this will
yield

Ξ(x, t) = ξ(x) exp
(
−i~−1Et

)
= exp

(
i(kx− ~−1Et)

)
. (2.29)

To determine the “direction of motion,” we consider where the points of equal phase go
under (small) perturbations of x and t. Suppose we choose (x0, t0) so that Ξ(x0, t0) = 1.
Then, introducing (small) perturbations ∆x and ∆t, to maintain Ξ(x0+∆x, t0+∆t) =
1 we need

k∆x = ~−1E∆t =⇒ ∆x

∆t
=

E

~k
. (2.30)

As such, the “peak” Ξ = 1 moves with velocity E/(~k) > 0, i.e. to the right. In
this way, then, we characterize the planar wave exp(ikx) as rightmoving. In a similar
way we can show that exp(−ikx) is thus leftmoving. This allows us to split the
wavefunctions ψleft and ψright into their incoming and outgoing parts—see Table 2.2.
We then rewrite (2.27) as

12
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PPPPPPPPPside
term

exp(ikx) exp(−ikx)

ψleft incoming outgoing

ψright outgoing incoming

Table 2.2: Characterization of the different terms in ψleft and ψright.

Figure 2.1: Pictoral definition of the scattering matrix S: to give B and C in terms of
A and D.

ψleft = Aψleft;in +Bψleft;out and ψright = Cψright;out +Dψright;in (2.31)

using said identifications.
To determine the outgoing amplitudes in terms of the incoming ones, then, essen-

tially becomes the problem of finding how B and C depend on A and D. Due to the
principle of superposition (equivalently, linearity of the Schrödinger equation), we see
that the connection ought to be linear. That is to say, the mapping (A,D) 7→ (B,C)
should be done by means of a matrix. This leads us to the following definition.

Definition 2.8 (Scattering matrix). We define the scattering matrix (or S-matrix )
S ∈ C2×2 to be the matrix s.t.

S : span{ψleft;in, ψright;in} −→ span{ψleft;out, ψright;out}, (2.32)

and that it sends

S [Aψleft;in +Dψright;in] = Bψleft;out + Cψright;out. (2.33)

To make the dependence of S on k explicit, we write S(k).

The scattering matrix only provides the form of the transformation between incom-
ing and outgoing waves; the elements of S (and thus any scattering calculation) will
depend both on the internal structure f of the potential, as well as the wavenumber.
Nevertheless, it is possible to make a statement about S in general, as we shall do in
the following Lemma.

Lemma 2.9 (Unitarity of S). For k ∈ R, the scattering matrix is unitary.

Proof. This proof is adapted from [11, §1.2.1]. Let us start from the assumption that
the probability current density j, which is defined as

j(x) = i~
(
ψ
dψ∗

dx
− ψ∗dψ

dx

)
, (2.34)

13
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is equal at the boundaries of the potential, which is to say that j(−ν) = j(ν). Since
we have a description of ψ to the left and right of the target, we may investigate what
these quantities are. After some calculation we find that

j(−ν) = i~
(
ψleft

dψ∗left
dx
− ψ∗left

dψleft

dx

) ∣∣∣
x=−ν

= |B|2 − |A|2, (2.35a)

and similarly

j(ν) = i~
(
ψright

dψ∗right
dx

− ψ∗right
dψright

dx

) ∣∣∣
x=ν

= |D|2 − |C|2. (2.35b)

Rearranging (2.35) thus gives us

|A|2 + |D|2 = |B|2 + |C|2 ⇐⇒ (A∗ , D∗)

(
A
D

)
= (B∗ , C∗)

(
B
C

)
. (2.36)

Now, since S (A ,D)ᵀ = (B ,C)ᵀ, it also holds that (A∗ , D∗) S† = (B∗ , C∗), and so
from (2.36) we obtain

(A∗ , D∗) S†S

(
A
D

)
= (A∗ , D∗)

(
A
D

)
. (2.37)

This means that S is an isometry, which, since S is moreover a square matrix, directly
implies that it is unitary.

The scattering matrix being unitary allows us to find an important conservation
law. Choosing (A ,D)ᵀ = (1 , 0)ᵀ, we find that

|S11|2 + |S21|2 = 1. (2.38)

The physical interpretation is that, under a steady supply of particles, the propor-
tions that are reflected by and transmitted through the potential are |S11|2 and |S21|2,
respectively. Based on this interpretation, we make the following definitions.

Definition 2.10 (Reflection and transmission). We name

• S11 and S21 the reflection and transmission amplitude, respectively, and

• |S11|2 and |S21|2 the reflection and transmission coefficient, respectively. For the
transmission coefficient, we will usually write T .

The above quantities will depend on k (or E), and we can parse these as an argument
if we wish to make this clear.

Furthermore, when k (or E) is such that T = 1, we will call k (or E) a transparency.

Remark 2.11. It should be emphasized that the conservation law (2.38), and accord-
ingly the physical interpretation of the reflection and transmission coefficients, only
applies in the case where k ∈ R, as is required for unitarity of S. This stands in
contrast to later in the thesis, where we will generally consider k ∈ C; there we thus
lose this model for physical interpretation.

The above choice (A ,D)ᵀ = (1 , 0)ᵀ also means that the resultant B and C—which
are actually S11 and S21—depend on k only. As such, the scattering matrices should
be calculable using k and knowledge of the internal structure of the target, i.e. the
function f . It should be evident that this will be of great import to the thesis going
forward, and as such the practical calculation of scattering matrices requires discussion.
This is done in Appendix A, and includes the Python program used for computations.

14
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2.4 WKB approximation

Whatever calculation is done in quantum mechanics, it more than likely will involve
knowing (the properties of) wavefunctions at some point, to be determined from the
associated Schrödinger equation. However, as the Schrödinger equation is second order
and involves an arbitrary function (being the potential), finding the solution will in
general be a very complicated problem—indeed, often impossible with “pen and paper”
methods.

Fortunately, the solution can at least be approximated, for suitable potentials V .
One such approximation is the WKB approximation—named after Wentzel, Kramers
and Brillouin—and is widely used when circumstances allow it. WKB is also known as
a semiclassical approximation to QM. The idea is that we expand the wavefunction in
a power series of ~, wherein taking the ~ ≡ 0 should then reduce to a classical setting;
when we set ~ ≡ 0, we “turn off” quantum mechanics, in a certain sense. In this way,
QM can be viewed as a perturbation to an otherwise classical system. This idea will
also come back in Section 5 concerning quantum normal forms (QNFs), where it will
be applied in a slightly more technical manner.

In this section, we will first derive the WKB approximation by the power series
method, after which we discuss the connection formulae to extend its applicability.
Finally, we will see how to characterize a certain (WKB-applicable) potential landscape
by means of a single matrix.

Further reference to the WKB approximation can be found in for instance [12, §7]
and [8, §9].

2.4.1 Derivation

The main observation is that, whenever the potential is constant, V (x) = V0, we have
that the solution of the Schrödinger equation is given by

ψcst(x) = exp
(
i~−1x

√
E − V0

)
(2.39)

As such, this gives credence to the ansatz of the general solving wavefunction also
having the form of an exponential function, or at least whenever the potential is
“approximately constant”—a qualification we will come back to momentarily. Let us
assume that the general solution of the Schrödinger equation ψgen is given by

ψgen(x) = exp
(
i~−1f(x)

)
, (2.40)

for some yet-unknown, to be determined function f . Plugging this ansatz into the
Schrödinger equation, we obtain

− ~2ψ′′gen + (V (x)− E)ψgen = 0 =⇒ (f ′)2 − i~f ′′ + V (x)− E = 0, (2.41)

a differential equation which is seemingly as complicated as the one with which we
started, if not more so. However, in the spirit of semiclassics, we now assume that f
can be given in terms of a power series in the small/perturbative parameter ~. That
is to say, we assume

f =
∞∑
j=0

~jfj(x), for functions fj(x). (2.42)

15



Scholtens, R. W. A Transparent View on Resonances

Plugging this power series into (2.41), we will have to fulfill that equation order by
order in ~; this should yield us expressions for the functions fj. Observe that the
equations we get are

O
(
~0
)

: (f ′0)
2 + V (x)− E = 0 (2.43a)

O
(
~1
)

: 2f ′0f
′
1 − if ′′0 = 0 (2.43b)

O
(
~2
)

: 2f ′0f
′
2 + (f ′1)

2 − if ′′1 = 0 (2.43c)

...

Though in principle this allows us to find the functions fj for whichever j we like, for
purposes of this text we will stick only to finding f0 and f1. From (2.43a) we find

(f ′0)
2 = E − V =⇒ f0 = ±

∫ x√
E − V (x′) dx′ + c0, (2.44)

with c0 being an integration constant. From (2.43b), in turn, we learn

f ′1 =
i

2

f ′′0
f ′0

=
i

2

d

dx
ln(f ′0) =⇒ f1 =

i

2
ln(f ′0) + c1 =

i

4
ln |E − V |+ c1, (2.45)

with c1 another integration constant. Thus, rolling our calculation back up, we see
that

ψgen = exp

(
i~−1

∞∑
j=0

~jfj

)

= exp

(
±i~−1

∫ x√
E − V (x′) dx′ − 1

4
ln |E − V |+O

(
~1
))

= |E − V |−1/4 exp

(
±i~−1

∫ x√
E − V (x′) dx′ +O

(
~1
))
. (2.46)

In the above we did not take explicitly into account the introduced integration con-
stants c0,1. The reason is that their effect would be to provide an additional scale &
phase to the overall wavefunction—which addition is moot, as the Schrödinger equa-
tion is linear anyway. As such, it is legal to just assume that c0,1 ≡ 0, and keep the
linearity in the back of our minds for use later on.

Finally, the WKB approximation is now formed by disregarding the high order
terms in ~, which is to say that

ψgen ≈ ψWKB(x) = |E − V |−1/4 exp

(
±i~−1

∫ x√
E − V (x′) dx′

)
. (2.47)

There is one more wrinkle to iron out, which is that of the potential needing
to be “approximately constant,” an implicit assumption to the validity of the WKB
approximation. How to make this concrete? Our set of equations (2.43) was derived
assuming that powers of ~ could indeed be used to indicate the size of the various
terms, and hence set each power to zero individually. That is to say, we implicitly
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assumed that ~f ′1 6∼ f ′0 in size, otherwise the O(~0)-equation would have had to read
2f ′0f

′
1 + (f ′0)

2 + V − E = 0. As such, we effectively assumed that

|f ′0| � |~f ′1| ⇐⇒ |(f ′0)2| �
∣∣−1

2
i~f ′′0

∣∣
⇐⇒ |E − V | �

∣∣∣∣ −i~V ′4
√
E − V

∣∣∣∣
⇐⇒ |4i~−1| �

∣∣∣∣ −V ′

(E − V )3/2

∣∣∣∣ , (2.48)

or more cleanly without signs and the multiplier 4:∣∣∣∣ V ′

(E − V )3/2

∣∣∣∣� ~−1. (2.49)

This is the condition which must be fulfilled in order for WKB to be a valid approxima-
tion. Note that physically, this means what we already presupposed: that the potential
is restricted in how quickly it can vary, and that that restriction depends on the en-
ergy of the wave. In other words, it makes concrete the qualification “approximately
constant.”

On one additional note: the quantity
∫ √

E − V (x′) dx′, or with its proper bounds,
has already been making quite an appearance, and will continue to do so for the rest
of the text. As such, it will be economical to introduce some notation to shorten this.

Notation 2.12 (WKB-style integral). We denote by I ·· the integral

Iba :=

∫ b

a

√
E − V (x′) dx′ , (2.50)

when it is clear about which potential V we are talking. Furthermore, we keep this
same notation when we, later on, complexify the energy E → E .

One evident flaw of WKB is that it cannot handle the case E = V (x0) for some x0:
the approximation (and validity condition) explode. We call such x0 turning points,
and they are a critical exception to WKB’s validity as presented. As such, for WKB
to be a useful approximation, we need a way to deal with these turning points. We
explore the remedy in the next subsection.

2.4.2 Connection Formulae

When the turning point is isolated (which is to say, when V ′(x0) 6= 0, see Figure 2.2),
there is a method by which we can get around the problem of WKB blowing up—
literally. Namely, comparing the regions just before and just after a turning point,
they are both regions where the WKB approximation is valid, albeit that

√
E − V has

switched from real to imaginary (or vice versa).
Since we now explicitly wish to consider the case where E ≤ V (x), a convention

needs to be chosen for the square root. For reasons that we will get into in section 3.1,
we shall use the convention that

x < 0 =⇒
√
x = −i

√
−x. (2.51)
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Figure 2.2: Illustration of turning points with V ′(x0) 6= 0. (Source: [12, Fig. 7.1])

This also means that some of the WKB-style integrals Iba will become complex-valued.
That is to say, if E−V (x) is negative over the interval of integration [a, b], then Iba will
be an imaginary number. We do not introduce additional notation to indicate this.

By the above reasoning, we should be able to deduce what the WKB-approximated
wavefunction looks like after the turning point, given that we know how it looks before
it. This is the topic of the following Proposition.

Proposition 2.13 (Connection formulae). Given the situation as in Figure 2.2, we
have that the WKB formula after the relevant turning point in terms of the one before
it is given by

A exp
(
i~−1Iax

)
+B exp

(
−i~−1Iax

)
←→ i(e−iπ/4B − eiπ/4A) exp

(
i~−1Ixa

)
+ 1

2
(Aeiπ/4 +Be−iπ/4) exp

(
−i~−1Ixa

)
(2.52a)

for the turning point a, and

A exp
(
i~−1Ibx

)
+B exp

(
−i~−1Ibx

)
←→ e−iπ/4(B + iA/2) exp

(
i~−1Ixb

)
+ eiπ/4(B − iA/2) exp

(
−i~−1Ixb

)
(2.52b)

for the turning point b (excluding the scale factors |E − V |−1/4 out front). These two
formulae are called the connection formulae.

Proof. We will not derive these formulae from scratch, instead simply taking them
from Merzbacher [12, (7.34) & (7.35)]—a derivation of these can naturally be found
there.

Then it rests us to rewrite so that we are left with exponentials instead of sines
and cosines. For the turning point a, observe that we can rewrite

2A cos
(
~−1Iax − π/4

)
−B sin

(
~−1Iax − π/4

)
= e−iπ/4(A+ iB/2)︸ ︷︷ ︸

Ã

exp
(
i~−1Iax

)
+ eiπ/4(A− iB/2)︸ ︷︷ ︸

B̃

exp
(
−i~−1Iax

)
, (2.53)

so that we have the transformation(
Ã

B̃

)
=

(
e−iπ/4 ie−iπ/4/2
eiπ/4 −ieiπ/4/2

)(
A
B

)
⇐⇒

(
A
B

)
= −i

(
ieiπ/4/2 ie−iπ/4/2
e−iπ/4 −e−iπ/4

)(
Ã

B̃

)
.

(2.54)
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The first connection formula (2.52a) is then found when replacing the lhs of [12, (7.34)]

with (2.53), rewriting into Ã and B̃, and also noting that in Merzbacher κ(x′) = ik(x′).
(Final step is to remove the tildes everywhere.)

Regarding the second connection formula (2.52b): observe that from Merzbacher
we have that the second connection formula is

B exp
(
i~−1Ibx

)
+ A exp

(
−i~−1Ibx

)
←→ 2A cos

(
~−1Ixb − π/4

)
−B sin

(
~−1Ixb − π/4

)
?
= e−iπ/4(A+ iB/2) exp

(
i~−1Ixb

)
+ eiπ/4(A− iB/2) exp

(
−i~−1Ixb

)
, (2.55)

where for ? we used (2.53). The formula as presented is then recovered by switching
A↔ B.

Interestingly, the connection formulae do not depend on the slope at the turning
point. This is a reflection of the fact that the connection formulae transport the
wavefunction from one region where WKB applies to another. And since the WKB
approximation does not depend on the slope of the potential (except for the validity
condition), neither do the connection formulae.

We also note that the connection formulae as written are linear transformations of
the coefficients A and B, between the respective spaces. As such, we can write the
connection formulae as matrix operators:

A :=

(
−ieiπ/4 ie−iπ/4

eiπ/4/2 e−iπ/4/2

)
(2.56a)

for the type-a turning point, and

B :=

(
ie−iπ/4/2 e−iπ/4

−ieiπ/4/2 eiπ/4

)
(2.56b)

for the type-b turning point, where both matrices transform between the spaces

span{exp
(
i~−1Ipx

)
, exp

(
−i~−1Ipx

)
} → span{exp

(
i~−1Ixp

)
, exp

(
−i~−1Ixp

)
}, (2.56c)

assuming that p is the turning point in question. These matrices are written in the
natural of bases of the respective involved spaces.

The matrices invite us to evaluate the effect of passing two turning points as simply
multiplying them: calculate B(p2)A(p1) for two turning points p1 and p2, and act with
that on the wavefunction. A quick calculation shows that B(p2)A(p1) = I—life can
be this simple!

Alas, too simple. The critical observation debunking our thinking is that the
transport of passing through two turning points should depend on what happens in
between, which it does not currently. For example, a broad hump in the potential
should yield a markedly different effect than a skinny one, yet nowhere does this
become apparent currently; we are missing an ingredient. We will remedy this in
the following section, and use this remedy to create a matrix representation of the
WKB-applicable potential with which we are dealing.
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Figure 2.3: Effect of F, in conjunction with the matrices A and B.

2.4.3 Description of potential

The insight is that, after passing turning point p1, we first have to transport the
wavefunction to “before” the turning point p2 before we can apply operation B(p2).
In the language of equation (2.56), we still need to find a transformation F so that

F(p1 → p2) : span{exp
(
i~−1Ixp1

)
, exp

(
−i~−1Ixp1

)
}

−→ span{exp
(
i~−1Ip2x

)
, exp

(
−i~−1Ip2x

)
}. (2.57)

Only then can we bona fide transport the wavefunction through both turning points
a and b.

We recognize the simple identity

Ip2p1 = Ixp1 + Ip2x ⇐⇒ Ixp1 = Ip2p1 − I
p2
x . (2.58)

So, an element of span{exp
(
i~−1Ixp1

)
, exp

(
−i~−1Ixp1

)
} looks like

c1 exp
(
i~−1Ixp1

)
+ c2 exp

(
−i~−1Ixp1

)
=
[
c2 exp

(
−i~−1Ip2p1

)]
exp
(
i~−1Ip2x

)
+
[
c1 exp

(
i~−1Ip2p2

)]
exp
(
−i~−1Ip2x

)
(2.59)

(arbitrary constants c1,2). As such, the choice of F is

F(p1 → p2) :=

(
0 exp

(
−i~−1Ip2p1

)
exp
(
i~−1Ip2p1

)
0

)
, (2.60)

which is written in the natural bases of the spaces in equation (2.57). See also Figure
2.3.

There is one more observation to make before we can fully describe the effect of
the potential on the solution. Namely, starting from −ν, the first turning point we
encounter will be of type a: V (−ν) = 0 and E > 0, so V ′ at the turning point must
be positive. The next turning point, then will be type b: we need to come from above
in order to meet V = E again at the turning point. Then the next turning point (if
any) will be type a again, and so on, and so forth. That is to say, the turning points
alternate in appearance. It is moreover not difficult to see that the amount of type a
and b turning points needs to be equal (we need to end at V (ν) = 0 again).

For some chosen E, identify the turning points pj, j = 1, 2, . . . , n, ordered so that
p1 < p2 < · · · < pn. Then, we can describe the transform of the solution from −ν to
ν as

P := F(pN → ν) B F(pN−1 → pN) A . . .B F(p1 → p2) A F(−ν → p1). (2.61)
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Indeed, the first F takes us to the first turning point, which effect, being of type a, is
then described by A. Following that, the next F takes us to the next turning point,
which effect we take into account by B. Then another F for the next turning point,
and so, and so forth, until we finally use F to go from the final turning point to the
exit at ν. Thus, we see that the matrix P so constructed is such that

P : ψ|x≈−ν 7−→ ψ|x≈ν : span{exp
(
i~−1Ix−ν

)
, exp

(
−i~−1Ix−ν

)
}

−→ span{exp
(
i~−1Iνx

)
, exp

(
−i~−1Iνx

)
}, (2.62)

written in the natural bases of the involved spaces.
Since we know the anatomy of P, we can prove the very useful Lemma below.

Lemma 2.14 (P is involutory). Assume that V is symmetric. Then, the matrix P is
involutory, i.e. P2 = I.

Proof. In a symmetric potential, turning points must come in pairs (p,−p): V (x) =
V (−x), so if V (p) = E, then V (−p) = E as well. Following the earlier identification,
this means that pn = −p1, pn−1 = p2, et cetera. This is well-defined (i.e. n is even),
as the amount of type a and b turning points are equal to each other and each one is
followed by the other.

Now, place two copies of the product (2.61) after each other, and consider the
middle section of this product:

P P = . . .F(−p1 → −p2) A F(−ν → −p1) F(p1 → ν) B F(p2 → p1) . . . . (2.63)

The middle term evaluates to

F(−ν → −p1)F(p1 → ν) =

(
0 exp

(
−i~−1I−p1−ν

)
exp
(
i~−1I−p1−ν

)
0

)(
0 exp

(
−i~−1Iνp1

)
exp
(
i~−1Iνp1

)
0

)
=

(
exp
(
i~−1[����

��
Iνp1 − I

−p1
−ν ]

)
0

0 exp
(
i~−1[����

��
I−p1−ν − Iνp1 ]

))
= I, (2.64)

where the cancellation holds as

Iνp1 =

∫ ν

p1

√
E − V (x) dx = −

∫ p1

ν

√
E − V (x) dx

=

∫ −p1
−ν

√
E − V (−y) dy , with y = −x

=

∫ −p1
−ν

√
E − V (y) dy

= I−p1−ν . (2.65)

So the two Fs in the middle cancel. The next middle matrix product is AB = I,
so these cancel as well. Then there are two more Fs which cancel due to symmetry
guaranteed by the “opposing” turning points (as above), then another BA pair, and
so forth. All the matrices will cancel with their (eventual) neighbor, leaving us with a
product total of I. Hence, P2 = I.
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3 Resonances

In this section we will attempt to give meaning to the concept of a “resonance” in
a quantum system. How is it defined, and how does that definition relate to other
quantities such as the wavefunction of the system?

The mental image we will be relying on is that of a classical, elastic scattering
experiment: we shoot a particle at a target, and then we look at its behavior (reflection
or transmission) as a function of energy. Or, emulating quantum physics, we consider
a stream of particles and look at the proportion that is transmitted through the target.

In particular, we will be interested in the phenomenon of resonant scattering. When
this happens, the particle and target will form a “whole,” in the sense that the entire
system may be described by an eigenstate of the Hamiltonian, which then proceeds
to decay in time. Or, borrowing the words of Moiseyev, “When the lifetime of the
particle—target system in the region of interaction is larger than the collision time in
a direct collision process we call the phenomenon a resonance phenomenon” [13].

We shall investigate this using quantum mechanics as described by the Schrödinger
equation. In that spirit, we note that we are justified in studying this problem utiliz-
ing the time-independent equation only. After all, once we have found the stationary
solutions, the time-dependent situation should follow by means of wavepacket con-
structions.

The model we will be relying on throughout this (and the next) section is delineated
below.

1. Utilize the Schrödinger equation:

− ~2
d2ψ

dx2
+ V (x)ψ(x) = Eψ(x), (3.1a)

where we recall the assumption concerning the mass of the particle 2m ≡ 1.

2. Assume a real, bounded, compactly supported potential:

V : R −→ R s.t. V (x) = 0 if |x| > ν for some ν > 0. (3.1b)

Here by bounded we mean that there exists some M ≥ 0 s.t. |V (x)| ≤M for all
x. This then also excludes potentials like Coulomb, for which V (x) ∝ x−2.

3. Split the different regions of the wavefunction as follows:

ψfull(x) =


exp(ikx) + L exp(−ikx) if x < −ν
ψint(x) if x ∈ [−ν, ν]

S exp(ikx) if x > ν

, (3.1c)

where k is such that E = ~2k2, and S and L are complex-valued and known as
the transmission and reflection amplitudes, respectively. (Notice also the link
back to the scattering matrix S, as discussed in section 2.3.)

