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Abstract: This paper attempts to extend the QV family of Deep Reinforcement learning algo-
rithms, where both the state value function, and the state-action value function are approximated
using neural networks. We introduce two new algorithms, DQV2 and DQV-Max2, based on the
classical RL algorithms QV2 and QV-Max2. We run multiple experiments in the Cart-Pole, Ac-
robot, and Mountain-Car environments, where we compare the reward obtained over time by
the two algorithms DQV2 and DQV-Max2, as well as several established QV family algorithms,
specifically DQV, DQV-Max, and an algorithm which only learns the state-action value function
DQN. Preliminary results suggest that DQV-Max2 is comparable to DQV-Max in performance,
while DQV2 vastly underperforms with most of the hyperparameter combinations used in this
study. However, for some hyperparameter combinations, DQV2 and DQV-Max2 achieve compa-
rable performance to DQV and DQV-Max with greater consistency.

1 Introduction

Reinforcement Learning (RL) is a method of train-
ing an agent to act in a particular environment.
This is often done by estimating a value function V ,
which estimates the value of being in a particular
state, or an action quality function Q, which esti-
mates the value of performing a certain action in a
certain state (Sutton and Barto, 2018). These func-
tions are then used to determine an optimal pol-
icy which determines which action an agent should
take in any given state. There exist many classical
RL algorithms with different update rules for the
Q and V functions, such as Q-learning (Watkins
and Dayan, 1992) and SARSA (Rummery and Ni-
ranjan, 1994). Another type of RL algorithm is the
QV family, which attempts to learn both the Q and
V functions (Wiering and Van Hasselt, 2009). All of
these algorithms are tabular RL algorithms, mean-
ing the functions get updated only for one partic-
ular state and one particular action (in the case of
the Q function) at a time. However, in complex en-
vironments with large (possibly continuous) state
spaces, classical RL algorithms fail, as most states
are simply not visited enough times. Additionally,
in large state spaces, keeping track of all state-

action combinations becomes computationally im-
possible.

In deep Reinforcement Learning (DRL), we at-
tempt to approximate the Q and/or V functions
using neural networks (NNs). In the case of the QV
family, we approximate both the V function, and
the Q function. The DRL extensions of the QV and
QV-Max algorithms, DQV and DQV-Max, are de-
scribed by Sabatelli, Louppe, Geurts, and Wiering
(2020), who find that DQV and DQV-Max con-
verge more quickly, and overall outperform the well-
known algorithms DQN and DDQN. In this pa-
per, we attempt to use function approximators to
extend the QV2 and QV-Max2 classical RL algo-
rithms (Wiering and Van Hasselt, 2009), which are
not covered by Sabatelli et al. (2020). The specific
update rules and loss functions for each algorithm
are described in the next section.

2 Preliminaries

2.1 Markov Decision Processes

A Markov Decision Process (MDP) is defined as a
tuple ⟨S,A, T,R⟩, where S is a set of states, A is
a set of actions, T : S × A × S → [0, 1] is a func-
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tion representing the transition probabilities from
one state, given an action, to another state. Finally,
the reward function R : S×A×S → R is a function
representing the reward an agent gets for making a
particular transition. Additionally, a time counter t
is used to keep track of which time-step the MDP is
in. An agent is needed to act upon the environment
described by an MDP. At each time-step, when the
agent is in state st ∈ S, it must make some ac-
tion at ∈ A(st), where A(st) is the set of actions
available to the agent at state st. After making the
action, the agent transitions to a successor state
st+1.

In Reinforcement Learning, we are interested in
learning an optimal policy π∗ : S → A, which
would maximize the reward obtained by the agent.
To that end, we are often interested in learning a
function Q : S × A → R, which gives us the value
of taking a particular action in a certain state.

Formally, the Q function under policy π is de-
fined in equation 2.1.

Qπ(s, a) = E
[ ∞∑
k=0

γkRt+k

∣∣∣st = s, at = a, π
]

(2.1)

Where γ ∈ (0, 1) is a discount factor, meant to
account for future rewards, and Rt+k is the reward
obtained at time-step t+k. Essentially, the Q func-
tion is the expected total discounted reward if an
agent starts at state s, performs action a, and fol-
lows policy π afterwards. Another important notion
for this project is the V function, defined in equa-
tion 2.2.

