Automated Planning of Data Processing Pipelines

Key words: Al, Big Data, Data mining, Distributed Systems,

Mo Assaf, supervisors: Dr. Viktoriya Degeler, Mostafa Hadadian,

university of
groningen

faculty of science
and engineering

Bachelor thesis

Mo Assaf
Presenting for the degree of
Bachelor Computing Science

Faculty of science and engineering
University of Groningen
Netherlands
July 18, 2022

Abstract:

Large scale Big Data processing has become imperative as more data either structured or unstructured
is being collected especially with the rise of loT technologies and analytics. This brings demands for
processing large chunks of data which brings many challenges such as real-time feedback. Distributed
system computing is commonly applied to solve such challenges and often uses data processing pipelines
to manipulate the data. Data processing pipelines are sequence of operations and transformations
applied to data to achieve a desired task. Planning data processing pipelines is crucial because if
not planned properly, it can increase risks and errors that can have consequences such as downtime.
However, such planning is a non-trivial labour intensive task that requires consideration of many factors
and constraints such as latency and computational resources. In this thesis, | analyse different aspects of
data processing and Al planning to construct a theoretical framework that defines different orientations
of planning as a scoping strategy. | also leverage the concept of Object-relational mapping (ORM) to
easily generate Planning Domain Definition Language (PDDL) planning problems. | use the framework
to develop an Al-powered data processing pipeline planner that utilises the Fast Downward planning
system and PDDL ORM. The planner can be used to construct valid pipelines that achieve desired data
tasks. Unlike other data pipeline planners, this planner can be easily extended to support dynamic
aspects of the system making the planning of complex aspects such as feedback loops system possible,
it can reduce errors by checking consistency and can improve the effectiveness of an organisation. The
planner was tested against hard and simple problems producing results showcasing feasible performance
for moderately complex pipelines.

Contents

1 Introduction & Motivation 4
2 Contribution 4
3 Research problem 5
4 Background 5
4.1 AIPIanning e e e e e e e e 5
4.1.1 PDDL 6

4.1.2 Available planners L e e e e e e e e 7

4.1.3 Bridging between Deep Learning and Planning Lo o 7

4.2 Bigdatachallenges e e e 7

43 Datapipelines L e e e e e e 8

5 Theoretical framework 8
5.1 Data processing pipelines as SyStems L. Lo e e e e e e e e 8
ST Processin@ Step . . . v o v i i i e e e e e e e e e e e e e e e e e e 8

5.1.2 Dataobject e e e 8

5.1.3 Stateobject L e 8

5144 RESOUICES o vttt e e e e e e e e e 8

5.1.5 Orchestrator L L e e 9

5.2 Planning data processing pipelines Ll 9
5.2.1 Planning orientations & SCOPING o o it e e e e e e e e e e e e e 9

5.2.2 Modelling dynamic aspectS v v it e e e e e e e e e e e e e e e e e e e 11

6 Methodology & Design 12
6.1 Defining a task-oriented planning domain L e 12
6.1.1 Designing data signatures & considerations Lo e e e e 13

6.1.2 Actiondefinitions e e e 14

6.2 Discovery of parallel opportunities L. e e e e 15

6.3 Performance evaluation method L e e e e 17
6.3.1 Benchmark I: A simple pipeline e 17

6.3.2 Benchmark II: A complex pipeline e e 17

7 Implementation 18
7.1 Architecture & design deciSionS L. e e 18
7.1.1 Planning service (tPlan) 19

7.1.2 PDDL Objects (PY_PDDL) e 19

7.1.3 Pipeline planner service (PiPlan) L e e 20

8 Results 21
8.1 Benchmarkresults 21
8.1.1 Benchmark I e 21

8.1.2 Benchmark II e 21

8.2 Use case: automation of machine learning inference pipelines o 21
8.2.1 Designing data signatures o e e e e e 25

8.2.2 Examplesofrequests e e 26

9 Conclusion 32
10 Future work & Limitations 33
11 Acknowledgement 33

12 Appendix
12.1 AutoML example (UI)

1 Introduction & Motivation

Organisations have realised the importance of data and began utilising information systems and data management techniques for spotting
and predicting trends, create data-driven decisions, and descriptive reporting [1]. Such information systems are deeply embedded within
an organisation and create many challenges due to integration costs, managerial challenges, large scope with high risks, and complexity.
However, successful integration can be rewarding and crucial for developing a competitive advantage as these challenges make it difficult
to imitate [2]. Therefore, various data are frequently collected which brings challenges and demand for large-scale data processing.
Major challenges (see section 4.2) constitute data heterogeneity, storage, integration, resource management, real-time demand, and many
more [3]. For example, traditional Online Transaction Processing (OLTP) databases have failed to provide analytical capabilities and
so Online Analytical Processing (OLAP) environments were developed to satisfy the demand for analytics. However, such analytical
platforms require expensive integration techniques such usage of Extract-Transform-Load (ETL) pipelines as they utilise different data
management techniques to serve their purpose [4].

When addressing such challenges, appropriate data processing techniques are required. Distributed computing is a common way to
provide scalability and performance. A mainframe approach is less cost-effective and so the data is distributed to many machines to be
processed in parallel. Such processing techniques commonly involve usage of distributed data processing pipelines [5]. Data pipelines
are chains of generic steps of transformations and operations sequenced from a source (e.g., OLTP database) to a sink (e.g., dataware-
houses, visualisation platforms, etc.). Data pipelines aim to automate flow of data, reduce human error, and improve performance [6].

One of the common issues with distributed data processing is the fixed nature of the data processing platforms. A data pipeline may
need to be updated due to dynamic external factors such as changes in the business goals, changes in the environment, parameter tuning,
or structural changes in data. Therefore, two scenarios may occur. The first scenario is terminating the pipeline and re-instantiating
the process causing downtime which is not always acceptable. The other scenario involves instantiating a new process and replacing
the existing process once it has reached the desired progress. However, this scenario requires the precondition that computational
resources are available and time is affordable. Furthermore, the dynamic changes must be verified and checked for consistency [5], [7].
Hence, planning data processing pipelines is non-trivial and must consider many factors which can be external or internal (e.g. latency,
putthrough, etc.).

The planning constitutes finding an optimal data pipeline that supports transformation of heterogeneous sources of data with minimal
resources, lowest latency, and highest scaling potential. Each chained component within a data pipeline manipulates the data passed
through it which can be regarded as an action that causes a deterministic state change or an effect in classical planning terms [8]. Hence,
the ultimate goal is to find an optimal chain of components that will yield the final desired state. This can be done by defining a domain of
the data manipulations and rules that will be used by the planner. The final state can be formulated by given criteria such as max latency,
data format, max storage, etc. Planning is a broad fundamental problem of Al [9] and there are many planning techniques (see section
4.1) that can be used to evaluate such problem formulations based on logical definitions. To address this problem, I propose a theoretical
framework that combines Al planning concepts and data pipeline concepts. I also use this framework to develop the automated pipeline
planner. I test the planner and showcase a real-life use case where machine learning inference pipelines are automated to perform certain
machine learning tasks.

2 Contribution

Currently, automation of data pipeline planning is a relatively new topic and is underdeveloped. I create an Al-powered data processing
pipeline planner that can generate valid pipelines. Such a planner can be used to prevent downtime, reduce human error, and improve
the organisation’s effectiveness by enabling such parties to be more flexible with external or internal dynamic changes. It can be used to
help automatically deploy pipelines without relying on experts or certain internal organisational dynamics. A previous planner [5] was
developed that is used to automatically reconfigure running data pipelines but does not consider dynamic aspects such as feedback loops.
However, unlike this planner, I consider dynamic aspects of the system that create complex interactions such as feedback loops. In
addition, I created a theoretical framework based on the relevant background that connects concepts from Al planning with concepts from
data processing pipelines. The framework pins different orientations of planning such as resource allocation and achieving certain data
tasks. Finally, I was inspired by the concept of Object-relational mapping (ORM) where objects within an object-oriented programming
language are used to map data between two systems [10]. I leverage this concept to create mappings between Planning Domain Definition
Language PDDL specifications and object-oriented programs. This creates synergy since the benefits of object-oriented programming
languages can be utilised to provide useful abstractions of PDDL making the development of domain-specific planners less tedious and
more straightforward.

3 Research problem

As mentioned, planning data processing pipelines is crucial and can be labour intensive since there are many challenges that come with
processing and managing data (see section 4.2) [6]. Therefore, the planner must be capable of dealing with constraints that are useful
to tackle some of these challenges. In addition, Al planning requires the domain to be well-defined and needs to be descriptive of the
problem and the relevant constraints with respect to such challenges. Lastly, such problems are dynamic since resources need to be
allocated to the pipeline and many variables could be affected as the pipeline is executed. Temporal dynamics play a role since pipelines
contain components that run for periods of time and such. Therefore, our research questions are:

* How can data processing pipelines be planned automatically with respect to given constraints?
* How can data pipeline problems be represented in an Al planning domain?

* How can we plan complex dynamics such as feedback loops?

4 Background

To consider how data processing pipelines can be planned, the definitions of data processing and Al planning and the relevant background
must be taken into account. The following background forms the backbone of the proposed theoretical framework.

