
Comparing the carbon
footprint of differ-
ent cloud deployment
models at BT Global
Services

Masters Internship

2022 - v7

Student: A. Dijkstra

First supervisor: Dr. V. Andrikopoulos

Second assessor: C Bantis (BT)

External supervisor: R. Atherton (BT)

1

1 Introduction

Global emissions are increasing each year [IEA22]. The ICT share of emissions could be up to 3.9% of the
total emissions [Fre+21]. Moreover, the prediction is this will only increase in the coming years [Fre+21].
Private and public cloud is a big part of this. AWS claims to have up to 93% reduction of emissions when
changing from private to public cloud [Res19]. The first step in decreasing the carbon footprint is creating
more insight into the data. Then educated choices can make public and private cloud greener.

BT Global hosts servers for their clients. These are mainly private cloud infrastructures. Westerhof
created in a previous internship a dashboard to monitor the emissions of these private cloud configura-
tions [Wes21]. However, BT Global also wants to know the emissions of public cloud infrastructures, in
specific AWS. With this a comparison between public and private cloud infrastructures can be made. For
this the public cloud infrastructure needs to match the computer power of private cloud infrastructure as
close as possible.

The Carbon Cloud Footprint Toolkit (CCFT)1 gives insight into running public cloud servers. It estimates
the emissions made based on the present bills. However, this toolkit does not predict the emissions which
the public cloud infrastructure will make in the future. With a prediction, an educated choice can be made
beforehand. For that reason, during this internship I changed CCFT slightly and developed a wrapper around
it. More specifically, I added two functionalities. First, the ability to get a similar AWS configuration, then
give an estimation of emissions. To test and validate this model we used a use case from BT Global. In this
report we discuss our proposal for a method that will predict public and private cloud emissions.

The report is structured as follows: In Section 2 we will look at the background. In Section 3 we will
discuss the design in detail and Section 4 will explain the implementation. The results of the method will
be presented in Section 5 and discussed in Section 6. We will look at further work in Section 7 and conclude
in Section 8.

2 Background

2.1 Emission Scopes

To give insight into different emissions factors within a supply chain a three-scope, or ’Tiers’, model is
used [WRI04]. There are some models which try to give more insight into emissions factors by including
for example four tiers [MHW08]. However, given this is outside the scope of this research we will stay at a
three-scope model for supply chains. The three commonly defined scopes as defined by the World Resources
Institute (WRI) and World Business Council for Sustainable Development (WBCSD) are as follows [WRI04]:
Scope 1: Direct Greenhouse Gas (GHG) emissions such as company facilities and cars.
Scope 2: Indirect GHG emissions such as electricity and heating.
Scope 3: Other indirect GHG emissions such as purchased goods.
Cloud emissions are most often included in Scope 3 emissions if it is public cloud [Myt20]. Thus, companies
do not need to report the amount of emissions.

2.2 Multi Criteria Decision Making

In order to get the prediction of a public cloud configuration, first the private cloud configuration needs to
be mapped towards it. This can be done with the use of Multi Criteria Decision Making (MCDM). MCDM
has a short history, but its development is growing exponentially [ZTK14]. Due to this, there are a lot of
different methods. Based on the paper by Le Sun et al [Sun+14] we identify four different main methods.

The first method is the analytic hierarchy process (AHP) [Saa90]. Through pairwise comparisons, the
algorithm determines the different weights of the properties. That is, the amount of emissions is more
important than the price. By pairwise comparison, the different instances are given a weight for each
property. For example instance X is better in price than Y, but worse in the amount of emission. These
weights are done based on a scale, which gives more insight than an arbitrary number. For each property, the
property weight and instance weight are then multiplied together. This gives a total cost for each instance.
The instance with the lowest cost is the best option.

1https://github.com/cloud-carbon-footprint/cloud-carbon-footprint

1

The second method is multi-attribute utility theory (MAUT). MAUT bases the cost on a property weight
multiplied by a utility function. For each parameter a, possibly different, function is defined [GVB11]. This
returns a value between zero and one. Here zero indicates it scores bad and one indicates it scores well on
this property.

The third method is outranking methods [Roy68]. Fundamentally, it works as follows: if X is at least a
certain amount of percentage better than Y, then X outranks Y. This gives a list of possible options.

The fourth big method is Simple Additive Weighting (SAW) [AMY10]. It is the most used and basic of
the methods. It creates a ranking score by multiplying each weight by its respective property. This score is
then used to determine the best option.

