
July 22, 2022

Bachelor’s Thesis

A Model Checker for Game Logic via Parity Games

Eelke Landsaat
eelkelandsaat@student.rug.nl

First supervisor: prof. dr. H. H. Hansen
Second supervisor: prof. dr. J. A. Pérez

University of Groningen, Faculty of Science and Engineering
BSc Computing Science

Abstract

Model checking of logical models is establishing whether a formula is satisfied in a model under certain
conditions. Logical models are the groundwork of many software protocols, and ensuring that these protocols
work as intended is essential to building reliable applications. Automated model checkers are thus a valuable
tool for verifying the correctness of such software protocols.

Game logic is a branch of logic that focuses on strategic interactions between two agents. Although a
theoretical foundation for the model checking of game models (models of game logic) already exists, a model
checker for them remains absent.

In this thesis, a model checker for game models is implemented through a conversion step to the solving
of parity games. To this end, the state of the art around game logic, parity games and model checking is
inspected, the procedures of the model checker are discussed, and the implementation is evaluated.

Additionally, an experimental time complexity analysis is performed on the model checker based on
existing literature on a theoretical time complexity bound for the model checking problem for game logic.

Page 1



Acknowledgements

I would like to express my gratitude to my first supervisor, dr. Helle Hvid Hansen, for her flexibility,
her swift correspondence, and her guidance regarding both the contents of the project and the process of
carrying it out. Her input and feedback both during and outside our meetings have been invaluable for the
project.

Additionally, I would like to thank my second supervisor, dr. Jorge A. Perez, for his willingness to
evaluate this work and for his flexibility regarding the formal procedure at the start and end of the project.

Page 2



Contents

1 Introduction and Motivation 5

2 Preliminaries 6
2.1 Game Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Parity Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 The Evaluation Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Program Description 13
3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Must Have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Should Have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.3 Could Have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Programming Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Parity Game Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 Input Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.4 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.5 Key Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.6 Output Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Installation and Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Program Testing 23
4.1 Small Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Large Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Experimental Time Complexity Verification 31
5.1 Theoretical Upper Time Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Upper Time Bound Parity Game Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Experimental Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4.1 Input Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4.2 Description Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4.3 Description Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4.4 Description Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.5 Description Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.6 Description Experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.7 Description Experiment 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4.8 Description Experiment 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5.1 Results Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5.2 Results Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5.3 Results Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5.4 Results Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5.5 Results Experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.6 Results Experiment 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.7 Results Experiment 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Page 3



5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusion 49
6.1 General Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.1 Program Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.2 Time Complexity Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Appendix 54

A Proofs 54

B Program Testing 55
B.1 Small Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
B.2 Large Input Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

C Time Complexity Verification 67
C.1 Tables of Execution Time Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

D Source Code (per module) 75
D.1 ModelChecker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
D.2 EvalGame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
D.3 DNNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
D.4 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
D.5 AbstractSyntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
D.6 ConcreteSyntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
D.7 AST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
D.8 Util . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
D.9 ComplexityAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Page 4



1 Introduction and Motivation

Model checking of logical models backing protocols in software systems is a crucial tool to ensure the
correctness of these protocols and in some cases even their safety. What it involves is checking whether
certain assertions hold under given circumstances in the logical model. This check can be performed by
hand, but having a software tool to perform it effortlessly and without fail is a tremendous luxury for
protocol writers to sift out any undesired behaviours. Consider, for example, an elevator. When the call
button is pressed on some floor, the elevator should reach that floor, and preferably as soon as possible.
More critically, it should not move before the doors are firmly closed, or open the doors in the middle of
a ride. A software testing suite could be used to make bugs like these unlikely to occur, but as Edsger
Dijkstra [1] famously remarked: “Program testing can be a very effective way to show the presence of bugs,
but it is hopelessly inadequate for showing their absence.” Using a model checker, one can ensure that bugs
like these are absent from the logical model behind the elevator protocol.

Model checkers can be created for various logics (e.g., the modal µ-calculus [2], linear temporal logic [3],
computation tree logic (CTL) and [4], the temporal logic of actions [5]). Most notably, to support the analysis
of any expression that lies within the expressive power of the logic language, variations of propositional modal
logic are used, where the modalities can express information such as probability or time. CTL is one such
variation, which shows a series of events in a tree structure, so time flows as the tree is traversed. Although
CTL is already effective at showing the properties of processes over time, it is not suitable for reasoning
about strategic interactions between two agents. This is where game logic exceeds CTL in expressive power.
Using the fixpoint operators from the modal µ-calculus in its semantics for repeated interactions between
two players, it makes interaction protocols more intuitive to reason about, and is thus a fitting option for
model checking in these situations.