4.1 Al Planning

Planning is one of the most challenging but fundamental areas of research in Al. Planning occurs within some context or domain that has
rules which shape the attainability of different states and applicability of different actions. An agent might desire to achieve a specific
goal within a given domain but does not know what specific actions are available and in what sequence they might be applied. Hence,
planning requires knowledge of the domain (e.g., available actions, when the actions can be applied, the rules of the context, etc.) and
the capability of looking ahead by foreseeing the effects of actions.

Planning occurs at a given initial state within a given domain and the goal state might be attainable by applying a sequence of actions
from the initial state. Therefore, the gap between the initial state and the goal state can be regarded as the planning problem and the
sequence of actions leading to the goal as the final plan. Furthermore, planning can be considered as a problem of search of actions that
satisfy the goal from the initial state or an optimisation problem if criteria or metrics were considered [11]. Such problems are seen as
hard problems due to their exponential nature and often many search heuristics are applied and in many cases, memory storing visited
states and information to prune the search [8], [12].

Actions in a domain can only be applied if the current state allows the action within the domain, meaning an action has a precondition
that must be satisfied for the action to be applicable [8]. Once an agent applies an action the preceding state is affected and is transitioned
into a new state. The difference between the new and old states is called an effect and it can be fully deterministic, or non-deterministic [9].

There are different types of domains and natures of planning. Classical planning uses first-order-logic FOL that describes entities within
a domain using predicates and logic. Effects in such domains are fully deterministic and constitute add and remove lists of predicates.
A predicate is false if it does not exist in the domain and so the initial state is a list of positive predicates [8]. In addition, a domain
allowing numeric fluents may contain numeric variables which can be affected by actions or events in either a linear or non-linear
fashion. Such domains are dynamic and can model more complex transitions. Temporal domains consider temporal logic meaning predi-
cates can be true for a certain period, actions can have durations, and different events might occur at specific or relative moments [9], [13].

In classical planning, a planning domain constitutes a set of propositions L = {py, p2, ..., p, } with a state-transition system defined as
Y(S,A,y), where S C 2F, A is a set of available actions, and 7 is the state-transition function that given an applicable action a € A and
a state s € S, Y(s,a) = (s —effects (a))Ueffectst(a) [13]. A negative effect or a remove-list (ef fects™ (a)) can be represented as
a list of propositions that will be removed from the state when the action a is applied. The positive effect or an add-list (ef fects™ (a))
is essentially the same as the negative effect but instead, the list of propositions are added to the state. Therefore, applying an action
a results in the transition from the state from s to (s —effects™(a)) Uef fects™(a). However, an action a represented as a tuple
(precond(a),ef fects™(a),ef fects™(a)) can only be applied if the precondition of the action holds within the current state s, in other
words, precond(a) € s. Otherwise, if not applicable, then y(s,a) is not defined, and such a transition is not allowed. The planning
problem as mentioned above, is the gap between the initial state and the goal. The classical planning terms, a planning problem can be
defined as &2 = (X,s0,g) where so € S is the initial state and g is a set of propositions such that the state must hold for it to be the goal
state [13].

41.1 PDDL

Planning Domain Definition Language (PDDL) is widely used to describe the domain and the planning problem within that domain.
PDDL can be used to define predicates, objects, actions, functions, metrics, and many other domain features. There are different versions
of PDDL that model different aspects of domain definition (e.g., numeric fluents, temporal, etc.)[11].

PDDLI1.0 considers classical planning and does not consider any temporal or dynamic aspects. Propositions can be defined with
predicates and formulas. The domain can be specified as follows:

(define (domain <name>)

(:requirements :<req0> :<reql> ... :<reqn>)
(:types <tO> <tl> ... <tn>)
(: predicates
(<pred0> <arg00> <argOl> ...)
(<predn> <argn0> <argnl> ...)
)
(:action <actionO >
:parameters (?7a0 — t0 ?al — t1 ...)

:precondition (<formula>)
effect (<effect>)

)

The planning problem can be specified by stating the initial state as a list of grounded predicates and specifying the goal as a formula.
The objects are entities that exist within the domain and typically have a type.

(define (problem <name>)
(:domain <name>)
(:objects

(objl — <type >)
(obj2 — <type >)

(objn — <type >)

pinit
<grounded pred0O>
<grounded predl>

<grounded predn>

)

(:goal (<formula >))

)

PDDL2.0 introduces capability of modelling more complex dynamics, numerical aspects, temporal aspects, and scheduling. For example,
it introduces functions which resemble variables that can be updated in a linear or non-linear way. They are also initialised with values
in the initial state and are used to specify metrics. Thereby, this version of PDDL can be used to specify optimisation problems.

(define (domain <name>)

(: functions
(varO0 ?a0 ?al ... ?an)

)

(define (problem <name>)

(: domain <name >)

(:”init
(= (var0) <val0>)
(= (varl) <vall >)

(=” (varn) <valn >)

(: metric <maximize | minimize> <numeric expression (e.g., var0 — varn)>)

)

Hence, if one wants to use PDDL to define planning problems, they must identify what aspects should be considered and whether PDDL
supports such aspects because problems have different natures and if the given PDDL version does not support such natures then the
problem cannot be represented. For example, if one wants to plan an optimal scheduling plan for airline takeoff times, then if the PDDL
version does not support scheduling capability then such a problem can be represented using this version.

4.1.2 Available planners

Many domain-independent PDDL planners had been developed which support different versions of PDDL. The FF planner one of the
most successful planners, estimates goal distance by omitting the delete lists produced by the actions [14]. There are other algorithms
such as the GraphPlan algorithm which uses planning graphs that create useful heuristics [8]. Many of the planners rely on search
algorithms such as A*, Nondeterministic or deterministic search, And/Or Search, alpha-beta pruning, and many more [8], [9]. SMTPlan+
supports the usage of events and processes [15] from PDDL3.0 therefore, it is a suitable planner if one wants to plan complex dynamics
where events occur at given times and actions are completely dynamic and have a duration. Metric-FF [16] supports PDDL2.1 which
allows numeric fluents and state variables and so is a great planner for solving optimisation problems or dynamic problems as mentioned
in the previous section. Fast Downward [12] supports PDDL1.0 and action costs with a wide range of heuristics making it suitable
for classical planning problems but is not capable of solving optimisation problems, scheduling problems, or problems where dynamic
aspects are involved. Furthermore, it also does not support negative preconditions and so negations must be represented with predicates
(e.g. lightTurnedOff and lightTurnedOn). In summarise, if one wants to pick a planner, they must find a planner that is efficient enough
and also supports the appropriate version of PDDL so that the problem at hand can be represented and solved.

4.1.3 Bridging between Deep Learning and Planning

One of the problems of planning is that it requires the information to be formulated as logical models. For example, images can contain
facts which can be translated to PDDL or predicates. Deep learning models can be used to extract features and facts which then can be
translated to a form compatible with classical planning [17], [18].

4.2 Big data challenges

There are many challenges currently being faced which are relevant to consider when planning data processing pipelines [3], some
examples are:

» Data heterogeneity: as more types of data are collected either structured, semi-structured, or unstructured data [19]. Deep
learning (DL) and machine learning (ML) have played an important role in processing unstructured data. These techniques can
handle unstructured data such as text and images well and can extract relevant features. For example, sentiment analysis is a
common task that can be used to determine customer impressions on products [20], [21].

» Data integration: analytics environments utilise different data structures and techniques which require translation and integration
from previous data storage environments. For instance, data warehouses that are developed for OLAP purposes, use star schema,
data cubes, and special operations which require the data to be in a format that differs from the format of data stored in traditional
OLTP environments [4].

» Storage: the pipelines for instance need the intermediate results in between. How can the data be stored reliably to allow quick
retrieval?

* Computational complexity: operations that data pipelines perform are complex and expensive which can increase latency.
Therefore, it is difficult to achieve real-time applications. Furthermore, appropriate infrastructure is also required to support such
computations.

4.3 Data pipelines

A data pipeline is a chain of transformation where the output of a processing step becomes the input of another. Initially, the data
typically originates from a source and at the end of the pipeline, the data is loaded into a sink or a destination typically a visualisation
tool or storage [6]. Data processing pipelines have many use cases and can help with dealing with some of the data challenges. For
instance, ETL pipelines extract, transform, and load data to data warehouses attempting to solve integration issues between Online
Analytical Processing OLAP and Online Transaction Processing OLTP environments [4]. Data pipelines can also be used to deploy
machine learning inference models and can help analyse large chunks of unstructured data [20]. Data pipelines can be complex and
dynamic and can contain steps such as parallel computations and reduce operations to process large streams of data [22].

5 Theoretical framework

To approach the research problem, I constructed the following theoretical framework by analysing the concepts from the background.

5.1 Data processing pipelines as systems

Data processing pipelines (DPP) are sequences of operations and transformations applied to batches of data to achieve the desired data
format from a data source to a sink (from section 4.3). Although this is a sound definition, it provides a narrow view and does not
consider the entire context which is necessary for formulating planning problems. Thus, I propose to take a more broad view of data
processing pipelines by regarding them as components interacting with other components in a system. A data processing pipeline can
be viewed as a system composed of the following elements (see figure 5.2).