MCDM has also been used for decision-making for Cloud services. The method that stood out was
proposed by Zeng et al [ZZZ09]. This consists of two steps, first based on the criteria the instances are
filtered. Second, a cost function is used to determine the best fit.

2.3 Estimations

CCFT uses a pipeline with different formulas to calculate the emissions. The final emissions are then given in
co2e, which is the carbon dioxide equivalent. This gives the ability to indicate all greenhouse gases emitted.
In this section, we briefly go through each formula.

2.3.1 Energy usage

The estimation of emissions can not be done directly. Before the emissions are estimated the energy con-
sumption is calculated. First, the usage of the services is determined. After the amount that the service is
used is known we can calculate the amount of energy consumption used. This is done based on the Etsy
Cloud Jewels, as explained below. This gives the energy coefficients for cloud computing and cloud storage.
Others were determined by the CCFT.

The estimation of emissions has multiple steps. The emission estimations use the amount of energy
consumed. Different parts of the instance consume energy. Etsy already researched this and defined the
Etsy Cloud Jewels [Som+20]. These are coefficients to determine the energy consumption of different parts
of the system. Etsy, however, did not define all the coefficients needed. The makers of CCFT determined
the unknown coefficients [Inc22]. The sum of these values is then the total energy consumption for that
instance.

2.3.2 Power Usage Estimate

Power Usage Estimate (PUE) is the efficiency with which a data center runs [Bel+08]. A PUE of one is very
efficient and the data center uses all the energy. A higher value means the data center is less efficient. By
multiplying the energy consumption from the instance with the PUE we get the total energy consumption.

2.3.3 Carbon Estimates

From the total kWh used we can estimate the carbon estimates. The total energy consumption is multiplied
by the Grid Emission Factors. The amount of co2e each kWh emits for the grid [Inc22].

2.3.4 Embodied Emission

The last part of the emission comes from the production of the hardware used [Inc22]. Green Software has
published the Software Carbon Intensity Standard for this. Embodied emissions take a major part of the
total emissions of cloud computing [Gup+20]2. These emissions happen at the start and end of the lifetime
of the device. In this model an average lifetime of 4 years is used.

2As this talks about personal devices the exact number might be a little bit different

2

Figure 1: Scheme of the pipeline of the Cloud Carbon Footprint

3 Design

The CCFT can make an educated guess about the footprint of cloud computing. CCFT also has a module
which creates a lookup table for all the services used. This gives for a certain usage unit the estimated amount
of emissions. The different used types are hours, GB-Hours and GBs, where GB-Hours is the number of
hours a certain amount of GB is stored.

An overview of the normal process for CCFT can be found in Figure 1. First, as input are the services
in use. With this, it creates the account. In this example, we will use AWS services, so an AWS account is
created. This forms the data in such a way the data can be used within the application. This is called the
LookupTableInput.
Then the account creates a report class. This includes all the estimators with the correct constants.
Each estimator then calculates the emissions for each service in the account. This is done by first calculating
the energy consumption in the same way as explained in Section 2.3.
The report class enumerates all the emissions and sums them.

The public cloud instance can be determined by the private cloud configuration. A wrapper will be
created to translate the private cloud configuration towards a public cloud instance. At the start there is
a list of around 500 AWS instances. With a filter the instances which cannot satisfy the requirements set
by the private cloud configuration are removed. Then the fitter returns the best instance of those left based
on user specified criteria. Those instances are then used as input for CCFT as explained by the previous
paragraph. This gives an estimate for the emission based on the same structure.

CCFT also gives the possibility to determine on-premise emissions. For this the private cloud configura-
tions only needed to be put into a format that was understandable for the CCFT model.

All the emissions from the AWS instances and the on-premise configurations will be put into a CSV
file, which will function as the output report for the end-user. The file reports on the estimated energy
consumption and emissions per instance.

4 Implementation

The wrapper is the part I designed and implemented. It consists of multiple stages. The pseudo-code can
be found in Algorithm 1. As input, we take a list of all the configurations the private cloud has. Here is a

3

On-Demand
Windows pricing

On-Demand
Linux pricing

Emission vCPUs

On-Demand Windows pricing 1 5 4 7
On-Demand Linux pricing 0.2 1 0.5 3

Emission 0.25 2 1 3
vCPUs 0.14 0.33 0.33 1

positive/negative - - - +

Table 1: Pairwise weights Table used for AHP

very quick overview of the terms.

• CPU: Main processor.

• RAM: Random allocated Memory.

• GPU: Graphics card.

• Architecture: The instruction sets used (for example x64).