V π(s) = E
[ ∞∑
k=0

γkRt+k

∣∣∣st = s, π
]

(2.2)

Where γ is again the discount factor, and the func-
tion is defined for a particular policy. The V func-
tion is the expected total discounted reward the
agent will get by starting at state s, and then fol-
lowing policy π. An optimal policy π∗ is one where
the Q and V values are maximal, as the Q and V
functions are known to satisfy the Bellman opti-
mality equation, shown in equation 2.3 for the V
function.

V ∗(st) = max
a

∑
st+1

T (st, a, st+1)
[
r(st, a, st+1)

+ γV ∗(st+1)
]

(2.3)

And equation 2.4 for the Q function.

Q∗(st, at) =
∑
st+1

T (st, at, st+1)
[
r(st, at, st+1)

+ γmax
a

Q∗(st+1, a)
]

(2.4)

Meaning we have a formal definition of an opti-
mal policy in terms of the Q and V functions.

In model-free reinforcement learning, iterative
update rules are typically used to learn these func-
tions, depending on the precise learning algorithm.
These algorithms can be applied with both Monte-
Carlo methods, where the function estimations are
updated at the end of a learning episode, or with
temporal difference (TD) learning, where the func-
tions are updated at each time step. This paper will
only make use of TD learning.

2.2 Neural Networks

For a successful DRL application, a suitable func-
tion approximator is necessary. One such candidate
is an artificial neural network. In fact, Multi-layer
perceptrons (MLPs), which is a neural network con-
sisting of linear layers and non-linear activation
functions in between the layers, are proven to be
universal function approximators (Hornik, Stinch-
combe, and White, 1989). As such, an MLP should
serve as a suitable function approximator for our V
and Q functions, provided the architecture used is
both capable of apprixmating the Q and V func-
tions, and does not have too many trainable pa-
rameters to train in a reasonable amount of time.

Another type of neural network which can be bet-
ter used on more complex data is a convolutional
neural network (CNN) (LeCun, Bengio, and Hin-
ton, 2015). CNNs serve as feature extractors, and
contain much fewer trainable parameters when the
network is large. Like MLPs, CNNs are also uni-
versal function approximators, though their use is
rather redundant if the locality of the input data
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has no meaning. As such, CNNs are very power-
ful tools for approximating the Q and V functions
when the input data is visual, but MLPs are pre-
ferred on simpler data.

3 Related Work

A number of algorithms have been developed to
learn this function, one of the most well known
being Q-learning (Watkins and Dayan, 1992). The
Q-learning algorithm starts with some initial esti-
mates for the Q values for each state-action pair,
and updates them with the rule shown in equation
3.1

Q(st, at) := Q(st, at) + α(rt + γmax
q∈A

Q(st, a)

−Q(st, at)) (3.1)

Where α ∈ (0, 1) is the learning rate.
It was shown by Mnih, Kavukcuoglu, Silver,

Rusu, Veness, Bellemare, Graves, Riedmiller, Fid-
jeland, Ostrovski, et al. (2015) that it is possible
to extend classical Q-learning to DRL, and ob-
tain the Deep Q-Network (DQN) algorithm, where
the Q(s, a) function in approximated by a function
Q(s, a; θ), where θ is a set of parameters which de-
fine a neural network (or some other function ap-
proximator). We learn theQ function by tuning θ in
an attempt to minimize the loss function described
in equation 3.2

L(θ) = E⟨st,at,rt,st+1⟩∼U(D)

[
(rt+

γmax
a∈A

Q(st+1, a; θ)−Q(st, at; θ))
2
]

(3.2)

Where D is an experience replay buffer contain-
ing trajectories ⟨st, at, rt, st+1⟩. The loss function
makes use of a technique known as memory replay
(Lin, 1992), where observed trajectories are stored
in a replay buffer, and possibly re-used for future
learning. These trajectories can be sampled in any
manner, but in the context of the Arcade Learning
Environment (ALE), a uniform sampler U is used
(Bellemare, Naddaf, Veness, and Bowling, 2013).
The purpose of this loss function is to fit Q(st, at; θ)
to the TD target yt (see equation 3.3).

yt = rt + γmax
a∈A

Q(st+1, a; θ) (3.3)

However, Q-learning, and its DRL counterpart
both suffer from an overestimation bias . The max
operator in the update rule/loss function results
in overestimated TD targets when noise is present.
There have been a number of algorithms developed
in an attempt to solve this problem. One of which
is Double Q-learning (Hasselt, 2010), which learns
two separate Q functions, both of which are mu-
tually dependent on each other for learning. Ad-
ditionally, Double Q-learning has been proven to
function in a DRL context as well (Van Hasselt,
Guez, and Silver, 2016), where the two Q functions
are approximated with NNs.