5.1.1 Processing step

A processing step shown in figure 5.1 is an abstract independent basic component with memory, allocated resources, and an internal
state that accepts a data object as an input and outputs a new data object by manipulating the input object to achieve a certain task. A
step can be invoked by the orchestrator and contains its state. A step when invoked runs for a dynamic period and dynamically mutates
its internal state. For example, a processing step can be a process running an executable script stored on a local machine, taking input
from a file that has been written into by another process and storing the output in a different file. It can also be an inference REST API
parsing JSON input from its network buffer and writing the JSON response into its network card after the processing is completed. Such
APIs are stateless and have empty state objects but can still update the global state. Hence, a sequence of steps in this context resembles
a data pipeline following the definition from section 4.3.

5.1.2 Data object

A data object is an abstract basic component representing data that has a format. The data object may represent meta information for
retrieval such as image URLs as well as internal variables. They can be instantiated by processing steps and can be passed from the
output of one step to an input of another step.

5.1.3 State object

A state object is an abstract basic component representing a dynamic state that can be altered. A state object can be private to a step or
shared globally by all steps. For instance, a process loaded into RAM has its local variables and private memory and cannot be accessed
directly by other processes but it can access the global memory which is shared by other processes to communicate or access global
information. For instance, a global state object can resemble the pipeline’s configuration parameters. The state object could represent
the status of the step (e.g. failed, terminated).

5.1.4 Resources

The steps need to have their resources allocated to them which might be available at a given moment. The resources constrain and
shape different possibilities, for example, if there is only one compute node available then the orchestrator cannot apply different steps
in parallel.

Output Input Output

DataObj ——>» DataObj DataObj

StateObj StateObj

update update load

update update

Y

[StateObj %—

Global state

Figure 5.1: the processing step » has its own internal state and shares a global state with other steps. When step 7 runs it performs an operation
A on its internal state and the global state and updates them; it takes in a data object from step n — 1 as an input and writes the output data
object into its output buffer. Lastly, all steps including step » — 1 and step n have their own allocated resources.

5.1.5 Orchestrator

An orchestrator is an abstract basic component responsible for orchestrating the dynamics of the system such as the execution of steps,
passage of data between different steps, allocation and management of resources, and parallelism. A pipeline orchestrator can run steps
in parallel if applicable and can invoke any available step by loading a data object into its input memory (see figure 5.2). For example,
processes can be dispatched by the operating system of the machine. The operating system is responsible for managing the file system
and the resources of the processes. In this case, the operating system acts as the orchestrator and program processes as processing steps.

5.2 Planning data processing pipelines

Planning as mentioned involves filling the gap between the initial state and the goal and data processing are series of steps that achieve
a certain task. Since we need to make a connection between data pipelines and Al planning, I make the analogy between a planning
domain and a data processing pipeline system (see table 5.1).

5.2.1 Planning orientations & scoping

Furthermore, as mentioned in section 4.1, there are different natures of Al planning, thus, it is essential to assess the static and dynamic
aspects of the system. The system has static aspects mainly the data objects being loaded through out the system from one module to
another. For instance, a data object can only be loaded an input of a step if it follows the required input format. The system also has
dynamic aspects mainly the available resources and the state objects. State objects are essentially a composition of dynamic variables
updated throughout the events of the system. The resources are also composed of dynamic variables such as available memory, number
of available compute nodes, etc. Furthermore, steps run for periods of time and if steps are run in parallel then it is likely that the latency
is reduced but more resources are allocated in that period of time, and so temporal dynamics exist within such a system. Such a system
can be complex and can make planning in such a domain difficult, so I define different orientations of planning as a scoping strategy (see
table 5.2). When planning data pipelines, one can consider many aspects in the planning and two major aspects are the data tasks that
need to be carried out and the resources that must be allocated to feasibly execute the pipeline. Hence, by identifying these two aspects, I
define two orientations of data pipeline planning. Task-oriented planning mainly concerns achieving certain data tasks, the sole purpose
is to obtain a pipeline that can perform the desired tasks and assumes that resources are available. In contrast, resource-oriented only
concerns that resources that need to be allocated, it requires the pipeline to be known initially, and the sole purpose is to obtain a feasible
execution plan for the given pipeline.

(— oo B A e e Y D ¥ 2 SR)
' 1
: B) ’ o :
' 1
' '

A
StateObj]
DataObj DataObj e
A C
A
' StateObj]
2: invoke(A)
0: load([x0], A) | DataObj DataObj
: A
L StateObj -] : ;
T 5: load([A, B], C)’:
DataObj DataObj ;
Al . 7 ...6:invoke(C)
TTUA L 4:sync((A, B))

3t invoke(B)-+-.._

1: Ioad([x1],‘B)

Orchestrator

Figure 5.2: the orchestrator in this example loads the inputs of A and B from other steps xo and x;. Then it invokes A and B in parallel then
introduces a barrier for a barrier A and B and synchronises them. Finally, it loads the outputs from A and B to the input of C and invokes C.

Data processing pipeline system Al Planning
Orchestrator is the agent acting in the domain attempting to find a plan by executing its instructions.
Orchestration instructions are the actions available in the domain applied by the orchestrator with certain preconditions.

For example, the invoke instruction can only be applied when there is at least one compute
node available.

Processing steps are objects related to an action that accepts a certain data object with a required data format
and results into an effect of loading a new data object with a format and the effect caused by
A.

Data formats are rules within the domain used to model the preconditions of processing step actions.

State object is a set of variables the can be updated dynamically in either a linear or non-linear by effects or
events. Such variables are updated dynamically in a linear or non-linear fashion (A operation
of a step).

Resources are rules that constrain the aforementioned actions and a set of variables that decide such
constraints.

The data processing pipeline system is the entire planning domain.

Data pipeline problem is a goal resulting from applying the sequence of orchestration instructions starting from the
initial state of the system. The initial state of the system can be composed of the available
processing steps, available resources, the data objects already loaded in some steps, etc. The
desired final state can constitute an achieved data format or task, or it can be an execution plan
(see table 5.2).

Table 5.1: connecting concepts from Al planning and data processing pipeline systems.

10

Resource-oriented planning

Task-oriented planning

Precondition

Pipeline known

Pipeline not known

Purpose

Creating a feasible execution plan of the pipeline
satisfying the given criteria.

Creating a pipeline that satisfies the desired data
tasks and formats.

Typical use case

Deploy pipeline X using infrastructure Y that sat-
isfies criteria Z.

Find a pipeline that takes input from source X and
performs task Y on the data and satisfies criteria Z.

Orchestration instructions

Parallel instructions (e.g., synchronise steps i €
{1,5,29}), resource allocation instructions (e.g.,
allocate x from memory M; to step i), invocation
instructions (e.g., run step i).

Datainstructions (e.g., load output object from step
i— 1 tostep i), invocation instructions (e.g., run step

i).

Planning process

Evaluation of available resources, considers the
dynamic and temporal aspects of the domain since
resources are allocated for a period of time.

Evaluation of the data format and dynamic state
preconditions of arbitrary steps before applying
them.

Planning nature

Dynamic, temporal, static.

Dynamic, static.

Example

Deploy an existing pipeline using an existing com-
pute infrastructure in such a way that it maximises
putthrough, minimises the latency and power us-
age.

Find a pipeline that performs a car object detection
on coloured images that minimises the total number
of parameters and maximises the sum of accuracies
equally weighted.

Table 5.2: scoping planning by resource and task orientations.

5.2.2 Modelling dynamic aspects

Dynamic aspects concern the non-static aspects of the domain. This entails the presence of variables within data objects and state objects
either external or internal just as mentioned in section 5.1.3. Many dynamics that may be involved such as linear or non-linear updates
to local variables in a step or feedback loops. Feedback loops are essentially data objects being loaded from the output of a step to the
input of the same step. This implies that for such a feedback loop to occur, the input and output data formats must match and the step
must not change the data format of the input, otherwise the formats will mismatch and the load action will not be possible. This appears
to be useless as the step does not change the data format within the data objects, however, it does not say anything about the state objects.
Therefore, such loops would only make sense when a step updates a state object because the effect will no longer be unique. To elaborate,
consider a non-dynamic classical planning domain where a light can be turned on or turned off. The action of turning on the light will
always yield the same effect, i.e., the light is on. Hence, applying this action multiple times will always yield the same effect of having
the light on and so the action is redundant. In contrast, if we were to make this domain dynamic, an action to lower the power supply by
a fixed amount can be added. Applying such action many times will eventually turn off the light as the power supply is no longer avail-
able for the light. This by analogy concludes that the same follows for DPPs where running a step is a dynamic action (e.g., lower supply).

For example, suppose one has a processing step that implements a language model that takes a word as an input and predicts the next
word. The input and output have the same data format as they are both words but one might desire to generate N words. Therefore, the
step must be applied N times to generate N words and also has to keep track of the numbers being generated, it also must take in the
last word generated and not a random word. Thus, the variable nwords tracks the number of words generated so far, and the variable i
belonging to a data object is used to check if it was the last generated word. The initial state is the state where the first word is available
and the global variable regarded as the input parameter is set to zero (i.e., nwords = 0). The goal is that N words should be generated
(i.e. nwords == N). This example can be shown in figure 5.3; note that the data types of the input and output data objects do not change
and the variables i and nwords are dynamically updated.