• Threads: The amount of threads per core.

• NIC: Network interface card, used to connect to the internet.

• Storage: The amount of storage a service has.

• EBS: Elastic Block Storage, a scalable solution from AWS to get more storage.

• Bare Metal: If a service is bare metal you only get the hardware. The public cloud vendor installed
nothing else. This also means the hardware can directly be accessed.

• DHS: Dedicated Host Support, can you run everything on this server.

The pairwise weights, which is also the list of properties for the fitter, are given as input. The pairwise
weights are used to determine the weights of the different properties. This is done the way Saaty proposed
through an application of AHP [Saa90]. The pairwise weights are used as input instead of the property
weights so the user has more control over the weights. An example of such weights can be found in Table 1.
The final row is used for the utility function. This determines if it is positive or negative if there property
has a higher value.

For each configuration, the algorithms finds the closest instance. This is added to the Lookup Table
Input array. This is then used to create a look-up table.

A big part is how to find a service instance which is as similar to the original as possible. For this multiple
criteria have to be used to make a decision, in other words MCDM. The four different methods which were
taken into consideration can be found in the Section 2.2. The different methods were evaluated based on two
major points. First, how easy is it for the end user to use it. Second, how good the reported results were.
Since all four of the main methods had some problems, it was decided to use a combination of methods.

The pseudo-code to find the best instance can be found in Algorithm 2. The algorithm consists of two
stages and is inspired by the method proposed by Zeng et al [ZZZ09]:
The filter first removes all instances which cannot be used. These are all the instances for which the
configuration needs more/other resources than available.

Then the fitter decides which instance is the best fit. This part works as the MAUT methods mentioned
in Section 2.2. For which an utility function determines the exact cost, except in my implementation we use
a score function. There are two reasons why MAUT was chosen. Firstly a utility function was needed for
some of the properties. Secondly, it made sure all the properties were evaluated the same way.

4

Algorithm 1 Wrapper

1: procedure Prediction(targetServerConfigurations, pairwiseMatrix)
2: weights← getWeights(pairwiseMatrix)
3: i← targetServerConfigurations.length− 1
4: LUTInput← []
5: while i ≥ 0 do
6: config ← targetServerConfigurations[i]
7: instance← privateToPublic(config, weights)
8: LUTInput← LUTInput+ instance
9: i← i− 1

10: end while
11: LUT ← getLookUpTable(LUTInput) ▷ Already defined in CCFT
12: end procedure

Algorithm 2 Private to Public cloud converter

1: procedure privateToPublic(config, weights)
2: instances← allPublicCloudInstances
3: instances← filterInstances(instances, config)
4: bestInstance← instancesFitter(instances, config, weights)
5: return bestInstance
6: end procedure

4.1 Filters

All instances are removed which do not have enough or the correct resources. The algorithm can be found
in Algorithm 2. The following topics are used and filtered in the same order as below:

• CPU

– Does it have enough vCpus

– Does it have enough Cores

– Is the clock speed high enough

• RAM, is there enough RAM

• GPU, two options:

– No GPU needed, all instances with GPU’s are removed

– GPU’s are needed, does the instance have enough GPU’s

• Architecture, does the instance have the correct architecture.

• Threads, are there enough Threads

• NIC, are there enough Network Interface Cards

• Storage, is there enough storage.

• Bare Metal, two options:

– Bare Metal is needed, then remove all others3

– Bare Metal is not needed, then remove all bare metal instances.

• DHS, is a dedicated host needed.

3For BT Global this is a requirement, so this is always true

5

Algorithm 3 filterInstances

1: procedure filterInstances(instances, config)
2: i← instances.length− 1
3: while i ≥ 0 do
4: if Filter is true then ▷ This is done for all different filters
5: Delete instances[i]
6: Continue ▷ Once removed, other filters doesn’t need to be tested for this instance
7: end if
8: i← i− 1
9: end while

10: return instances
11: end procedure

4.2 Fitters

Unfortunately, the filter does not remove all unwanted instances. To choose the best instance from the
instances left ‘Score‘ is introduced. Based on the requested fitter a score function is chosen. Within Al-
gorithm 4 this is defined as getScore. This is dependent on the user’s choice. Since multiple criteria are
used it is very unlikely that two different instances have the same score. For that small likelihood there are
instances with the same score we take the one which is the cheapest to rent.

The utility function ’getScore’ is as follows and can be found in Algorithm 5. For the property, the
minimum and maximum value are calculated beforehand by the function ’getPropertyDict’. These values
can then be used by the utility function.