In fact, a great deal of attempted improvements
to the DQN algorithm have been attempted, with
varying degrees of success. Another such attempt
is prioritized experience replay (Schaul, Quan,
Antonoglou, and Silver, 2015), which attempts to
sample more useful transitions more often, as op-
posed to sampling transitions uniformly. There is
also distributional RL (Bellemare, Dabney, and
Munos, 2017), which attempts to model the value
distribution itself, rather than just the expectation.
An agent which integrates these techniques in addi-
tion to several others has been proposed by Hessel,
Modayil, Van Hasselt, Schaul, Ostrovski, Dabney,
Horgan, Piot, Azar, and Silver (2018) in the form
of the Rainbow agent.

3.1 DQV Family

Of interest to this paper is another attempted im-
provement over DQN. Specifically, the QV family
of algorithms, which in addition to the Q function,
attempt to learn the V : S → R function, which
represents the value of a particular state, and is
used to assist in learning the Q function. Several of
these QV algorithms are examined by Wiering and
Van Hasselt (2009). Specifically, of the QV fam-
ily, they examine the classical RL algorithms QV,
QV2, QV-Max, and QV-Max2, and test them on
maze problems, as well as the cart-pole problem.

DRL extensions of the QV and QV-Max are in-
troduced by Sabatelli et al. (2020), where the V
function is also approximated with a neural net-
work, defined by a set of parameters Φ. The DRL
extension of QV-learning (DQV) uses the loss func-
tion shown in equation 3.4 to learn the V function.
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L(Φ) = E⟨st,at,rt,st+1⟩∼U(D)

[
(rt + γV (st+1; Φ

−)

− V (st; Φ))
2
]

(3.4)

Where Φ− is a copy of the Φ network, but we lock
in the parameters, and consider it to be a constant
when differentiating with respect to Φ.
The Q funciton is learned with the loss function

shown in equation 3.5.

L(θ) = E⟨st,at,rt,st+1⟩∼U(D)

[
(rt + γV (st+1; Φ

−)

−Q(st, at; θ))
2
]

(3.5)

DQV-Max, the DRL extension to QV-Max,
learns the V function with the loss function shown
in equation 3.6, while the Q function is learned us-
ing equation 3.5, same as DQV.

L(Φ) = E⟨st,at,rt,st+1⟩∼U(D)

[
(rt+γmax

a∈A
Q(st+1, a; θ

−)

− V (st; Φ))
2
]

(3.6)

These loss functions resemble the update rules
for the classical DQV and DQV-Max algorithms.
Both classical algorithms use the same update rule
for the Q function, shown in equation 3.7.

Q(st, at) := Q(st, at)+α(rt+γV (st+1)−Q(st, at))
(3.7)

Where α ∈ (0, 1) is the learning rate.
The update rules for the V functions are showing

in equations 3.8 and 3.9 for DQV and DQV-Max
respectively.

V (st) := V (st) + α(rt + γV (st+1)− V (st)) (3.8)

V (st) := V (st) + α(rt + γmax
a∈A

Q(st, a)− V (st))

(3.9)

3.2 New DRL algorithms

Wiering and Van Hasselt (2009) describe the QV2
and QV-Max2 algorithms. QV-Max2 and QV2

both have the same update rule as QV and QV-
Max for the Q function (see equation 3.7), but dif-
ferent V update rules. The V update rule for QV2
is described in equation 3.10.

V (st) := V (st) + α(rt + γV (st+1)−Q(st, at))
(3.10)

Where α is the learning rate. The QV-Max2 V
update rule is shown in equation 3.11.