We will be interested in L and S, as these tell us about the result of the interaction
between particle and target. We can immediately deduce that to each k there corre-
sponds only one unique S, L ∈ C, due to uniqueness of solutions of ODEs. As such,
we recognize S = S(k) and L = L(k) as generally complex-valued functions of k.
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Figure 3.1: Sketch of our scattering model, in which we are interested in the (properties
of the) complex-valued functions S(k) and L(k).

There are two footnotes that need to be made concerning this model. The first is
that the ψ we are so deriving will not be a normalizable function, so that it is also
not a bona fide wavefunction. More pressingly, we need to reconsider the implicit
assumption of E being a strictly real number. Let us illustrate this by means of an
example. Consider a Hamiltonian permitting two eigenstates |ψ1,2〉 with associated
energies E1,2. Starting from a normalized superposition |α〉 = c1 |ψ1〉 + c2 |ψ2〉, the
probability to measure |α〉 after time t is

Pr(measure α after time t) = | 〈α| U(t)|α〉 |2

= |c∗1 〈ψ1|+ c∗2 〈ψ2|)
× (c1 exp

(
−i~−1E1t

)
|ψ1〉+ c2 exp

(
−i~−1E2t

)
|ψ2〉)|2

= ||c1|2 exp
(
−i~−1E1t

)
+ |c2|2 exp

(
−i~−1E2t

)
|2

= |c1|4 + |c2|4 + 2|c1c2|2 cos((E2 − E1)t/~), (3.2)

which is periodic: when we start in |α〉, we are guaranteed to return to it after time
T = 2π~/|E2 − E1|. However, for modeling decay we specifically do not want any
manner of periodicity; characteristic of a decay is that it is a one-way process.

The solution to this contradiction is to consider the energy to be complex instead;
this will allow for decay of states to occur. Exploring this idea will be the first order
of business in the rest of this section. After that, we shall by means of the resolvent
operator formally define what is meant by a resonance, and see that it is related to
the function S(k) that we introduced above. In fact, we will make the case to define
resonances in terms of poles of (the meromorphic continuation of) S(k). After giving
some more properties of the function S(k), we close this section by showing that the
derived properties also hold for potentials which are decreasing sufficiently quickly.

3.1 Complexifying energy

To codify that we are now (generally) dealing with complex energies, we will from
now on use the symbol E to emphasize this fact. However, since the real part of these
energies will still be important, we maintain E to indicate whenever we consider our
energies purely real. Let us additionally introduce the following notation, simplifying
indicating real and imaginary parts.

23



Scholtens, R. W. A Transparent View on Resonances

Notation 3.1 (Shorthand real and imaginary part). For any z ∈ C, we write

zR := Re z and zI := Im z. (3.3)

Let us make the decomposition E = ER + iEI. The role of ER should be clear;
what does adding an imaginary part to the energy mean? To illustrate, consider |ψ〉
as an eigenstate of the Hamiltonian with said complex energy E . The probability of
measuring this state after some time t > 0 has elapsed is given by

Pr(measure ψ after time t) = | 〈ψ| U(t)|ψ〉 |2, (3.4)

where U(t) := exp(−i~−1tH) is the time-evolution operator, withH the time-independent
Hamiltonian operator cf. (2.2). Working this out, we have

| 〈ψ| U(t)|ψ〉 |2 = | exp
(
−i~−1Et

)
〈ψ|ψ〉 |2 = exp

(
2~−1EIt

)
. (3.5)

So, with time, the probability of measuring our original state will decay—even though
it is an eigenstate, which is persistent over time for real energies (indeed, for EI = 0
the probability equals 1 for all time).

Thus we conclude that the introduced imaginary component of the energy makes it
so that even if we start out in an eigenstate, we may not observe this anymore later in
time. That is to say, the state “decays” in time. Note that for this mental picture to
make sense, we need to enforce that EI ≤ 0; should the opposite be true, the relevant
probability would increase and exceed 1, which is absurd.

The above realizations thus motivate us to make the following definition.

Definition 3.2 (Decay rate & lifetime). We define Γ > 0 to be

Γ := −2~−1EI ⇐⇒ EI = −~Γ/2 (3.6)

to be the decay rate of the state with energy E . The quantity Γ−1 is the lifetime of
the state.

In this way, the rhs of (3.5) may be rewritten to exp(−Γt), which naturally justifies
the name given to Γ (and also justifies the additional factor of 1/2). The complex
energy E can now be written as

E = E − i~Γ/2, (3.7)

where E is the energy of the particle-target compound and Γ says something about
the lifetime of the interaction. This is the form of the complexified energy that is also
commonly found in literature.

Complexifying the energy also implies, through the relation E = ~2k2, that the
wavenumber must be taken complex. We write k = kR + ikI and substitute into the
above relation to find

E = ~2(k2R − k2I ) and Γ = −4~kRkI. (3.8)

Since we defined Γ < 0, this means that kR and kI should be of differing signs. However,
whether we need to choose kR > 0 > kI or kI > 0 > kR, or whether the choice matters
at all, we cannot establish from this information alone.
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With the aim of making a clear choice between kR > 0 > kI or kI > 0 > kR,
let us consider the probability density ρ(x, t) = |Ψ(x, t)|2 associated with the solution
we are assuming. The probability density is, following Born’s rule, associated with
the location of the particle, in the closest allowable sense. By multiplying the time
evolution on the wavefunction ψfull and simplifying, we find that in the limit of x→∞,

ρ(x, t) = |Ψ(x, t)|2 = | exp
(
−i~−1Et

)
ψfull|2 = |S|2 exp

(
−Γ

[
t− x

2~kR

])
. (3.9)

(Full calculation may be found in Appendix B.) This equation describes that, with
time, the probability density is being translated in space with velocity v := 2kR; the
factor of Γ here controls the “width” of the probability density. Considering Born’s
rule, this expression only makes sense if we consider v > 0; after all, for x > ν there
should only be particles which have come through the target, and these are traveling
towards +∞. Therefore, we must choose kR > 0 and consequently 0 > kI for the real
and imaginary parts of our wavenumbers.

Our choice should be consistent with what is going on on the other side, i.e. where
x → −∞. There, we have two terms with which to contend instead of just one. By
the same strategy of finding the probability density and simplifying as above, we find
for x→ −∞

ρ(x, t) = exp

(
−Γ

[
t− x

2~kR

])
+ |L|2 exp

(
−Γ

[
t+

x

2~kR

])
+ osc. (3.10)

(Once more, full calculation can be found in Appendix B). By the choice kR > 0 > kI
and the same logic as above, we now identify two waves: the first term is right-moving,
and hence towards to the target, and the second is left-moving, towards −∞. This
is also consistent with the roles accorded to the several terms in the solution of the
wavefunction.

In the spirit of scattering theory, another way to characterize the above probability
densities is by their direction of motion with respect to the target. The density for
x→∞, in (3.9), is right-moving, and so it is outgoing with respect to the target. For
x → −∞, which density is given in (3.10), the first term is right-moving also, so it
is incoming to the target. Naturally, then, the second term is also characterized as
outgoing, since it is left-moving away from the potential.

The notions of complex energy and incoming/outgoing states are brought together
in the following definition.

Definition 3.3 (Gamow-Siegert states). An eigenstate ψ of H is called a Gamow-
Siegert (GS) state if it

1. satisfies Hψ = Eψ with ER > 0 > EI, and

2. is purely outgoing at large distance, i.e.

ψ′
x→±∞∼ ±ikψ. (3.11)

One point that warrants an explanation is why we want to consider only purely
outgoing states, instead of states which also have an incoming part like in (3.10). The
reason is that purely outgoing states exist without the presence of a “particle gun”
which is supplying particles into the system. This makes them a “true” model of
natural decay, in which we do not assume that particles are supplied from outside.
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Remark 3.4 (Optical model; target as sink/source). There is an alternative interpre-
tation of complex eigenvalues, based on shifting the imaginary part to the potential:

− ~2
d2ψ

dx2
+ V (x)ψ = (E − i~Γ/2)ψ ⇐⇒ −~2d

2ψ

dx2
+

{
V (x) +

i~Γ

2

}
ψ = Eψ. (3.12)

Complex potentials break the continuity relation for the probability density, in- or
decreasing it instead over time. Interpreting the total amount of probability to be
(proportional to) the total amount of particles under consideration, one can derive the
following relation:

dN

dt
= 2

∫
VI(x)ρ(x) dx , (3.13)

where N is the total number of particles and ρ the density. (see [15, (64)] and the
discussion there for further detail). In this sense, the target acts as a source of parti-
cles, which then is counteracted by particles dissipating off to infinity. This is called
the optical model of studying resonances, as this view can also be utilized to study
reflection/refraction of optical waves interacting at interfaces.

3.1.1 The relation E ↔ k

Throughout the previous subsection we have related k to E by means of E = ~2k2,
allowing us to map k 7→ E without any trouble. It is the reverse relation, E 7→ k, that
is troublesome and so requires some attention. Naively that mapping would be given
by k = ~−1

√
E . However, the two choices we have for

√
E—related by ±—are not

equivalent in this case. As an illustration of why, we need not look further than the
definition of GS states. Here only one choice of k leads to an outgoing state, whilst the
other will definitely not lead to one. As such, ambiguity has arisen when attempting
to relate E to k.

To resolve this ambiguity, we need to somehow “attach” to E the declaration of
which choice of square root (i.e. which choice of k) we need to take when we need to.
Mathematically this means that we should consider E to live on a Riemann surface,
consisting of two (Riemann) sheets, corresponding to the two possible choices of pre-
image of E . There is a great deal of literature concerning Riemann surfaces (see for
instance [6], or [18] for a more gentle treatment), but it comes down to being a way
to “sew together” copies of the complex plane to make for a natural codomain of a
certain function. For our energy Riemann surface, we sew the two copies along the
positive real axis, recognizing 0 to be the branch point (E = 0 7→ k = 0, regardless of
which sheet we should be on). This yields a mental image like in Figure 3.2.

For our purposes, though, it will be good enough to simplify the Riemann surface
at hand by means of C× {I, II}, where the Roman numerals indicate which sheet we
are on, and consequently which k to associate with E—see Figure 3.3. Thus, effectively
the positive axis is a “portal” by which we can traverse between the two sheets.

It then remains us to define the square root for the two sheets, which we do next.

Definition 3.5 (Definition of square roots). On the Riemann surface of the function
k(E) = ~−1

√
E , on the two sheets we define the square roots as follows.

1. On sheet I, we have arg
√
E ∈ [0, π) ⇐⇒ Im

√
E > 0 for E 6∈ (0,∞).
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Figure 3.2: “Sewed together” picture of the Riemann surface for the function k =
~−1
√
E . (Source: [15, Fig. 4])

2. On sheet II, we have arg
√
E ∈ [π, 2π) ⇐⇒ Im

√
E < 0 for E 6∈ (0,∞).

An observation to make is that on the first sheet, the purely outgoing solutions
will be square-integrable: kI > 0 implies ±ikx has negative real part for x→ ±∞, so
|ψ|2 will decay exponentially. That is to say that any wavefunction will have to have
its energy on the first sheet. (We will also see later that here is where bound states
live.) For this reason, the first sheet is also known as the physical sheet.

In contrast, the alias of the second sheet is the unphysical sheet, as there the
outgoing solutions grow exponentially for extreme x, making it so they will definitely
not be wavefunctions. Despite this inconvenience, the unphysical sheet will be getting
most of our attention, as that is where the situation kR > 0 > kI can occur, and where
the interesting, yet-to-be-defined resonances are located.

3.2 Resolving the definition

With what we have learned about S(k) in the above, we can almost make a working
definition of resonances. Since this working definition is dependent on the formal
definition, though, we need to first spend some time on learning about it. To do this,
we have to get acquainted with the resolvent operator of a certain system.

Definition 3.6 (Resolvent operator v1). For E ∈ C, we define as the resolvent R(E)
to be the operator which satisfies

(H− E)R(E)ψ = R(E)(H− E)ψ = ψ, (3.14)

for all ψ ∈ L2.

In effect, the resolvent is the “inverse” of the Schrödinger operator H − E . The
above describes the resolvent operator, but it does not give us a concrete expression
to calculate it. This we address in the following Lemma, which relates the resolvent
to the time-evolution operator, and so may also provide some intuition for it.

27



Scholtens, R. W. A Transparent View on Resonances

(a) Sheet I (b) Sheet II

Figure 3.3: Two separate complex planes picture. Each plane represents a sheet of
the Riemann surface, with an example loop traversing both sheets. The green dashed
horizontal is the branch cut (0,∞), and the red cross is the branch point 0.

Lemma 3.7 (Resolvent as Laplace transform). We have that

R(E) = i~−1
∫ ∞
0

exp
(
i~−1Es

)
U(s) ds for EI > 0, (3.15)

where U(t) := exp(−i~−1tH) is the time evolution operator. In this way, it is the
Laplace transform of said time evolution operator.

Proof. This proof is heavily inspired by [10, §2.2]. We shall show that for the rhs of
(3.15), it commutes with H− E and their product yields identity I.

Let us define UE(t) := exp(−i~−1t(H− E)). Now observe that

−i~−1(H− E)

∫ ∞
0

exp
(
i~−1Es

)
U(s) ds = lim

ε→0

UE(ε)− I
ε

∫ ∞
0

UE(s) ds

?
= lim

ε→0

1

ε

[∫ ∞
0

UE(s+ ε) ds−
∫ ∞
0

UE(s) ds
]

= lim
ε→0

1

ε

[∫ ∞
ε

UE(s) ds−
∫ ∞
0

UE(s) ds
]

= lim
ε→0

−1

ε

∫ ε

0

UE(s) ds

= −I, (3.16)

where in ? we utilized the identity

UE(t1)UE(t2) = UE(t2)UE(t1) = UE(t1 + t2). (3.17)

This identity also shows that H− E and the integral commute. As such, we see that
indeed

R(E) = (H− E)−1 = i~−1
∫ ∞
0

U(s)ei~
−1Es ds , (3.18)

as we intended to show.
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As a result of this Lemma, we can study the effect of the resolvent operator on a
state by means of the time-evolution operator. Assume that we have a Hamiltonian
H0 which admits discrete bound states ψj with corresponding energies Ej < 0, and
has continuous spectrum for E > 0. We can decompose some ψ ∈ L2 in terms of the
bound states, ψ =

∑
j αjψj, and evaluate the effect of the resolvent:

R(E)ψ = i~−1
∫ ∞
0

exp
(
−i~−1Es

) [∑
j

αjψj

]
ds

= i~−1
∑
j

αjψj

∫ ∞
0

exp
(
i~−1(E − Ej)s

)
ds . (3.19)

There is a problem appearing in this expression: it will diverge if either i) EI ≤ 0, or
ii) E = Ej for some j. Since the case i) includes ii), we can solve this problem by
requiring in the definition of the resolvent that EI > 0.

However, this restriction creates another problem. We have defined above that GS
states require EI < 0, and so with the restriction EI > 0, the resolvent operator cannot
work on GS states. This could be solved by means of a continuation of the resolvent
operator into EI ≤ 0, but there is a fundamental issue here. Suppose that E > 0
lies in the continuous part of the spectrum of H0 and that ψE is its corresponding
eigenfunction. Then we find that

R(E)(H0 − E)ψE = R(E)0 = 0 6= ψE, (3.20)

where 0 is the zero function. This means that the resolvent operator has a pole at the
energy E. However, since E was arbitrary and lies in the continuous spectrum of H0,
the resolvent in fact has a continuum of poles along the positive real axis. As such,
the resolvent would not be able to be meromorphically continued (for which all poles
must be isolated).

We could now be at peace with a resolvent operator continued into EI < 0 that is
not meromorphic. However, that means additional trouble in the continuation itself.
Declaring this definition too problematic, we need to reconsider it.

The resolution is to augment the definition of the resolvent operator with an addi-
tional condition. For clarity, this is written down below in a new Definition.

Definition 3.8 (Resolvent operator v2). For k ∈ C : kI > 0, we redefine the resolvent
operator R(k) : L2 → L2 to be the operator satisfying

1. (H− ~2k2)R(k)ψ = R(k)(H− ~2k2)ψ = ψ for all ψ ∈ L2

2. R(k)φ is purely outgoing, i.e.

R(k)φ ∝

{
exp(ikx) for x > ν

exp(−ikx) for x < −ν
. (3.21)

As it turns out, with this definition a meromorphic continuation is possible, as is
the topic of the following Theorem.
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Theorem 3.9 (Meromorphic continuation of the resolvent). The resolvent operator
R(k) can be extended to a meromorphic family of operators for k ∈ C, when considering
it to run over the spaces

R(k) : L2
com −→ L2

loc, (3.22)

instead of L2 → L2. Here, L2
com is the space of L2 functions with compact support, and

L2
loc the space of functions locally in L2, which is to say

L2
loc =

{
q : R→ R :

∫ A

−A
|q|2 dx <∞ for all A > 0

}
. (3.23)

Proof. For a formal proof, see [3, §2.2].

Why do the spaces need to be chosen in this particular way to furnish the continu-
ation? Let us try to gain an intuition by considering the case on the positive real line.
That the image now should be L2

loc instead of L2 comes from the outgoing condition:
the outgoing waves are clearly in L2

loc for kI ≤ 0, but not in L2. In turn, then, that the
domain is curtailed to L2

com stems from the fact that when operated on by H− ~2k2,
a purely outgoing function will have a compact support. That is to say,

H− ~2k2 : {φ : φ ∈ L2
loc & φ purely outgoing} −→ L2

com, (3.24)

as purely outgoing functions satisfy the Schrödinger equation outside of the support
of V . This does not constitute a full proof of the chosen spaces, but should show the
interplay between the two.

With this construction done, we can finally properly define resonances.

Definition 3.10 (Resonance). A resonance is a pole of the resolvent R (as defined
in Definition 3.8, and including in its meromorphic continuation to the lower-half k-
plane). More concretely, for φ, ψ ∈ L2

com, a resonance is a pole of the meromorphic
continuation of the inner product 〈φ,R(k)ψ〉.

Owing to the problem ii) identified for equation (3.19), we would suspect that there
are poles occurring there where the energy corresponds to one of the bound states of
the Hamiltonian. This is indeed correct, as we will show in the next Proposition.

Proposition 3.11 (Bound states). A resonance located at k with kI > 0 must have
that it is purely imaginary, i.e. k = iκ for some κ > 0. The associated state is called
a bound state, and its energy E = ~2k2 < 0 is a bound state energy.

Proof. Let k : kI > 0 be such that a resonance occurs, which means that there is a
solution of the Schrödinger equation which is purely outgoing. Moreover, since kI > 0,
the real part of the exponent ±ikx will be negative for x→ ±∞, so that the solution
will exhibit exponential decay to both sides, making it square-integrable. As such, the
solution is a bona fide wavefunction solution to the Schrödinger equation.

The existence of a wavefunction as eigenfunction of the Hamiltonian means that
the associated energy E must be a real number, due to self-adjoint-ness. Then, kI > 0
and E being real can only be unified if we conclude that E < 0 and k is purely
imaginary.

30



Scholtens, R. W. A Transparent View on Resonances

Figure 3.4: Example of locations of resonances in the k-plane (indicated by solid black
dots). The resonances on the vertical axis represent bound states. (Source: [15,
Fig. 4].)

Bound states are called this way as their negative energy does not allow them to
exist “outside” of the potential, thus binding them inside.

Furthermore, the resolvent has a symmetry property which is also carried over
in the meromorphic continuation. This comes from the observation that, for some
φ ∈ L2

com, we have

[R(k)φ]∗
x>ν∝ exp(ikx)∗ = exp(i(−k∗)x) ∝ R(−k∗)φ, (3.25)

and similarly for x < −ν. Combined with linearity, this suggests that R(−k∗) ∝
[R(k)]∗ as operators, over the whole real line. In fact equality can be shown, for which
details see [3, (2.2.13)]. As such, we expect resonances to come in pairs, which lie
symmetrically around the imaginary axis.

The above two considerations thus describe where resonances could be located in
the complex k-plane: either on the positive imaginary axis, or in pairs in the lower half
plane mirrored in the imaginary axis. The resulting structure is sketched in Figure
3.4. In addition, the various resonances have names owing the way in which they
appear in the calculation, i.e. from which feature of the potential they are “derived.”
A representative sketch of these may be found in Figure 3.5, but we will not delve
further into the specific meaning of the different types of poles than we have done
thusfar.

So far we have defined resonances and see where they have to be located in the
complex k-plane, but how can we actually locate these? We introduce the following
crucial Proposition.

Proposition 3.12 (Resonances and linear (in)dependence). Let φ1,2 be the solutions
to Hψ = ~2k2ψ for some k, such that

φ1 = exp(ikx) for x > ν and φ2 = exp(−ikx) for x < −ν. (3.26)

Then, the resolvent will have a pole at k if and only if the solutions φ1,2 are linearly
dependent.
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Figure 3.5: Pole names in the k-plane, classified by means of classical mechanics (in
green are the discussed bound states) (Source: [3, Fig. 1.8]).

Proof. Let us prove both directions separately, though they have many steps in com-
mon.

=⇒ Suppose φ1,2 are linearly independent. Then it follows that neither is purely
outgoing; indeed, if w.l.o.g. φ1 were purely outgoing, then φ1 ∝ φ2 for x < −ν,
which by uniqueness implies φ1 ∝ φ2 everywhere. As such, we can write

(H− ~2k2)R(k)0 = 0 =⇒ R(k)0 ∈ ker(H− ~2k2)
=⇒ R(k)0 ∈ span{φ1, φ2}
=⇒ R(k)0 = 0. (3.27)

The last line follows as 0 is the only element in span{φ1, φ2} which is purely
outgoing. As such, we conclude that no pole occurs in this case. Thus, by
contrapositive, a pole occurring implies that φ1,2 are linearly dependent.

⇐= Now suppose that φ1,2 are linearly dependent. This means that φ1 ∝ φ2, and as
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such that both are purely outgoing. We repeat the reasoning from above:

R(k)(H− ~2k2)0 = 0 =⇒ R(k)0 ∈ ker(H− ~2k2)
=⇒ R(k)0 ∈ span{φ1}. (3.28)

This is as far as we can get with determining what R(k)0 equals; in principle the
resolvent of 0 could be any solution to the Schrödinger equation, not necessarily
needing to be zero. As such, we encounter a pole of the resolvent, and hence a
resonance.

Since we have now shown both directions, the proof is complete.

This Proposition shows that the occurrence of resonances is linked with the (non-
)degeneracy of the space of solutions to the Schrödinger equation: when it becomes
one-dimensional, a resonance occurs.

Checking linear (in)dependence of solutions of the Schrödinger equation is not a
very scalable method, though, not in the least because we would first need to solve the
equation to find them. For this reason, we aim to find a simple formula or condition
from which we can deduce (in)dependence of the solutions. As we shall discuss in the
upcoming section, this will be accomplished by means of the Wronskian, and relating
it to the scattering amplitude S(k).

3.3 The function S(k)

It is here that we want to reintroduce the function S(k), first defined in the model
(3.1c), but tucked away since then. Besides being able to tell us something about the
solution (in)dependence (as we will show momentarily), its use also lies in the fact
that we can find an algebraic expression to define it, not just a numerical one (as we
had shown in the preliminaries to be the case). This will allow us to—later in the
section—derive properties of S(k).

3.3.1 Dependence relation

Following up from Proposition 3.12, let us recall the two solutions of the Schrödinger
equation φ1,2, and let us emphasize the dependence on k by parsing this as an argument:
φ1,2 ≡ φ1,2(k). In the limit of |x| > ν, these solutions exhibit the behaviors

φ1(k) = exp(ikx) for x > ν and φ2(k) = exp(−ikx) for x < −ν. (3.29)

We note that, due to these behaviors, these functions can be used as bases for every
other solution by looking at their behavior for |x| > ν. For example, if χ(x) is a
solution, then

χ(x)|right = χ+ exp(ikx) + χ− exp(−ikx) = χ+φ1(k) + χ−φ1(−k), (3.30)

for relevant constants χ+, χ− ∈ C. Thus, we can express χ for x > ν as a superposition
of φ1(k) and φ1(−k). Similarly, we can express χ|left in the basis {φ2(k), φ2(−k)}.