Algorithm 4 instanceFitter

1: procedure instanceFitter(instances, config, weights)
2: i← 0
3: instanceScores← ∅
4: propertyDict← getPropertyDict(instances, weights)
5: minScore← Infinity
6: while i < instances.length do
7: score← getScore(instances[i], weights, propertyDict)
8: instanceScores.push(instanceScores+ score)
9: minScore← min(score,minScore)

10: i← i+ 1
11: end while

12: fittedInstances← ∅
13: i← instances.length− 1
14: while i ≥ 0 do
15: score← instanceScores[i])
16: if score == minScore then
17: fittedInstances.push(instances[i])
18: end if
19: i← i− 1
20: end while
21: return fittedInstances
22: end procedure

6

Algorithm 5 getScore

1: procedure getScore(instance, weights, propertyDict)
2: i← 0
3: score← 0
4: while i < weights.length do
5: weight← weights[i]
6: currentV al← instance[weight.key] ▷ In other words iterate over all the property keys
7: propMin← properyDict[weight.key].min
8: propMax← properyDict[weight.key].max
9: calcV alue← (currentV al − propMin)/(propMax− propMin) ▷ This means value will be

between 0 and 1
10: if weight.config is negative then ▷ If the instance is better with a lower value on this property
11: calcV alue← 1− calcV alue
12: end if
13: score← score+ (calcV alue ∗ weight.value)
14: i← i+ 1
15: end while
16: return score
17: end procedure

Filter name Total removed
cpu 426
ram 0
gpu 7
arch 0

threads 0
nic 0

storage 27
metal 32
dhs 1

unknown 3
Total 496

Table 2: Amount of instances removed per filter

5 Case Study

This model was used on real-life data provided by BT Global for a specific client. The use case has four
different servers running. This list was used as input. The results will be listed below and are split into the
data and execution time.

5.1 Output

In total there are 504 possible instances from AWS at the start. The four private cloud configurations use
the same architecture, except for the location. This meant the filter and fitter worked the same for all those
four configurations. For that reason only the results of one configuration will be shown. The filter first
removed most of the instances. The filters are used in the same order as seen in Table 2. For example, if it
is already removed due to CPU considerations it is only counted towards that filter.

The fitter then chooses the best instance. This ended in one instance which was best suited for the tasks
according to the model.

These instances were used as input for the AWS model and the initial configuration for the on-premise
calculation. The program gives the emissions per instance. For simplicity’s sake will we only look at the
end result. This gives co2e emission for one week of 46.21 Kg for the AWS instance and 140.86 Kg for the

7

Instances Sort On-Premise Create LUT Estimate emissions Create report Total time

4
Min 6.503 189.357 4.638 0.405 238.9
Avg 7.997 284.3358 6.8618 0.5235 343.3497
Max 14.684 1793 30.331 0.847 1913

212
Min 23.13 7073 91.844 1.331 7272
Avg 26.31895 7731.15 110.08075 1.60485 7958.1
Max 36.657 8148 128.99 2.469 8393

Table 3: Execution time in milliseconds with different amount of instances

on-premise estimation. According to the model, it will give a decrease of 67% of emissions.

5.2 Execution Time

On a computer with 16 GB of ram and an Intel Core i5 processor, I tested the program with 4 and 212
instances as input. Each stage of the pipeline was separately timed and recorded. This can be found in
Appendix A. For both of these, I ran the program 20 times. Of that, I calculated the min/max and average
which can be found in Table 3. The ’Estimate Emissions’ is the part CCFT normally does. On average for
4 instances the wrapper takes 98.0% of the time. For 212 instances it takes 98.6% of the total execution
time. It shows clearly in the table that most of the execution time comes from the LookUp Table (LUT)
creation. Just looking at the LUT creation we see an increase in execution time of 2722 %, while the amount
of instances has an increase of 5300 %.

6 Discussion

Just like the results this is divided into two sections.

6.1 Output

The following aspects stand out when we compare the AWS instance with the original instance. Firstly, due
to the filter, each important property is at least as good as the given configuration. Secondly, the case study
required for the instances to be bare metal. AWS only provides bare metal instances which are the best in
that instance family. Thus, resulting in an instance that is overpowered for the task at hand.

BT Global has a dashboard that provides real-time data about emissions from private cloud instances.
The predicted emissions of the on-premise instance are in the same range as those reported by the dashboard.
For that reason, these estimations, within a certain error range, can be assumed to be correct.