V (st) := V (st) + α(rt + γmax
a∈A

Q(st, a)−Q(st, at))

(3.11)

4 Methods

4.1 Loss functions used

The update rules for QV2 and QV-Max2 do not
easily convert to loss functions. Directly converting
the classical update rules to loss functions would
result in a constant loss function for the V network,
as the term being fit to the TD-target would not
depend on Φ. To solve this problem, we propose the
DRL algorithms DQV2, and DQV-Max2, which use
the same Q loss function as DQV and DQV-Max,
and use the V loss functions in equations 4.1 and
4.2 respectively.

L(Φ) = E⟨st,at,rt,st+1⟩∼U(D)

[
(rt + γV (st+1; θ)

− w ·Q(st, at; θ)− (1− w) · V (st; Φ))
2
]

(4.1)

L(Φ) = E⟨st,at,rt,st+1⟩∼U(D)

[
(rt+γmax

a∈A
Q(st+1, a; θ)

− w ·Q(st, at; θ)− (1− w) · V (st; Φ))
2
]

(4.2)

Where w ∈ (0, 1) is what we call the Q-weight.
The Q-weight will determine how influential the
Q function is when tuning the V function esti-
mate. A larger w will result in the V function
estimate being more static, as the loss will de-
pend less on the V function. Meanwhile, as w be-
comes closer to 0, the loss functions become closer
and closer to those of DQV and DQV-Max. The
reason this setup is expected to work is because
when the Q and V functions are learned perfectly,
V (s) = maxa Q(s, a) ∀s ∈ S. Therefore, when both
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the V and Q terms are added to the loss function,
as long as their coefficients add up to 1, the loss
function should lead to a useful approximation of
V .

4.2 NN architecture

We test the algorithms using a Multi-layer percep-
tron (MLP) as the function approximator for the Q
and V functions. we used the same MLP architec-
ture as Kurban (2020). The QV architectures used
two such DQN architectures with different output
dimensions: one for the Q function, the other for
the V function.
Additionally, a CNN architecture was also imple-

mented for the option to use all of the algorithms
on the Atari games. The architecture is the same
as the one used by Mnih et al. (2015). Due to time
constraints, in addition to the fact that learning in
environments as complex as the Atari games takes
much longer, sufficient experiments were not run
using the CNN architecture. However, the imple-
mentation will be included with the code.
The full code can be found in https://github.

com/MantasMajer/DQV2-and-DQV-Max2

4.3 experimental setup

For each of the three environments, We run 10
training runs per algorithm. One training run con-
sisted of 500 episodes. The action is selected using
the ϵ-greedy method, where the agent has a prob-
ability of ϵ to pick a random action, and behave
greedily otherwise. A decaying value of ϵ was used,
with 0.99 as the decay rate, and the minimum ϵ
value being 0.01. The hyperparameters are given in
table 4.1.

Learning rate α 0.001
ϵ 0.5

Discount factor γ 0.99
replay buffer size 65536
replay batch size 16

Q-weight w 0.5

Table 4.1: Hyperparameters used for the exper-
iments

We keep track of two measurements. Firstly, the
reward obtained during each training episode. Sec-

ondly, because we are not necessarily interested in
the most trained algorithm, just the best perform-
ing, we attempt to keep track of the best version of
the model we had by periodically running a pure
greedy strategy on what we expect to be the best
version of the model so far. The way we estimate
the best model is by looking at the training per-
formance, and seeing if it is better than the per-
formance of the best model. If it outperforms the
best model, we run a pure exploitation run on the
newest model, and if the average of the two runs
is greater than the best model, we replace the best
model with the current one. Every 10 episodes, we
run the best model with a pure exploitation strat-
egy 3 times, keep track of the average total reward
from the three runs, and remember this average as
the best model’s performance. Note, that we do not
train the model when we do pure exploitation runs.

4.4 Environments

We used three environments from the OpenAI gym
(Brockman, Cheung, Pettersson, Schneider, Schul-
man, Tang, and Zaremba, 2016). Specifically, the
Cart-Pole, Acrobot, and Mountain-Car environ-
ments. All of these are basic control tasks with rela-
tively small action and state spaces, so they should
not be particularly difficult to learn. As such, they
should serve as a good initial testing benchmark for
the new algorithms before they are tested on more
complex vision-based environments.