In fact, this expression in terms of a basis locally (i.e. only for |x| > ν) holds
globally, due to the uniqueness. This pivotal fact we use to our advantage. Let us
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establish that in the case we are considering (referring back to (3.1c)), we can make the
identifications φ1(±k) = exp(±ikx) on x > ν and φ2(±k) = exp(∓ikx) on x < −ν.
We then observe that

ψfull|x>ν = S(k)φ1(k)|x>ν
?

=⇒ ψfull = S(k)φ1(k) (3.31a)

and

ψfull|x<−ν = φ2(−k) + L(k)φ2(k)
?

=⇒ ψfull = φ2(−k) + L(k)φ2(k), (3.31b)

which combination implies directly that we must have

S(k)φ1(k) = φ2(−k) + L(k)φ2(k). (3.32)

The implications ? in (3.31) hold because of uniqueness of solution to ODEs. From
this equality, then, we can directly show the following crucial Lemma.

Lemma 3.13 (Solution (in)dependence). We have that

S(k)−1 = −(2ik)−1[φ1(k), φ2(k)] for |x| > ν and k 6= 0, (3.33)

where [f, g] := fg′ − f ′g is the Wronskian (determinant) of functions f and g, and
prime indicates differentiation w.r.t. x. (Cf. [2, §2.3].)

Proof. Let us prove this first for x < −ν. We calculate:

[φ1(k), φ2(k)] = S(k)−1[S(k)φ1(k), φ2(k)]

= S(k)−1[φ2(−k) + L(k)φ2(k), φ2(k)]

= S(k)−1
(
{φ2(−k) +���

���L(k)φ2(k)}φ′2(k)− {φ′2(−k) +���
���L(k)φ′2(k)}φ2(k)

)
= S(k)−1 (φ2(−k)φ′2(k)− φ′2(−k)φ2(k)) . (3.34)

Now we invoke the assumption of x < −ν, so we have φ2(k) = exp(−ikx). Hence:

φ2(−k)φ′2(k)− φ′2(−k)φ2(k) = exp(ikx)×−ik exp(−ikx)− ik exp(ikx)× exp(−ikx)

= −2ik, (3.35)

which we can then combine with (3.34) to find

[φ1(k), φ2(k)] = −2ikS(k)−1, (3.36)

completing the proof for x < −ν.
For the case x > ν, note that by the reasoning leading up to (3.32) and making

the substitution x→ −x, we can derive the relation

S(k)φ2(k) = φ1(−k) + L(k)φ1(k) = ψfull(−x) (3.37)

Starting from this relation, we follow the steps as for the case x < −ν to show x >
ν.
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It follows directly that if S(k)−1 = 0 for some k, the solutions φ1,2(k) must be
linearly dependent on each other, i.e. φ1(k) ∝ φ2(k). And, following from Propo-
sition 3.12, we have that in the case of linearly dependent solutions, a resonance is
encountered for that specific k. This invites us to fuse the result of Lemma 3.13
with Proposition 3.12 in order to form a condition for resonances based solely on the
transmission amplitude S(k). The result is the below definition.

Definition 3.14 (Resonance through S(k)). We shall call a pole of the function S(k),
as defined through (3.1c), a resonance.

This definition will prove valuable to the later parts of this thesis, as computing
S(k) is easier than finding the resolvent.

Up to this point, though, the function S(k) has only been defined implicitly from
the setting we are studying. This we will strive to remedy in the next subsection,
where we intend to describe S(k) algebraically. Concretely, we will show that S(k) is
meromorphic on the upper half of the complex k plane. This will then furnish a con-
tinuation to the entire k-plane, just like for the resolvent, to give us a full description.

3.3.2 Meromorphic structure

To show that the function S(k) is meromorphic, we will stick closely to the analysis
as presented in [2, §2.1-3]. We once more bring to mind the solutions φ1,2(k), chosen
so as to exhibit

φ1(±k) = exp(±ikx) for x > ν and φ2(±k) = exp(∓ikx) for x < −ν. (3.38)

We have already established that {φ1,2(k), φ1,2(−k)} are bases of the solution space in
the regions x > ν resp. x < −ν. In the spirit of regarding these functions more like a
basis, let us simplify them by removing their oscillatory behavior.

Definition 3.15 (Jost function). We define the Jost functions to be

m1,2(x, k) := exp(∓ikx)φ1,2(k). (3.39)

As a consequence, m1,2 will satisfy the Schrödinger-esque equations

− ~2φ′′1,2 + V (x)φ1,2 = Eφ1,2 ⇐⇒ m′′1,2 ± 2ikm′1,2 = ~−2V (x)m1,2, (3.40)

where the prime indicates differentiation w.r.t. x. Furthermore m1,2 = 1 for x > ν
resp. x < −ν, as is apparent from the definition.

Lemma 3.16 (Properties Jost functions). We have the following properties concerning
m1,2(x, k).

1. They satisfy the integral equation relations

m1(x, k) = 1 + ~−2
∫ ∞
x

exp(2ik(t− x))− 1

2ik
V (t)m1(t, k) dt , (3.41a)

and

m2(x, k) = 1 + ~−2
∫ x

−∞

exp(2ik(x− t))− 1

2ik
V (t)m2(t, k) dt , (3.41b)

for all k with kI ≥ 0.
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2. We have that for all x, m1,2(x, k) are analytic for k : kI > 0 and continuous for
kI ≥ 0.

Remark 3.17 (On the restriction on k). The restriction on item 1. in the above
Lemma is not strictly necessary for the case of V with bounded support. We choose to
add this restriction, though, to anticipate the validity of this result also for a broader
class of V—see subsection 3.4 below for further details.

Proof of Lemma 3.16. Since item 2 is more technical and involved, we shall prove only
item 1. For a proof of item 2, refer to [2, Lem. 1].

Observe that from the hypothesis, we have

~2m′1 =
d

dx

[
~2 +

∫ ∞
x

exp(2ik(t− x))− 1

2ik
V (t)m1(t, k) dt

]
=

d

dx

[
exp(−2ikx)

2ik

∫ ∞
x

exp(2ikt)V (t)m1(t, k) dt− 1

2ik

∫ ∞
x

V (t)m1(t, k) dt

]
= − exp(−2ikx)

∫ ∞
x

exp(2ikt)V (t)m1(t, k) dt−����
���

�V (x)m1(x, k)

2ik
+���

���
��V (x)m1(x, k)

2ik

= exp(−2ikx)

∫ ∞
x

exp(2ikt)V (t)m1(t, k) dt , (3.42)

and consequently

~2m′′1 =
d

dx

[
exp(−2ikx)

∫ ∞
x

exp(2ikt)V (t)m1(t, k) dt

]
= −2ik exp(−2ikx)

∫ ∞
x

exp(2ikt)V (t)m1(t, k) dt︸ ︷︷ ︸
=~2m′1

+V (x)m1(x, k). (3.43)

From this last equation, we recognize that (3.40) is fulfilled for m1. Furthermore, as
x→ +∞ the integral will vanish, so that m1 → 1, fulfilling also that requirement.

For m2, the same steps may be followed as above to reach that it too satisfies the
given relation, and m2 → 1 as x→ −∞.

Let us now try to reconnect to the situation at hand. Remembering equality (3.32),
we have that

S(k)φ1(k) = φ2(−k) + L(k)φ2(k)

=⇒ S(k)m1(k) = exp(−ikx)φ2(−k) + exp(−ikx)L(k)φ2(k)

=⇒ m1(k) = S(k)−1[exp(−ikx)φ2(−k) + exp(−ikx)L(k)φ2(k)]
x<−ν
=⇒ m1(k) = S(k)−1[1 + L(k) exp(−2ikx)]. (3.44)

However, thanks to Lemma 3.16, we also have the relation

m1(k) = exp(−2ikx)× ~−2

2ik

∫ ∞
x

exp(2ikt)V (t)m1(t, k) dt

+

{
1− ~−2

2ik

∫ ∞
x

V (t)m1(t, k) dt

}
. (3.45)
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Comparing terms between (3.44) and (3.45), we thus obtain the pair of equalities

L(k)

S(k)
=

~−2

2ik

∫ ∞
x

e2iktV (t)m1(t, k) dt (3.46a)

and
1

S(k)
= 1− ~−2

2ik

∫ ∞
x

V (t)m1(t, k) dt , (3.46b)

where we emphasize that x < −ν. We note that the rhs’s of the above two equations
depend on x, while the lhs’s do not. This is not an error, though: as long as we choose
x < −ν the specific value does not matter, as the integration from x to −ν yields zero
due to the bounded support of V . This fact allows us to make the expression completely
x-independent either by choosing x = −ν, or sending x→ −∞. For reasons that will
become clear in the next section (where we will tinker with the potential function), we
choose the latter of these two. As such, going from (3.46b), we find an expression for
S(k):

1

S(k)
= 1− ~−2

2ik

∫ ∞
−∞

V (t)m1(t, k) dt , kI ≥ 0. (3.47)

Now, by Lemma 3.16, we know that m1 is an analytic function on kI > 0. This
guarantees that S(k)−1 is analytic also provided that the integral expression actually
converges—which it does, as we assume that V has compact support. Thus, S(k)−1

is analytic on the domain kI > 0. As such, its inverse S(k) will in general be a
meromorphic function on that same domain: we cannot exclude the possibility of
S(k)−1 having zeros, potentially giving it poles.

Since the function S(k) is meromorphic, it also permits a meromorphic continuation
to the lower-half of the k-plane. However, we shall not spend so much time on how
precisely we choose to make this continuation. As we will see in Section 4—where we
intend to find S(k) as a bona fide function of k for various situations—the functions
we end up with already allow k to be chosen in the lower half plane without hassle.
Or, put differently, we continue the function S(k) meromorphically by keeping the
expression and simply discarding the condition kI > 0. It is also good to mention
that, like analytic continuation, meromorphic continuation is unique (see for instance
[9, §4.1]). As such, the choice of continuation we are making is unambiguous.

To recap our efforts in this section: we deduced in Lemma 3.13 that S(k) will have
a pole whenever the solutions φ1,2 are linearly dependent, which allowed us to redefine
resonances in terms of S(k). We were then able to find the algebraic expression (3.47)
for the transmission amplitude, showing that it is meromorphic, and valid for kI > 0.
By meromorphic continuation, then, we can extend the validity of this expression to
all of C, and hence also extend our new definition of resonances there.

3.4 Unlocking potentials

So far, in accordance with (3.1b), we only considered bounded potentials V (x) with
compact support, i.e. so that suppV ⊆ [−ν, ν] for some ν > 0. In the above it is
clear that the presented equations hold and make sense whenever this is the case.
However, this does not mean that only such functions would make sense in the above
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equations; we might be able to allow a broader class of potentials into our model, and
still maintain what we have derived above.

Namely, seeing that V only shows up inside an integral, we suspect that instead
of requiring V to have compact support, perhaps only its integral over R needs to
converge. We introduce the spaces

L1
a :=

{
q : R→ R :

∫ ∞
−∞

(1 + |x|)a |q(x)| dx <∞
}

for a ≥ 0. (3.48)

That is to say, an element of L1
a needs to decrease “fast enough” in order to counteract

the growing of the term (1 + |x|)a. Bounded functions with compact support as we
have considered them above form a subset of L1

a for any a: the bounded support makes
the interval of integration finite, which makes the integral finite.

Let us assume now that instead of V being real, bounded, and compactly supported,
we take V ∈ L1

1. Does the above derived, in particular equation (3.47), still make
sense? To answer this, we need to consider the information that the assumption gives
us about the Jost functions m1,2; as the Jost functions are effectively the solutions
under the new potential, they will also be influenced. Once more we refer to [2] as
bringing us this line of reasoning. Starting from (3.41), observe we have for m1 and
under the assumption of kI ≥ 0:

m1(x, k)

1 + |x|
=

1

1 + |x|

(
1 + ~−2

∫ ∞
x

exp(2ik(t− x))− 1

2ik
V (t)m1(t, k) dt

)
≤ 1 + ~−2

∫ ∞
x

exp(2ik(t− x))− 1

2ik
V (t)m1(t, k) dt , (3.49)

from which we derive

|m1(x, k)|
1 + |x|

≤ 1 + ~−2
∣∣∣∣∫ ∞
x

exp(2ik(t− x))− 1

2ik
V (t)m1(t, k) dt

∣∣∣∣
≤ 1 +

~−2

2|k|

∫ ∞
x

| exp(2ik(t− x))− 1|︸ ︷︷ ︸
≤2

|V (t)| |m1(t, k)| dt

≤ 1 +
~−2

|k|

∫ ∞
x

(1 + |t|)|V (t)| |m1(t, k)|
1 + |t|

dt . (3.50)

The bound as presented in the second step holds only for kI ≥ 0; if this restriction is
not maintained, the bounded term could in principle become arbitrarily large in size
(for suitable k). From here we start an iteration procedure. Substitute the inequality
back into itself to obtain

|m1(x, k)|
1 + |x|

≤ 1 +
~−2

|k|

∫ ∞
x

(1 + |t1|)|V (t1)|
[
1 +

~−2

|k|

∫ ∞
t1

(1 + |t2|)|V (t2)|
|m1(t2, k)|

1 + |t2|
dt2

]
dt1

= 1 +
~−2

|k|

∫ ∞
x

(1 + |t1|)|V (t1)| dt1

+
~−4

|k|2

∫ ∞
x

∫ ∞
t1

(1 + |t1|)(1 + |t2|)|V (t1)| |V (t2)|
m1(t2, k)

1 + |t2|
dt2 dt1 ,

(3.51)
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and if we re-substitute this ad infinitum, we obtain the inequality

|m1(x, k)|
1 + |x|

≤ 1 +
∞∑
n=1

~−2n

|k|n

∫ ∞
x

∫ ∞
t1

· · ·
∫ ∞
tn−1

n∏
j=1

(1 + |tj|)|V (tj)| dtj . (3.52)

This expression makes sense as the iteration of a Volterra integral equation. However,
convergence of the rhs of this equation is not yet established. To this end, we introduce
a helpful Lemma which allows us to simplify the above.

Lemma 3.18 (Lots of integrals). Let q be some function such that
∫∞
−∞ |q(t)| dt <∞.

Then, we have that∫ ∞
x

∫ ∞
x1

· · ·
∫ ∞
xn−1

|q(x1)| · · · |q(xn)| dxn · · · dx1 =
1

n!

(∫ ∞
x

|q(t)| dt
)n
, (3.53)

for all n ∈ N and all x ∈ R.

Proof. The proof may be found in Appendix B.

Continuing from (3.52) and applying the above Lemma, we thus get

|m1(x, k)|
1 + |x|

≤ 1 +
∞∑
n=1

~−2n

|k|n × n!

(∫ ∞
x

(1 + |t|)|V (t)| dt
)n

≤ 1 +
∞∑
n=1

~−2n

|k|n × n!

(∫ ∞
−∞

(1 + |t|)|V (t)| dt
)n

= exp

(
~−2

|k|

∫ ∞
−∞

(1 + |t|)|V (t)| dt
)

<∞. (3.54)

The final strict inequality follows as V ∈ L1
1, so the integral will be finite. Therefore,

we reach the conclusion that

|m1(x, k)| ≤ K1/|k|(1 + |x|), (3.55)

where

K := exp

(
~−2

∫ ∞
−∞

(1 + |t|)|V (t)| dt
)
> 1 (3.56)

is a constant. Now we utilize this in equation (3.47) to find:

|S(k)−1| ≤ 1 +
~−2

2|k|

∫ ∞
−∞
|V (t)| |m1(t, k)| dt

≤ 1 +
K1/|k|~−2

|k|

∫ ∞
−∞

(1 + |t|)|V (t)| dt

= 1 +
K1/|k| lnK

|k|
. (3.57)

Since |S(k)−1| remains finite on the set kI ≥ 0, we conclude as in the previous sub-
section that the function S(k)−1 is analytic on the domain kI > 0 and hence S(k) is
meromorphic for kI > 0. By the same argument as previously, then, we can employ a
meromorphic continuation in order to

This is all to say that if instead of a V (x) with bounded support we choose V ∈ L1
1,

the equation (3.47) still has the desired properties. That is to say, that S(k) still is a
meromorphic function.

39



Scholtens, R. W. A Transparent View on Resonances

To conclude

In this section we laid out the model which we are going to use for the rest of this
thesis, and then proceeded to introduce and give meaning to the complex energies
which will appear. Then we mathematically defined resonances (through the resolvent
operator), and determined some basic symmetry properties. Through Proposition 3.12
and Lemma 3.13, we were able to redefine resonances as being poles of the transmission
amplitude S(k). We then proceeded to give an algebraic form of S(k) in the form of
(3.47), and used it to show that S(k) is meromorphic on kI > 0 (and could thus be
continued meromorphically to all of C). Finally, we showed that the derived relation
(3.47) also made sense when viewing the potential V not as bounded and compactly
supported, but instead as being an element of L1

1.
In the next section we will attempt to derive explicitly the transmission amplitude

S(k) for specific classes of potentials. This will not use the relation (3.47), as it relies
on knowing the solution to the Schrödinger equation everywhere, and in some sense
finding out the solution is what we want to avoid.
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4 Particular transmission solutions

In this section and the next we aim to explore more concretely where resonances are
found for certain classes of potentials. In particular, in this section we will see that
resonances are closely related to the phenomenon of resonant tunneling : a specific
configuration of potential and energy leading to bona fide full transmission T = 1,
even when the relevant energy is far lower than would classically be required for (near)
full transmission.

Firstly, we will reiterate the model in which we are working, and derive from it
a general formula for the transmission amplitude S(k) (not involving integrals!). We
then apply this formula to the case of square potentials, i.e. potentials which consist
of square wells and barriers, which can be solved exactly. As a special case, we will
study the simple square well in depth. Finally, we consider potentials which lend
themselves to application of the WKB approximation. We shall utilize the matrix P
as introduced in subsection 2.4.3 to find a simplified formula for S(k), and consider
some representative case studies.

4.1 Towards a general formulation

Let us reiterate that the potentials we consider here are members of the class L1
1, cf.

equation (3.48). That is to say, potentials which fall off suitably quickly, so that far
from the origin we can consider the potential zero and so be left with a planar wave.
As we have shown in the previous section, the mathematical machinery will work with
these potentials.

However, for our ease of calculation, we will maintain the assumption of potential
as made in our model (3.1b), which is to say that V should be real, bounded, and
have compact support. Furthermore, we will from now on assume that V is an even
(or symmetric) potential, i.e. that V (−x) = V (x) for all x.

Assuming energy E = ~2k2, the solution outside of [−ν, ν] will be a superposition
of exp(±ikx), whereas inside it will be some function ψ(x) cf. (3.1c). Supposing that
ψ(x) indeed solves Schrödinger inside, then given our symmetry assumption we can
also find a second solution: for ψ(−x) it holds that

− ~2
d2

dx2
ψ(−x) + V (x)ψ(−x) = Eψ(−x)

⇐⇒ ~2
d2

d(−x)2
ψ(−x) + V (−x)ψ(−x) = Eψ(−x)

⇐⇒ −~2 d
2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x), (4.1)

meaning that ψ(−x) is also a solution. We can then define

ψe(x) := 1
2
(ψ(x) + ψ(−x)) and ψo(x) := 1

2
(ψ(x)− ψ(−x)), (4.2)

which will be, respectively, even and odd solutions to the Schrödinger equation. We
then adapt the presumed full solution of (3.1c) to read instead

ψfull(x) =


ψ+ + Lψ− if x < −ν
Aψe +Bψo if x ∈ [−ν, ν]

Sψ+ if x > ν

, (4.3)
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where ψ±(x) := exp(±ikx) and for complex-valued functions A(k), B(k), L(k), S(k).
Fixing k fixes these functions as constants. This means that for each k, we have four

unknown constants and four matching conditions (function values and their deriva-
tives) which they need to satisfy. Thus, in principle, we should be able to solve for all
four constants and obtain non-trivial solutions depending only on k. This we do in
the following Proposition, but only for S(k). After all, that is the prime quantity in
which we are interested.

Proposition 4.1 (1D transmission amplitude). The value of S(k) in equation (4.3)
is given by

S(k) =
ik(ψ′eψo − ψeψ

′
o) exp(−2ikν)

∆(k)

∣∣∣
x=ν

, (4.4)

cf. [4, §5.1], where ∆(k) is given by

∆(k) = (ψ′e − ikψe)(ψ
′
o − ikψo)|x=ν . (4.5)

Proof. From matching the function values and their derivatives at the boundaries −ν
and ν, the following equations can be found:

ψ+ + Lψ− = Aψe +Bψo at x = −ν
ikψ+ − ikLψ− = Aψ′e +Bψ′o at x = −ν
Aψe +Bψo = Sψ+ at x = ν

Aψ′e +Bψ′o = ikSψ+ at x = ν

. (4.6)

We “move” the first two equations to x = ν by recognizing that for the even and odd
solutions we have

ψe(−ν) = ψe(ν), ψo(−ν) = −ψo(ν), ψ′e(−ν) = −ψ′e(ν), and ψ′o(−ν) = ψ′o(ν), (4.7)

and additionally ψ+(−ν) = ψ−(ν). Thus, we obtain the matrix system of equations
ψe −ψo −ψ+ 0
−ψ′e ψ′o ikψ+ 0
ψe ψo 0 −ψ+

ψ′e ψ′o 0 −ikψ+



A
B
L
S

 =


ψ−
ikψ−

0
0

 , at x = ν. (4.8)

Then we can apply Cramer’s rule to find the value of S. Observe:∣∣∣∣∣∣∣∣
ψe −ψo −ψ+ 0
−ψ′e ψ′o ikψ+ 0
ψe ψo 0 −ψ+

ψ′e ψ′o 0 −ikψ+

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
ψe + ik−1ψ′e −ψo − ik−1ψ′o 0 0
−ψ′e ψ′o ikψ+ 0

ψe + ik−1ψ′e ψo + ik−1ψ′o 0 0
ψ′e ψ′o 0 −ikψ+

∣∣∣∣∣∣∣∣
= −2k2ψ2

+(ψe + ik−1ψ′e)(ψo + ik−1ψ′o), (4.9)

and ∣∣∣∣∣∣∣∣
ψe −ψo −ψ+ ψ−
−ψ′e ψ′o ikψ+ ikψ−
ψe ψo 0 0
ψ′e ψ′o 0 0

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
ψe − ik−1ψ′e −ψo + ik−1ψ′o −2ψ+ 0
−ψ′e ψ′o ikψ+ ikψ−
ψe ψo 0 0
ψ′e ψ′o 0 0

∣∣∣∣∣∣∣∣
= −2ik(ψeψ

′
o − ψ′eψo). (4.10)
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Now combine equations (4.9) and (4.10) and simplify:

S =
−2ik(ψeψ

′
o − ψ′eψo)

−2k2ψ2
+(ψe + ik−1ψ′e)(ψo + ik−1ψ′o)

=
−ik(ψeψ

′
o − ψ′eψo)ψ

2
−

(ψ′e − ikψe)(ψ′o − ikψo)
, (4.11)

where also used that ψ−1+ = ψ−. The desired result is then obtained by recognizing
ψ− = exp(−ikx), and evaluating it at x = ν.

Remark 4.2 (Link to bound states). By linearity, the wavefunction

∆(k)ψfull(x) =


∆(k)ψ+ + L∆(k)ψ− if x < −ν
A∆(k)ψe +B∆(k)ψo if x ∈ [−ν, ν]

S∆(k)ψ+ if x > ν

, (4.12)

where ∆(k) is as in (4.5), is also a solution to the Schrödinger equation for every value of
k. By the same methodology as in Proposition 4.1, we can find that L,A,B ∝ ∆(k)−1.
Thus, if there exists a k0 so that ∆(k0) → 0, the various products S∆(k0) etc. will
generally not explode—though ∆(k0)ψ+ will go to zero. Assuming no explosions take
place and (k0)I > 0, then, the solution ψfull will have exponential decay as x → ±∞,
meaning it is square-integrable and so a wavefunction.