The game logic put forward by Parikh [6] provided a decidable and likely complete logic, but a complete-
ness proof including both the dual operator and the iteration operator [7] was left open (although conjectured
by the addition of an axiom). After Berwanger [8] showed in 2003 that game logic covers every finite level
of the alternation hierarchy of the modal µ-calculus, it became clear that a proof would be challenging to
produce. Sixteen years later, however, Enqvist et al. [9] established a completeness proof of several proof
systems (Par, G, CloG, CloM) for game logic, justifying the validity of further work in the area.

In [10], a mapping (further discussed in Section 2.2.1) from the model checking problem (Section 2.3) for
game models (Section 2.1) to solving parity games (Section 2.2) is proposed. Parity games are determined
two-player games, tools for solving which already exist [11], [12], [13]. Therefore, implementing a model
checker for game logic can be achieved by mapping the problem to a representation that can be used as
input for such a solver, and mapping its output back to a conclusion for the game model check. Although
the semantic mapping already exists, writing a program to perform this mapping has remained open. As
such, we attempt to answer the following pair of questions in this work:

1. “How can the model checking problem for game logic be programmatically converted to a parity game
representation for an existing parity game solver?”

2. “How can the output of this solver be converted back to a model check result for the game model?”

The research area that this project lies in within computing science is logic, and more specifically model
checking of game logic models (which in turn have a basis in game theory). Its contribution to the field is a
model checking tool for game logic, which will directly help two-agent interaction protocol writers to create
correct protocols and indirectly help future researchers in the field to more quickly gain an understanding
of game logic to use it in their own context. Additionally, an experimental time complexity evaluation is
carried out for the tool (Section 5) based on the theoretical bound put forth by Pauly [7], after which the
results of the experiments are compared to the theoretical bound.

Page 5



2 Preliminaries

2.1 Game Logic

Propositional game logic was introduced by Parikh [6] in 1983. It was built on propositional dynamic logic
(PDL) for programs developed by Fischer and Ladner [14] (which can be seen as a logic for single-player
games) by adding an opponent agent (player 2), which we will refer to as “Demon”, with player 1 being
“Angel”. Game logic is a modal logic with, for our purposes, a single modality, which acquires meaning when
paired with a game (we will denote games by the letters α and β). Additionally, games may be described
by tests of a formula (we will denote formulas by φ and ψ), giving formulas and games a mutually recursive
structure. When the term in consideration may be either a game or a formula, we will use the letter ξ.

Definition 1. (From [10]) We define the countable set Prop of atomic propositions and the set Gam of
atomic games. The sets F of formulas and G of game terms of game logic are then defined recursively as
follows:

F ∋ φ ::= p ∈ Prop | ¬φ | φ ∧ φ | φ ∨ φ | ⟨α⟩φ where α ∈ G
G ∋ α ::= g ∈ Gam | αd | α ∪ α | α ∩ α | α;α | α∗ | α× | φ? | φ! where φ ∈ F

The logical operators negation (¬), conjunction (∧), and disjunction (∨) are defined as usual. ⟨⟩ is the
diamond modality. The expression ⟨α⟩φ means: “Angel has a strategy in the game α to ensure that it ends
in a state in which φ is true”. It should be noted here that, since game logic describes zero-sum games,
Angel has a strategy to ensure φ if and only if Demon does not have a strategy to ensure ¬φ. As such, the
expression ¬⟨α⟩¬φ says that Demon has a strategy in α to ensure φ.

αd is the dual game of α, in which Angel and Demon swap roles. I.e., ⟨αd⟩φ ≡ “Angel has a strategy in
αd to ensure φ” ≡ “Demon has a strategy in α to ensure φ”.

The angelic choice α ∪ β describes the game in which Angel gets to choose which game is played out of
α and β. The demonic choice α ∩ β describes the game in which Demon chooses between α and β.

The composition α;β describes the game in which α and β are played sequentially, in that order.
The angelic iteration α∗ describes the game in which Angel chooses how many times α is played in the

range [0,→⟩. In a demonic iteration α×, Demon chooses the number of times α is played in the range [0,→⟩.
In both cases, the number of times that α is played must be finite. Additionally, the decision whether to
play α another time at any point in the sequence may be determined with consideration of the outcomes of
the previous games, so the number of times that it is played in total is not predetermined. As a consequence,
⟨α∗⟩φ means that there exists some finite number of times that α can be played sequentially for Angel to
ensure φ. ⟨α×⟩φ means that Angel can sustain a situation in which φ is true regardless of the number of
times α is played. Both angelic iterations and demonic iterations are fixpoint operators and may be referred
to as such.