Lastly, as mentioned in section 4, we must assess the nature of the problem. For example, if we were to model this system using PDDL1.0,
then we cannot model such dynamic aspects as PDDL1.0 only considers classical planning. PDDL2.1 introduces functions that resemble
variables that can be used to model the state objects and so a planner (e.g. MetricFF) that solves PDDL2.1 problems will be appropriate.
Furthermore, PDDL2 introduces the capability to add duration to actions that can be used to model delays or latency. PDDL2.1 can
also be used to create optimisation problems for data pipelines by using the metric directive, for example, in resource-oriented planning
the expression totalRAMused + latency + ncomputeNodesU sed can be minimised to use the least amount of resources. Consequently,

11

AN R W N =

Language Model Step

Input Output

[type:string] | [type:string]

input delta condition:

i == nwords i=<val> i=<val>+1

update

update
i=i+1
nwords := nwords + 1

nwords = <val>

Figure 5.3: Example of a feedback loop where a step predicts the next word given a word. It updates the number of words and the variable i.

deciding what aspects are relevant for the use case helps with choosing the appropriate PDDL version.

6 Methodology & Design

I consider task-oriented planning and do not consider resource-oriented planning, I also do not model dynamic aspects because of time
constraints. I created an algorithm for the system that carries out parallel opportunity discovery to provide suggestions for parallel
computations. I use the theoretical framework as guidance for defining a descriptive planning domain and creating logical definitions. I
leverage the concept of ORM where objects can be used to generate queries and create mappings between two type systems [23] (see
figure 6.1). ORM is commonly used to map classes or objects within a programming language to database records where fields of a
class represent fields in a table such as the ID of the entity. I was inspired by this concept to do the same but with classes mapped
to PDDL specifications. I use an object-oriented programming language to generate PDDL problems and create one-to-one mappings
between PDDL and objects (see section 7.1.2 for more elaboration). This technique of creating a layered system utilises the benefits of
object-oriented programming and abstraction to make the implementation of the planning domain in this context less tedious. I use these
PDDL objects to implement the logical definitions provided in this section. Finally, I use an external planner that accepts the created
PDDL problems and translate the resulting actions back to orchestration instructions.

6.1 Defining a task-oriented planning domain

In this domain, I only consider data objects, processing steps, run instructions, and load instructions. I assume that data objects are
objects composed of fields that can be addressed using a key. Each field has a signature that describes the data. For example, a data
object containing an image field and a table can be described as follows:

{
"image_field": {
"key": "$.input.image",
"signature": ["type:image", "image:nchannels:3"]

1,
"table_field": {

12

10

Original string Random string
Extends ——>
$.field.image zyubksvgs

____________ > (R Translation ——>
Context

$ field.image Mapper zyubksvgs

Data flow ----- >»

Input step,
Output step,
Available steps, Domain, Problem

Encoded steps

_____ Metrics __ PlDalt_a - _and metrics _y, Data ﬂ, PDDL w) SRR
ipeline o
Orchestration = Decoded steps P|pe||ne. Compile ORM PDDL PDDL
< Context and instructions | Orchestration instructions Objects Parse actions Actions Solver
""""""""""""" Context €— D J— smmmmmemeeed
Mapper

Step modules
Orchestration Instructions

Figure 6.1: Demonstration of how PDDL ORM can be leveraged to construct layers of abstraction. Processing steps are specified to the data
pipeline context which converts all processing steps into the relevant PDDL objects. These PDDL objects are used to generate PDDL problems
that will be solved by external AI planners similar to how SQL ORM can be used to generate SQL queries to be executed by a DBMS. Finally,
the process is reverted; actions are parsed into PDDL objects which contain the necessary information to compile orchestration instructions.
The context mapper is used to make the data anonymous and remove special conflicting characters.

"key": "/mnt/c/users/Mo/Result/extracted_users.csv",
"signature": ["type:csv", "csv:incols:2"]

3

Keys express how the data can be accessed; in this example, the $ signifies the root of a JSON object. Signatures include static
information that can describe the format of the data, the properties, adjectives, versions, and other attributes. Keys belong to certain
steps and can be loaded to either an input or an output data object of some arbitrary step. A signature is a list of strings belonging to
arbitrary keys each resembling a predicate. Hence, I define the following predicates:

Predicate Description

has_key(s: step, k: key) A step s has a key k.

key_is_input_of(s: step, k: key) A key k in input of step s.

key_is_output_of(s: step, k: key) A key k in output of step s.

key_loaded(s: step, k: key) A step s has a key k loaded.
key_has_signature_s(k: key) A step k has an arbitrary signature s.
is_step_s(t - step) tequals s

6.1.1 Designing data signatures & considerations

The data signatures are defined by the application owner or the user and so the responsibility of defining appropriate signatures is
delegated to them. Using arbitrary data signatures prevents the system from being application-specific allowing it to be usable in
different domains.

Data objects are abstractions of instances of data. This implies that a signature must describe a certain domain of data instances and
must not describe a unique instance unless needed. For example, an attribute signature such as "image:size:40mb" would restrict images
to be exactly fourty megabytes. Thus, if a step was taking this data object as input, then it will not accept images with arbitrary sizes and
only accept 40MB images. In addition, signatures must not be conflicting such as "image:type:grayscale" and "image:nchannels:3". In
other words, the two signatures S| and S are conflicting and cannot be used as a requirement for a field since:

S| > CASy = —~C (81 ASy) = signature(field)
1

They also must not be redundant as it would hinder the performance and can make the signatures less descriptive and less specific, for

13

example, if S; = S, and the input requires a field with signature [S7,S]:

Sl *)Sz S]
(S1AS2) = signature(field)

Hence, the signature can be simply reduced to S1 = signature(field).

Finally, the signatures must be specific enough for the application use case. For example, if a digit classifier only accepts gray-scale
images, then the signature "type:image" alone is not enough. This will cause the step to fault when the plan is executed with a coloured
image of three channels.

6.1.2 Action definitions

Lastly, the orchestration instructions (i.e., load instructions, and the run instruction) must be defined. Instructions as mentioned in section
5.2 are simply actions applied by the orchestrator agent. I make the following definitions to formulate the actions.

field_signature(f : field k : key) :=
And([key_has_signature_{s}(k)||Vs : s € field.signature]);

dataobj_belongs_to_step(obj : dataobj,s : step) :=
And([has_key(s, field .key)|Vfield : field € obj])

dataobj_loaded_to_step(obj : dataobj,s : step) :=
And([key_loaded(s, field.key)|V field : field € obj))

dataobj_input_of step(obj : dataobj,s : step) :=
And([key_is_input_of(s, field.key)|Vfield : field € obj))

dataobj_output_of_step(obj : dataobj,s : step) :=
And([key_is_output_of(s, field.key)|Vfield : field € obj))

I assume that data objects act as buffers and are not simply passed around, but rather the contents of the data objects are copied form
one step to another if the signatures of the fields match. Each step has its own load field and run actions, a field can only be loaded from
one step to another if both steps own the keys of the fields and the output is available at the step being loaded from. Once a step is run,
the input object is unloaded making sure that the step is not executed again with the same input, this also ensures that other steps get a
chance to load their output into this step.

I represent a nameless action as follows:
Action < [po : 10,1 : Ty, Pn ta] > (precondition) => ef fect
I define the following actions:

load_field_to_step(s — step, f — field) :=

Action < [ko : key,k; : key,so : step,sy : step] > (
Output condition s0
has_key(so, ko)A
key_is_output_of(ko,s0)A
key_loaded(so,ko) A
field_signature(ko, field)A
Input condition s
has_key(sy, k|)A
key_is_input_of(k;,s;)A
field_signature(k;, field)A
Action specific to this step
is_step_{step}(s;)

)=>(
key_loaded(s;,k;)

)

14

run_step(s - step) :=
Action < [sg : step] U [k : key|
Vk : k € step.input .keys U step.out put .keys] > (

Action specific to this step
is_step_{step}(so)A
Input
dataobj_loaded_to_step(step.input, step)
dataobj_belongs_to_step(step.input,step)
dataobj_input_of step(step.input,step)A
Output
dataobj_belongs_to_step(step.out put, step) A
dataobj_output_of_step(step.out put,step) A
Delta condition
delta_condition(step.condition, step)

)=>(
dataobj_loaded_to_step(step.input,step)
dataobj_loaded_to_step(step.out put, step)
delta_effect(srep.delta,step)

)

To define the planning problem, we need to define the initial state and the goal. The initial state constitutes the input step loaded with
initial data objects in its input. Therefore, the initial state contains the following:

And ([field_signature(field, field.key)|V field : field € input_obj])A
dataobj_belongs_to_step(input_obj,input_step)
dataobj_loaded_to_step(input_obj,input_step)A\
dataobj_input_of_step(input_obj,input_step)\
dataobj_output_of_step(input_obj,input_step))

To formulate the goal, we need the desired output object to be loaded into the output step. The output needs to obtain the desired output
object from another step at the end of the pipeline. Therefore, the planner will have to find a sequence of orchestration instructions that
will yield the signatures of the output object. The goal can be defined as follows:

And([field_signature(field, field.key)|V field : field € out put_obj])\
dataobj_belongs_to_step(out put_ob j,out put_step)
dataobj_loaded_to_step(out put_obj,out put_step) A\
dataobj_output_of_step(out put_obj,out put_step)

Finally, these formulations of actions and predicates are instantiated as PDDL objects which are then serialised to their corresponding
PDDL equivalent definitions. Mapping is carried out between the input, output, and available steps to the required objects. The PDDL
domain and problem are passed to a planner to be solved and thus obtaining lists of actions that are translated back by reverting the
mapping process. Furthermore, the planners generally do not accept special characters like a dollar sign making specification of keys,
signatures, and other attributes difficult. In addition to the previous problem, the planners are external and cannot be relied on to be
secure. Hence, to solve these problems, I use a context mapper (see figure 6.2) that maps string values to new random codes. The
context mapper makes the passed information anonymous and also does not use special keys. The mapper is used to convert back and
forth between codes and the original values.