This illustrates the emergence of bound states under the same conditions as in
subsection 3.3.1, albeit in a more ad hoc fashion. For further details see [4, §5.2].

Eyeing the mix of ψe,o and their derivatives, we can make a simplification of the
found expression by introducing

θe,o :=
ψ′e,o
ψe,o

∣∣∣
x=ν

=
d

dx

∣∣∣
x=ν

ln(ψe,o) (4.13)

with which we simplify the formula for S(k) as derived in Proposition 4.1:

S(k) =
ik(θe − θo)e−2ikν

(θe − ik)(θo − ik)
. (4.14)

The θe,o represent the motions of the even and odd components of the wavefunction
as it emerges from the potential.

Notable is that the expression of S(k) has dependence on ν, even though intuitively
it should not: ν is merely a cutoff, and traversal through any additional free space
should not change the value of S(k). The reason is that θe,o each also depend on ν, pre-
sumably nontrivially so. The additional exponential e−2ikν is then a “compensation”
factor for this θe,o dependence on ν. Additionally, if one considers sufficiently large
energies (for which we will always be in the approximately free case for our bounded
potentials), the e−2ikν is necessary in order to guarantee S(k)→ 1, as we would expect
for free space. This is also touched upon in Remark 4.14.

With this, in a certain sense we have now solved the transmission problem in 1 di-
mension: we know the transmission amplitude S(k), which contains all the information
we need. However, this formula relies on us knowing the solution to the Schrödinger
equation inside the potential, which renders our formula kind of moot. After all, if we
already know the solution, the transmission amplitude follows trivially.
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Nevertheless, equation (4.14) has a right to exist: if we could somehow find θe,o
in a more clever way than solving the Schrödinger equation computationally, we will
know S(k) immediately without a lot of (computer) work. Additionally, we may find
the structure of S(k) and draw general conclusions from that structure about a broad
class of potentials, or learn how S(k) depends on various parameters. This is what we
shall attempt to do for the remainder of this section.

The next subsection will concern itself with the case of piecewise constant potentials
(i.e. consisting of square wells and barriers), which may be solved exactly. Thereafter
we shall consider potentials for which WKB is applicable, for which we utilize the
approximation discussed in the above.

4.2 Piecewise constant potentials

Notice that if we declare initial conditions of the wavefunction at a, then we can find
the value and derivative of the wavefunction at some b by(

ψ(b)
ψ′(b)

)
= P exp

[∫ b

a

(
0 1

~−2(V (x′)− E) 0

)
dx′
](

ψ(a)
ψ′(a)

)
, (4.15)

where P exp indicates that we are talking about the path-ordered exponential. This is
just the statement of “integrate the Schrödinger equation from a to b.” Though there
is an expression for how to solve path-ordered exponentials, this would be a pain to
solve for general potentials. As such, for general V , computers would be needed to
evaluate this path-ordered exponential, and hence solve the Schrödinger equation.

However, if we assume that V is constant, then we do not have to worry anymore
about the path-ordering of this integral; as it were, the “P” disappears, and we are
left with a regular matrix exponential. Since we consider 2× 2 matrices, these can be
calculated with little effort, and so we can aim to find a closed, “simple” expression for
the wavefunction and its derivative at the target point. From this we can then derive
θe,o, and so S(k).

Let us make things concrete in the following Definition.

Definition 4.3. (Piecewise constant (pc) potentials) Let {xj}n+1
j=0 ⊂ R with −ν ≤

xj < xj+1 ≤ ν for all j 6= n+ 1. Then, if V (x) is such that

V (x) = Vj ∈ R if x ∈ (xj, xj+1), (4.16)

we will call V (x) piecewise constant (pc). Effectively, (a subset of) the region [−ν, ν]
is partitioned into n regions, on each of which there is a constant potential.

Now, observe that for the region (x0, xn+1) and by the properties of the path-
ordered exponential, we can say that for pc potentials,

P exp

[∫ xn+1

x0

(
0 1

~−2(V (x′)− E) 0

)
dx′
]

=
n∏
j=0

P exp

[∫ xj+1

xj

(
0 1

~−2(V (x′)− E) 0

)
dx′

]

=
n∏
j=0

exp

[∫ xj+1

xj

(
0 1

~−2(Vj − E) 0

)
dx′

]

=
n∏
j=0

exp

[
(xj+1 − xj)

(
0 1

~−2(Vj − E) 0

)]
(4.17)
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Here the order of the matrix product is important: the rightmost matrix is j = 0, then
j = 1, and so on. Due to the exponents being particularly simple, these exponentials
have nice expressions, as we learn from the following Lemma.

Lemma 4.4 (Particular matrix exponential). For A 6= 0, we have that

exp

[(
0 `
`A 0

)]
=

(
cosh

(
`A1/2

)
A−1/2 sinh

(
`A1/2

)
A1/2 sinh

(
`A1/2

)
cosh

(
`A1/2

) )
. (4.18)

Proof. The proof may be found in Appendix B.

As such, we can characterize any pc potential using a matrix (or rather a product
of various matrices), which describes how the wavefunction will move through these.
In principle, this is already enough information to find the transmission amplitude
corresponding to any such potential. However, as we have been considering symmetric
potentials so far (and know how to find S(k) for those), it should pay off to consider
now symmetric pc potentials.

To utilize the expression (4.14) for S(k), we need to know something about the even
and odd wavefunctions which solve the Schrödinger equation for symmetric potentials.
This we address in the following Proposition.

Proposition 4.5 (Construction even/odd solutions). Assume the potential V is piece-
wise constant and symmetric. Then, we have that

1. The solution φe, which is defined by(
φe(x)
φ′e(x)

)
:= P exp

[∫ x

0

(
0 1

~−2(V (x′)− E) 0

)
dx′
](

1
0

)
, (4.19a)

is an even solution.

2. The solution φo, which is defined by(
φo(x)
φ′o(x)

)
:= P exp

[∫ x

0

(
0 1

~−2(V (x′)− E) 0

)
dx′
](

0
1

)
, (4.19b)

is an odd solution.

Proof. By symmetry of V , we have

C := P exp

[∫ x

0

. . .

]
= P exp

[
−
∫ −x
0

. . .

]
= P exp

[∫ 0

−x
. . .

]
. (4.20)

Additionally, since we can decompose C in the manner of (4.17), each individual matrix
exponential’s exponent has trace zero, and det expM = exp TrM for any matrix, we
conclude that det C = 1, and that C is invertible. Let us now prove the separate
parts.

1. Observe that, in addition to the hypothesis (4.19a), we also have that(
1
0

)
= C

(
φe(−x)
φ′e(−x)

)
⇐⇒

(
φe(−x)
φ′e(−x)

)
= C−1

(
1
0

)
. (4.21)
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This holds because φe as defined by (4.19a) is the unique solution to the Schrodinger
equation, with the given initial condition at the origin. We find(

φe(x)
φ′e(x)

)
= C

(
1
0

)
=

(
C11

C21

)
and

(
φe(−x)
φ′e(−x)

)
= C−1

(
1
0

)
=

(
C22

−C21

)
,

(4.22)
from which we importantly conclude that φ′e(x) = −φ′e(−x) for all x. Finally,
we do

φe(y)− φe(−y) =

∫ y

−y
φ′e(x) dx = 0 =⇒ φe(y) = φe(−y) for all y, (4.23)

which is to say that φe is even.

2. In much the same way as above, observe that(
φo(x)
φ′o(x)

)
= C

(
0
1

)
=

(
C12

C22

)
and

(
φo(−x)
φ′o(−x)

)
= C−1

(
0
1

)
=

(
−C12

C22

)
.

(4.24)
We thus conclude that φo(x) = −φo(−x) for all x, i.e. that φo is indeed an odd
function.

Both parts have been proven, so we are now done.

With all the above in mind, we can now exactly determine the parameters θe,o
needed to apply equation (4.14) in a systematic manner, for every symmetric pc po-
tential. This is the content of the following Algorithm.

Algorithm 4.6 (Symmetric pc potential θe,o). For a symmetric, piecewise constant
potential V , in order to find θe,o we have the following steps.

1. Write the path-ordered exponential from 0 to ν, and split this up into regular
matrix exponentials using equation (4.17).

2. For each resultant matrix, evaluate it using Lemma 4.4.

3. Multiply each of the evaluated matrices together (preserving order) to find the
full evolution. Call the resulting matrix W.

4. Then we find the desired quantities by(
φe(ν)
φ′e(ν)

)
= W

(
1
0

)
and

(
φo(ν)
φ′o(ν)

)
= W

(
0
1

)
, (4.25)

as a result from Proposition 4.5.

5. Finally, we find θe,o by using

θe =
φ′e(ν)

φe(ν)
=

(
0 1

)
W

(
1
0

)
(
1 0

)
W

(
1
0

) and θo =
φ′o(ν)

φo(ν)
=

(
0 1

)
W

(
0
1

)
(
1 0

)
W

(
0
1

) (4.26)
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This sets us up perfectly for use of expression (4.14), to find the transmission
amplitude. We work this out in the following Corollary, which is also the main result
of this section.

Corollary 4.7 (S(k) for square pc potentials). Let V be symmetric and piecewise
constant, and W the matrix as resulting from Algorithm 4.6. Then,

S(k) =
−ik exp(−2ikν)

(W21 − ikW11)(W22 − ikW12)
. (4.27)

Proof. Substitute the expressions for θe,o from equation (4.26) into the formula for
S(k) (4.14) and behold

S(k) = ik exp(−2ikν)

[(
0 1

)
W

(
1
0

)(
1 0

)
W

(
0
1

)
−
(
0 1

)
W

(
0
1

)(
1 0

)
W

(
1
0

)]
×
[(
−ik 1

)
W

(
1
0

)(
−ik 1

)
W

(
0
1

)]−1
?
= ik exp(−2ikν)

��
��

�
��*
−1∣∣∣∣(0 1

1 0

)
W

∣∣∣∣ [(W21 − ikW11)(W22 − ikW12)]
−1

=
−ik exp(−2ikν)

(W21 − ikW11)(W22 − ikW12)
, (4.28)

where in ? we used that det W = 1.

As such, we can now in all generality find the transmission amplitude for any square
symmetric potential, through the matrix W. The remainder of this subsection will be
dedicated to studying arguably the simplest square potential, being the square well.

4.2.1 Square well

Let us consider the square well, i.e. the potential

Vwell(x) =

{
V0 if x ∈ [−ν, ν]

0 otherwise
, (4.29)

for V0 < 0. The associated W matrix is found in one step by

W = P exp

[∫ ν

0

(
0 1

~−2(V (x′)− E) 0

)
dx′
]

= exp

[(
0 ν

ν~−2(V0 − E) 0

)]
=

(
cosh(qν) q−1 sinh(qν)
q sinh(qν) cosh(qν)

)
, (4.30)

where we introduced q := ~−1
√
V0 − E . Thus, we find

S(k) =
−ik exp(−2ikν)

(q sinh(qν)− ik cosh(qν))(cosh(qν)− ikq−1 sinh(qν))

=
−ik exp(−2ikν)

−ik[cosh2(qν) + sinh2(qν)] + cosh(qν) sinh(qν)[q − k2q−1]

=
−ik exp(−2ikν)

1
2
[q − k2q−1] sinh(2qν)− ik cosh(2qν)

(4.31)
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As a sanity check, we would like to investigate the large-k behavior of the amplitude.
This we do in the following Proposition.

Proposition 4.8 (Large-k behavior S(k) for square well/barrier). Assume |k|2 �
|~−2V0| and |kI| � 1. Then, we have the following behaviors for the transmission
amplitude (4.31).

1. For sgn kI = 1, we have that
S(k) ∼ 1. (4.32)

2. For sgn kI = −1 and |kI| � |kR|, we have that

S(k) ∼ −|k|4 exp(−4ikν). (4.33)

Proof. Observe that

q = ~−1
√
V0 − ~2k2 = −i

√
k2 − ~−2V0 ≈ −ik

(
1− ~−2V0

2k2

)
= −ik + σ, (4.34)

for σ := −~−2V0/(2ik). We recognize that σ is the error between q and its limit −ik,
and it vanishes as we consider larger k. Now, calculate

1

2

(
q − k2

q

)
=

1

2

(
−ik + σ − k2

−ik + σ

)
=

1

2

(
−ik + σ − k2

−ik
1

1− σ/(ik)

)
=

1

2

(
−ik + σ − ik

[
1 +

σ

ik
+
( σ
ik

)2
+O

(
σ3
)])

(4.35)

= −ik − σ2

2ik
+O

(
σ3
)
. (4.36)

We then calculate the denominator of (4.31) as

1

2

(
q − k2

q

)
sinh(2qν)− ik cosh(2qν)

=

(
−ik − σ2

2ik
+O

(
σ3
))

sinh(−2ikν + 2σν)− ik cosh(−2ikν + 2σν)

= −ik
(

cosh(−2ikν + 2σν) + sinh(−2ikν + 2σν)− σ2

2k2
sinh(−2ikν + 2σν) +O

(
σ3
))

= −ik
(

exp(−2ikν + 2σν)− σ2

2k2
sinh(−2ikν + 2σν) +O

(
σ3
))

, (4.37)

and so obtain an expression for S(k):

S(k) ∼
(

exp(2σν)− σ2

2k2
sinh(−2ikν + 2σν) exp(2ikν)

)−1
=

(
exp(2σν)

[
1− σ2

4k2

]
+

σ2

4k2
exp(4ikν − 2σν)

)−1
. (4.38)
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(a) Value of ln |S(k)| (b) Phase of S(k)

Figure 4.1: Phase and size of S(k) as in (4.31), with V0 = −10 and ν = 1 (~ ≡ 1).
Note that these are not from a simulation, but the implementation of (4.31).

Now we split cases. For sgn kI = 1, |σ| → 0 and | exp(4ikν)| → 0 as well. Hence,
the denominator reduces to 1, and we have shown S(k) ∼ 1.

For sgn kI = −1, |σ| → 0 still, but now | exp(4ikν)| � 1. Hence, the second term
will dominate the first, and we can write the estimation as

S(k) ∼ 4k2

σ2
exp(−4ikν + 2σν)

=

∣∣∣∣4k2 exp(4kIν) exp(2σRν)

σ2

∣∣∣∣× σ2/(4k2) exp(2iσIν) exp(−4ikRν)

|σ2/(4k2)|
, (4.39)

where the first factor represents the size of SkI�0 and the second its phase. The size
will decay like |k|4 exp(4kIν), as can be seen from the above.

Concerning the phase, we see

phase(S) = exp(−4ikRν)���
���exp(2iσIν) phase(σ2/(4k2))

= exp(−4ikRν) phase(−k4)
∼ − exp(−4ikRν) phase(k4I )

= − exp(−4ikRν). (4.40)

Thus, (4.39) will come to read

S(k) ∼ − exp(4kIν) exp(−4ikRν) = − exp(−4ikν), (4.41)

and so we have shown this case.

An illustration of this Proposition in action is given in Figure 4.1. Notice that
in the Figure we can identify the bound and antibound states, as well as resonances.
The transition from sgn kI = + to − results in the appearance of the “wavefronts”
in the phase. This partially explains the reason for resonances to exist: all these
“wavefronts” need to terminate for some kI as S → 1 for k with large imaginary parts,
and the termination will results in poles.
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Remark 4.9 (Square barrier applicability). Up to now, the assumption that V0 < 0
has not been utilized yet. As such, the found expression (4.31) can equally be applied
to square barriers, where one would choose V0 > 0 instead.

We can also use the above expression (4.31) to calculate the transmission coefficient
T = |S|2. Since this is somewhat tricky for complex k, let us for simplicity assume
real E ≡ E > 0, so q is purely imaginary. Then, the term involving sinh is purely real,
and the term involving cosh is purely imaginary. We can thus calculate

T (E) = S(k)S(k) =
k2

k2 cosh2(2qν) + 1
4
[q − k2q−1]2 sinh2(2qν)

=
1

1 + {1
4
[qk−1 − kq−1]2 + 1} sinh2(2qν)

=
1

1 + cosh2(ln q − ln k) sinh2(2qν)

=
1

1 + sinh2(ln |q| − ln k) sin2(2|q|ν)
. (4.42)

Eyeing this expression, we notice that when

2|q|ν = nπ ⇐⇒
√
E − V0 =

~nπ
2ν

⇐⇒ E =

(
~nπ
2ν

)2

+ V0 for some n ∈ Z, (4.43)

we will have T = 1. Such energies are thus transparency energies for the square well. In
Figure 4.2, we have the transmission spectra for the square well, both from a simulation
(the “computed” line) and this theoretical prediction. Notice that the peaks line up
almost perfectly with our theoretical calculation, as well as with the predictions for
the locations of the transparency energies. This also bolsters the confidence in the
correctness of the program written to compute the spectrum.

Remark 4.10 (Bohr-Sommerfeld quantization I). The expression (4.43) is recognized
precisely as the Bohr-Sommerfeld quantization condition for the square well. This is
an interesting observation, as normally Bohr-Sommerfeld only applies for bound states
of certain systems, whilst here we are decidedly not dealing with bound states.

Curiously, from Figure 4.2 we learn that T may become very low for certain values
of the energy—for instance, T ≈ 0.1 for E ≈ 11. This stands in contrast to what we
would expect in the classical case: since E > 0 and we encounter a well, classically
we would expect full transparency. The mathematical cause is that for such energies
at which a local minimum is reached, the product sinh(·) sin(·) is very large, driving
down T . From a physical perspective, this shows the influence of the interface that is
the “drop” into the square well.

We also notice that the peaks get wider as the energy increases. This is most
clearly demonstrated algebraically if we rewrite the transmission coefficient around a
transparency energy Etrans. Upon a slight perturbation,

Etrans → Etrans+δE =⇒ |q| → |q|+ ~−1δE
2
√
Etrans − V0

and k → k+
~−1δE

2
√
Etrans

, (4.44)
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Figure 4.2: Comparison of the theoretical transmission coefficient derived from (4.31)
to simulated (computed) value, for square well with V0 = −1000 and ν = 10 cf. (4.29)
(~ ≡ 1). The locations of the predicted transparencies are from (4.43). The green
(computed) curve lies under the dashed blue (theoretical) one.

so that

sin2(2|q|ν) −→ sin2
(
2|q|ν + δE ~−1ν[Etrans − V0]−1/2

)
≈
(
���

���sin(2|q|ν) + δE ~−1ν[Etrans − V0]−1/2����
��:±1

cos(2|q|ν) +O
(
δE3

))2

≈ ~−2ν2

Etrans − V0
δE2 +O

(
δE4

)
. (4.45)

and

sinh2(ln |q| − ln k) −→ sinh2(ln |q|+ ln(1 + f1δE)− ln k − ln(1 + f2δE))

≈ sinh2
(
ln |q| − ln k + δE{f1 ln |q| − f2 ln k}+O

(
δE2

))
≈ sinh2(ln |q| − ln k) +O(δE), (4.46)

for the appropriate factors f1,2. As such, to lowest order in δE, we write the transmis-
sion coefficient around a transparency energy as

T (Etrans + δE) ≈
[
1 +

~−2ν2 sinh2(ln |q| − ln k)

Etrans − V0
δE2

]−1
=

Etrans − V0
~−2ν2 sinh2(ln |q| − ln k)

[
Etrans − V0

~−2ν2 sinh2(ln |q| − ln k)
+ δE2

]−1
.

(4.47)

Finally making the substitution

Γ :=
2~
√
Etrans − V0

ν sinh(ln |q| − ln k)
, (4.48)
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we see that the transmission coefficient has the form

T (Etrans + δE) ≈ (Γ/2)2

(Γ/2)2 + δE2
(4.49)

around the transparency Etrans. As such, the peaks of the transmission spectrum
follow FBW distributions, as introduced in the Introduction (1.4). The parameter Γ
dictates the width of the peaks: the larger Γ is, the wider the peak will be. In our
case, for increasing Etrans, we have that ln |q| − ln |k| → 0 =⇒ sinh2(·) → 0 and√
Etrans − V0 6→ 0. As such, for the square well, Γ should grow without bound as we

consider larger transparency energies. This is the effect we see happening in Figure
4.2.

The transmission spectrum can be viewed to be composed of many of the above-
defied FBW-distributions summed together, one for each transparency:

T (E) =
∑
m=0

(Γm/2)2

(E − Em)2 + (Γm/2)2
, (4.50)

where

Em =

(
~(N +m)π

2ν

)2

+ V0 (4.51)

and N is the minimal positive integer so that E0 ≥ 0. This is almost the true form
of the transmission spectrum. Namely, the peaks need to be well-defined enough in
order for each of them to count as a FBW-distribution. In other words, if the peaks
become too wide, then peaks start to interfere with each other and they will no longer
be FBW-distributions. Quoting from [5, §2.2], mathematically we make this condition
concrete as

Γ/2

∆E
� 1, (4.52)

where ∆E is the distance between two adjacent transparencies. Furthermore noting
that ∆E ∼ m < Em ∼ m2, we can extend (4.52) by writing

Γm/2

Em
<

Γm/2

∆E
� 1. (4.53)

On its resonances

The fact that the transmission coefficient has an FBW-distribution around each peak
allows us to locate resonances in a friendlier way. To illustrate: since a resonance is a
pole of the transmission amplitude, following (4.31) resonances are located at those k
where

q − k2q−1

2
sinh(2qν) = ik cosh(2qν) ⇐⇒ coth(2qν) =

qk−1 − kq−1

2i
, (4.54)

which is a transcendental and uninsightful equation.
Let us instead assume that we expand T around transparency Em, so that we

obtain

T (Em + δE) ≈ (Γm/2)2

δE2 + (Γm/2)2
, (4.55)
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featuring Γm as in (4.48) (with Etrans ≡ Em). Now, if we allow complex perturbations
δE, then the choice δE = ±iΓm/2 will lead to

T (Em ± iΓm/2) ≈ (Γm/2)2

−(Γm/2)2 + (Γm/2)2
→∞. (4.56)

This will only work for Γm sufficiently small, as T is only FBW for small δE. Nev-
ertheless, the above means that for km := ~−1

√
Em − iΓm/2, we must have that

|S(km)| → ∞ as well—a resonance is located.

Remark 4.11 (Relation resonances↔ transparencies). The above construction works
in every case in which a transparency along the real energy axis can be rewritten as a
FBW distribution. This means that, as long as that is the case, one can find a close
(albeit slightly approximate) relation between resonances and transparencies.

There is one subtlety: for the square root, we must choose the one whose image
lies in the lower half plane. That is to say, we must assume our complex energy to be
on the second sheet of the Riemann surface on which the energy lives cf. section 3.1.1.
That this should be the case follows as the converse of Proposition 3.11, but since we
have a concrete formula at our disposal we should also be able to make this derivation
utilizing it. This is the topic of the following Proposition.

Proposition 4.12 (Location of resonances). For the square well, the resonances with
Em > 0 are all located in the lower half of the complex k-plane, or correspondingly, on
the second sheet of the energy Riemann surface.

Proof. Let Em = Em ± iΓm/2 be a resonance of the square well. It lies in the right
half of the complex plane, as Em > 0. Let us for now consider the + case, so Em lies
in the first quadrant.