In the angelic test game φ?, Angel loses immediately if φ is false. I.e., if ⟨φ?⟩ψ ∧ ¬φ, then Angel does
not have a strategy to ensure ψ, as she immediately loses. The demonic test φ! is the game in which Demon
loses immediately if φ is false. I.e., in ⟨φ!⟩ψ, Angel has a strategy to ensure ψ if either φ is true or ψ is true.

A formal semantics for game logic can be defined using monotone neighbourhood frames [15].

Definition 2. (From [10]) Let S be a set. We denote by M(S) the set of up-closed subsets of P(S), i.e.,
M(S) = {N ⊆ P(S) | ∀U,U ′ : U ∈ N,U ⊆ U ′ ⇒ U ′ ∈ N}. A monotone neighbourhood frame on S is a
function f : S →M(S). We denote by MF(S) the set of all monotone neighbourhood frames on S.

Given a monotone neighbourhood frame f ∈ MF(S) and a state s in S, f(s) is the set of neighbourhoods
that Angel can force (what it means for Angel to force a neighbourhood is explained later). A neighbourhood
is no more than a set of states, which we will frequently denote by the letter U . What it means to be monotone
for a neighbourhood frame f with domain S is that all the sets of neighbourhoods that it maps to are closed
under superset with respect to S. E.g., if S = {s1, s2}, f(s) cannot equal {{s1}}, as all the supersets of

Page 6



α
s

s
t

β
t

s
t

Figure 2.1: Graphical representation of a part of a simple game model. States are indicated by squares, sets
are indicated by ellipses. Neighbourhoods have a dotted outline. Arrows indicate a mapping through the
monotone neighbourhood frame corresponding to the game of which the name is specified on the arrow.

{s1}, being only {s1, s2} in this case, has to be included in the image as well. Later we will see that it is not
necessary for a neighbourhood frame to have the monotonic property for our purpose.

Definition 3. (Game operations, from [10]) Let f, g, f1, f2 ∈ MF(S) be monotone neighbourhood frames.
We define

- the unit frame ηS by: U ∈ ηS(s) iff s ∈ U for s ∈ S and U ⊆ S

- the composition f1; f2 by:

U ∈ (f1; f2)(s) iff {s′ ∈ S | U ∈ f2(s′)} ∈ f1(s) for s ∈ S and U ⊆ S

- the Angelic choice and Demonic choice between f1 and f2 by:

(f1 ∪ f2)(s) = f1(s) ∪ f2(s) (f1 ∩ f2)(s) = f1(s) ∩ f2(s), for s ∈ S

- the dual fd by: U ∈ fd(s) iff S \ U /∈ f(s) for s ∈ S and U ⊆ S

- the angelic iteration by f∗ := LFP(Af )

- the demonic iteration by f× := GFP(Df )

where LFP(Af ) and GFP(Df ) are the least and greatest fixed points of the maps

Af : MF(S) → MF(S)
g 7→ ηS ∪ (f ; g)

Df : MF(S) → MF(S)
g 7→ ηS ∩ (f ; g)

Before we continue to the definition of a game model, it is in our favour to gain an intuition for the way
they are used in game logic. A game model consists of a number of states, a number of atomic propositions
and a number of atomic games. For each proposition, there is a set of states, its truth set, in which it holds.

Page 7



Each atomic game g in a game model M is bound to a monotone neighbourhood frame ⟨|g|⟩M, telling us
which state transitions can take place in g. In any state s, if e.g., ⟨|g|⟩M(s) = {U1, ..., Un}, and the game g is
played, then Angel chooses (forces) a neighbourhood Ui = {s1, ...sm}, 1 ≤ i ≤ n, after which Demon chooses
a state sj , 1 ≤ j ≤ m to transition to (see Figure 2.1 for visual reference). Notably, a neighbourhood can
also be the empty set.

Definition 4. (From [10]) A game model is a triple M = (S, γ,Υ) where S is a set of states, γ : Gam →
MF(S) is a Gam-indexed collection of monotone neighbourhood frames, which provides an interpretation of
atomic games, and Υ : Prop→ P(S) is a valuation of atomic propositions. For φ ∈ F and α ∈ G we define
the semantics JφKM ⊆ S and ⟨|α|⟩M ∈ MF(S) by induction on the term structure:

The semantics of Definition 4 applies to all neighbourhood models, not just to monotone ones. We say
that two game logic formulas φ and ψ are equivalent if for all game modelsM, JφKM = JψKM. Similarly, we
say that two games α and β are equivalent if for allM, ⟨|α|⟩M = ⟨|β|⟩M. When it is clear from the context
which game model is being considered, we will abbreviate ⟨|α|⟩M to ⟨|α|⟩ and JφKM to JφK.