The reduction of emissions is according to the prediction 67%. Since AWS claims to have an improvement
up to 93%, this number is possible. There might even be a better improvement due to the second aspect
defined above.

6.2 Execution Time

Table 3 indicates that most of the execution time comes from the LUT creation. Even though the model
takes more time with a higher amount of instances it scales up well. This means the configuration can have
hundreds of instances, but a prediction of emission can still be given within a couple of seconds4. The model
is thus usable in real-life applications.

7 Further Work

At the moment we do not know how reliable the model defined by the CCFT is. For that reason, multiple
instances should be run on AWS and looked at the reported emissions by AWS. Based on that an error range
can be given.

4Compilation not included

8

There was no time to also add support for Azure and Google Cloud services. This can be added to give
more insight into which service gives the best emission results.

Moreover, the matching is done by a very crude combination of MAUT and AHP. More research could
be done to determine the best way of determining the best instance mapping.

Lastly, the algorithm can be made quicker by preloading and calculating certain numbers. During the
fitter the emissions are calculated for each instance left. At times these emissions are recalculated multiple
times. Also, cache can be used to quickly get a response for often asked configurations. However, since the
compilation time takes most of the time this should not be a priority.

8 Conclusion

This project looked at how to predict public cloud emissions based on private cloud configurations. A mix
between AHP and MAUT was used for the purposes of mapping private cloud service configurations to their
closest public cloud ones. Then the configuration was used to both get a local and public cloud emission
prediction. With was done based on the values provided by the CCFT. This showed that in the specific use
case an improvement of 67% would be made. This means based on this toolkit the greener choice would be
to switch public cloud. We also showed that the execution is done within a reasonable time. Lastly, the
argumentation about the emission values showed these numbers to be believable. However, until it is tested
with a real AWS instance, there is no way to know for certain and know the error range.

A Execution Times

Run On-Premise Create LUT Estimate emissions Create report totals Total execution time
1 7.668 210.125 5.64 0.424 262.872
2 7.116 195.264 5.504 0.517 247.283
3 6.949 193.026 5.734 0.543 250.646
4 14.684 1793 30.331 0.539 1913
5 7.492 198.651 4.758 0.428 250.581
6 8.397 198.944 4.695 0.577 251.677
7 7.444 197.249 5.207 0.699 250.12
8 7.305 194.005 5.578 0.508 252.893
9 7.86 204.571 5.084 0.482 256.244
10 10.085 227.199 5.484 0.524 294.871
11 7.04 198.247 5.081 0.5 252.501
12 7.662 192.978 5.224 0.503 244.713
13 7.129 209.248 4.98 0.53 263.28
14 6.503 189.357 4.743 0.405 238.9
15 7.879 207.651 4.638 0.505 263.651
16 7.583 225.489 6.051 0.475 286.878
17 8.483 249.339 12.785 0.847 320.396
18 7.598 205.085 5.367 0.51 259.017
19 7.425 202.281 5.151 0.517 260.46
20 7.638 195.007 5.201 0.437 247.011
Min 6.503 189.357 4.638 0.405 238.9
Avg 7.997 284.3358 6.8618 0.5235 343.3497
Max 14.684 1793 30.331 0.847 1913

Table 4: Execution Time of the pipeline for 4 Configurations

9

Run On-Premise Create LUT Estimate emissions Create report totals Total execution time
1 36.365 7261 103.271 1.446 7523
2 25.971 7073 91.844 1.596 7272
3 23.13 7690 105.957 1.371 7905
4 24.282 7749 108.229 1.391 7969
5 27.465 7754 111.254 2.354 7976
6 25.6 7726 113.998 1.566 7954
7 23.457 7757 111.213 1.525 7980
8 24.772 7659 114.845 1.564 7888
9 23.83 7646 113.246 2.336 7876
10 25.264 7794 100.026 1.387 7999
11 28.971 8148 128.99 1.552 8393
12 23.83 7727 108.452 1.489 7940
13 24.79 7831 123.074 1.453 8072
14 24.383 7830 102.657 1.465 8045
15 24.333 7695 111.773 2.469 7930
16 24.697 7697 111.025 1.413 7914
17 24.664 7799 116.238 1.428 8023
18 29.313 8121 118.205 1.489 8365
19 36.657 7869 107.153 1.331 8127
20 24.605 7797 100.165 1.472 8011
Min 23.13 7073 91.844 1.331 7272
Avg 26.31895 7731.15 110.08075 1.60485 7958.1
Max 36.657 8148 128.99 2.469 8393

Table 5: Execution Time of the pipeline for 4 Configurations

References

[AMY10] Alireza Afshari, Majid Mojahed, and Rosnah Mohd Yusuff. “Simple additive weighting approach
to personnel selection problem”. In: International journal of innovation, management and tech-
nology 1 (5 2010), p. 511.