The proof will be by contrapositive: we will show that, assuming

√
· : arg

√
z ∈ [0, π), (4.57)

the resonance equation (4.54) cannot be satisfied. To this end, notice that since Em
lies in first quadrant, so will km = ~−1

√
Em. Furthermore, since V0 − Em lies in the

third quadrant, qm = ~−1
√
V0 − Em will lie in the second quadrant. For simplicity, let

qm = −a+ bi and km = c+ di, (4.58)

for a, b, c, d > 0. We now analyse both lhs and rhs of (4.54).

lhs: Utilizing some hypertrigonometric identities, we may derive that

coth(2νqm) = coth(2ν(−a+ bi)) =
coth(−2νa)[1 + cot2(2νb)]

coth2(−2νa) + cot2(2νb)

+ i
cot(2νb)[1− coth2(−2νa)]

coth2(−2νa) + cot2(2νb)
. (4.59)

We cannot say anything about the sign of the imaginary part. The real part,
however, will have negative sign: the denominator is positive, coth of a negative
number is negative, and the term in brackets is positive. Hence, we conclude
that the lhs lies on the left side of the complex plane.
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rhs: We have that

qm
km

=
−a+ bi

c+ di
=

1

c2 + d2
[(bd− ac) + i(ad+ bc)] . (4.60)

so it lies on the upper half of the complex plane, and

km
qm

=
c+ di

−a+ bi
=

1

a2 + b2
[(bd− ac)− i(ad+ bc)] , (4.61)

lies on the lower half. For the rhs we need the difference of these two numbers
and then divided by 2i:

1

2i

[
qm
km
− km
qm

]
= −i(bd− ac)

2

[
1

c2 + d2
− 1

a2 + b2

]
+

(ad+ bc)

2

[
1

c2 + d2
+

1

a2 + b2

]
. (4.62)

Evidently, the real part of this quantity is positive, so that this number lives on
the right side of the complex plane.

Thus, under the assumption (4.57), the lhs and rhs lie in different halves of the complex
plane, and so the equation (4.54) cannot possibly be satisfied.

In the case of −, i.e. where Em = Em− iΓm/2, a similar reasoning as the above can
be followed, yielding the same conclusion (albeit that then the lhs lives on the right
half, and the rhs on the left).

Taken together, then, we must have that if km is a resonance, i.e. satisfies the
equation (4.54), we must have that

arg km = arg
√
Em ± iΓm/2 ∈ [π, 2π). (4.63)

That is to say km must live on the lower half of the complex plane, and so that the
corresponding energy must live on the second Riemann sheet.

We may confirm the result of the above Proposition by evaluating the transmission
amplitude over the energy Riemann surface. The result of this is the Figure 4.3. On
the first sheet (which corresponds to upper half of the k plane) we see only one pole,
which is located on the negative real axis around −3. This pole corresponds to a
bound state of the square well.

On the second sheet, however, we see three poles: one again on the negative real
axis, and two off-axis in the right side of the plane. The former here is known as
an antibound state (also present in Figure 3.5), and corresponds to k-values on the
negative imaginary axis. These we shall not further discuss in this thesis.

The two off-axis poles, though, are the highlights of Figure 4.3. These are the
resonances which we hypothesized existed by the construction of equation (4.56), now
confirmed to be there. Indeed, the real part of this conjugate pair of energies is
approximately 6.7, which is the first transparency energy. If the bounds of this image
were larger, we would see more of these resonances on the second sheet belonging to
larger transparency energies.

Finally, we note that even though to each transparency energy Em there belong
two resonances Em± iΓm/2, only the minus variant constitutes a Gamow-Siegert type.
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(a) Large-scale view of the two sheets of the Riemann surface.

(b) Zoomed view on the second sheet, around the two resonances.

Figure 4.3: Phase of S(E) for the square well (V0 = −1000, ν = 10) over a subset of
the Riemann surface (~ ≡ 1). Where all colors come together (once on sheet I, three
times on sheet II), there is a pole.
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4.3 WKB Potentials

In this section we will strive to simplify the expression for S(k) in (4.14) as much
as possible, under the assumption that the potential-energy combination allows us to
use the WKB approximation for the solution of the Schrödinger equation. In fact,
we will attempt to eliminate any dependence on the solution, as represented by θe,o.
This should then yield a transmission amplitude based solely on the (geometry of the)
potential we are dealing with, which is the best we can do.

The basis for the simplification will be the following Proposition, relating θe,o di-
rectly to the potential as encoded in P.

Proposition 4.13 (θe,o in case of WKB). Assume that we can approximate the wave-
function using WKB, except possibly at some turning points. Then, we have that

θe,o = −ik × (1 ,−1)v±

(1 , 1)v±
, (4.64)

where v± are the eigenvectors of P such that Pv± = ±v±.

Proof. Following its definition, effectively what we need to calculate is

θe,o =
ψ′(ν)∓ ψ′(−ν)

ψ(ν)± ψ(−ν)
. (4.65)

Naturally we invoke WKB; let us first worry about the front factor of the wavefunction:

ψWKB(x) = |E − V (x)|−1/4 × stuff1 =⇒ ψe,o(x) = |E − V (x)|−1/4 × stuff2. (4.66)

As such,

θe,o =
d

dx

∣∣∣
x=±ν

ln(ψe,o) =
��

���
���

�−1

4

|V ′(±ν)|
|E − V (±ν)|

+ stuff3, (4.67)

by virtue of V being continuous, so the derivative at the start and end of the intervals
must vanish (or otherwise be of small size). Therefore, the front factor is not relevant
to finding θe,o, and so we will disregard it.

Now, assume that around x ≈ −ν, we have the wavefunction ψ(x) approximated
via WKB as

ψ|x≈−ν(x) = A exp
(
i~−1Ix−ν

)
+B exp

(
−i~−1Ix−ν

)
, (4.68)

for some A,B ∈ C, and we use the I ·· as introduced in Notation 2.12. Evidently,
ψ(−ν) = A+B and

ψ′(−ν) = i~−1
√
E −����V (−ν)

[
A exp

(
i~−1I−ν−ν

)
−B exp

(
−i~−1I−ν−ν

)]
= ik(A−B). (4.69)

Near x ≈ ν, the wavefunction will be given by ψ|x≈ν = Pψ|x≈−ν cf. (2.62). As such,

ψ|x≈ν(x) = Ã exp
(
i~−1Iνx

)
+ B̃ exp

(
−i~−1Iνx

)
, with

(
Ã

B̃

)
= P

(
A
B

)
. (4.70)

56



Scholtens, R. W. A Transparent View on Resonances

Then, ψ(ν) = Ã+ B̃, and

ψ′(ν) = −i~−1
√
E −��

�V (ν)
[
Ã exp

(
i~−1Iνν

)
− B̃ exp

(
i~−1Iνν

)]
= ik(B̃ − Ã) (4.71)

(note here that x was the lower bound on the integral, hence differentiation incurred
an additional minus sign). Collecting the relevant info, we have

θe,o = ik × (B̃ − Ã)∓ (A−B)

(Ã+ B̃)± (A+B)
. (4.72)

We can compactify the expression somewhat by noticing that

B̃ − Ã = (1 ,−1) (−P)

(
A
B

)
and A−B = (1 ,−1)

(
A
B

)
, (4.73)

from which it follows

(B̃ − Ã)∓ (A−B) = (1 ,−1) [−P∓ I]

(
A
B

)
= − (1 ,−1) [P± I]

(
A
B

)
. (4.74)

Here, I is the identity matrix. Similarly, we find

(Ã+ B̃)± (A+B) = (1 , 1) [P± I]

(
A
B

)
, (4.75)

so that we obtain

θe,o = −ik ×
(1 ,−1) [P± I]

(
A
B

)
(1 , 1) [P± I]

(
A
B

) (4.76)

Now, we make the observation that

P [P± I]

(
A
B

)
= ± [P± I]

(
A
B

)
, (4.77)

for all vectors (A ,B)ᵀ, as P is involutory by Lemma 2.14. As such, we have that
[P± I] (A ,B)ᵀ are eigenvectors of P with eigenvalues ±1. Defining

v± := [P± I]

(
A
B

)
, (4.78)

we substitute this into (4.76) to obtain the query, and so complete the proof.

In fact, it can be verified that the eigenvectors of P are

v± =

(
1
v±2

)
=

(
1

[±1−P11]P
−1
12

)
, (4.79)
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under the assumption that P12 6= 0. Then, we can fill in the formula (4.14) using
(4.64) and obtain

S(k) = − exp(−2ikν)

(
(1 ,−1)v+

(1 , 1)v+
− (1 ,−1)v−

(1 , 1)v−

)
×
[(

(1 ,−1)v+

(1 , 1)v+
+ 1

)(
(1 ,−1)v−

(1 , 1)v−
+ 1

)]−1
= − exp(−2ikν)

(1 ,−1)v+ (1 , 1)v− − (1 ,−1)v− (1 , 1)v−

(2 , 0)v+ (2 , 0)v−︸ ︷︷ ︸
=4

=
− exp(−2ikν)

4

∣∣∣∣∣∣�����
�*2(

1 −1
1 1

)(
v+ ,v−

)∣∣∣∣∣∣
=
− exp(−2ikν)

2
(v−2 − v+2 ). (4.80)

We see from (4.79) that

v−2 − v+2 =
−1−P11

P12

− 1−P11

P12

= − 2

P12

, (4.81)

so that we can finally write

S(k) =
exp(−2ikν)

P12

(4.82)

as the general transmission amplitude in the case that we can apply the WKB approx-
imation.

Let us explore what this formula can give us in terms of concrete results. To
keep things organized, I will do this in the following sections, in which cases will be
treated by count of turning points for the specific energy-potential combination. An
illustration of each energy-potential combination giving rise to the amount of turning
points is given in Figure 4.4

4.3.1 No turning points

In the case of there being no turning points (e.g. the dashed black line in Figure
4.4), we can do the calculation easily. Namely, in this case, P is simply the forward
transport of the wavefunction by means of F:

P = F(−ν → ν) =

(
0 exp(−i~−1I)

exp(i~−1I) 0

)
, (4.83)

for I := Iν−ν . Then employ (4.82) to directly get

S(k) =
exp(−2ikν)

exp(−i~−1I)
= exp

(
i
[
~−1I − 2kν

])
(4.84)

After staring at this expression for a bit, we notice that for E > 0, whatever is inside
the exponent is purely imaginary. In turn, this means that |S(k)|2 = 1 regardless of the
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Figure 4.4: Illustration of the occurrence of different amounts of turning points for
various energy levels (here presented for the same potential for all energies).

specific geometry of the potential or the size of the energy. As such, we have effectively
shown that when there are no turning points in a WKB-applicable situation, we will
always have full transmission!

This conclusion should not be wholly unexpected. The gradually varying potential
ensures that the incoming wave is not reflected back; only at an interface, i.e. a sudden
change in the potential, should we have a reflected wave created. Since there are no
turning points, there are no such interfaces, and hence no reflected waves. The only
effect then that the potential could have is to induce a phase into the transmitted
wave, which is perfectly allowed by the above expression.

Remark 4.14 (Notes on physicality). The derived expression for S(k) (4.84) is also
good on two key fronts necessary for physicality.

1. It is independent of increase of ν. Since ν is nothing more than a cutoff for our
potential landscape, we should be able to increase it to an arbitrary size and
still end up with the same physics, that is to say, with the same transmission
amplitude. Fortunately, this is covered in the expression. Observe that if we
parse ν explicitly as an argument into S(k), we can derive

S(k, ν + δν) = exp
(
i
[
~−1Iν+δν−ν−δν − 2k(ν + δν)

])
= exp

(
i
[
~−1Iν−ν − 2kν

])
exp
(
i
[
~−1

{
I−ν−ν−δν + Iν+δνν

}
− 2k δν

])
= S(k, ν) exp

(
i
[
~−1

{
I−ν−ν−δν + Iν+δνν

}
− 2k δν

])
. (4.85)

Now, since V (x) ≡ 0 for x > ν, we have that

Iν+δνν =

∫ ν+δν

ν

√
E dx′ = δν

√
E = ~k δν. (4.86)
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Similarly, I−ν−ν−δν = ~k δν also. We then see that the exponential factor in (4.85)
simplifies to 1, so that we have indeed S(k, ν + δν) = S(k, ν) for δν ≥ 0.

2. As |k| grows, S(k)→ 1. That is to say, if we increase the energy of our particle,
it should care less and less about the potential, and instead just fly through.
This too is satisfied: for large |k|, the exponent becomes

i

[
~−1

∫ ν

−ν

√
E − V (x′) dx′ − 2kν

]
|k|→∞−−−−→ i [2kν − 2kν] = 0, (4.87)

so that S(k)→ 1.

Point 2. of the above Remark in fact holds for any system, as in the limit of large
|k| ↔ |E| the WKB condition will always be satisfied and there will be no more turning
points. As such, we (re)produce the result that any system will become transparent
as long as you “shoot hard enough.”

4.3.2 Two turning points; one hill

The next step up is to consider a potential hill, i.e. a situation where we have two
turning points (e.g. the dashed red line in Figure 4.4). Qualitatively, we would not
expect to find much here: the hill should simply force some exponential decay of the
wavefunction, and as such make it impossible to obtain full transmission.

Assume that the turning points are located at −q and q with 0 < q < ν, and define
Q := exp

(
−i~−1Iq−q

)
and α := exp

(
−i~−1Iνq

)
. We find the P-matrix thusly:

P = F(q → ν) B F(−q → q) A F(−ν → −q)

=

(
0 α
α−1 0

)(
ie−iπ/4/2 e−iπ/4

−ieiπ/4/2 eiπ/4

)(
0 Q
Q−1 0

)(
−ieiπ/4 ie−iπ/4

eiπ/4/2 e−iπ/4/2

)(
0 α
α−1 0

)
=

(
0 α
α−1 0

)(
i(Q/4−Q−1) Q−1 +Q/4
Q−1 +Q/4 i(Q−1 −Q/4)

)(
0 α
α−1 0

)
?
=

(
0 α
α−1 0

)(
i sinh(lnQ− ln 2) cosh(lnQ− ln 2)
cosh(lnQ− ln 2) −i sinh(lnQ− ln 2)

)(
0 α
α−1 0

)
=

(
−i sinh(−i~−1I − ln 2) α2 cosh(−i~−1I − ln 2)
α−2 cosh(−i~−1I − ln 2) i sinh(−i~−1I − ln 2)

)
, (4.88)

where A and B are as in (2.56), I := Iq−q, and for ? we used

Q−1 +Q/4 = 1
2
((Q/2)−1 +Q/2) = 1

2
(eln(Q/2) + e− ln(Q/2)) = cosh(ln(Q/2))

= cosh(lnQ− ln 2), (4.89)

and similarly for the sinh terms. As such, employing (4.82), we find that

S(k) =
exp(−2ikν)

α2 cosh(−i~−1I − ln 2)
(4.90)

is the general transmission amplitude for a WKB potential in the case of two turning
points.
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We would also like to consider the simplified case of E = E > 0. Note that then
E − V (x′) becomes a negative real number inside of the interval (−q, q), and so the
integrand

√
E − V (x′) becomes purely imaginary. We must be careful, though: as we

have introduced before (subsection 3.1.1), the square root has two possible images,
and these are not equivalent to each other!

As addressed in that same section, the right choice for us is that square root with
image in the lower half plane. As such, the integrand is a negative imaginary number
across the entire integration domain, yielding us that I is also negative imaginary.
Thus, we justify the equality −i~−1I = −~−1|I| for real E > 0, and we can write down
the transmission amplitude and coefficient for that case to be

SE>0(k) =
exp(−2ikν)

α2 cosh(~−1|I|+ ln 2)
and TE>0(k) = cosh−2

(
~−1|I|+ ln 2

)
. (4.91)

Notably, from this second formula we learn that we expect an upper limit to the
transmission:

TE>0 < cosh−2(ln 2) = 16/25 = .64. (4.92)

This means that with a barrier in place, based on the WKB approximation, we would
not expect transparency for any energy. This is with the caveat that for E ≈ maxV ,
the WKB approximation is no longer valid.

Under the additional assumption that ~−1|I|− ln 2� 1, we may simplify TE>0 even
further to read

TE>0 ≈ exp
(
−2~−1|I|

)
. (4.93)

This formula for the transmission coefficient then agrees with established literature in,
for instance, [7, (9.60)].

Example: a Gaussian potential

To illustrate the above, consider the Gaussian potential

Vgauss(x) = 30 exp
(
−x2

)
, (4.94)

where we do not bound x as the value of V gets small very quickly anyway. Since
the maximum of this potential lies at 30, for any energy lower than this we will have
two turning points, so the above formulae apply. The numerically computed and
theoretical transmission coefficients, based on the above expression for SE>0(k), are
shown in Figure 4.5. We notice that we have a very good match between the theoretical
prediction of (4.91) and the computed value, bolstered by the fact that the difference
between the two (in dotted red), consistently lies about an order of magnitude below
their respective values.

4.3.3 Four turning points; two hills, one valley

Let us move on to the situation of two hills with a valley inbetween, i.e. the situation
with four turning points (e.g. the dashed green line in Figure 4.4). For this, notice
that by symmetry we can lay our turning points at −p, −q, q, and p, with 0 < q <
p < ν. Thus, ±p are the outer turning points, and ±q the inner ones.

61



Scholtens, R. W. A Transparent View on Resonances

Figure 4.5: Transmission spectra for Gaussian potential of (4.94). All three curves
contain 3 000 equispaced data points, and assume ~ ≡ 1.

To calculate P, we have to find

P = F(p→ ν) B F(q → p) A F(−q → q) B F(−p→ −q) A F(−ν → −p). (4.95)

The matrices A and B are as in (2.56), while the Fs can be written as

F(p→ ν) = F = (−ν → −p) =

(
0 α

α−1 0

)

F(q → p) = F(−p→ −q) =

(
0 β

β−1 0

)

F(−q → q) =

(
0 γ

γ−1 0

) , (4.96)

for

α = exp
(
−i~−1I−p−ν

)
, β = exp

(
−i~−1I−q−p

)
, and γ = exp

(
−i~−1Iq−q

)
. (4.97)

With the help of Mathematica we can calculate P as in equation (4.95):

P =
1 + γ2

16β2γ

(
−i(β4 − 16) α2(β4 + 16 + 8β2 γ2−1

γ2+1
)

α−2(β4 + 16− 8β2 γ2−1
γ2+1

) i(β4 − 16)

)

=
cos
(
~−1Iq−q

)
8

(
−i(β2 − 16β−2) α2(β2 + 16β−2 − 8i tan

(
~−1Iq−q

)
)

α−2(β2 + 16β−2 + 8i tan
(
~−1Iq−q

)
) i(β2 − 16β−2)

)
(4.98)

Therefore, once more employing (4.82), we have that S(k) will be given by

S(k) = α−2 exp(−2ikν)
[
1
8

cos
(
~−1Iq−q

)
(β2 + 16β−2)− i sin

(
~−1Iq−q

)]−1
. (4.99)
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Notice that we have a stark difference as compared to the case of two turning points:
here we have trigonometric functions involved as well, which suggest that the transmis-
sion amplitude exhibits some manner of oscillation and/or periodicity in E . Since this
expression is not trivial, it should be rewarding to calculate the transmission coefficient
for this system. Assuming real E = E > 0, we find that

TE>0 =
[
64−1 cos2

(
~−1Iq−q

)
(β2 + 16β−2)2 + sin2

(
~−1Iq−q

)]−1
=
[
1 + 64−1 cos2

(
~−1Iq−q

)
{(β2 + 16β−2)2 − 64}

]−1
=
[
1 + 64−1 cos2

(
~−1Iq−q

)
(β2 − 16β−2)2

]−1
?
=
[
1 + cos2

(
~−1Iq−q

)
sinh2(2 ln β − 2 ln 2)

]−1
=
[
1 + cos2

(
~−1Iq−q

)
sinh2

(
−2i~−1I−q−p − 2 ln 2

)]−1
??
=
[
1 + cos2

(
~−1Iq−q

)
sinh2

(
2~−1|I−q−p |+ 2 ln 2

)]−1
(4.100)

where in ? we used a trick identical to (4.89), and for ?? we used the same reasoning
as for the one turning point case to argue −iI−q−p = −|I−q−p | (and noticed sinh2 is even
so we can remove an overall minus sign). From this expression, notice foremost that
0 ≤ T ≤ 1 due to the constant +1 in the denominator and the rest of the sum being
positive. A welcome result, since this is the allowed range of T for real k, so this checks
out on physicality on that front.

We can compare this formula to one in established literature, namely [7, (9.106)]:

TWKB =
exp(−2(KII +KIV))

4 cos2 LIII

. (4.101)

Here KII and KIV are the (absolute values of) the integrations over the hills, and LIII

is the same for the valley inbetween. Comparing to our notation, this boils down to

KII ≡ ~−1|I−q−p |, KIV ≡ ~−1|Ipq |, and LIII = ~−1|Iq−q|. (4.102)

This formula and (4.100) are asymptotically equal to each other under the assumption
of ~−1|I−q−p | � 1. However, the addition of +1 in the denominator of our formula makes
it so that the the transmission coefficient can no longer explode, and instead reaches
the expected maximum value of 1 for cos2(. . .) = 0. Thus, the derived formula (4.100)
represents an improvement over one found in the literature.

We moreover notice that the maximum transmission of 1 is not reached for only a
single E , but instead for potentially many such E : whenever

k ∈ R : ~−1Iq−q =
(
n+ 1

2

)
π ⇐⇒ Iq−q = ~π

(
n+ 1

2

)
for some n ∈ N, (4.103)

we have a transparency energy. These are thus the energies at which resonant tunneling
takes place: full transmission despite the energy being lower than the maximum of the
potential.

Remark 4.15 (Bohr-Sommerfeld quantization II). The condition (4.103) is a parallel
of the Bohr-Sommerfeld quantization condition for quantized systems, a staple of the
semiclassical treatment of QM. Since WKB is a semiclassical treatment of QM, it is
not unsurprising that this appears “in the wild,” and certainly a welcome result.
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The +1/2 is derived from adding so-called Morse indices to this condition, which
represent the fact that the potential slope is not infinite at the turning point. For
more information/background we refer to [17, §4.2.2.5].

Normally the quantization is only applicable to bound state systems, but here it
shows up where we explicitly do not have a bound state. This suggests that the
particle views the potential valley in the middle as an unbounded harmonic potential
Vharm(x) = αx2 − V0.

Another feature that we can glance from (4.100) is a notion of the width of the
peaks for the above E . Upon using an expansion in orders of δE—à la Section 4.2.1—
we find that around a transparency Etrans the transmission coefficient will read

T (Etrans + δE) ≈ 1

1 +
(
1
2
~−1Jq−q

)2
sinh2

(
2~−1|I−q−p |+ 2 ln 2

)
δE2

=

(
2~

Jq−q sinh
(
2~−1|I−q−p |+ 2 ln 2

))2
δE2 +

(
2~

Jq−q sinh
(
2~−1|I−q−p |+ 2 ln 2

))2
−1 ,

(4.104)

where

Jq−q :=

∫ q

−q
[Etrans − V (x′)]−1/2 dx′ . (4.105)

That is to say, around transparencies the transmission coefficient follows an FBW-
distribution with the width Γ given by

Γ =
4~

Jq−q sinh
(
2~−1|I−q−p |+ 2 ln 2

) ∼ 4~
√
E

sinh
(
2~−1|I−q−p |+ 2 ln 2

) , (4.106)

and where we also used that Jq−q ∼ E−1/2, very broadly speaking.

Analogously to the square well, as we decrease the energy, |I−q−p | will increase, thus
so will the sinh term, and so Γ will decrease. This translates itself to narrower peaks
in a transmission spectrum. Contrary to the square well, though, here Γ in principle
will decrease exponentially owing to the sinh, as opposed to sub-exponential.

To draw the comparison even further, the above suggests a remarkable similarity
between the spectra qualitatively speaking. Namely, as long as Γ/(∆E) remains suf-
ficiently small, any two hill, one valley potential should permit an approximation by
means of FBW-distributions around the transparency energies, just as was shown to
be case for the square well.

Example: a sinc potential

As an example of the above situation, let us consider the sinc potential

Vsinc(x) =

−150 sinc(πx/5) =
−150 sin(πx/5)

πx/5
if x ∈ [−10, 10]

0 otherwise
. (4.107)

A picture of this potential may be found in Figure 4.6. As can be seen, for any real
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n 28 29 30 31 32 33 34 35 36 37
En ± 0.01 0.96 4.98 8.87 12.63 16.25 19.71 23.01 26.10 28.94 31.45

Table 4.1: Values of transparency energy corresponding to n for the sinc potential, as
determined from Figure 4.7.

energy lower than the peaks which values are ≈ 32.585, there will be four turning
points, so we may apply the above formalism.