6.2 Discovery of parallel opportunities

The planner finds a list of instructions such as load and run instructions. However, the planner does not consider partially ordered plans.
This entails that the planner does not consider parallel possibilities. Therefore, this responsibility is delegated to the orchestrator. The
orchestrator recognises the independence of steps by considering the dependencies between them. For example, in figure 5.2, steps A
and B need independent steps xop and x; and so can be executed in parallel. On the other hand, step C needs steps A and B and has
to wait for both steps, so the orchestrator must synchronise steps A and B before C is invoked. I implemented the following algorithm
that implicitly converts the instructions into a dependency graph based on the parameters of the instructions and constructs parallel
instructions respectively. Both benchmarks were executed in a Jupyter notebook and are timed using a function that creates time stamps
at the start and the end of the execution to compute the time.

15

Original DataObj

“image_field”: {
“key”: “$.input.image”,

“signature™: [‘type:image”, “image:nchannels:3”]

b
“table_field": {
“key”: “$.input.table”,

“signature”: [‘type:csv”, “csv:ncols:2"]

Original string

$.field.image

Context

$.field.image Mapper

Data
Pipeline

Orchestration

Context
Mapper

Random string
zyubksvqgs

zyubksvqgs

Encoded DataObj

“image_field”: {
“key™ “Iporhjnb”,
“signature”: [‘pglebhvm”, “pglcmzau”]

b
“table_field”: {
“key”: “plemnbvk”,
“signature”: ["lmkqybvm", “pglghuzd”]

<----)

Figure 6.2: Demonstration of context mapping and how it is used to anonymise the data and to remove special characters

function discover_parallel_opportunities(instructions);

return a list of parallel instructions;
input: orchestration instructions;
parallel_instructions <— emptylist;
reversed_instructions < reverse(instructions);
N < length(instructions);
fori € [0,N) do
if revered_instructions[i].type == run then
history < reversed_instructions|i, ..];
step < revered_instructions|i].params.step;
sync_list < emptylist;
M < length(history);
for k € [0,M) then
if historylk].type == run then
if step == historylk|.params.step then
break;
end
end
/I Check if step exists in load instruction
if historylk].type == load then
source < historylk].params.source;

destination < history|k].params.destination;
/I Check if the step has the source as a dependency

if step == destination and not source € sync_list then
sync_list.push(source);
end
end

end
parallel_instructions.push([step,sync_list]);
end
end

parallel_instructions < reverse(parallel_instructions);

return parallel_instructions

16

O 0 N N W B W N =

—_ = e = e =
wm A W N = O

O o N9 N B W N =

—_ e e e e
2 W L = o

TR W N -

6.3 Performance evaluation method

To evaluate the performance of the pipeline planner, I carryout benchmarks against two tasks. For each task, I generate an input of
problem size N and I run the planner for three trials to find the minimum and average execution time and a 95% confidence interval
is computed. The machine used for the benchmark has a core i9 processor with 64 GB of RAM. The following benchmarks evaluate
the execution time including the translation to PDDL, solving the problem, and parsing back the instructions (see figure 6.1). They
do no include the performance of the parallel opportunity discovery algorithm. I also assume that pipelines are typically short (e.g.,
0 < N < 30) and that all the steps in the system are used in the planning process.

6.3.1 Benchmark I: A simple pipeline

The purpose of this benchmark is to simulate common pipelines where a step requires only one step as input. The task used for this
benchmark is created by generating N steps where a step s, requires step s; for i € [0,N). A step s; is generated as follows:

{
input: {
"field": {
"key": "{random_string(1}",
"signature": ["task:{il}"]
}
1,
output: {
"field": {
"key": "{random_string(Q1}",
"signature": ["task:{i+13}"]
}
}
}
Hence, the problem input is generated as follows:
{
input: {
"field": {
"key": "{random_string(1}",
"signature": ["task:0"]
}
1,
output: {
"field": {
"key": "{random_string(1}",
"signature": ["task:{N}"]
}
}
}

6.3.2 Benchmark II: A complex pipeline

The purpose of this benchmark is to simulate complex pipelines where steps need inputs from many other steps. By assumption, this
benchmark resembles an exaggerated example of a pipeline that is not common in practise. The task used for this benchmark is created
by generating N steps where a step s;1 requires steps s; for k € [0,i] and for i € [0,N). A step s; is generated as follows:

{

input: {
"field_0": {
"key": "{random_string()}",

17

10

"signature": ["task:0"]
1,
"field_1": {
"key": "{random_string()}",
"signature": ["task:1"]
1,
"field_2": {
"key": "{random_string()}",
"signature": ["task:2"]
1,
"field_{i}": {
"key": "{random_string(Q1}",
"signature": ["task:{i}"]
1,
3,
output: {
"field": {
"key": "{random_string()}",
"signature": ["task:{i+1}"]
}
}
}

Hence, the problem input is generated as follows:

{
input: {
"field": {
"key": "{random_string(1}",
"signature": ["task:0"]
}
1,
output: {
"field": {
"key": "{random_string(1}",
"signature": ["task:{N}"]
}
}
}

7 Implementation

7.1 Architecture & design decisions

To go about implementing the system I designed and identified three different pinpoints which are the pipeline planner, PDDL ORM,
and the PDDL solver. Hence, I divided the implementation into three parts and created three packages named Pipeline Planner (PiPlan),
PY_PDDL, and TopPlan (tPlan). Furthermore, I chose to write the code in Python since it is a high programming language, it is
well-supported, and it has a wide range of data processing tools. Therefore, I believe that Python provides higher utility through its
powerful abstractions and its potential to be integrated with many other data processing tools developed by the large community (e.g.,
pandas, PyTorch, Tensorflow, etc.). I also follow a micro-architecture design since it isolates different responsibilities and adds more
possibilities for scaling the system. Lastly, to prevent potability issues, all of the services provided by the system are containerised.

18

migrations

Steps

- object detection

- image classification

piplan

api
POST /ml/plan-task

PipelineOrchestrator(context, pl)
orchestrate_pipeline()

Depends ——>

Planner(context, planner)

tplan

solve(domain, problem) -> [Action] modules

PipelineOrchestrationContext(available_steps) l
input(dataobj) py_pddl
output(dataobj)

compile()
PipelineOrchestrati ontextMapper()

map_dataobj(dataobj, forward)
map_step(step. forward)

Figure 7.1: General overview of the architecture

7.1.1 Planning service (tPlan)

Config(ip)

MetricFF
Fastdownward
A

api
POST
@ ---- > /planner/{planner_name}/solve

I use efficient planners Fast Downward [12] and Metric FF [16] which allows numeric fluents to serve the purpose of dynamic states.
I created an API that accepts PDDL programs serialised to JSON and I translate the output of a planner to a standard JSON format.
Isolating this service prevents the planning service from creating a performance bottleneck in the system. The API was built in Python
using the API framework FastAPI that allows event-driven request handling. In addition, I wrote an SDK written in Python that has the
Planner class that accepts PY_PDDL domain and problem objects and possibly returns lists of Actions.

7.1.2 PDDL Objects (PY_PDDL)

As mentioned, I create object mappings to PDDL that utilises the benefits of object-oriented-programming. Therefore, I created this
package that has the necessary PDDL-serialisable classes (e.g. Domain, Action, Problem, Formula, etc.) to generate PDDL problems.
ORM is commonly used to map classes or objects within a programming language to database records. By analogy, I create classes and
object in Python that are responsible for mapping the data from the object to the PDDL equivalent. The following snippet demonstrates
how the package can be used to specify variables, predicates, functions, types, etc.

from py_pddl
from py_pddl
from py_pddl
from py_pddl

import Predicate as P, Domain, Action,
.core.effect import Inc
.core. formula import Not, And, Or

.core.metric import Metric, MetricOp

name = "analysis_sentiment"

type_data =

Type("data™)

dtype = Types(type_data, [])

data = arg("x", type_data)

Variables

latency = var("latency")

storage = var("storage")

metric = Metric(MetricOp.MINIMIZE,

Data types

Parameter as arg,

latency + storage)

Formula, Requirement, Problem, Object, Type,

19

Type

db = P("list_entries", data("x"))
str_list = P("list_string", data("x"))
vec_list = P("list_vec", data("x"))
flt_list = P("list_£f1t", data("x"))

Properties
rated = P("rated", data("x"))

concatenated = P("concatenated", data("x"), data("y"))

extract_text = Action(
name="extract_text",
precondition=db("x"),
effect=And(
str_list("x"),
Inc(latency, 5),
Inc(storage, 1024)
),
D)

After definition, the specified objects can be serialised to PDDL. All objects in the package extend the class SERIALIZABLE which has an
abstract method To_pppL(). This method is implemented by all the objects so that the objects can be serialised. The following snippet
shows the implementation of the Action object.

class Action(Serializable):

def __init__(self, name: str, precondition: Formula, effect: Effect, params: List[Parameter]=None):
self.name = name
self.precondition = precondition
self.effect = effect
if not params:
self.params = extract_params_from_formulas([self.precondition, self.effect])
else:

self.params = params

def to_pddl(self):

e

return f
(:action {self.name}
:parameters ({serialize_pddls(self.params, " ")})

:precondition {self.precondition.to_pddl(show_types=False)}
reffect {self.effect.to_pddl(show_types=False)}
)

mer

7.1.3 Pipeline planner service (PiPlan)

PiPlan is a Python package that can also be used as a web service where users can post requests to the API server and retrieve instructions
with parallel suggestions (see figure 7.2). It implements the formulas and the methods mentioned in section 6 (see figure 7.3). The
component PIPELINEORCHESTRATIONMAPPER extends CONTEXTMAPPER and is used by the component PIPELINEORCHESTRATIONCONTEXT
to map data values as mentioned in figure 6.1. The PIPELINEORCHESTRATIONCONTEXT extends the PDDLPLANNINGCONTEXT that also
extends the ConTEXT component. The context component is used to retrieve values using identifiers, and this component is extended
by the PDDL planning context component which is used to specify and retrieve PY_PDDL object values using identifiers. The
PipELINEORCHESTROR component implements the parallel discovery algorithm and also uses the context to specify steps and solve
pipeline problems using an external planner. PiPlan uses PY_PDDL to implement such formulas and utilises the planning service SDK
to solve actions. Currently, PiPlan has JSON data migrations representing steps that carry out machine learning tasks. These migrations
are used to demonstrate how PiPlan can be used to create inference pipelines (see section 8.2).