[Bel+08] Christian Belady et al. “Green grid data center power efficiency metric: PUE and DCIE”. In:
(May 2008).

[Fre+21] Charlotte Freitag et al. “The real climate and transformative impact of ICT: A critique of
estimates, trends, and regulations”. In: Patterns 2 (9 Sept. 2021), p. 100340. issn: 2666-3899.
doi: 10.1016/J.PATTER.2021.100340.

[Gup+20] Udit Gupta et al. Chasing Carbon: The Elusive Environmental Footprint of Computing. 2020.
doi: 10.48550/ARXIV.2011.02839. url: https://arxiv.org/abs/2011.02839.

[GVB11] Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. “SMICloud: A framework for
comparing and ranking cloud services”. In: Proceedings - 2011 4th IEEE International Conference
on Utility and Cloud Computing, UCC 2011 (2011), pp. 210–218. doi: 10.1109/UCC.2011.36.

[IEA22] IEA. Global CO2 emissions rebounded to their highest level in history in 2021 - News - IEA.
Mar. 2022. url: https://www.iea.org/news/global-co2-emissions-rebounded-to-their-
highest-level-in-history-in-2021.

[Inc22] Thoughtworks Inc. Overview - Cloud Carbon Footprint. [Online; accessed 20-June-2022]. 2022.
url: https://www.cloudcarbonfootprint.org/docs/overview.

[MHW08] H Scott Matthews, Chris T Hendrickson, and Christopher L Weber. “The Importance of Car-
bon Footprint Estimation Boundaries”. In: Environmental Science & Technology 42 (16 2008).
PMID: 18767634, pp. 5839–5842. doi: 10.1021/es703112w. url: https://doi.org/10.1021/
es703112w.

10

[Myt20] David Mytton. “Hiding greenhouse gas emissions in the cloud”. In: Nature Climate Change 10
(8 2020), p. 701. issn: 1758-6798. doi: 10.1038/s41558-020-0837-6. url: https://doi.org/
10.1038/s41558-020-0837-6.

[Res19] 451 Research. “The Carbon Reduction Opportunity of Moving to Amazon Web Services”. In:
Black & White paper (2019).

[Roy68] Bernard Roy. “Classement et choix en présence de points de vue multiples”. In: Revue française
d’informatique et de recherche opérationnelle 2 (8 1968), pp. 57–75.

[Saa90] Thomas L. Saaty. “How to make a decision: The analytic hierarchy process”. In: European
Journal of Operational Research 48 (1 Sept. 1990), pp. 9–26. issn: 0377-2217. doi: 10.1016/
0377-2217(90)90057-I.

[Som+20] Emily Sommer et al. Cloud Jewels: Estimating kWh in the Cloud. Apr. 2020.

[Sun+14] Le Sun et al. “Cloud service selection: State-of-the-art and future research directions”. In: Journal
of Network and Computer Applications 45 (Oct. 2014), pp. 134–150. issn: 1084-8045. doi: 10.
1016/J.JNCA.2014.07.019.

[Wes21] Richard Westerhof. “Exploring the Factors of Sustainability and creating a Sustainability Dash-
board for BT Global Services”. In: RuG Internship Report (July 2021).

[WRI04] WBCSD WRI. “The greenhouse gas protocol: A corporate accounting and reporting standard”.
In: World Resources Institute (WRI) and World Business Council for Sustainable Development
(WBCSD), Washington, DC and Geneva (2004).

[ZTK14] Edmundas Kazimieras Zavadskas, Zenonas Turskis, and Simona Kildiene. “State of art surveys
of overviews on MCDM/MADM methods”. In: Vilnius Gediminas Technical University 20 (1
2014), pp. 165–179. issn: 20294921. doi: 10.3846/20294913.2014.892037. url: https://www.
tandfonline.com/doi/abs/10.3846/20294913.2014.892037.

[ZZZ09] Wenying Zeng, Yuelong Zhao, and Junwei Zeng. “Cloud service and service selection algorithm
research”. In: 2009 World Summit on Genetic and Evolutionary Computation, 2009 GEC Sum-
mit - Proceedings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation,
GEC’09 (2009), pp. 1045–1048. doi: 10.1145/1543834.1544004.

11