Definition 5. (From [10]) A formula φ ∈ F , respectively game term α ∈ G, is in dual and negation normal
form (DNNF) if dual is only applied to atomic games and negations occur only in front of atomic propositions.
We denote by nf(φ) the equivalent of φ in DNNF and by nf(α) the equivalent of α in DNNF. We denote by
FDNNF the set of formulas in DNNF, and by GDNNF the set of game terms in DNNF.

Note that any formula or game term can be converted to its equivalent in DNNF [10], for example, the
formula φ = ¬p2 ∧ ⟨(g∗1 ∪ ((p2 ∨ p1)!)d)×⟩p3 can be converted to its DNNF equivalent as follows:

¬p2 ∧ ⟨(g∗1 ∪ ((p2 ∨ p1)!)d)×⟩p3
≡ ((ψ!)d ≡ (¬ψ)?) ∀ψ
¬p2 ∧ ⟨(g∗1 ∪ (¬(p2 ∨ p1))?)×⟩p3

≡ Distributivity negation over disjunction.
¬p2 ∧ ⟨(g∗1 ∪ (¬p2 ∧ ¬p1)?)×⟩p3

nf(φ) = ¬p2 ∧ ⟨(g∗1 ∪ (¬p2 ∧ ¬p1)?)×⟩p3
We continue with some definitions that will be useful to categorize game models and formulas later. We

start with a definition of the size of a game model, intuitively equal to the number of states in the model,
added to the number of non-unique states that can be mapped to through the neighbourhood frames in the
model.

Definition 6. (From [16], rephrased) For a game model M = (S, γ,Υ), we denote by |M| the cardinality
or size ofM, given by

|S|+
∑

g∈Dom(γ)

∑
s∈Dom(⟨|g|⟩)

∑
U∈⟨|g|⟩(s)

|U |.

Page 8



Definition 7. For a game logic formula or game term, we define its cardinality or size recursively as follows
(with p ∈ Prop; g ∈ Gam;φ,ψ ∈ F ;α, β ∈ G):

|p| = 1

|¬φ| = 1 + |φ|
|φ ∧ ψ| = 1 + |φ|+ |ψ|
|φ ∨ ψ| = 1 + |φ|+ |ψ|
|⟨α⟩φ| = 1 + |α|+ |φ|
|g| = 1

|αd| = 1 + |α|
|α ∪ β| = 1 + |α|+ |β|
|α ∩ β| = 1 + |α|+ |β|
|α;β| = 1 + |α|+ |β|
|α∗| = 1 + |α|
|α×| = 1 + |α|
|φ?| = 1 + |φ|
|φ!| = 1 + |φ|

The alternation depth ad(φ) of a game logic formula or game term ξ is an important property in regards
to its complexity [7]. It can be thought of as the deepest nesting of alternating angelic and demonic iterators
in any subgame of ξ. When the nesting of a game continues in a formula φ, by way of an angelic or demonic
test, the alternation depth count of any subgames of φ starts at 0 again.

Definition 8. (From [16]) The alternation depth of a game logic formula φ in dual normal form is defined
as follows:

ad(p) = 0 for p ∈ Prop

ad(φ ∨ ψ) = max(ad(φ), ad(ψ))

ad(¬φ) = ad(φ)

ad(⟨α⟩φ) = max(ad(α), ad(φ))

ad(g) = 0 for g ∈ Gam

ad(φ?) = ad(φ)

ad
(
αd

)
= ad(α)

ad(α ∪ β) = ad(α ∩ β) = max(ad(α), ad(β))

ad(α;β) = max(ad(α), ad(β))

ad (α∗) = max
(
1, ad(α), 1 + ad

(
α×
1

)
, . . . , 1 + ad

(
α×
n

))
where α×

i is a subgame of α not in the scope of ? or !

ad
(
α×) = max (1, ad(α), 1 + ad (α∗

1) , . . . , 1 + ad (α∗
n))

where α∗
i is a subgame of α not in the scope of ? or !

Since the set of formulas in DNNF is a subset of the formulas in dual normal form, we can use this
definition of alternation depth for our purposes.

It will become clear in section 5 that it can be valuable to keep the size of a game modelM = (S, γ,Υ)
to a minimum. To this end, the non-monotonic core nmc(M) ofM may be used.

Page 9



Figure 2.2: A simple parity game arena. The colour of a position specifies which player it belongs to.
Priorities are indicated by numbers on the positions. Note that the priorities do not have to form a singular
interval of N, but can be distributed (e.g., using the priorities {3, 6, 24} on a game board with 3 positions).