20

: \ APT m OrchestrationContext Orchestrator

input, output = POST /task

steps = getAvailableSteps() \:

! steps = getSteps()
—_— e

>

>

instructions = orchestratefpipejine(co ntext)
I

3>
>

pushSteps(steps)

I
_ input = createInputStep(input)

I
output = createOutputStep(output)
T

pushSteps([input, output])

definePDDLObjects()

domain, problem = compile(context)

A

plan = solve(domain, problem)

3>
>

instructions = translatePlan(plan)

A

discoverParallelOpportunities(instructions)

instructions

]
I

\\

>
I
[}
I
I
I
I I
| context = createContext(steps, input, output)
I T
I
1,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
!
I

|

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

L | |

[| |

| | | |

| | |

| [| |

| | | |

| | | |

| |

| | | |

L | | |

<€ | | |

| | | | |

| I | |

| | | |

| r | |

| | | |

| [| |

| | | |

| r | |

| | | |

| [| |

| | | |

| | | |
| |

| | | |

| | | |

| r | |

| | | |

| | L |

| | | |

| | r |

| | | |

| | | |

| | | |

i APT m OrchestrationContext Orchestrator

Figure 7.2: Sequence diagram demonstrating a use case where a user requests to create a pipeline that achieves a certain task

8 Reslults

8.1 Benchmark results

Since the system is using the Fast Downward system, I run the benchmarks but with different aliased configurations (i.e., lama-first,
lama, seq-opt-bjolp, seq-opt-Imcut, seq-sat-fd-autotune-1, seq-sat-fd-autotune-2, and seq-sat-lama-2011). These are configurations of
planners using the Fast Downward planning system from the International Planning Competition (IPC) 2011 [12].

8.1.1 Benchmark I

I carry out the benchmark in section 6.3.1 and it is apparent that the trend is exponential suggesting an exponential time complexity (see
figure 8.1). This result is not surprising as planning problems typically have an exponential search space as mentioned in section 4.1.
The best results are achieved with configurations in figures 8.1a, 8.1c, and 8.1d. Although the benchmark suggests poor performance
for large problem sizes, the planner would be suitable for planning typical pipelines that do not require a huge number of steps (e.g.,
n > 200).

8.1.2 Benchmark II

I carry out the same method from benchmark I but with a more complex task (see section 6.3.2). Unfortunately, this is indeed a more
complex task and so I was not able to run it for all configurations, nor could I run it for large values of N. Although the results in figure
8.2 suggest poor performance, this task is exaggerated to model worst-case scenarios. It is still feasible where in practise since data
pipelines are typically not this complex but do not contain such long dependencies. Therefore, given the results of both benchmarks, the
planner could be used in practise where pipelines are moderately complex.

8.2 Use case: automation of machine learning inference pipelines

This use case example demonstrates how the planner can be used to automate the creation of machine learning inference pipelines. It
also demonstrates the generality of the planner and how it can be applied in new use cases. This use case falls underneath the definition

21

G Context

assign(identifier, value)
get(identifier)

Defines arbitrary objects and compiles them into a dictionary

compile()

(@ PDDLPlanningContext

domain, problem, actions, predicates, initial_state, ...
action(identifier, ?value)
Used to define PDDL Objects and compiles a predicate(identifier, ?value)
PDDL Problem and a PDDL Domain objects object(identifier, ?value)
type(identifier, ?value)
init(identifier, ?value)
goal(identifier, ?value)

G PipelineOrchestrator

context, planner

orchestrate_pipeline()
discover_parallel_opportunities()

compile()

/Acts in
/

@ PipelineOrchestrationContext

O ContextMapper available_steps
input

output
input()
output()
compile()

Map string values to random strings

map(string, value?, forward)

/

/
,Mapped with
/

@ PipelineOrchestrationContextMapper
Map entire steps and data objects to new objects of random strings

map_dataobj(step, forward)

map_step(step, forward)

Figure 7.3: Class diagram showcasing the essential components of PiPlan

22

Benchmark with FD (lama-first) and a pipeline chain of tasks

407 min t

3.5- avg t

T 0 ' 0

' ' '
0 20 40 60 80 100 120
Problem size - N

(a)

Benchmark with FD (seg-opt-bjolp) and a pipeline chain of tasks

7- min t
avgt

Time -s

' ' ' ' ' ' '
0 20 40 60 80 100 120
Problem size - N

(c)

Benck)l[)nark with FD (seq-sat-fd-autotune-1) and a pipeline chain of task

min t |
35- avgt [

30 - /
25 -

20 -

Time - s

15-

10 -

' ' ' '
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Problem size - N

(e)

Benchmark with FD (seg-sat-lama-2011) and a pipeline chain of tasks

min t
30~ avg t

25 -
20 - |

15-

Time-s

10 -

' ' ' '
2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Problem size - N

(4]

Figure 8.1: Benchmark I results with the Fast Downward (FD) planner configured with different aliases and computed confidence interval for

the average time (green and blue).

Benchmark with FD (lama) and a pipeline chain of tasks
25 - .
min t
avg t

20 -

15-

Time - s

10 -

T T {

' '
2.5 5.0 7.5 100 125 15.0 175 20.0
Problem size - N

(b)

Benchmark with FD (seg-opt-Imcut) and a pipeline chain of tasks

min t

/
8- /
w /
C 6o
¢ /
=
4- //
J
v
2- /
/, — i
0l o ——
! ! ! l l ! !
0 20 40 60 80 100 120
Problem size - N
@
Benchmark with FD (seq-sat-fd-autotune-2) and a pipeline chain of task
min t
avg t
40 -
30-
«
GJ
£
F 20-
10 -
o4 —

T T

' ' '
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Problem size - N

®

23

Benchmark with FD (lama-first) and a complex pipeline chain of tasks Benchmark with FD (seqg-opt-bjolp) and a complex pipeline chain of task
5- min t 10- min t
avg t avg t

Time -s
Time -s

' ' ' '
0 5 10 15 20 0 5 10 15 20
Problem size - N Problem size - N

(a) (b)

Benchmark with FD (seg-opt-Imcut) and a complex pipeline chain of tas
12 - min t /
avg t
10-

Time -s
[=)]
i

' '
0 5 10 15 20
Problem size - N

(c)

Figure 8.2: Benchmark II results with the Fast Downward (FD) planner configured with different aliases and computed confidence interval
for the average time (green and blue).

24

—_

N=lEe R =) Y B SV I S

O 0 9 N B W

of task oriented planning (see table 5.2) since the pipeline is not known and needs to be planned, and the purpose is to achieve a data

task (i.e., a machine learning task).

8.2.1 Designing data signatures

The first step is to design the data signatures so that it suits the use case at hand. I structure the machine learning tasks in a hierarchy
which is specified by delimiting the entries with a colon. I also use the signatures to define data types and add attributes.

{

"dataobj": {
"field": {
"key": "some_key",

"signature": [
"task:<task_type>:<category>:<...>",
"type:<data type>",

"<data type>:<attribute>"

}
b,
}

For example, a step running a medical Al model responsible for segmenting lungs and infections due to Covid-19 can be modelled as

follows:

{
"resource_id": "api:infere/covidl9infection",
"name": "Covid 19 lung infection segmentation",
"input": {
"image": {
"key": "$.image",
"signature": [
"type:volume"
]
}
1,
"output": {
"image": {
"key": "$.segmented_image",
"signature": [
"type:volume",
"task:image_segmentation:lung",
"task:image_segmentation:lung_infection"

}
}
3,

I can also describe a step carrying out an organ segmentation task as follows:

{
"resource_id": "api:infere/organseg",
"name": "Organ segmentation",
"input": {

"scan": {

"key": "$.scan",

"signature": [

"type:volume"

]

25

—_

N =l =) Y L Ve B S)

(o NV B N N)

}

}
1,

"output": {
"segmentation": {

"key": "$.segmented_image'

"signature": [
"type:volume",

"task:image_segmentation:
"task:image_segmentation:
"task:image_segmentation:
"task:image_segmentation:

}
}

spleen",
heart",
lung",
stomach"

A classic digit classifier step can be modelled as follows:

{

}

"resource_id": "api:infere/mnist",

"name": "MNIST",
"input": {
"image": {
"key": "$.image",
"signature": [
"type:image",
"image:nchannels:1"
]
}
1,
"output": {
"predictions": {
"key": "$.predictions",
"signature": [
"type:array",
"array:length:10",

"task:image_classification:digit"

}
}

I created examples to evaluate the results but not all tasks are included. I will use these defined examples to showcase the result in the

following section.