4.4.1 Cart-Pole

This environment simulates a cart which is able to
move left or right, and must balance a pole such
that it does not fall down (see figure 4.1). Cart-Pole
has an action space of size 2, where the available
actions are to take a step to the left, or the right.
States are defined by four continuous values:

1. Cart position, range: (−4.8, 4.8)

2. Cart velocity, range: (−∞,∞)

3. Pole angle, range: (−0.418, 0.418)
0.418 radians is approximately 24 degrees.

4. Pole angular velocity, range: (−∞,∞)

An episode will terminate if the cart leaves the
(−2.4, 2.4) range, or if the pole’s angle leaves the
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Figure 4.1: An image illustrating the Cart-Pole
environment. https://github.com/ganeshjha/

Cartpole

(−0.2095, 0.2095) range. The agent will obtain a
reward of 1 for each time-step the episode does not
terminate. Rewards are capped at 500.

4.4.2 Acrobot

This environment has a slightly larger action and
state space. The problem consists of two links with
an actuated joint between them, and with one of
the links having its other joint fixed in place. The
agent should apply torque to the actuated joint to
swing the other end up above a certain threshold
(see figure 4.2).

The agent has three available actions: apply -1,
0, or 1 torque to the actuated joint. The state is
defined by six values, all relative to two angles θ1
and θ2, where θ1 is the angle between the first link
and a line pointing downward, and θ2 is the angle
between the two links. The state is then defined by
the sines, cosines, and angular velocities of θ1 and
θ2.

The agent will incur a reward of −1 for each
time-step it does not reach the goal, and an episode
will terminate when the goal is reached. The lower
bound on the reward for an episode is -500.

Figure 4.2: An image illustrating the Ac-
robot environment. https://talukder88.github.
io/acrobot.pdf

4.4.3 Mountain-Car

This environment consists of a mountainous track,
and a car which must go up a hill (see figure 4.3)

Figure 4.3: An image of the Mountain-Car envi-
ronment. https://github.com/kumarnikhil936/

q_learning_mountain_car_openai

The car must reach the top of the hill, but does
not have enough power to do so, so it must go back
and forth to get an increasingly large initial velocity
when it starts to drive up the hill.

There are three actions available to the agent:
accelerate to the left, the right, or do not accelerate.
The state is defined by the car’s position on the x
axis, and its velocity.

6



Like with Acrobot, the agent incurs a reward of
−1 for each time-step it does not reach the goal, and
reaching the goal terminates an episode. Episodes
have a lower bound of −200.

4.5 Additional investigations

Another aspect of the new algorithms that may be
worth investigating is the effect of the Q-weight on
the performance of the algorithms. As such, we ran
two additional experiments where we tested DQV
against DQV2 with five different values for the Q-
weight. We ran an analogous experiment on DQV-
Max2: DQV-Max against five iterations of DQV-
Max2. For the specific values of the Q-weight, we
used the values 0.1, 0.2, 0.3, 0.4 and 0.5. Using a
value of the Q-weight which is close to 1 would re-
sult in a loss function which is not very sensitive to
the network parameters being tuned. These experi-
ments were only run on the Cart-Pole environment.

5 Empirical Results

5.1 Main experiment

The experimental results are given in several fig-
ures, which depict the reward obtained during
training, and the reward obtained at 10 episode
increments under a pure exploitation strategy. Ad-
ditionally, numerical results were also calculated.
To formally compare the performance of the al-
gorithms, the areas under the curves were calcu-
lated to obtain the total reward obtained through-
out training. The total rewards can then be aver-
aged across all experiments, and standard devia-
tions can be computed.

The mean total rewards µ, the standard devia-
tions σ on the Cart-Pole environment are shown in
table 5.1. Note, that the values in the tables are
rounded down to the nearest integer. This is to
make the results more readable, and because the
values are quite large, and are unlikely to be af-
fected by small fractional deviations. Additionally,
the exploitation runs were made every 10 episodes,
meaning the scale of the total rewards obtained will
be significantly smaller than the training runs.

algorithm µ σ µ′ σ′

DQN 89065 22212 20202 1150
DQV 193787 11248 21681 862

DQV-Max 187632 7455 21995 845
DQV2 18183 19616 19339 3741

DQV-Max2 155358 22549 21756 1077

Table 5.1: Table showing the mean total rewards
and standard deviations across experiments for
each algorithm on the Cart-Pole problem. The
values are rounded down to integers. µ and σ
refer to the training results, while µ′ and σ′ refer
to the exploitation results. The best result in a
given measure is highlighted in green, while the
second best is highlighted in yellow.