Definition 9. We define the non-monotonic core nmc(M) of the game modelM = (S, γ,Υ) by construction,
following a short sequence of steps:

1. LetM′ :=M.

2. ∀g ∈ Dom(γ),∀t ∈ Dom(g),∀U ∈ ⟨|g|⟩t: if any subset of U is an element of ⟨|g|⟩t, U is removed from
⟨|g|⟩t inM′.

3. nmc(M) :=M′.

We add a theorem that makes the non-monotonic core powerful in the context of model checking.

Theorem 1. For any game modelM = (S, γ,Υ): M, s |= φ iff nmc(M), s |= φ, ∀s ∈ S,∀φ ∈ F .

2.2 Parity Games

Parity games (see also [10]) are positionally determined, zero-sum, two-player graph games. Note that some
definitions used here do not apply to parity games in general. For a more elaborate account, see [17].

Parity games are played in an arena B (see Figure 2.2) with a game board B, a finite set of positions.
Every position b ∈ B is owned by exactly one of two players, referred to as Abelard (∀ for short) and Eloise
(∃ for short). We refer to the set of positions owned by Abelard as B∀ and the set of positions owned by
Eloise as B∃. As such, B∀ and B∃ together form a partition of B. We denote by P(b) the owner of position
b. The arena comes with a binary relation E ⊆ B × B, describing the edges of the graph, which define the
successors of each position. We denote by E[b] ⊆ B the set of successors of position b.

A parity game is played by moving a pebble across the edges of B, where the owner of the position which
the pebble is currently on makes the next move. Note that a player can move the pebble to a position owned
by themselves if the edges allow, permitting them to move several times in sequence without intervention of
the opponent. A play starts at an initial position b0, after which, given optimal play, the winner of the game
is fixed. A full play is either finite or infinite, in each of which the winning condition differs. A play that
is not full is called a partial play. If a full play is finite, then there is some position b such that E[b] = ∅,
where the play ends. We refer to this situation as the owner of b getting stuck. In this case, the player who
gets stuck loses the play. If the full play Π = {b0b1...bn...} ∈ Bω is infinite, we require a parity function to
determine the winner. A parity function Ω : B → N maps every position on the game board to a natural
number, referred to as its priority. Let m be the highest priority of the positions that occur infinitely often

in Π. The infinite play Π is then won by

{
Eloise if m is even

Abelard if m is odd
.

Page 10



A strategy for a player is a partial function f : B → B that maps positions to one of their successors. If
a position b has no successors or is owned by the other player, f(b) is undefined. A play Π = {b1...bn...} ∈
B∗ ∪ Bω follows the strategy f if f(bi) = bi+1 for all b ∈ B on which f is defined. A winning strategy for
player i from position b is a strategy that ensures a win for player i, regardless of the moves of the other
player. Importantly, a player can have a winning strategy from b even if b is not owned by them (e.g., if
the opponent only has one move from position b, but the principle applies to more intricate cases as well).
Since parity games are positionally determined, there is a winning strategy for exactly one of the players
from each position on its game board. We denote the set of winning positions for player i in the parity game
B by Wini(B). Solving B locally for a position b means determining whether b ∈Win∃(B) or b ∈Win∀(B).
Solving B globally means determining whether b ∈Win∃(B) or b ∈Win∀(B) for all b ∈ B.

2.2.1 The Evaluation Game

The evaluation game due to Hansen et al. [10] is a parity game that can be constructed based on a game
model and a formula in DNNF, which is particularly useful for model checking (see Section 2.3) in game
logic due to Theorem 2. The positions of an evaluation game are pairs (s, φ) or (U,φ). Before introducing
the definition of the evaluation game (Definition 12), we introduce some terminology that serves as its
foundation.

Definition 10. (From [10]) We let ◁ ⊆ (F ∪ G)2 be the subterm relation on formulas and game terms, i.e.,
ξ1 ◁ ξ2 if either ξ1 = ξ2 or ξ1 is a proper subterm of ξ2.

ξ1 being a proper subterm of ξ2 can be thought of as ξ1 being nested in ξ2. E.g., if α = ⟨β⟩φ, then both
β and φ are proper subterms of α.

Definition 11. (From [10]) For a term ξ ∈ F∪G we let Fix(ξ) := {α∗ | α ∈ G, α∗ ◁ ξ}∪{α× | α ∈ G, α× ◁ ξ}
be the set of all fixpoint games that are subterms of ξ. A parity function for a formula φ in DNNF is a
partial map Ω : Fix(φ)→ ω such that

1. α1 ◁ α2 implies Ω(α1) < Ω(α2) for all α1, α2 ∈ Fix(φ) with α1 ̸= α2, and

2. for all α ∈ Fix(φ), Ω(α) is even iff α = β× is a demonic iteration.