8.2.2 [Examples of requests

The end application or the user specifies the input of their data and the task they would like to achieve. They do not necessarily know
the type of the output data, but they know what task they would like to achieve since the available tasks will be provided. For example,

the set of available tasks could be:

{

"available_tasks": [

"task:image_classification:digit",
"task:image_segmentation:lung",

"task:image_segmentation:lung_infection",

"task:image_segmentation:brain",

26

10
11

13

O 0 NN R W N =

RO N = e e e e e e e e
£ O RN = S © ® 9 O L A W R = O

O 0 N N W B W N =

U
0 N N N R W NN = O

"task:image_segmentation: tumor",
"task:image_segmentation:spleen",
"task:image_segmentation:heart",
"task:image_segmentation:stomach",

Covid-19 diagnosis and organ segmentation example:

One might want to diagnose a patient suspected to be infected with Covid-19
and segment the spleen in the volumetric data. Such a request can be made as follows:

{
"input": {
"scan": {
"key": "$.myscan",
"signature": [
"type:volume"
]
}
1,
"output": {
"infection_seg": {
"key": "$.segmented_scan",
"signature": [

"task:image_segmentation:lung_infection’

]

3,

"spleen_seg": {
"key": "$.segmented_scan",
"signature": [

"task:image_segmentation:spleen"

]

}

}
}

After applying this request our planner suggests the following instructions:

{
"parallel™: [
{
"synchronize": T[],
"step": "input_buffer"”
3,
{
"synchronize": [
"input_buffer"
1,

"step": "api:infere/covidl9infection'

},

{

"synchronize": [
"input_buffer"

1,

"step": "api:infere/organseg"”

3,

27

46
47
48
49
50

67

"synchronize": [
"api:infere/organseg",
"api:infere/covidl9infection’

1,

"step": "output_buffer"”

}
1,
"instructions": [
{

"type": "run",

"params": {
"key": [

"$.myscan",
"$.myscan"

1,

"step": [
"input_buffer"

}
1,
{
"type": "load",
"params": {
"key": [
"$.myscan",
"$.image"
1,
"step": [
"input_buffer",

"api:infere/covidl9infection"

]

}
1,
{

"type": "load",
"params": {

"key": [
"$.myscan",
"$.scan"

1,

"step": [
"input_buffer",
"api:infere/organseg'

]

}
1,
{

"type": "run",
"params": {

"key": [
"$.image",
"$.segmented_image"

1,

"step": [

28

92

100
101
102
103
104
105
106
107
108
109
110

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

"api:infere/covidl9infection"

]

}
1,
{

"type": "load",
"params": {

"key": [
"$.segmented_image",
"$.segmented_scan"

1,

"step": [
"api:infere/covidl9infection"
"output_buffer"”

]

}

1,

{

"type": "run",
"params": {

"key": [

"$.scan",
"$.segmented_image"

1,

"step": [
"api:infere/organseg"

}
T,
{

"type": "load",
"params": {

"key": [
"$.segmented_image",
"$.segmented_scan"

1,

"step": [
"api:infere/organseg",
"output_buffer"

}
1,
{

"type": "run",
"params": {

"key": [
"$.segmented_scan",
"$.segmented_scan",
"$.segmented_scan",
"$.segmented_scan"

1,

"step": [
"output_buffer"

]

}

29

129 }

130 7,

131 "modules": [
132

133]

134 }

There is no available step that does both of these tasks, hence, the planner suggests applying two different steps (i.e., the step that does
Covid-19 diagnosis and the step that does organ segmentation). The planner also suggests that both of the steps require the input to be
loaded before they are executed and the two steps can be executed in parallel since they carry out two independent tasks.

Digit classification example: A user wants to classify coloured images of digits. Therefore, a user creates the following request to the

planner:
1 {
2 "input": {
3 "digit": {
4 "key": "$.my_digit_image",
5 "signature": [
6 "type:image",
7 "image:nchannels:3"
8 1
9 }
10 1,
11 "output": {
12 "prediction": {
13 "key": "$.my_digit_prediction",
14 "signature": [
15 "task:image_classification:digit"
16]
17 }
18 }
9 }

The planner responds suggesting the following instructions:

1 q

2 "parallel": [

3 {

4 "synchronize": T[],

5 "step": "input_buffer"

6 3,

7 {

8 "synchronize": [

9 "input_buffer"

10 1,

11 "step": "script:transform/tograyscale"
12 3,

13 {

14 "synchronize": [

15 "script:transform/tograyscale”
16 1,

17 "step": "api:infere/mnist"
18 3,

19 {

20 "synchronize": [

21 "api:infere/mnist"

30

2 1,

23 "step": "output_buffer"”
24 }

25],

26 "instructions": [

27 {

28 "type": "run",

29 "params": {

30 "key": [

31 "$.my_digit_image",
32 "$.my_digit_image"
33 1,

34 "step": [

35 "input_buffer"

36]

37 }

38 1,

39 {

40 "type": "load",

41 "params": {

42 "key": [

43 "$.my_digit_image",
44 "$.image"

45 1,

46 "step": [

47 "input_buffer",

48 "script:transform/tograyscale"
49]

50 }

51 1,

52 {

53 "type": "run",

54 "params": {

55 "key": [

56 "$.image",

57 "$.grayscale_image"
58 1,

59 "step": [

60 "script:transform/tograyscale”
61]

62 }

63 T,

64 {

65 "type": "load",

66 "params": {

67 "key": [

68 "$.grayscale_image",
69 "$.image"

70 1,

71 "step": [

72 "script:transform/tograyscale",
73 "api:infere/mnist"
74]

75 }

76 1,

78

90

100
101
102
103
104
105
106
107
108
109
110
111
112

114
115
116
117
118

{

"type": "run",

"params": {

"key": [
"$.image",
"$.predictions"

1,

"step": [
"api:infere/mnist"

}
1,
{

"type": "load",
"params": {

"key": [
"$.predictions",
"$.my_digit_prediction”

1,

"step": [
"api:infere/mnist",
"output_buffer"

}
1,
{

"type": "run",
"params": {

"key": [
"$.my_digit_prediction",
"$.my_digit_prediction”

1,

"step": [
"output_buffer"

The planner suggested to convert the coloured image to a gray-scale image because there are no available digit classifiers that accept
coloured images. This example has been implemented in a UI using React as well which can be seen in appendix 12.1.

9 Conclusion

I gave background about Al planning and data processing. I analysed relevant literature and developed a theoretical framework as an
approach to solving the research problem. In the theoretical framework, I took the approach of viewing data processing pipelines as
components in a system, and also show how Al planning can be applied in such systems. I identified that data processing pipelines can
be scoped by the purpose of the planning mainly related to resource allocation or achieving data tasks. Hence, I defined two orientations
of planning for data processing pipelines, i.e., resource-oriented planning, and task-oriented planning. I also demonstrate why dynamic
aspects such as feedback loops are important and how they can be modelled using the components defined in the theoretical framework.
Then I showcased the methods to show how the planning domain is formulated by defining predicates and actions that model some of the

32

system components. I demonstrated how PDDL objects can be used as an abstraction method, how parallel opportunities are discovered
through analysing dependencies, and how the performance of the data pipeline planner was evaluated. I cover the design aspects and
the architecture and showcase how the system was implemented. The results show that the planner is suitable for moderately complex
data pipelines and can be inefficient at very complex pipeline problems with N > 20. I also demonstrated how the planner can be used
in different domains by giving flexibility in defining data signatures, and I showcase this idea by giving examples of automation of
machine learning use cases. I give examples of different requests the planner is capable of handling and see that the planner is capable
of analysing dependencies and giving suggestions for parallel execution.

10 Future work & Limitations

I was able to create a pipeline planner that is not application specific. Due to time constraints, I was not able to implement the dynamic
aspects of the system (explained in section 5.2.2). Therefore, A state updates (explained in 5.1.1 are not taken into account. The planner
only considers static aspects where data objects are tagged with data signatures and are loaded into steps. However, the current system
has the potential to be extended and delta effects can be added but more sophisticated planners (e.g., SMTPlan+ [15], Metric-FF [16])
are needed to consider linear or non-linear action effects.

Moreover, I implemented a task-oriented planner but did not consider resource-oriented planning. Developing a resource planner adds
more utility since it is complementary to the task planner. For example, one might generate a pipeline through the task planner and
wishes to deploy it in a cloud computing infrastructure. Therefore, the resource planner can be a powerful tool to automatically deploy
the resulting pipelines.