In particular, we may find the transparency energies En as solutions to the equation

~−1Iq−q(En) = ~−1
∫ q

−q

√
En +

150 sin(πx/5)

πx/5
dx = π

(
n+ 1

2

)
for some n ∈ Z, (4.108)

cf. equation (4.103), and where the bounds of integration ±q depend on E as well
(they must be chosen so that the integrand is positive real over the entire integration
domain). An effective way to find the transparencies is to plot ~−1Iq−q as a function
of E, and then overlay π(n+ 1/2)-gridlines to find the appropriate En. This has been
done in Figure 4.7.

We should expect that these will be seen back in the transmission spectrum of the
potential; in fact, we expect FBW-distributions precisely around these transparency
energies, as based on the discussion above. In Figure 4.8, both the theoretical and
computed transmission spectra for the sinc potential are shown. Firstly, observe that
the peaks in (a) do not reach all the way up to 1, even though this is to be expected
(at least from the theoretical value) for the transparency energies. This is due to our
discretization not being fine enough. As a result, the energy which forms the peak in
the Figure is not the local transparency, but a close “neighbor” thereof. If we were to
make the discretization finer, these peaks should all bona fide reach T = 1.

Secondly, we notice that although the match in (a) seems to be quite well, the
relative difference displayed in (b) is erratic with many spikes up and down. These
can be explained, however.

Spikes up. These spikes are located around where the theoretical value has a peak,
but the computed value does not—see Figure 4.9 for zoomed-in views around
several peaks. As a result, the relative difference is effectively the ratio of the
theoretical to the computed value, which is very high as the peak is very narrow
(so the computed value is nowhere near 1).

Spikes down. These occur where the theoretical and computed values intersect each
other: the relative difference will be almost zero, hence a spike down on the
log-plot.

Optimistically discarding these spikes as “glitches,” we would estimate that the relative
difference is approximately ±10% over the entire energy interval. This is in agreement
with Figure 4.5, where the difference is consistently about one order of magnitude
below the computed/theoretical values.

Owing to the fact that T can be written as an FBW-distribution, we should also
be expecting to find resonances at those real energies where a transparency occurs cf.
Remark 4.11. In Figure 4.10, we have plotted the phase of S(E) on a section of the
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Figure 4.6: Illustration of the sinc-potential in (4.107).

Figure 4.7: A plot of (4.108), comparing against values π(n+1/2), n ∈ Z. The integral
does not resemble a square root as the bounds of integration also increase with varying
E.
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(a) Computed and theoretical values of T .

(b) Relative difference between the two values in (a) (|th.− comp.|/comp.).

Figure 4.8: Transmission spectra for the sinc potential of (4.107), where the theoretical
value is based on applying (4.100) to this case. For both plots, 6 000 equispaced points
were used, and we assume ~ ≡ 1.
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(a) Zoomed around 31.4 (n = 37) (b) Zoomed around 29.0 (n = 36)

(c) Zoomed around 26.1 (n = 35) (d) Zoomed around 23.0 (n = 34)

Figure 4.9: Zoomed-in views around four peaks in Figure 4.8.

second sheet in order to investigate this. Indeed, there are resonances located at those
energies whose real parts constitute transparencies. We also see that these resonances
rapidly near the real axis as we decrease in energy, as we would expect due to the
rapid decreasing in Γ cf. (4.106).

On a final note: we can compare our result (4.100) to the one found in literature
(4.101), to see whether a (significant) improvement was made. This has been done by
calculating the relative difference between the two values, and it is shown in Figure
4.11. We see that our formula has the greatest impact on accuracy for larger energies,
and that its improvement quickly drops off as we decrease. From around E = 20, the
relative difference seems to stagnate at ≈ 10−15, although due to erratic behavior also
found there this is more than likely to be a glitch.

To conclude

In this section we determined, for symmetric potentials, the general form of the trans-
mission amplitude (4.14) in terms of the solution to the Schrödinger equation inside the
potential, namely the parameters θe,o. We then proceeded to find closed expressions
for these parameters for i) potentials composed of square barriers and wells, and ii)
potentials where we would apply the WKB approximation, leading to formulae (4.27)
and (4.82), respectively.

We also treated several examples, wherein using the derived relevant formulae for
S(k) we could explain features of the transmission spectrum, or determine algebraically
where resonances would be located. One recurring observation is that transparency
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Figure 4.10: Phase of S(E) for the potential Vsinc (4.107) (~ ≡ 1).

Figure 4.11: Relative difference between our approximation for T (4.100) and one
found in the literature (4.101) for the case of the sinc potential Vsinc (4.107) (~ ≡ 1).
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energies are related to the appropriate Bohr-Sommerfeld quantization condition for
that potential, even though these energies do not represent bound states and lie in the
continuous spectrum of the relevant Hamiltonian.

Moreover, in the example of the sinc potential, we saw that the transparency
peaks could once more be written as FBW-distributions. This allowed us to locate
resonances easily as was the case for the square well (see Remark 4.11), and also verify
by evaluating S(E) over (a section of) the second sheet.

This same example also allowed us to compare our derived formula for T (4.100)
to one found in the literature (4.101), in order to gauge whether an improvement was
made. The relative difference, plotted in Figure 4.11, shows that our formula is more
accurate particularly for higher energies, and that for lower energies the two match
quite well. (This was also to be expected, as our formula limits to the literature one
for lower energies.)

What we carefully avoided in our analysis of WKB-applicable potentials, though,
are those energy ranges over which the amount of turning points changes. This is not
something that our analysis up to this points allows: the matrix P depends on the
amount of turning points, and once that amount changes a new P would need to be
constructed. In the following section we shall attempt to form a “bridge” between two
energy ranges in which WKB is applicable, but between which the amount of turning
points changes.
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5 Quantum Normal Forms

Up to this point, we have sought to calculate the transmission amplitude either by
assuming that our potential was square (i.e. consisting of square wells and barriers),
or assuming that the WKB approximation was valid. Although some nice results were
obtained by these methods for a large amount of energy & potential configurations,
needless to say it does not cover all possibilities.

One such excluded kind of configuration is when the energy (closely) matches a local
maximum in the potential, for instance in the case of a smooth barrier potential. Purely
from considering the WKB approximation, we expect the transmission amplitudes in
the regions above and below the threshold energy to look radically different from each
other. Indeed, we lose two turning points, so P will obtain a very different form.

More crucially, the peak of the barrier cannot considered to be a turning point:
the derivative of the potential there is zero, and a turning point requires a non-zero
derivative of the potential (refer back to subsection 2.4.2). So, we could not even alter
our construction of P in order to handle this (if we maintained its basis in WKB).

But when one door closes, another one opens. From the point of view of classical
mechanics, such a peak would correspond to an equilibrium position: if we choose
our energy to be the threshold energy, the total energy precisely at the peak is zero.
This observation motivates us to consider methods from classical mechanics (e.g. for
equilibrium analysis) in order to study the quantum problem.

One such way, which we will explore here, is by means of a normal form of the
Hamiltonian around the equilibrium point (considered in phase space). The idea of
the normal form is to find approximate, local constants of motion around the equilib-
rium point, which should provide insight into the motion in the neighborhood of said
equilibrium point.

We first want to remind the reader that in the preliminaries we treated the classical
Birkhoff Gustavson normal form (CNF), and that we build upon that knowledge in
this section. We shall “translate” the methodology of CNF into quantum mechanics,
discovering that the classical methodology still holds broadly and utilizing it to find
the quantum normal form (QNF) of a barrier top potential (see Figure 5.1). Then we
determine the scattering matrix for this potential in terms of a new variable I, which
we subsequently link back to the energy E with the aim of finding resonances. In the
final subsection we discuss some examples of the treated theory.

5.1 From classical to quantum

In the quantum realm, instead of talking about variables q and p living in state space,
we have to interpret these as operators instead, together acting on a state in a Hilbert
space. That is to say, we have to make the shift q → Op[q] ≡ q̂ and similarly for p,
by means of the transformation Op. The construction of this transformation is non-
trivial, and the subject of [16, §3.1]. Importantly, however, we maintain the standard
quantization relations

q̂ = q and p̂ = −i~ ∂
∂q

(5.1a)
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Figure 5.1: Illustration of the validity regions of WKB. The dashed gray region shows
where WKB is not applicable, whilst it is valid above and below it (by assumption).
The blue dot shows the peak of the barrier. The motivation for studying QNFs is to
find the transmission amplitude and/or coefficient in the dashed gray region.

in the q-representation, and

q̂ = i~
∂

∂p
and p̂ = p (5.1b)

in the p-representation.
Let us now consider the relation between two “operatorfied” state space functions

A and B. It turns out that there exists the star product ∗, given by

A ∗B :=
∞∑
j=0

1

j!

(
i~
2

)j
A
[←
∂q
→
∂p −

←
∂p
→
∂q

]j
B = AB + 1

2
i~{A,B}+O

(
~2
)
, (5.2)

so that we have the relation

Op[A] Op[B] = Op[A ∗B]. (5.3)

The arrows above the partials indicate in which direction the differential is operating.
Also notice that here we started in the semiclassical spirit of quantum mechanics, in
treating ~ as a small perturbative parameter in which we can make an expansion. The
star product thus allows us to consider a single function in state space, A ∗B, instead
of two “operatorfied” ones. The importance hereof lies in the fact that state space is
easier to work with than operator space.

Developing this further, we can find for the commutator between two operators
that

[Op[A],Op[B]] = Op[A] Op[B]−Op[B] Op[A] = Op[A ∗B −B ∗ A]. (5.4)

Relation (5.4) allows us to translate commutators of operators (or rather, of “oper-
atorfied” state space functions) to the operator form of a single state space relation,
being the function A∗B−B∗A. Due to this nice property, A∗B−B∗A should be the
fundamental relation between state space variables if we have the intent of consider
their quantum analogues. This motives the following definition.
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j Term hom. order Power of ~ qho

0 {A,B} ab− 2 0 ab− 2

1 ∝ ~2A[ . . . ]3B ab− 6 2 ab− 2

2 ∝ ~4A[ . . . ]5B ab− 10 4 ab− 2

3 ∝ ~6A[ . . . ]7B ab− 14 6 ab− 2

Table 5.1: Determination of the qho of the various terms comprising the Moyal bracket
expansion (5.5a) up to j = 3, assuming A and B have qhos a and b, respectively. Here,
hom. order is as defined in Definition 2.3, and the term [ . . . ] indicates the relevant
differential operator.

Definition 5.1 (Moyal bracket). For state space functions A and B, we define

{A,B}M := −i~−1(A ∗B −B ∗ A) =
∞∑
j=0

(−1)j(1
2
~)2j

(2j + 1)!
A
[←
∂q
→
∂p −

←
∂p
→
∂q

]2j+1

B (5.5a)

= {A,B}+O
(
~2
)

(5.5b)

to be their Moyal bracket.3 In analogy to (2.10), we define MadAB := {A,B}M as the
Moyal adjoint. Note that in (5.5b), the higher order terms disappear when either A
or B is of hom. order 2 cf. Definition 2.3.

The Moyal bracket essentially takes the role of the Poisson bracket for quantum
considerations. This is exemplified in particular by the appearance of ~ in what is
otherwise still a function in state space. Also note that if we set ~ ≡ 0—i.e. we turn
QM “off”—the Moyal bracket reduces to the Poisson bracket identically.

From this starting point, we can develop the theory of QNFs along much the same
vein as for CNFs in the preliminaries, but with some key alterations. The first concerns
the analogue of the spaces Wn, which quantum doppelgänger we define next.

Definition 5.2 (Quantum homogeneous orders, qho). We define

Wn
QM := span{~γqαpβ : α, β, γ ∈ N and α + β + 2γ = n} over C (5.6)

as the space of functions of quantum homogeneous order (qho) n. Notice that it is
equal to the hom. order of the term plus twice the exponent of ~.

That here we need to consider additionally the (double counted!) powers of ~
comes from the Moyal bracket. Referring back to (5.5a), as the powers of q and p
decrease due to differentiation, we pick up powers of ~—two for each iteration. To
illustrate, we refer to Table 5.1, wherein we take stock of the orders of the various
terms in the expansion. Since the qho spaces WQM are closed under addition, this
means that the Moyal bracket lies within Wab−2

QM . If we did not count the factors of ~,
i.e. if we considered hom. order spaces instead of the qho ones, the Moyal bracket of A

3This object should more accurately be named the Groenewold-Moyal bracket, in honor of Gronin-
gen professor Dr. H.J. Groenewold’s contributions to its development. For further background, see
this webpage.
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and B with qho a and b, respectively, would not lie within any hom. order space W ,
as each term is of a different hom. order.

We can now present the definition of the QNF, which has a stark resemblance to
that of the CNF in Definition 2.4.

Definition 5.3 (Quantum Normal Form). Let H have an equilibrium point at the
origin (q, p) = (0, 0), and H2 be its Taylor expansion up to qho 2. Then we say that
H is in quantum normal form (QNF) up to order N if

{H2, H}M = 0 +Oqho(N + 1). (5.7)

Mirroring the procedure to putting a Hamiltonian into CNF, we want to find a
series of transformations Wm ∈ Wm

QM to furnish

H
W3−−→ H(3) W4−−→ H(4) W5−−→ · · · WN−−→ H(N), (5.8)

where we wish for H(N) to be in QNF up to order N . However, now Wm acts as

H(m) =
∞∑
j=0

(j!)−1(MadWm)jH(m−1), (5.9)

exhibiting the Moyal adjoint instead of Poisson. Note that Wm may comprise terms of
lower order in q and p, compensated by powers of ~ cf. the definition of qho. For this
reason, together with the Moyal adjoint, ~ will “sneak into” our calculations, which
are otherwise based entirely in CM. This also means that we get a revised version of
Lemma 2.5:

H
(m)
h =

bh/(m−2)c∑
j=0

(j!)−1(MadWm)jH
(m−1)
h−j(m−2). (5.10)

We posit this equation without proof, instead referring to [16].
It turns out the homological equation, derived in Proposition 2.6, carries over to

the case of QNFs almost identically:

Proposition 5.4 (Quantum homological equation). Assume that H(N−1) is in QNF
up to order N − 1. In order to guarantee that H(N) is in QNF up to order N , we need
that WN ∈ WN

QM satisfies

H
(N−1)
N −DWN ∈ kerD, (5.11)

where D = {H2, ·} :WN
QM →WN

QM.

Proof. The proof is analogous to the one for Proposition 2.6, and as such omitted.

With the homological equation in hand, the theory for putting some Hamiltonian
into QNF is complete. We can then proceed with applying this theory to our situation
of interest, being that of a potential barrier in 1D. This shall be content of the following
subsection.
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5.2 1D Potential barrier

Let us now apply the above theory on QNFs to the setting of interest, i.e. around
the top of a potential barrier. Firstly, we shall put the relevant Hamiltonian—with a
potential V s.t. V ′(0) = 0 > V ′′(0)—into QNF up to order 4. We will then deduce
how, utilizing it, an expression may be found for the transmission amplitude and
coefficient—in terms of a yet to be determined quantity I. Finally, we will express I
in terms of the energy E., which is ultimately our input variable.

Corresponding to the standard Hamiltonian operator H we have the Hamiltonian
function H:

H = −~2 d
2

dx2
+ V (x) ←→ H = p2 + V (q), (5.12)

cf. the quantization rule (5.1a). Assume that we have an equilibrium at (0, 0), i.e.
V ′(0) = 0, and that it is a local maximum, i.e. V ′′(0) < 0. We make the Maclaurin
expansion

H = p2 + V0 − 1
4
λ2q2 +

∞∑
j=3

V (j)(0)

j!
qj, (5.13)

where we introduce λ :=
√
−2V ′′(0). Before we start the QNF procedure, we first

wish to rewrite so that we have 1 term at qho 2; at this moment we have both p2 and
−1

4
λ2q2, which is not desired. Notice that

p2 − 1
4
λ2q2 = (p+ 1

2
λq)(p− 1

2
λq)

= λ (λ−1/2p+ 1
2
λ1/2q)︸ ︷︷ ︸

=:q̃

(λ−1/2p− 1
2
λ1/2q)︸ ︷︷ ︸

=:p̃

. (5.14)

As such, we make the symplectic coordinate transformation (q, p) 7→ (q̃, p̃), where the
tilde variables are as indicated above. Therefore, in the new tilde coordinates, our
expansion becomes

H = V0 + λq̃p̃+
∞∑
j=3

V (j)(0)

j!
λ−j/2(q̃ − p̃)j = V0 + λq̃p̃+

∞∑
j=0

j∑
`=0

Cj,`q̃
`p̃j−`, (5.15)

featuring

Cj,` :=
(−1)j−` V (j)(0)

(j − `)! `!λj/2
. (5.16)

We also note that for various `, the constants Cj,` should be related to each other for
the common factor of the jth derivative.

Lemma 5.5 (Relations Cj,`). We have that

Cj,` = (−1)`
(
j

`

)
Cj,0. (5.17)

Proof. Observe that
Cj,`
Cj,0

=
(−1)−` j!

(j − `)! `!
= (−1)`

(
j

`

)
, (5.18)

from which the query follows.
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We can now bona fide start putting the Hamiltonian (5.15) into QNF. Since the
rest of this construction will feature only the tilde variables, let us drop the tildes on q
and p from now on. Furthermore, we note that H ≡ H(2), since H is already in QNF
up to qho 2.

5.2.1 Its QNF

Step 1: to order 3

We start with the QNF procedure. Notice that on W3
QM, the homological operator is

given by

D = {λpq, ·} = λp
∂

∂p
− λq ∂

∂q
≡ λ diag(−3,−1, 1, 3,−1, 1), (5.19)

where the matrix is written in the basis {q3, q2p, qp2, p3, ~q, ~p}. Since the matrix is
diagonal without zero entries, the inverse exists and we can simply find W3

QM 3 W3 =

D−1H(2)
3 . In the basis above, H

(2)
3 ≡ (C3,3 , C3,2 , C3,1 , C3,0 , 0 , 0)ᵀ, so we obtain

W3 = D−1H(2)
3 = λ−1

[
−1

3
C3,3q

3 − C3,2q
2p+ C3,1qp

2 + 3C3,0p
3
]
. (5.20)

Then the next order terms to be obtained are utilizing (5.10):

H
(3)
3 = H

(2)
3 + MadW3 H

(2)
2 +

���
���

���
1
2
(MadW3)

2H
(2)
1 +

��
���

��
��

1
6
(MadW3)

3H
(2)
0

= H
(2)
3 −DW3

= 0. (5.21)

Notably, the third order of the normal is equal to zero. This means that

H
(3)
4 = H

(2)
4 + MadW3 H

(2)
3 + 1

2
(MadW3)

2H
(2)
2 +

���
���

���
1
6
(MadW3)

3H
(2)
1 +((((

((((
(

1
24

(MadW3)
4H

(2)
0

= H
(2)
4 + MadW3 H

(2)
3 + 1

2
MadW3 MadW3 H

(2)
2︸ ︷︷ ︸

=−H(2)
3

= H
(2)
4 + 1

2
MadW3 H

(2)
3

?
= C4,0

[
q4 − 4q3p+ 6q2p2 − 4qp3 + p4

]
− C2

3,0λ
−1 [3q4 + 12q3p− 30q2p2 + 12qp3 + 3p4 − 4~2

]
. (5.22)

The first half of ? is plugging in H
(2)
4 as we know it, and using Lemma 5.5 to rewrite in

terms of C4,0; the second half is the Moyal adjoint, which calculation we have relegated
to Appendix B.

Notice that we have the occurence of ~2, even though it did not appear in the
original Hamiltonian. As mentioned earlier, this is due to the Moyal bracket at higher
orders being expanded in powers of ~, and the fact we reach these higher orders due
to Moyal bracket-ing two functions of qho larger than 2.

In a similar manner as the above, we could continue with finding H
(3)
5 , H

(3)
6 , et

cetera. However, as one can glance from the above, the calculations become longer as
we consider terms of higher qho, especially given the involvement of the Moyal adjoint.
We thus elect to stop calculating H(3) here, so that we have obtained

H(3) = V0 + λpq +H
(3)
4 +Oqho(5), (5.23)

where H
(3)
4 is as obtained in (5.22).
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Step 2: to order 4

To find W4, we need first to recalculate the homological operator on W4
QM. In the

basis {q4, q3p, q2p2, qp3, p4, ~q2, ~qp, ~p2, ~2}, it will be given by

D ≡ λ diag(−4,−2, 0, 2, 4,−2, 0, 2, 0). (5.24)

We notice that D is still diagonal, but also that due to its zero entries it is no longer
invertible. Does this mean that the homological equation is not solvable? Not neces-
sarily: the quantum homological equation merely says that H

(3)
4 − DW4 needs to be

in the kernel of D, but does not force it to be 0. This means that we can still hope to
find W4 that can satisfy the homological equation.

Making our hope more concrete, we observe that for our specific homological op-
erator the following holds:

W4
QM = ImD ⊕ kerD. (5.25)

As a consequence, we may make the splittingH
(3)
4 = H

(3)
4;Im+H

(3)
4;ker, where the additional

subscripts indicate that these parts live in the image or kernel of D, respectively. Then,

H
(3)
4 −DW4 = H

(3)
4;ker +H

(3)
4;Im −DW4

!
∈ kerD =⇒ H

(3)
4;Im −DW4 = 0. (5.26)

Thus, to complete the next step of the QNF, we will have to find W4 that satisfies this
rightmost equation, and with it find H(4).

Remark 5.6 (Splitting (5.25); Fredholm alternative). The splitting introduced in
(5.25) is very specific to our case, and cannot generally be made for arbitrary D. As
an example, if we let the full space be C2, then for

D =

(
0 1
0 0

)
(5.27)

we find kerD = ImD = span
(
1 0

)ᵀ
, so C2 6= kerD ⊕ ImD.

However, there exists a splitting of the full space that will always work, given by
the Fredholm alternative. Let L : V → V be linear on a finite-dimensional complex
vector space V with inner product 〈·, ·〉. Then, we have that

V = ImL ⊕ kerL∗, (5.28)

with additionally that ImL ⊥ kerL∗. For a proof (and further context) of this fact,
we refer to [14, Thm. 2.2.1]. Since the operators D in our case are self-adjoint, this
statement reduces to the splitting (5.25) and the QNF can bona fide be found.

Observe that we have

H
(3)
4;ker = [6C4,0 + 30C2

3,0λ
−1]q2p2 + 4C2

3,0λ
−1~2 (5.29a)

and

H
(3)
4;Im = [C4,0 − 3C2

3,0λ
−1]q4 − [4C4,0 + 12C2

3,0λ
−1]q3p

− [4C4,0 + 12C2
3,0λ

−1]qp3 + [C4,0 − 3C2
3,0λ

−1]p4. (5.29b)
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Taking (5.24) to heart, it is not hard to see that W4 should thus be chosen as

W4 = −1
4
[C4,0λ

−1 − 3C2
3,0λ

−2]q4 + 1
2
[4C4,0λ

−1 + 12C2
3,0λ

−2]q3p

− 1
2
[4C4,0λ

−1 + 12C2
3,0λ

−2]qp3 + 1
4
[C4,0λ

−1 − 3C2
3,0λ

−2]p4. (5.30)

Therefore,
H

(4)
4 = H

(3)
4;ker = [6C4,0 + 30C2

3,0λ
−1]q2p2 + 4C2

3,0λ
−1~2. (5.31)

With W4 in hand, we could proceed with obtaining H
(4)
5 , H

(4)
6 , and so on by the

procedure that we have demonstrated above. This would increase the accuracy of the
QNF of H we are building. However, for the sake of brevity we elect to stop the
procedure here. Thus, the fourth order QNF of the 1D potential barrier is as follows:

H(4) = V0 + λpq + [6C4,0 + 30C2
3,0λ

−1]q2p2 + 4C2
3,0λ

−1~2 +Oqho(5). (5.32)

Unlike for H(3), the term ~2 is now here to stay: it is at qho 4, and the next steps in the
QNF algorithm will only change the terms at qho 5 and higher. The term 4C2

3,0λ
−1~2

can thus be seen as the “quantum correction” to the classical normal form of the 1D
potential barrier.