We can see that DQV and DQV-Max perform the
best overall, but DQV-Max2 performs similarly in
the pure exploitation measure. DQV2 appears to
significantly underperform in both measures.

The results for the Acrobot experiment are
shown in table 5.2.

algorithm µ σ µ′ σ′

DQN -65387 1009 -16074 674
DQV -61697 2641 -5277 464

DQV-Max -62001 1427 -5351 381
DQV2 -221536 36498 -15277 6871

DQV-Max2 -62611 1365 -5710 369

Table 5.2: Table showing the results on the Ac-
robot experiment in the same manner as table
5.1 does for the Cart-Pole environment.

During training, all the algorithms appear to per-
form similarly, with the exception of DQV2, which
significantly underperforms, with a much lower av-
erage total reward, and a very high standard devia-
tion. Looking at the pure exploitation runs, we see
that DQN’s performance drops noticeably, while
DQV, DQV-Max, and DQV-Max2 stay roughly the
same.

The results on the Mountain-Car environment
are given in table 5.3.
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algorithm µ σ µ′ σ′

DQN -85936 2275 -8993 224
DQV -86134 2266 -8270 426

DQV-Max -86429 2418 -8332 421
DQV2 -99829 130 -10000 0

DQV-Max2 -85532 2742 -8127 488

Table 5.3: Table showing the results on the
Mountain-Car experiment in the same manner
as table 5.1 does for the Cart-Pole environment,
and table 5.2 does for Acrobot.

We see a similar pattern on the Mountain-Car en-
vironment as on the Acrobot environment, where
DQV2 underperforms massively, even apparently
not managing to learn the problem whatsoever.
DQN performs similarly to the algorithms other
than DQV2 on training, but much worse on the
exploitation measure, while the remaining three al-
gorithms perform similarly well.

5.2 Q-weight experiments

Results regarding the effect of the Q-weight on the
performance of DQV2 are reported in figure 5.4 and
table 5.4 in the same manner as for the main experi-
ment. The same results for DQV-Max2 are reported
in figure 5.5 and 5.5.

We see that the Q-weight affects the two algo-
rithms quite differently. On DQV2, it appears that
a larger Q-weight largely results in poorer perfor-
mance on the Cart-Pole problem. Although it ap-
pears that for small Q-weights such as 0.1, perfor-
mance is similar to DQV, and the results in this
case even learn the problem slightly faster, and with
a smaller standard deviation among total rewards
across experiments.

DQV-Max2 appears to be affected a lot less than
DQV2 by the value of the Q-weight up to w = 0.5
on the Cart-Pole problem. The total reward dur-
ing training appears to decrease somewhat with in-
creasing Q-weights, but the exploitation measure
does not appear to change much, and all the ver-
sions seem to be able to learn the problem fully.
Like with DQV2 compared to DQV, it appears
that for small Q-weights, we see DQV-Max2 gets
a slightly smaller standard deviation compared to
DQV-Max.

Q-weight µ σ µ′ σ′

0 (DQV) 181111 24453 20605 2400
0.1 195816 7527 22135 654
0.2 151703 54123 21330 1984
0.3 107572 66997 20462 3039
0.4 25263 21170 18437 4085
0.5 13672 6316 12676 6939

Table 5.4: Table showing the mean total rewards
and standard deviations across experiments of
the DQV2 algorithm for different values of Q-
weight on the Cart-Pole problem.

Q-weight µ σ µ′ σ′

0 (DQV-Max) 184656 14956 21851 1675
0.1 188584 7428 22220 597
0.2 181828 6583 21697 621
0.3 176076 16547 22533 459
0.4 167083 13981 21648 900
0.5 149189 18105 21214 1208

Table 5.5: Table showing the mean total rewards
and standard deviations across experiments of
the DQV-Max2 algorithm for different values of
Q-weight on the Cart-Pole problem.

6 Discussion

The results, if replicable, have some interesting im-
plications for the QV family of DRL algorithms.
Firstly, the results from these experiments suggest
that when the Q-weight is small, the total rewards
obtained will be more consistent (i.e. smaller stan-
dard deviation) without a noticeable decrease in
performance. This appears to be the case for both
DQV2 and DQV-Max2. On the other hand, large
Q-weights appear to hurt the performance, more so
on DQV2 than DQV-Max2.