Indeed, the planning community offers many planners that have been well-developed and optimised and using such planners can be for
the system can be fruitful. However, the planners are maintained by the community and appropriate planners may not always be found
for specific PDDL features and PDDL may not support some specific features. For instance, most planners available do not support
creation of new objects as effects of actions, this could have been useful for instantiating new data objects when invoking a step. The
current system strictly relies on PDDL and the available PDDL solvers. Hence, it could be worthwhile to develop a context-specific
planner for this system. This also gives more freedom in developing more specific heuristics and evaluation methods. For example,
the signatures could be sorted and serialised to achieve more efficient signature matching. Developing such a planner removes this
dependency and enhances the potential of extending the system. It makes the possibility of adding more functionality always possible
since the application does not depend on the community.

11 Acknowledgement

I would like to thank our supervisors Mostafa Hadadian and Dr. Viktoriya Degeler for their kind support and guidance throughout the
development of this project. I also appreciate the University of Groningen and the Faculty of Science and Engineering for providing the
necessary resources and I express my gratitude and appreciation to my computer science professors who provided the essential education
for this project.

33

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]
(9]
[10]

[11]
[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

R. Sharda, D. Delen, E. Turban, and D. King, “Business intelligence: A managerial approach, global edition,” in Pearson, 2017,
ch. Chapter 1.

J. Barney, “Firm resources and sustained competitive advantage,” Journal of Management, vol. 17, no. 1, pp. 99-120, 1991.
por: 10.1177/014920639101700108. eprint: https://doi.org/10.1177/014920639101700108. [Online]. Available:
https://doi.org/10.1177/014920639101700108.

M. D. Assuncido, R. N. Calheiros, S. Bianchi, M. A. Netto, and R. Buyya, “Big data computing and clouds: Trends and future
directions,” Journal of Parallel and Distributed Computing, vol. 79-80, pp. 3—15, 2015, Special Issue on Scalable Systems for
Big Data Management and Analytics, 1ssN: 0743-7315. por: https://doi.org/10.1016/j. jpdc.2014.08.003. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0743731514001452.

S. Conn, “Oltp and olap data integration: A review of feasible implementation methods and architectures for real time data
analysis,” in Proceedings. IEEE SoutheastCon, 2005., 2005, pp. 515-520. por: 10.1109/SECON. 2005.1423297.

T. Albers, E. Lazovik, M. Hadadian Nejad Yousefi, and A. Lazovik, “Adaptive on-the-fly changes in distributed processing
pipelines,” Frontiers in Big Data, vol. 4, 2021, 1ssN: 2624-909X. por: 10.3389/fdata.2021.666174. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fdata.2021.666174.

A. Raj, J. Bosch, H. H. Olsson, and T. J. Wang, “Modelling data pipelines,” in 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 2020, pp. 13-20. por: 10.11089/SEAA51224.2020.00014.

E. Lazovik, M. Medema, T. Albers, E. Langius, and A. Lazovik, “Runtime modifications of spark data processing pipelines,” in
2017 International Conference on Cloud and Autonomic Computing (ICCAC), 2017, pp. 34-45. por: 10.1109/ICCAC.2017.11.

S. J. Russell, P. Norvig, and E. Davis, in Artificial Intelligence: A modern approach. Pearson, 2022, ch. 10: Classical planning.
M. Ghallab, D. S. Nau, and P. Traverso, Automated planning and acting. Cambridge University Press, 2016.

Objectrelational mapping, Jul. 2022. [Online]. Available: https://en.wikipedia.org/wiki/Object%5C%E2%5C%80%5C%
93relational_mapping.

The ai planning & pddl wiki. [Online]. Available: https://planning.wiki/.

M. Helmert, “The fast downward planning system,” Journal of Artificial Intelligence Research, vol. 26, pp. 191-246, Jul. 2006.
por: 10.1613/jair.1705. [Online]. Available: https://doi.org/10.1613%2Fjair.1705.

M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and Practice, ser. The Morgan Kaufmann Series in Artificial In-
telligence. Amsterdam: Morgan Kaufmann, 2004, 1sBN: 978-1-55860-856-6. [Online]. Available: http://www.sciencedirect.
com/science/book/9781558608566.

J. Hoffmann and B. Nebel, “The FF planning system: Fast plan generation through heuristic search,” CoRR, vol. abs/1106.0675,
2011. arXiv: 1106.0675. [Online]. Available: http://arxiv.org/abs/1106.0675.

M. Cashmore, M. Fox, D. Long, and D. Magazzeni, “A compilation of the full pddl+ language into smt,” in ICAPS, 2016.

J. Hoffmann, “The metric-ff planning system: Translating "ignoring delete lists" to numeric state variables,” Journal of Artificial
Intelligence Research, vol. 20, Jun. 2011. por: 10.1613/jair.1144.

M. Asai and A. Fukunaga, “Classical planning in deep latent space: Bridging the subsymbolic-symbolic boundary,” CoRR,
vol. abs/1705.00154, 2017. arXiv: 1705.00154. [Online]. Available: http://arxiv.org/abs/1705.00154.

M. Asai, “Unsupervised grounding of plannable first-order logic representation from images,” IBM Research, 2019. [Online].
Available: https://arxiv.org/pdf/1902.08093.pdf.

P. S. Diouf, A. Boly, and S. Ndiaye, “Variety of data in the etl processes in the cloud: State of the art,” in 2018 IEEE International
Conference on Innovative Research and Development (ICIRD), 2018, pp. 1-5. por: 10.1109/ICIRD.2018.8376308.

G. Gautam and D. Yadav, “Sentiment analysis of twitter data using machine learning approaches and semantic analysis,” in 2074
Seventh International Conference on Contemporary Computing (IC3), 2014, pp. 437-442. por: 10.1109/1C3.2014.6897213.

S. M. S. Tanzil, W. Hoiles, and V. Krishnamurthy, “Adaptive scheme for caching youtube content in a cellular network: Machine
learning approach,” IEEE Access, vol. 5, pp. 5870-5881, 2017. por: 10.1109/ACCESS.2017.2678990.

B. Franks, Taming the big data tidal wave: Finding opportunities in huge data streams with advanced analytics. Wiley, 2012.

M. Lorenz, J.-P. Rudolph, G. Hesse, M. Uflacker, and H. Plattner, “Object-relational mapping revisited - a quantitative study on
the impact of database technology on o/r mapping strategies,” in HICSS, 2017.

34

https://doi.org/10.1177/014920639101700108
https://doi.org/10.1177/014920639101700108
https://doi.org/10.1177/014920639101700108
https://doi.org/https://doi.org/10.1016/j.jpdc.2014.08.003
https://www.sciencedirect.com/science/article/pii/S0743731514001452
https://doi.org/10.1109/SECON.2005.1423297
https://doi.org/10.3389/fdata.2021.666174
https://www.frontiersin.org/article/10.3389/fdata.2021.666174
https://doi.org/10.1109/SEAA51224.2020.00014
https://doi.org/10.1109/ICCAC.2017.11
https://en.wikipedia.org/wiki/Object%5C%E2%5C%80%5C%93relational_mapping
https://en.wikipedia.org/wiki/Object%5C%E2%5C%80%5C%93relational_mapping
https://planning.wiki/
https://doi.org/10.1613/jair.1705
https://doi.org/10.1613%2Fjair.1705
http://www.sciencedirect.com/science/book/9781558608566
http://www.sciencedirect.com/science/book/9781558608566
https://arxiv.org/abs/1106.0675
http://arxiv.org/abs/1106.0675
https://doi.org/10.1613/jair.1144
https://arxiv.org/abs/1705.00154
http://arxiv.org/abs/1705.00154
https://arxiv.org/pdf/1902.08093.pdf
https://doi.org/10.1109/ICIRD.2018.8376308
https://doi.org/10.1109/IC3.2014.6897213
https://doi.org/10.1109/ACCESS.2017.2678990

12 Appendix

12.1 AutoML example (UI)

18.07-2022 10:48 React App 18.07:2022 10:49

Welcome to AutoML

Created by Mo Assaf

What input do you have?

Coloured image B/W image Volumetric
localhost:3001 " Tocalhost:3001
()
18072022 10:49 React App
Welcome to AutoML

Created by Mo Assaf

Instructions
run input_buffer
load input_buffer script:transform/tograyscale
run script:transform/tograyscale
load script:transform/tograyscale api:infere/mnist
run api:infere/mnist

load api:infere/mnist output_buffer

localhost:3001

(c)

Figure 12.1: An implemented UI for the example where machine learning pipelines are automated using PiPlan.

React App

Welcome to AutoML

Created by Mo Assaf

What task would you like to do?

Digit classification

(b)

35

	Introduction & Motivation
	Contribution
	Research problem
	Background
	AI Planning
	PDDL
	Available planners
	Bridging between Deep Learning and Planning

	Big data challenges
	Data pipelines

	Theoretical framework
	Data processing pipelines as systems
	Processing step
	Data object
	State object
	Resources
	Orchestrator

	Planning data processing pipelines
	Planning orientations & scoping
	Modelling dynamic aspects

	Methodology & Design
	Defining a task-oriented planning domain
	Designing data signatures & considerations
	Action definitions

	Discovery of parallel opportunities
	Performance evaluation method
	Benchmark I: A simple pipeline
	Benchmark II: A complex pipeline

	Implementation
	Architecture & design decisions
	Planning service (tPlan)
	PDDL Objects (PY_PDDL)
	Pipeline planner service (PiPlan)

	Results
	Benchmark results
	Benchmark I
	Benchmark II

	Use case: automation of machine learning inference pipelines
	Designing data signatures
	Examples of requests

	Conclusion
	Future work & Limitations
	Acknowledgement
	Appendix
	AutoML example (UI)