It is here that we notice that H(4) only features terms with equal powers of q and
p. If this is a pattern that continues, then we could rightfully consider H(m) to be a
function solely of qp, i.e. H(m)(q, p, ~) = H(N)(qp, ~). As luck would have it, this is a
pattern that does hold, as we will show in the next Theorem.

Theorem 5.7 (Equal occurence powers of q and p). For the 1D potential barrier, we
have that the N th order QNF of the Hamiltonian can be written as

H(N) =

bN/2c∑
j=0

αjI
j +Oqho(N + 1), (5.33)

for I := pq and constants αj = αj(~). Cf. [16, Thm. 3].

Proof. Let us prove by induction on N . By the above, we already know that this holds
for N = 4, which is our base case.

Now assume the statement holds for some b−1 ∈ N. We shall need the homological
operator,

D = λp
∂

∂p
− λq ∂

∂q

≡ λ diag(−b,−b+ 2, · · · , b,−b+ 2,−b+ 4, · · · , b− 2,−b+ 4, · · · ), (5.34)

operating on Wb
QM, where the matrix is written in the basis

{qb, qb−1p, · · · , pb, ~qb−2, ~qb−3p, · · · , ~pb−2, ~2qb−4, · · · }. (5.35)

That this operator will indeed be diagonal for all b and has the form it does we assume
as evident. Now we need to distinguish cases between even and odd b.
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• Odd b− 1. Then b will be even, and so the homological operator will have zeros
on the diagonal. This means there is a non-trivial kernel, and it is given by

kerD = span{~kqb/2−kpb/2−k : k = 0, 1, · · · , b/2}
= span{~kIb/2−k : k = 0, 1, · · · , b/2}. (5.36)

Since the other basis elements of Wb
QM (of the basis in (5.35)) are mapped onto

themselves, they comprise the image of D, and so we have the relation Wb
QM =

kerD ⊕ ImD. We can thus make the split H
(b−1)
b = H

(b−1)
b;ker + H

(b−1)
b;Im , where the

subscripts indicate that the relevant term lives in either the kernel or image of
D, respectively. We can now choose Wb ∈ Wb

QM so that H
(b−1)
b;Im = DWb, and thus

we obtain

H
(b)
b = H

(b−1)
b −DWb = H

(b−1)
b;ker +��

��H
(b−1)
b;Im −��

�DWb = H
(b−1)
b;ker . (5.37)

As such, the qho b term in H(b) will belong to the kernel of D, which as we
established is spanned by ~kIb/2−k, k = 0, 1, · · · , b/2. The QNF H(b) will thus
remain a power series in I, except that now the highest order in I will be b/2
instead of b/2− 1. That is to say, we have shown

H(b−1) =

b/2−1∑
j=0

αjI
j +Oqho(b) −→ H(b) =

b/2∑
j=0

α̃jI
j +Oqho(b+ 1). (5.38)

where the tildes indicate that the αjs may have been altered in this procedure.

• Even b−1. Then b will be odd, and we observe that D will be diagonal without
zero entries. As such, D−1 exists and we can choose Wb

QM 3 Wb := D−1H(b−1)
b

so that
H

(b)
b =��

��H
(b−1)
b −��

�DWb = 0. (5.39)

Thus,

H(b−1) =

(b−1)/2∑
j=0

αjI
j +Oqho(b− 1) −→ H(b) =

(b−1)/2∑
j=0

αjI
j +Oqho(b+ 1). (5.40)

Here too the form we want to maintain has been shown.

Since both cases for b have been shown to yield the correct result, the induction step—
and by extension the entire proof—has been completed.

To recap, with some labor we have found that we can rewrite our 1D Hamiltonian
into QNF (which we have done up to fourth order, see (5.32)), and that the QNF is a
power series in I = pq. In the next subsection we will delve further into the quantity
I and associated operator I = Op[I], with the aim of finding the scattering matrix in
terms of it.
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Figure 5.2: Curves (hyperbolae) of constant I = pq in the q-p-plane. The vector field
generated by I is q∂q − p∂p. The dashed green line indicates the boundary between
the “reactant” (upper left) and “product” (lower right) regions of the phase portrait.

5.2.2 Transmission amplitude and coefficient

In order to construct from the Hamiltonian (5.32) the scattering matrix (and associated
transmission amplitude and coefficient), we shall need to consider its eigenstates as
well. That is to say, we need to find a description/expression for states incoming into
and outgoing from the barrier, and relate these to each other.

Considering that our Hamiltonian is now expanded in I, it is natural to consider
the incoming and outgoing states as eigenstates of I = Op[I]. Hence, we need to study
the eigenvalue equation

Iφ = Iφ, (5.41)

which states φ will simultaneously be eigenstates of the HamiltonianH—up to a certain
qho.

Since I = pq is supposed to be constant for the motion of the eigenstate φ, if we
interpret φ classically we can determine its behavior by looking at the phase portraits
of I. That is to say, since for a given I, φ is constrained to that curve on which
I is conserved, that curve determines completely the behavior of φ—see Figure 5.2.
From here we can also determine the long-term behavior of states, for any given initial
condition, which is indicated by the arrows in the aforementioned Figure. That is to
say, whether the states originated from and/or will end up in the “reactant” (r) or
“product” (p) region of this phase portrait. This we have recorded in Table 5.2. In
particular, we see from the table that for any I, the eigenstates φ, when represented in
q-space, are outgoing towards (positive/negative) infinity, and in p-space are incoming
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Eigenvalue I I > 0 I < 0

Initial conditions q > 0, p > 0 q < 0, p < 0 q > 0, p < 0 q < 0, p > 0

Forward

q-space +∞ −∞ +∞ −∞

p-space 0+ 0− 0− 0+

Region prod. reac. prod. reac.

Backward

q-space 0+ 0− 0+ 0−

p-space +∞ −∞ −∞ +∞

Region reac. prod. prod. reac.

Symbol
q-rep. ψo;p ψo;r ψo;p ψo;r

p-rep. ψi;r ψi;p ψi;p ψi;r

Table 5.2: Behavior of states as determined by their initial conditions in Figure 5.2.
“Forward” and “Backward” refer to the evolution in time.

towards the origin.
Now that we have made sense of the “directionality” of the eigenstates of I, let us

find these explicitly so we can make a quantitative analysis. We calculate that

I = 1
2
(q̂p̂+ p̂q̂) =

{
−i~

(
q∂q + 1

2

)
in q-representation

i~
(
p∂p + 1

2

)
in p-representation

, (5.42)

where we also utilized the quantization relation [q̂, p̂] = i~. If we now let ψ and
ψ denote solutions to the differential equation Iφ = Iφ in q- and p-representation,
respectively, we will find that these are given by

ψo;p,r(q) = Θ(±q)|q|−1/2+i~−1I = Θ(±q) exp
(
−1

2
ln |q|+ i~−1I ln |q|

)
(5.43a)

and

ψi;p,r(p) = Θ(∓p)|p|−1/2−i~−1I = Θ(∓p) exp
(
−1

2
ln |p| − i~−1I ln |p|

)
, (5.43b)

where Θ denotes the Heaviside step function. Tying back to the roles in terms of φ, the
above notation thus implies that ψo;p,r are outgoing states, whilst ψi;p,r are incoming
(hence the subscripts “o” and “i”). We also refer to the “Symbol” column in Table 5.2.
Moreover, we notice a mathematical relationship between the incoming and outgoing
states, being

ψi;p(p) = ψ∗o;r(p) and ψi;r(p) = ψ∗o;p(p), (5.44)

where ∗ indicates the complex conjugate.
We now have incoming states in the p-, and outgoing states in the q-representation,

and a relation between them. However, we ideally want to have both directions of states
in one of the two variables, which would allow us to learn the scattering behavior most
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easily. This we can do by changing from p- to q-representation for the incoming states
ψi;p,r. Namely, we do a Fourier-esque transformation, with which we obtain

ψi;p,r(q) =
1√
2π~

∫ ∞
−∞

ψi;p,r(p) exp
(
i~−1qp

)
dp

=
1√
2π~

∫ ∞
−∞

ψ∗o;r,p(p) exp
(
i~−1qp

)
dp

=


p :

1√
2π~

∫ 0

−∞
(−p)−1/2−i~−1I exp

(
i~−1qp

)
dp

r :
1√
2π~

∫ ∞
0

p−1/2−i~
−1I exp

(
i~−1qp

)
dp

. (5.45)

These integrals can then be evaluated by means of an adaptation of the formula for
the gamma function: ∫ ∞

0

yz−1e−ty dy = exp(−z ln t)Γ(z), (5.46)

where z, t ∈ C. The integral on the lhs (and with it the entire equation) is only defined
for tR > 0, but we may use an analytic continuation to define this equation for tR = 0
as well. For the “r” case in (5.45) we determine t = −i~−1q and z = 1/2 − i~−1I, so
that

ψi;r(q) =
g√
2π~

exp
(
−(1/2− i~−1I) ln

(
−i~−1q

))
, (5.47a)

where for brevity we made the definition g := Γ(1/2 − i~−1I). For the “p” case
we preface the above with the substitution p′ = −p, so that we obtain an integral
compatible with (5.46) featuring z = 1/2− i~−1I and t = i~−1q, which means that

ψi;p(q) =
g√
2π~

exp
(
−(1/2− i~−1I) ln

(
i~−1q

))
(5.47b)

In order to further simplify this, we need to distinguish between positive and negative
q. Using log rules for complex numbers, we determine that

ln
(
±i~−1q

)
= − ln ~ +

{
ln(±i) + ln q = ln q ± iπ/2 if q > 0

ln(∓i) + ln(−q) = ln(−q)∓ iπ/2 if q < 0
. (5.48)

With this in mind simplification is possible, leading to the expressions.

ψi;r =
g exp(−i~−1I ln ~)√

2π
×

{
eiπ/4 exp(~−1πI/2)q−1/2+i~

−1I if q > 0

e−iπ/4 exp(−~−1πI/2)(−q)−1/2+i~−1I if q < 0

(5.49a)
and

ψi;p =
g exp(−i~−1I ln ~)√

2π
×

{
e−iπ/4 exp(−~−1πI/2)q−1/2+i~

−1I if q > 0

eiπ/4 exp(~−1πI/2)(−q)−1/2+i~−1I if q < 0
. (5.49b)

Thanks to the step function in the definition of ψo;p,r, we can get rid of the case
distinction in (5.49). After all, that step function will regulate for us which case we
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are targeting. This means that (5.49) is equivalent to the equations

ψi;r =
g exp(−i~−1I ln ~)√

2π

[
eiπ/4 exp

(
~−1πI/2

)
ψo;p + e−iπ/4 exp

(
−~−1πI/2

)
ψo;r

]
(5.50a)

and

ψi;p =
g exp(−i~−1I ln ~)√

2π

[
e−iπ/4 exp

(
−~−1πI/2

)
ψo;p + eiπ/4 exp

(
~−1πI/2

)
ψo;r

]
.

(5.50b)
The above equations are the relationships between the incoming and outgoing states,
both in the q-representation, which we intended to find.

Glancing at these equations, we notice that they have the structure of a linear
transformation, which means that the incoming states are connected to the outgoing
states by means of a matrix transformation in suitable bases. This matrix is in fact
the scattering matrix, and by means of the above equations we can construct it. In
the bases {ψi;r, ψi;p} and {ψo;r, ψo;p} for the incoming and outgoing states, we see that(

1
0

)
S7−→ g exp(−i~−1I ln ~)√

2π

(
e−iπ/4 exp(−~−1πI/2)
eiπ/4 exp(~−1πI/2)

)
(5.51a)

and (
0
1

)
S7−→ g exp(−i~−1I ln ~)√

2π

(
eiπ/4 exp(~−1πI/2)

e−iπ/4 exp(−~−1πI/2)

)
, (5.51b)

which means that the scattering matrix is given by

S =
g exp(−i~−1I ln ~)√

2π

(
e−iπ/4 exp(−~−1πI/2) eiπ/4 exp(~−1πI/2)
eiπ/4 exp(~−1πI/2) e−iπ/4 exp(−~−1πI/2)

)
. (5.52)

From here, then, we determine the transmission amplitude as

S = S21 =
geiπ/4√

2π
exp
(
~−1I[π/2− i ln ~]

)
, (5.53)

and the associated transmission coefficient (assuming real I)

T = |S21|2 =
|g|2 exp(~−1πI)

2π
?
=

1

1 + exp(−2π~−1I)
, (5.54)

where in ? we used a reflection formula for the gamma function in order to derive its
absolute value (for full justification, see Appendix B).

5.2.3 It’s all coming together ...

We have now achieved what we wanted to do for the potential barrier, but which WKB
did not allow: to find expressions for the transmission amplitude and coefficient which
are valid around a classically unstable equilibrium. However, there is a problem with
the obtained expressions (5.53) and (5.54): they are written in terms of the quantity
I instead of the desired E. As such, we will need to make a relation between I and E
in order to fully complete our wish for expressions.
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This is done by realizing that we have an expression for H in terms of I, meaning
there should be an analogous expression for H in terms of I. Due to this form, H will
on the one hand act as a scalar E on an eigenstate ψi,o;r,p, and also as its expanded
form in terms of I. This should then yield a relation between the two quantities—a
relation that we find in the following Proposition.

Proposition 5.8 (Relation I ↔ E). We have that I and E, the eigenvalues of I and
H, respectively, are related as follows:

E = V0 + λI + [6C4,0 + 30C2
3,0λ

−1]I2 − ~2
[
3
2
C4,0 + 7

2
C2

3,0λ
−1] . (5.55)

Proof. From the QNF calculation, we have that to fourth order in qho H is given in
terms of I by

H = Op[H] = Op
[
V0 + λI + [6C4,0 + 30C2

3,0λ
−1]I2 + 4C2

3,0λ
−1~2

]
= V0 + 4C2

3,0λ
−1~2 + λOp[I] + [6C4,0 + 30C2

3,0λ
−1] Op[I2]. (5.56)

By definition, Op[I] = I. However, for Op[I2] we need to be more careful. Observe
that using the definition of the star product (5.2), we can determine

I ∗ I = I2 +���
��1

2
i~{I, I}+

1

2

(
i~
2

)2

I

[←
∂2q

→
∂2p +

←
∂2p

→
∂2q −2

←
∂q
←
∂p
→
∂q
→
∂p

]
I︸ ︷︷ ︸

−2

= I2 + 1
4
~2. (5.57)

Then,
Op[I2] = Op

[
I ∗ I − 1

4
~2
]

= Op[I]2 − 1
4
~2 = I2 − 1

4
~2. (5.58)

We plug this into (5.56) to obtain

H = V0 + 4C2
3,0λ

−1~2 + λI + [6C4,0 + 30C2
3,0λ

−1]
(
I2 − 1

4
~2
)

= V0 − ~2
[
3
2
C4,0 + 7

2
C2

3,0λ
−1]+ λI + [6C4,0 + 30C2

3,0λ
−1]I2. (5.59)

Finally, since we take I and H to act on eigenstates only, we must have that that the
respective eigenvalues are equal to each other. We then directly obtain what was to
be shown.

From this Proposition, we see the contribution of quantum mechanics to our anal-
ysis, being the final term involving ~2. The ramification of this addition is that we
disconnect E = V0 ↔ I = 0, which would necessarily be true in a purely classical
treatment (where ~ ≡ 0). Indeed, if we consider the expression for the transmission
coefficient (5.54), we see that if E = V0 ↔ I = 0, then precisely at the threshold en-
ergy the particle would have a probability of 1/2 to make it over, as we would expect
classically. The fact that E = V0 6↔ I = 0 may be true (supposing V is not precisely
so that the final term cancels) shows that, depending on the geometry of the potential,
we can have T > 1/2 or T < 1/2 at the threshold energy. Therefore, QM can act as a
“boost” or a “drag” on the transmission w.r.t. to the classical case.

One more issue arising from this is the choice of I with which to relate a given
E. Disregarding the case of there being no solutions for now, there will generally be
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precisely two I corresponding to a single E, so if we want to determine I from E,
we need to make a choice. From a physical perspective, we would expect that as we
increase E, T increases as well. After all, barring exceptions, adding more energy
should just make our particle more likely to go through. Thus,

0
!
<
dT

dE
=
dT

dI

dI

dE
=

2π~−1 exp(−2π~−1I)

(1 + exp(−2π~−1I))2︸ ︷︷ ︸
>0

dI

dE
=⇒ dI

dE
> 0. (5.60)

Thus, to each E we choose that I so that dI/dE > 0.
The final step is then to write the transmission amplitude and coefficient (5.53) and

(5.54) in terms of E instead of I. That is to say, we write I = I(E). We could solve
exactly for I in terms of E utilizing the quadratic formula, however i) the quadratic
formula is cumbersome and quite dense, and ii) the form I(E) is more general, for
instance for the case where more orders of QNF are desired and hence a larger order
polynomial is obtained. We thus find the expressions

S(E) =
eiπ/4√

2π
Γ
(
1
2
− i~−1I(E)

)
exp
(
~−1I(E)[π/2 + i ln ~]

)
(5.61a)

and
T (E) =

[
1 + exp

(
−2π~−1I(E)

)]−1
. (5.61b)

These expressions then also allow us to find resonances, by allowing the energy to
be complex and finding for which energies a pole occurs. Considering the transmission
amplitude, a pole may only arise due to the gamma function, which has poles at zero
and the negative integers. We will thus have resonances whenever

1
2
− i~−1I(E) = −n ⇐⇒ I(E) = −i~

(
n+ 1

2

)
for n ∈ N. (5.62)

This may be substituted back into the relation (5.55) to find the resonance energies as

En = V0 − ~2
[{

6C4,0 + 30C2
3,0λ

−1} (n+ 1
2

)2
+ 3

2
C4,0 + 7

2
C2

3,0λ
−1
]

− i~λ
(
n+ 1

2

)
. (5.63)

We remark, however, that this formula should only be valid for a finite amount of n:
for large enough n, the real part will deviate substantially from equilibrium energy V0,
making the approximation by QNF invalid.

Notice that for small enough ~, we may drop the ~2 term and so be left with a
simpler expression for the resonances of the system. These resonances, moreover, will
lie on a vertical line in the complex plane, directly below the threshold energy V0,
at regular intervals. Their constant distance of separation is modulated by λ, which
depends on the curvature of the barrier top.

5.3 Examples

Gaussian potential

We recall the gaussian potential we also utilized earlier:

Vgauss(x) = 30 exp
(
−x2

)
. (5.64)
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n
Energy En Wavenumber knExact Decimal

0 30− 3~2/8− i · ~
√

30 29.6250− i · 5.4772 5.4659− i · 0.5010

1 30− 15~2/8− i · 3~
√

30 28.1250− i · 16.4317 5.5090− i · 1.4913

2 30− 39~2/8− i · 5~
√

30 25.1250− i · 27.3861 5.5808− i · 2.4536

3 30− 75~2/8− i · 7~
√

30 20.6250− i · 38.3406 5.6640− i · 3.3846

4 30− 123~2/8− i · 9~
√

30 14.6250− i · 49.2950 5.7465− i · 4.2892

Table 5.3: Resonance energies for the gaussian potential Vgauss (5.64), obtained using
QNF. Columns kn and En/decimal assume ~ ≡ 1.

Evidently Vgauss(0) = 30 is a local maximum, so that we may apply the QNF method-
ology around that energy. It can be verified that V ′′(0) = −60 and V (4)(0) = 360, so
that

λ =
√
−2V ′′(0) = 2

√
30 and C4,0 =

V (4)(0)

4!× λ2
=

1

8
. (5.65)

Notably, C3,0 = 0. This is because the gaussian is a symmetric function, and C3,0—
which is proportional to V (3)(0)—is a measure of the asymmetry of the barrier top
under consideration. We utilize (5.63) by plugging in these numbers, and we find that
the resonance energies are given by:

En = 30− 3
4
~2
[(
n+ 1

2

)2
+ 1

4

]
− i · 2~

√
30
(
n+ 1

2

)
. (5.66)

We are also interested in the associated wavenumber resonance kn = ~−1
√
En. Eye-

ing the expression above, it would be rather cumbersome and unintuitive to attempt
to obtain the exact expression for kn. However, it turns out that we can make the
approximation

kn ≈ kn,app = ~−1
√

30− i ·
(
n+ 1

2

)
, (5.67)

for which it holds
|En − ~2k2n,app| = 1

4
~2
∣∣∣(n+ 1

2

)2 − 3
4

∣∣∣ . (5.68)

The reason for the accuracy of this approximation is that the real part of En has
downward opening quadratic behavior as function of n, whilst the imaginary part
has linear behavior. This lends itself particularly well to approximation by kn with
constant real part and linear imaginary part, as may be seen from the decomposition
(3.8). As a result, we expect Re kn to be roughly constant, and Im kn to increase
roughly linearly.

In Table 5.3, the first few resonances as obtained using the above formula may be
found. We see that indeed the real part of kn stays roughly constant, whilst we have
roughly linear behavior in the imaginary part.

We should be able to locate these resonances on a plot of S as function of E or k.
We have calculated the relevant values of S, and the plot may be found in Figure 5.3.
Indeed, we find that there are resonances located roughly there where we expect them
to be based on the calculation. We can locate the resonances E0,1,2 and k0,1,2.

More interestingly, though, in Figure 5.3a we find the appearance of a “wall”
of resonances around kI = −3, obfuscating the resonances kn>2. (The start of this
“wall” is also visible in Figure 5.3b, in the lower right corner.) These resonances are
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(a) Phase of S(k).

(b) Phase of S(E). The noise on the left of both sheets is a glitch in the calculations.

Figure 5.3: Phase of S as function of k (a) and E (b) for the gaussian potential Vgauss
(5.64) (~ ≡ 1).
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Figure 5.4: Illustration of the asymmetric potential Vasym in (5.69).

known as Regge resonances, and they appear due to the discontinuity in the potential
landscape that was used to generate these pictures [1]. (This type of resonance was
also featured in Figure 3.5.) Concretely, the bounds used for generation of the images
in Figure 5.3 were (−5.5, 5.5), and so there was a discontinuity at the start and end
of Vgauss(∓5.5) = 2.2× 10−12.

We also note the similarity between Figure 5.3a and the transmission amplitude for
the square well in Figure 4.1. Since for square well it is precisely the discontinuity that
creates these wavefronts on the lower half of the k-plane, this bolsters our confidence
in characterizing these as Regge resonances. Moreover, in Figure 5.3a we count that
for small kI, there are ≈ 21 wavefronts between kR = 0 and kR = 2π. This means that
the frequency of this wave is ω ≈ 21 ≈ 4 × 5.5 = 4ν, matching the behavior of the
square well S(k) (Proposition 4.8).

Asymmetric potential

To illustrate QNFs for asymmetric potential barriers, consider

Vasym(x) =

{
75
2

cos2(x+ a) exp(x) if x ∈ [−(π/2 + a), π/2− a] ≈ [−2.03, 1.11]

0 otherwise
,

(5.69)
where we set a ≡ atan 1/2. A sketch of this potential may be found in Figure 5.4. It
may be checked that we have a local maximum at x = 0. Thus, we can apply the QNF
methodology to find the resonances around x = 0.

Using Mathematica we obtain the following Maclaurin expansion of Vasym:

Vasym(x) = 30− 75

2
x2 − 25

2
x3 +

25

2
x4 +

35

2
x5 +O

(
x6
)
, (5.70)

so we can read off V (0) = 30, V ′′(0) = −75, V (3)(0) = −75, and V (4)(0) = 300. Thus
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n Energy En Wavenumber kn
0 29.6736− i · 6.1237 5.4760− i · 0.5591
1 28.2569− i · 18.3712 5.5660− i · 1.6503
2 25.4236− i · 30.6186 5.7106− i · 2.6809
3 21.1736− i · 42.8661 5.8730− i · 3.6494
4 15.5069− i · 55.1135 6.0316− i · 4.5687

Table 5.4: Resonances energies for the asymmetric potential Vasym (5.69), obtained
using QNF (~ ≡ 1).

the relevant coefficients may be calculated to be

λ = 5
√

6, C3,0 =
5

2
√

30 4
√

6
, and C4,0 =

1

12
. (5.71)

We fill these into the resonance equation (5.63) and simplify to obtain

En = 30− ~2
[
17
24

(
n+ 1

2

)2
+ 43

288

]
− i · 5~

√
6
(
n+ 1

2

)
. (5.72)

The first five resonances calculated using this formula—as well as the relevant wavenum-
bers kn—may be found in Table 5.4.