We define the canonical parity function Ωcan(α
∗) = 2n + 1 and Ωcan(α

×) = 2n where n = #Fix(α∗)
and n = #Fix(α×), respectively. The canonical parity function formalises the fact that any fixpoint operator
dominates any other fixpoint operator in its scope.

Definition 12. (From [10]) Let M = (S, γ,Υ) be a game model, let φ ∈ F be a formula in DNNF and let
Ω : Fix(φ)→ ω be a parity function for φ. We define the evaluation game E(M, φ) as the parity game with
the game board specified in Figure 2.3 and the parity function ΩE given by

ΩE :=

{
Ω(α) if b = (x, ⟨α⟩ψ) for some α ∈ Fix(φ)

0 otherwise.

We finish with the theorem that is the key to the usefulness of the evaluation game to model checking
for game logic.

Theorem 2. (From [10]) LetM = (S, γ,Υ) be a game model and consider the game E = E(M, φ) for some
φ ∈ F . Then for all positions (s, ψ) in E we have (s, ψ) ∈Win∃(E) iffM, s |= ψ.

Page 11



Figure 2.3: Definition of the evaluation game board due to Hansen et al. [10] A star in the P(b) column
indicates that it is irrelevant who owns b, as there is exactly one possible move.

2.3 Model Checking

In many logics, it is valuable to check whether a formula is true under certain conditions, described by a
model. Specifically, given a model N and a formula f , the problem at hand is to check whether N |= f .
This is referred to as the model checking problem.

The latest overview for game logic, by Pauly and Parikh [16], published in 2003, describes developments
around the model checking problem for game logic. Local model checking for game logic involves determining
whether a formula φ ∈ F is true at a given state in a given game model. I.e., for a game modelM, a state
s, and a formula φ, a model check is a check whether M, s |= φ. Model checking can also be performed
globally, i.e., locally checking for all states in the model at once, yielding one result per state. Note that
this is different from checking if φ is true in all states in the model. Model checking has made greater
developments outside the realm of game logic than inside it, being developed further in other modal fixpoint
logics.

The basis of modal fixpoint logics is the modal mu-calculus, model checking for which has been a widely
researched field since the late 1980s. Stirling and Walker [2] were first to present a local model checker for the
modal µ-calculus. Following this, different variations, such as a linear-time algorithm for the alternation-free
fragment of the modal µ-calculus by Cleaveland and Steffen [18]; an incremental algorithm for the same
fragment by Sokolsky and Smolka [19]; faster checking for the full calculus with alternating fixpoints by
Cleaveland, Klein and Steffen [20] and finally an overview of methods until 2018 by Bradfield andWalukiewicz
[21].

CTL has had a plethora of papers dedicated to its model checking as well. Okawa and Yoneda [22]
proposed a symbolic model checker for CTL in 1997. Later, model checking on variations on CTL was
further explored, such as that on quantum CTL (QCTL) by Baltazar, Chadha and Mateus [23] and on full
hybrid CTL* by Kernberger and Lange [24]. Moreover, different techniques were examined, an example of
which is model checking based on possibility measures [25], [26].

To perform a model check on a game model M = (S, γ,Υ) and a formula φ in game logic via a parity
game (the evaluation game), we have to undertake a sequence of steps, depending on whether the model
check is local or global. In the local model checking case for a state s, we

1. construct the evaluation game E = E(M, φ);

2. solve E locally at (s, φ);

Page 12



3. conclude that

{
M, s|= φ if (s, φ) ∈Win∃(E)
M, s ̸|= φ otherwise

.

In the global model checking case, we

1. construct the evaluation game E = E(M, φ);

2. solve E globally;

3. conclude that

{
M, t|= φ if (t, φ) ∈Win∃(E)
M, t ̸|= φ otherwise

∀t ∈ S.

3 Program Description

We consider the requirements for the model checker, the functionality that was implemented to meet these
requirements, the implementation of the program at a high level, and the code of the program and how to
use it.

3.1 Requirements

To list the requirements in a comprehensive manner, we order them by priority. To this end, we use the
categories “Must have”, “Should have”, and “Could have”. When, alongside these, a “Will not have” category
is included as well, this practice is known as the MoSCoW method. Since the “Will not have” category is
usually used by software developers to indicate to their client that a requirement is too much to include
in a product, which is not the setting of this work, this category is excluded here. Whether a requirement
was met is indicated by a checkbox, where a check signifies success and a minus signifies that progress has
been made towards the requirement, but it is not yet completed. The priority of the requirements is based
on the moment at which their addition was put forward, ranging from before the proposal until the end
of the project period, as well as on their significance to the project result. All the requirements listed are
functional, i.e., they influence how the program behaves and do not affect properties like execution speed,
compatibility, or reliability.