It is difficult to say why precisely the Q-weight
has this effect on the learning, but we can examine
the factors that play into the algorithms’ learning.
The crucial difference between DQV2 and DQV,
and between DQV-Max2 and DQv-Max is the fact
that the loss function for the V network is less sen-
sitive to the V network Φ itself, and thatQ(st, at; θ)
plays into learning V (st; Φ). As such, we would ex-
pect performance to drop as the Q-weight gets close
to 1, since the loss function becomes increasingly in-
dependent of θ, with it being completely constant
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Figure 5.1: Learning curves for the cart-pole problem. The left graph shows the agent’s obtained
reward for each episode while training, while the graph on the right shows the performance of the
suspected best model using a pure exploitation strategy every 10 episodes.
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Figure 5.2: Learning curves for the acrobot problem. The left graph shows the agent’s obtained
reward for each episode while training, while the graph on the right shows the performance of the
suspected best model using a pure exploitation strategy every 10 episodes.
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Figure 5.3: Learning curves for the Mountain-Car problem. The left graph shows the agent’s ob-
tained reward for each episode while training, while the graph on the right shows the performance
of the suspected best model using a pure exploitation strategy every 10 episodes.
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Figure 5.4: Learning curves of DQV2 with varying Q-weights on the Cart-Pole problem. The
numerical values in the legend refers to the Q-weight of that iteration of the DQV2 algorithm
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Figure 5.5: Learning curves of DQV-Max2 with varying Q-weights on the Cart-Pole problem. The
numerical values in the legend refers to the Q-weight of that iteration of the DQV-Max2 algorithm

when w = 1. While the extreme case where w is
close to 1 is an obvious case, the results suggest
that performance starts dropping sooner, especially
for DQV2.
As for why DQV2 seems to suffer from an in-

creased Q-weight more than DQV-Max2, it is hard
to say for sure. Additional studies into these algo-
rithms would need to be conducted, including prac-
tical experiments, and possibly a thorough math-
ematical analysis of the subject. It is worth not-
ing, that the tabular algorithm QV2 (Wiering and
Van Hasselt, 2009) appeared to perform just as
well as QV. We would expect most potential ex-
planations for why DQV2 underperforms to ap-
ply to QV2 as well. It is of course possible that
the problem is only present with a function ap-
proximator present, or that the introduction of the
Q-weight makes DQV2 not fully faithful to QV2.
These claims would need to be formally investi-
gated by another study.

6.1 Limitations of the research

This research has some significant limitations and
should not be taken at face value. For one, all the
results are based off of 10 experiments per algo-
rithm. This makes finding reliable statistical signif-

icance difficult. To confirm or deny the suggestion
that a small non-zero Q-weight leads to more con-
sistent learning would require replication of these
results over more training runs.

Additionally, the experiments do not examine
every aspect of the DQV2 and DQV-Max2 algo-
rithms. For one, the Q-weights are only varied on
the Cart-Pole environment. To make general state-
ments about the effect of the Q-weight on learn-
ing in general, experiments like the ones performed
in this study should be conducted on other en-
vironments as well. The Acrobot and Mountain-
Car environments would be a logical next step, but
it would be important to conduct experiments on
more complex environments such as Atari games,
or other vision-based tasks with a high-dimensional
state spaces.

It would also be useful to examine more granular
increments of w. This study examines increments
of 0.1 up to 0.5, and finds results that suggest it is
not useful to use a Q-weight close to 0.5. As such,
a study may want to use different increments, such
as 0.05 up to 0.25. It may also be a worthwhile idea
to investigate what would happen with a dynamic
Q-weight which changes over time.
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7 Conclusions

In this study DRL extensions to two existing RL al-
gorithms were introduced. Due to the small number
of experiments, strong conclusions should not be
drawn from this study. That said, this preliminary
research suggests that introducing a Q-weight like
the one described in this paper could potentially in-
crease consistency in performance. Of course, larger
scale experiments, as well as experiments on more
complex environments should be run before this in-
fluence of the Q-weight can be confirmed or denied.
Overall, the DQV-Max2 algorithm appears to be a
functional DRL algorithm, while DQV2 likely needs
a specific Q-weight. However, if the performance of
DQV2 is truly hurt by the introduction of the Q-
weight, it simply becomes a less effective version of
DQV.
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