To check that these reflect reality, we may calculate S for sections of k- and E-space,
and check that we indeed find resonances. This has been done in Figure 5.5. We find
only one resonance as predicted by QNF; the others are (presumably) obfuscated by
the Regge resonances, which start at a kI considerably larger than they did for the
gaussian potential.

Furthermore, doing as we did for the gaussian potential, if we count the waves
in the lower half-plane we find that the frequency is given by ω ≈ 5.5. Though
this is not approximately equal to 4 × 2.1 = 8.4 = 4ν, it is approximately equal to
2 × (2 + 1.1) = 6.2. Since ν is supposed to represent half of the total length of the
potential’s support, we argue that the comparison with 6.2 (which is twice the total
length) is more fitting.

Since now the discontinuity is not in V itself (Vasym(∓2.1) ≡ 0), we suspect that
discontinuity at higher order derivatives plays a role as well. Namely, at the negative
“interface” x ≈ −2.03, Vasym(−2.03) = V ′asym(−2.03) = 0, but V ′′asym(−2.03) ≈ 9.8 6= 0.

To conclude

We started this section by adapting the classical algorithm for rewriting a Hamiltonian
into CNF to our quantum case. This yielded us a way to transform a Hamiltonian into
QNF, up to any desired order. Then we applied this to the case of the 1D potential
barrier, and derived explicit formulae for the transmission amplitude and coefficient
in the form of (5.53) and (5.54), written in terms of the variable I. We finally related
E to I, obtaining a description of both in terms of the energy. Finally, we noticed
for particular choices of I resonances should occur, and thus we were able to find a
general formula for resonance energies, namely (5.63).

We also applied the QNF theory to two examples—that of the gaussian potential
Vgauss (5.64) and an asymmetric potential (5.69)—with the aim of finding resonances.
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(a) Phase of S(k).

(b) Phase of S(E). As in Figure 5.3, the noise on the left sides are glitches from the
calculation.

Figure 5.5: Phase of S as a function of k (a) and E (b) for the asymmetric potential
Vasym (5.69) (~ ≡ 1).
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In the former case, QNF gave a good match with the numerically computed results
featured in Figure 5.3. We were also able to classify the non-predicted resonances as
Regge resonances, for instance by means of comparison to the square well (Figure 4.1.
In the example of the asymmetric potential much the same was observed. Unfortu-
nately, here we only found one resonance before the Regge resonances appeared.

The motivation for studying QNFs was to find a “bridge” between energy regions
for which the WKB approximation is valid, and in this we have succeeded—for the
case of one barrier top. In the case of multiple barriers (e.g. the sinc potential Vsinc
(4.107) with energy E ≈ 32.585), what we are still missing is a description that evolves
the wavefunction from one of the peaks to the other peak à la the matrix F of (2.4.3).
We elaborate more on this in the Conclusion.
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6 Conclusion

In this thesis, we strove to get a broad overview of the meaning and effect of resonances
in 1D quantum systems. In this way, we aimed to get a better understanding of some
of the prototypical “quantum weirdness” that sets QM apart from classical mechanics.

The preliminaries saw us discuss some introductory QM and Hamiltonian mechan-
ics, as well as theory on CNFs, scattering, and the WKB approximation. Considering
this final item, upon rewriting the connection formulae and adding a “forward” propa-
gating operator, we were able to derive the matrix P which describes the propagation
of the wavefunction through the entire potential.

In the first section we saw how complex (eigen)energies carry with them an inter-
pretation of decay, wherein the imaginary part is the inverse lifetime of the associated
(eigen)state:

E = E − iΓ/2 =⇒ | 〈ψ| U(t)|ψ〉 |2 ∝ exp(−Γt), for Γ > 0. (6.1)

Furthermore, we discussed how complex energy lives on a two-sheeted Riemann sur-
face, in order to allow for two distinct wavenumbers k := ~−1

√
E .

We then used the resolvent operator to define resonances of quantum systems,
and tied this definition to the transmission amplitude S(k) by means of linear inde-
pendence of the solutions to the Schrödinger equation. Finally we showed that S(k)
is a meromorphic function, and that the model also remains valid when we consider
V ∈ L1

1, instead of as having bounded support.
We started the next section by deriving a general expression for S(k) under the as-

sumption that the potential V was even. This expression depended on two parameters
θe,o (the logarithmic derivatives of the even and odd solutions inside the potential),
and the rest of the section was dedicated to finding these for specific potential classes.

For the case of piecewise constant potentials (i.e. consisting of square barriers and
wells), we were able to obtain an exact expression for S(k), and we used this to analyze
the case of the square well. The result was that the Bohr-Sommerfeld quantization
condition determined the transparency energies (energies at which T = 1), and so
that, generally, T 6= 1 for E > 0. Furthermore, when expanding T around such
transparencies, we found that T had the shape of an FBW-distribution, which allowed
us an easy avenue to finding resonances (Remark 4.11).

For the case of a potential-energy combination for which a WKB approximation
was admissible, we found a concise expression for S(k) in terms of the matrix P,

S(k) =
exp(−2ikν)

P12(k)
. (6.2)

This expression made no further approximations, other than what was already neces-
sary to derive P (which utilizes the WKB approximation).

This allowed us to mathematically analyze the case of the sinc-potential, in which
we were able to explain the experimentally found transparencies in the transmission
spectrum at energies smaller than the threshold energy. These turned out to be inti-
mately related to i) resonances which lay off-axis on the second Riemann sheet, and ii)
the Bohr-Sommerfeld quantization condition—similarly to the case of the square well.
Especially this latter point is intriguing, as this condition is normally only utilized
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when finding bound states, which these are not (the energies under consideration were
all larger than zero).

The final section concerned itself with the topic of quantum normal forms (QNFs).
These are applicable in situations where the energy is approximately equal to the
maximum height of a potential barrier—precisely a situation in which WKB breaks
down. In this way, QNF may “bridge” between two regions in which WKB is appli-
cable (for suitable potentials), so as to obtain a more full understanding of the overall
transmission spectrum, amplitude, and/or coefficient.

By drawing heavily on the interplay quantum↔ classical, we derived approximate
quantum “constants of motion,” which then informed the transmission amplitude.
In turn, this determined the transmission coefficient, and where the resonances are
located. We compared our resonance predictions with simulations for two 1D potential
barriers (a gaussian and an asymmetric), and found good agreement between the
predictions of the QNF and the numerically obtained data.

Additionally, in the simulations we encountered so-called Regge resonances, which
appear due to discontinuities in the potential landscape. This appearance formed a
connection between the two treated examples for QNF and the that of the square well,
where resonances also appear due to a discontinuity.

The structure of the findings in this thesis may be summarized in a flowchart, which
shows under which conditions what methodology applies. This flowchart is found in
Figure 6.1.

Suggestions for further research

As a result of this research, there are some unanswered questions still that may/should
be investigated.

• Transmission amplitudes for non-even potentials. In section 4, we imme-
diately require that the potential is even in order to derive the general expression
for S(k). However, this should not be a requirement for finding a closed expres-
sion for S(k) in the case of square and WKB potentials; merely a convenience
to simplify the expression. For instance, Fernández-Garćıa also notes that the
generalization to odd potentials is immediate [4, §5.1], and expressions found in
Galindo & Pascual hold without symmetry requirements [7, §9].

In particular, it would be interesting to see whether the demonstrated appearance
of the Bohr-Sommerfeld quantization condition still occurs when two or more
non-identical valleys are considered.

• Conditions for resonances to effect transparencies. For the case of trans-
parencies in the square well and sinc potentials, we saw that these are linked
to the appearance of transparencies in the transmission spectrum. However, we
also saw resonances appear in the case of gaussian and asymmetric potentials
barriers when treated with QNF, but these do not lead to transparencies in
the transmission spectrum. Intuitively it is clear that transparencies should not
occur, but mathematically no explanation was found/articulated in this thesis.

• Multiple barrier-top scattering. In the QNF treatment we specifically only
addressed the case of scattering by one barrier top, leaving out the possibility
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Figure 6.1: Flowchart to identify the right approach for finding the transmission am-
plitude S (from the ones that we treated in this thesis).
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of multiple. This is because, à la the WKB treatment, one should propagate
the wavefunction from one barrier top to the next in order to obtain a bona fide
description of this type of scattering.

This description is hindered by the fact that the basis of the scattering matrix
found in (5.52) is valid only in a neighborhood around the barrier peak, and it
is not immediately clear how it relates to “standard” wavefunction forms. Once
such a conversion transformation is found, though (perhaps to a WKB-style
basis), multiple barrier scattering should be describable.

It is also briefly touched upon in [16, §5.6].

• Find more resonances predicted by QNF. With particular reference to
Figures 5.3 and 5.5, it would be insightful to attempt to try and get rid of the
Regge resonances, in order to find more resonances predicted by QNF. In the case
of the gaussian potential, this could be achieved by choosing larger boundaries
over which to integrate, which should decrease the size of the discontinuity.
(When this was attempted for this work, glitches appeared à la the left sides of
Figure 5.3b.) In the case of the asymmetric potential Vasym (5.69), this might be
more difficult as the discontinuity in higher order derivatives does not disappear
with choosing larger bounds.

In addition to this, one might attempt to use the equation for S(k)−1 (3.47) for
a potential with known solution (e.g. the Pöschl-Teller potential), and examine
whether Regge resonances still occur. If not, then this bolsters the confidence
that their appearance is indeed due to various encountered discontinuities in the
(derivatives of) the potentials.
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Figure A.1: Implicit definition of the constants Dij, 1 ≤ i, j ≤ 2.

A Computation of S-matrices

To verify theoretical calculations done in this thesis, there is a need to compute trans-
mission amplitudes and/or coefficients for the potentials under investigation. This can
be done by calculating the S-matrix S for said given situation.

Finding it is not a trivial task in most cases, though: since there is a definite
temporal ordering, the S-matrix would have to be computed over both space and
time—a PDE calculation. This is despite the fact that we only need to solve the ODE
that is the Schrödinger equation in order to get the full solution of the system. So,
calculating S directly would be doing double work.

The issue is that an ODE solver would solve the differential equation in one pass
only. This means that it would need to be able to calculate, say, the wave outgoing
to the left before it has even considered the potential or the wave incoming from the
right. Evidently this is impossible, and so we cannot use an ODE solver to find S—at
least not directly.

Declare initial conditions on one side of the potential, and then consider which
wave corresponds to it on the other side. Specifically, when written in the basis on
that side of the target, there must exist unique constants (in x) Dij ∈ C, 1 ≤ i, j ≤ 2,
so that

ψ|left
!

= exp(ikx) =⇒ ψ|right = D11 exp(ikx) +D21 exp(−ikx) (A.1a)

and

ψ|right
!

= exp(−ikx) =⇒ ψ|left = D12 exp(ikx) +D22 exp(−ikx). (A.1b)

To connect the introduction of the numbers Dij to S, notice that the statements
in (A.1) can be written involving S as(

1
D21

)
S7−→
(

0
D11

)
and

(
D12

1

)
S7−→
(
D22

0

)
, (A.2)

since the solution should be unique. As such,

S

(
1 D12

D21 1

)
=

(
0 D22

D11 0

)
=⇒ S =

(
0 D22

D11 0

)(
1 D12

D21 1

)−1
, (A.3)
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which is to say that

S =
1

1−D12D21

(
−D21D22 D22

D11 −D11D12

)
. (A.4)

As such, if we can find Dij, 1 ≤ i, j ≤ 2, then we can find S.
To determine these numbers we have to use the derivative of the solution. Let us

take the first item in (A.1) as an example. We evaluate the solution and its derivative
at some point x0 right of the potential, and substitute in the expressions for the basis
functions. Then we arrive at the two equations{

ψ|right(x0) = D11 exp(ikx0) +D21 exp(−ikx0)
ψ′|right(x0) = ik · [D11 exp(ikx0)−D21 exp(−ikx0)]

, (A.5)

in which we know everything but D11 and D21. Rewriting as a matrix and solving for
these, we find(

D11

D21

)
=

(
exp(ikx0) exp(−ikx0)
ik exp(ikx0) −ik exp(−ikx0)

)−1(
ψ|right(x0)
ψ′|right(x0)

)
, (A.6a)

so we have found D11 and D21 in terms of the solution to the Schrödinger equation.
In an analogous way, we have that(

D12

D22

)
=

(
exp(iky0) exp(−ikx0)
ik exp(iky0) −ik exp(−iky0)

)−1(
ψ|left(y0)
ψ′|left(y0)

)
, (A.6b)

where here y0 is some point to the left of the target.
With all the above in mind, we can now present the algorithm to calculate the

scattering matrix used for this thesis.

Algorithm A.1 (Finding scattering matrix S). In order to find S at a specific k, we
take the following steps.

1. With initial condition ψ|left = exp(ikx), calculate ψ|right and ψ′|right.

2. Evaluate these in a point x0, and use (A.6a) to find D11 and D21.

3. Repeat steps 1 & 2, now with initial condition ψ|right = exp(−ikx) and applying
(A.6b).

4. Arrange Dij, 1 ≤ i, j ≤ 2, in the manner of (A.4) to obtain S.

This algorithm has been implemented in Python, using the in-built ODE solver
solve ivp from scipy, and assuming ~ ≡ 1. (Note that there is also no way to choose
a different/smaller ~ in the code.) The code can be admired in Listing 1.
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Listing 1: Python code implementing Algorithm A.1

1 import numpy as np
2 from scipy.integrate import solve_ivp
3 import potentials as pots
4
5 def f(x, u, k, V):
6
7 # Matrix form of Schroedinger equation
8 E = k[0]**2 - k[1]**2 + 2j * k[0] * k[1] # E = k^2
9 A = np.array ([[0, 1], [V(x) - E, 0]], dtype = complex)

10 return A @ u
11
12 def scatmat(k_coord , V, step = 0.05, bounds = (-21, 21), return_E =

False):
13
14 # Preliminary definitions
15 k = k_coord [0] + 1j * k_coord [1]
16 minus_k = (-k_coord [0], -k_coord [1])
17 lb, ub = bounds
18
19 # Calculate e^(ikx) ~ D_11 * e^(ikx) + D_21 * e^(-ikx)
20 phs_lb1 , phs_ub1 = np.exp(1j * k * lb), np.exp(1j * k * ub)
21 ini_cond1 = np.array ([phs_lb1 , 1j * k * phs_lb1], dtype = complex)
22 sol1 = solve_ivp(f, [lb , ub], ini_cond1 , max_step = step , args = (

k_coord , V), method = ’DOP853 ’)
23 U1, U_deriv1 = sol1.y
24
25 A = np.array ([[ phs_ub1 , 1 / phs_ub1], [1j * k * phs_ub1 , -1j * k /

phs_ub1 ]])
26 b = np.array ([U1[-1], U_deriv1 [ -1]])
27 D_11 , D_21 = np.linalg.solve(A, b)
28
29 # Calculate D_12 * e^(ikx) + D_22 * e^(-ikx) ~ e^(-ikx)
30 phs_lb2 , phs_ub2 = np.exp(-1j * k * lb), np.exp(-1j * k * ub)
31 ini_cond2 = np.array ([phs_ub2 , -1j * k * phs_ub2], dtype = complex)
32 sol2 = solve_ivp(f, [ub , lb], ini_cond2 , max_step = step , args = (

minus_k , V), method = ’DOP853 ’)
33 U2, U_deriv2 = sol2.y
34
35 C = np.array ([[1 / phs_lb2 , phs_lb2], [1j * k / phs_lb2 , -1j * k *

phs_lb2 ]])
36 d = np.array ([U2[-1], U_deriv2 [ -1]])
37 D_12 , D_22 = np.linalg.solve(C, d)
38
39 # Determine the scattering matrix S from D
40 S_11 , S_12 = -D_22 * D_21 , D_22
41 S_21 , S_22 = D_11 , -D_11 * D_12
42 scatmat = np.array ([[S_11 , S_12], [S_21 , S_22 ]]) / (1 - D_21 * D_12

)
43
44 # Which coordinate to return?
45 if return_E:
46 ret_x = k_coord [0]**2 - k_coord [1]**2
47 ret_y = 2 * k_coord [0] * k_coord [1]
48 else:
49 ret_x , ret_y = k_coord
50
51 # Return the coordinate and assoc. S matrix
52 return ret_x , ret_y , tuple(scatmat.flatten ())
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B Omitted proofs & justifications

Equation 3.9

Justification. We know that for x > ν, the wavefunction takes the form ψfull(x) =
S exp(ikx). Then, multiplying with the time dependence exp(−i~−1Et), we so find
that

ρ(x, t) = | exp
(
−i~−1Et

)
ψfull(x)|2

= |S|2| exp
(
ikx− i~−1Et

)
|2

= |S|2
��

���
���

���
��:1

| exp
(
i[kRx− ~−1ERt]

)
|2 × | exp

(
−kIx+ ~−1EIt

)
|2

?
= |S|2 exp

(
2EI
~

[
t− x

2~kR

])
??
= |S|2 exp

(
−Γ

[
t− x

2~kR

])
, (B.1)

wherein ? we utilized EI = 2~2kRkI, and in ?? Γ := −2~−1EI (Definition 3.2).

Equation 3.10

Justification. For x < −ν, the wavefunction takes the form ψfull(x) = exp(ikx) +
L exp(−ikx). Multiplying with the time dependence exp(i~−1Et), we find that

ρ(x, t) = | exp
(
−i~−1Et

)
ψfull(x)|2

= | exp
(
ikx− i~−1Et

)
+ L exp

(
−ikx− i~−1Et

)
|2

= exp
(
2EI~−1t

)
| exp(ikx) + L exp(−ikx)|2

?
= exp(−Γt)| exp(ikRx) exp(−kIx) + L exp(−ikRx) exp(kIx)|2

= exp(−Γt)
[
exp(−2kIx) + |L|2 exp(2kIx) + 2 Re(L exp(2ikRx))

]
= exp

(
−Γ

[
t− x

2~kR

])
+ |L|2 exp

(
−Γ

[
t+

x

2~kR

])
+ 2LR cos(2kRx),

(B.2)

where in ? we used Definition 3.2 for Γ = −2~−1EI. In the final line, the term
2LR cos(2kRx) is comparatively unimportant and so we designate it simply as “os-
cillation” (or osc. for short).

Lemma 3.18

Proof. We shall prove by induction on n. For the base case n = 1, the integral reduces
to one dimension, which trivially satisfies the given relation.

Assume the statement to hold for some b ∈ N. Then, we consider the lhs for the
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case of b+ 1:∫ ∞
x

∫ ∞
x1

· · ·
∫ ∞
xb−1

∫ ∞
xb

|q(x1)| · · · |q(xb+1)| dxb+1 · · · dx1

=

∫ ∞
x

|q(x1)| ×
{∫ ∞

x1

· · ·
∫ ∞
xb

|q(x2)| · · · |q(xb+1)| dxb+1 · · · dx2
}
dx1

=
1

b!

∫ ∞
x

|q(x1)|
(∫ ∞

x1

|q(t)| dt
)b
dx1 . (B.3)

We now make the substitution

y :=

∫ ∞
x1

|q(t)| dt =⇒ − dy = |q(x1)| dx1 , (B.4)

with the bounds becoming

x1 →∞←→ y = 0 and x1 = x←→ y =

∫ ∞
x

|q(t)| dt =: `. (B.5)

Filling this into the expression (B.3), we so get that

1

b!

∫ ∞
x

|q(x1)|
(∫ ∞

x1

|q(t)| dt
)b
dx1 = − 1

b!

∫ 0

`

yb dy =
`b+1

(b+ 1)!

=
1

(b+ 1)!

(∫ ∞
x

|q(t)| dt
)b+1

.

(B.6)

As such, the induction step has also been completed.
Both the base case an induction steps have been shown. Therefore, the proof is

now completed.

Lemma 4.4

Proof. Observe that for A 6= 0 we can diagonalize the exponent as(
`

`A

)
=
−1

2
√
A

(
1 1√
A −

√
A

)(
`
√
A

−`
√
A

)(
−
√
A −1

−
√
A 1

)
. (B.7)

The exponentiation hereof becomes

exp

[(
`

`A

)]
=
−1

2
√
A

(
1 1√
A −

√
A

)(
e`
√
A

e−`
√
A

)(
−
√
A −1

−
√
A 1

)

=

(
1
2
(e`
√
A + e−`

√
A) A−1/2 1

2
(e`
√
A − e−`

√
A)

A1/2 1
2
(e`
√
A − e−`

√
A) 1

2
(e`
√
A + e−`

√
A)

)

=

(
cosh

(
`A1/2

)
A−1/2 sinh

(
`A1/2

)
A1/2 sinh

(
`A1/2

)
cosh

(
`A1/2

) )
, (B.8)

as we wanted to show.
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Equation (5.22)

Justification. We start with the quantities{
W3 = λ−1

(
−1

3
C3,3q

3 − C3,2q
2p+ C3,1qp

2 + 1
3
C3,0p

3
)

H
(2)
3 = C3,3q

3 + C3,2q
2p+ C3,1qp

2 + C3,0p
3

. (B.9)

Then, adapting from the definition of the Moyal bracket we see that

MadW3 H
(2)
3 = {W3, H

(2)
3 } −

~2

24
W3

[←
∂q
→
∂p −

←
∂p
→
∂q

]3
H

(2)
3 , (B.10)

with higher order terms neglected as both W3 and H
(2)
3 are of qho 3. The first term

becomes

{W3, H
(2)
3 } = ∂qW3∂pH

(2)
3 − ∂pW3∂qH

(2)
3

= 2λ−1C3,2C3,3q
4 − 8λ−1C3,1C3,3q

3p− 6λ−1(C3,1C3,2 + C3,0C3,3)q
2p2

− 8λ−1C3,2C3,0qp
3 + 2λ−1C3,1C3,0p

4. (B.11)

Then for the second term first expand the third-order differential operator as[←
∂q
→
∂p −

←
∂p
→
∂q

]3
=
←
∂3q

→
∂3p −

←
∂3p

→
∂3q −3

←
∂2q
←
∂p
→
∂q
→
∂2p +3

←
∂q
←
∂2p

→
∂2q
→
∂p, (B.12)

from where we then apply it to W3 and H
(2)
3 :

W3

[←
∂q
→
∂p −

←
∂p
→
∂q

]3
H

(2)
3 = 24λ−1(C3,1C3,2 − C3,0C3,3). (B.13)

Thus, collecting (B.11) and (B.13), we find that

MadW3 H
(2)
3 = λ−1

[
2C3,3C3,2q

4 − 8C3,3C3,1 − 6(C3,1C3,2 + C3,0C3,3)q
2p2

+ −8C3,2C3,0p
3 + 2C3,1C3,0p

4 − ~2(C3,1C3,2 − C3,3C3,0)
]

= −C2
3,0λ

−1 [6q4 + 24q3p− 60q2p2 + 24qp3 + 6p4 − 8~2
]
, (B.14)

where in the last line we also utilized Lemma 5.5 in order to rewrite in terms of C3,0.

Equation (5.54)

Justification. Recall that g := Γ(1/2 − i~−1I). Utilizing the property Γ(z)∗ = Γ(z∗),
valid for complex z, we find that

|g|2 = Γ(1/2− i~−1I)Γ(1/2 + i~−1I). (B.15)

Then we invoke Euler’s reflection formula, given by

Γ(z)Γ(1− z) =
π

sin(πz)
, (B.16)
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wherein we substitute z = 1/2− i~−1I:

Γ(1/2− i~−1I)Γ(1/2 + i~−1I) = π
[
sin
(
π(1/2− i~−1I)

)]−1
= π

[
cos
(
iπ~−1I

)]−1
= π

[
cosh

(
π~−1I

)]−1
= 2π

[
exp
(
π~−1I

)
+ exp

(
−π~−1I

)]−1
. (B.17)

The final step is to multiply with exp(~−1πI)/(2π), which then yields the desired
expression.
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