3.1.1 Must Have

□✓ R-1.1: Local game logic model checking by mapping to an evaluation game and solving it with a parity
game solver.

3.1.2 Should Have

□✓ R-2.1: Global game logic model checking by mapping to an evaluation game and solving it with a
parity game solver.

3.1.3 Could Have

□✓ R-3.1: A selection of parity game solvers to choose from by command- line arguments for solving the
evaluation game corresponding to the input.

□ R-3.2: An input format for the formula that uses game logic syntax.

□ R-3.3: An indication of the state transitions for a winning strategy in the (game model, formula) pair
in the output.

Page 13



3.2 Functionality

The functionality of the model checker and the completed requirements align in a one-to-one fashion. Re-
quirements R-1.1 and R-2.1 allow the user to locally or globally model check a game logic formula, which was
the principal aim of the project and has been implemented. Requirement R-3.1 allows the user to choose a
parity game solver that best fits their use case for optimal performance (a guideline for which can be found
in Section 3.3.2). This, too, has been implemented. For requirement R-3.3, the model checker currently
shows one winning state transition for the winning player for each state, but a complete walk-through of
the winning strategy is not always possible due to the current implementation. More details on this can be
found in Section 3.3.5.

3.3 Implementation

3.3.1 Programming Language

For the implementation of the model checker, the meta-programming language Rascal1 was chosen. Rascal
provides a parser generator based on a developer-defined syntax (see Appendix D.6) in its standard library,
keeping code complexity for input interpretation low and flexibility high. Additionally, the conversion of
game logic formulas to DNNF, the conversion of a game model and a formula to the corresponding evaluation
game, and the conversion from a concrete syntax tree (CST) to an abstract syntax tree (AST) all require
a considerable amount of case distinction, for which the pattern matching Rascal provides is particularly
suitable. Furthermore, Rascal is an interpreted language that runs on a Java virtual machine (JVM), making
it highly compatible across different operating systems. Although other programming languages provide a
subset of these functionalities as well (Haskell2 has excellent pattern matching, the combination of C with
Flex3 and Bison 4 provides flexible lexer and parser generation), no other language integrates them natively
to the extent Rascal does.

3.3.2 Parity Game Solver

To allow for requirement R-3.3, integrating various different parity game solver programs in the model checker
would entail customizing the input generation and the output interpretation for each one, greatly increasing
the code complexity. Although a module could be developed to perform a translation from a unified parity
game solver format to the specific input that each solver requires, it is more elegant to have a separate
program perform this step. This program, integrated with a collection of parity game solvers, already exists
in the form of the PGSolver project [11], the input format for which is shown in Figure 3.1. With 3 local
solvers and 28 global solvers, it provides a substantial number of options to choose from to optimize the
solution to a specific problem. More solvers, e.g., the Oink collection [12] or the solver by Fearnley [13] could
be added as well, but they have been disregarded for now.

To accommodate model checking for users who are not interested in the underlying implementation, a
default parity game solver is chosen that is used when no specific one is requested. This solver should be as
little ‘opinionated’ as possible, to ensure it performs reasonably well for all inputs. The big step solver due to
Schewe [27] meets this condition the best out of the solvers in the PGSolver collection. Its time complexity
is shown in Equation 1.

O(e · n 1
3d) (1)

Here, e is the number of edges on the game board, n is the number of positions, and d is the number of
unique priority values.

1https://www.rascal-mpl.org/
2https://www.haskell.org/
3https://github.com/westes/flex
4https://www.gnu.org/software/bison/

Page 14

https://www.rascal-mpl.org/
https://www.haskell.org/
https://github.com/westes/flex
https://www.gnu.org/software/bison/


Figure 3.1: The parity game input grammar in extended Backus–Naur form for the PGSolver collection of
parity game solvers [11].

3.3.3 Input Format

As the goal of the model checker is to transform a game model and a game logic formula into an evaluation
game, it is convenient to have the input syntax of the model checker be of similar form as the input grammar
for the parity game solver (Figure 3.1). The input grammar for the model checker can be found in Figure 3.2.
For consistency, it is formulated in the same extended Backus-Naur form as the grammar for PGSolver. Note
that any text ⟨between angle brackets like this⟩ describes a nonterminal, while any other text is a literal, with
the exception of parentheses around parts that are followed by + or * or that contain a pipe symbol | (e.g.,
in “(example1 | example2)*”, the parentheses are not part of the literal characters, while in “not(example)”
they are). This input format was chosen over one which imitates game logic formula syntax more closely, as
it eliminates any ambiguity due to associativity or operator precedence. This decision comes at the cost of
readability for the input. To combat this, game logic syntax could be integrated into the model checker as
well, but this addition has been set aside for now.

Using the definition of Figure 3.2, instances of ⟨input⟩ can be used as input for the model checker. An
example is shown in Listing 1, the corresponding game model and formula for which in game logic notation
are described below.

Page 15



Definitions Notes

⟨input⟩ ::= ⟨game model⟩ ⟨formula⟩ [⟨state⟩] ⟨state⟩
required
for local
checking.

⟨game model⟩ ::= model
⟨state defs⟩ ; ⟨neighbourhood func⟩*
end model

⟨state defs⟩ ::= ⟨state def ⟩ (, ⟨state def ⟩)*
⟨state def ⟩ ::= ⟨state⟩ ⟨proposition⟩*
⟨state⟩ ::= ⟨identifier⟩

⟨proposition⟩ ::= ⟨identifier⟩

⟨neighbourhood func⟩ ::= ⟨atomic game⟩ : (⟨state map⟩ ;)+ end func
⟨atomic game⟩ ::= ⟨identifier⟩
⟨state map⟩ ::= ⟨state⟩ -> ⟨neighbourhoods⟩

⟨neighbourhoods⟩ ::= ⟨neighbourhood⟩ (, ⟨neighbourhood⟩)*
⟨neighbourhood⟩ ::= ⟨state⟩+ | empty

⟨formula⟩ ::= ⟨proposition⟩
| not(⟨formula⟩) ¬φ
| and(⟨formula⟩ , ⟨formula⟩) φ ∧ ψ
| or(⟨formula⟩ , ⟨formula⟩) φ ∨ ψ
| strat(⟨game⟩ , ⟨formula⟩) ⟨α⟩φ

⟨game⟩ ::= ⟨atomic game⟩
| dual(⟨game⟩) αd

| ang choice(⟨game⟩ , ⟨game⟩) α ∪ β
| dem choice(⟨game⟩ , ⟨game⟩) α ∩ β
| seq(⟨game⟩ , ⟨game⟩) α ; β
| ang iter(⟨game⟩) α∗

| dem iter(⟨game⟩) α×

| ang test(⟨formula⟩) φ?
| dem test(⟨formula⟩) φ!

⟨identifier⟩ ::= (⟨letter⟩ | ) (⟨letter⟩ | ⟨digit⟩ | )*
⟨letter⟩ ::= a-z | A-Z
⟨digit⟩ ::= 0-9

Figure 3.2: Input grammar for the model checker in extended Backus-Naur form.

Page 16



M = (S, γ,Υ)

S = {s1, s2, s3, s4}

γ is defined by:

Game g State s ⟨|g|⟩(s)

g1 s1 {{s2, s3}, {s1, s2, s3}}

g2 s1 {∅, {s1}, {s2}, {s3}, {s1, s2}, {s1, s3}, {s2, s3}, {s1, s2, s3}}
s2 {{s2}, {s1, s2}, {s2, s3}, {s1, s2, s3}}

Υ is defined by:

Proposition p Υ(p)

p1 {s1, s2, s4}
p2 {s1, s4}
p3 {s4}

φ = ¬p2 ∧ ⟨(g∗1 ∪ ((p2 ∨ p1)!)d)×⟩p3

Here, γ and Υ are represented by a table for readability. The table for γ contains, for every atomic game
g inM, all the states that have a mapping in the neighbourhood frame corresponding to g, along with their
image in this neighbourhood frame. The table for Υ contains every proposition in the model along with the
set of states in which it is true.

Note that in this example, the model contains all the supersets of neighbourhoods in the mappings of its
neighbourhood frames, meeting the monotonicity constraint of game models. This, however, is not required,
as the constructed evaluation games from both a game model with a monotonic neighbourhood frame and
its non-monotonic core produce equivalent evaluation games with respect to winning positions (Theorem 1,
Theorem 2).

model
s1 p1 p2 ,
s2 p1 ,
s3 ,
s4 p3 p1 p2 ;
g1 :

s1 −> s1 s2 s3 , s3 s2 ;
end func
g2 :

s2 −> empty , s1 , s2 , s3 , s1 s2 , s1 s3 , s2 s3 , s1 s2 s3 ;
s1 −> s2 , s1 s2 , s2 s3 , s1 s2 s3 ;

end func
end model
and ( not ( p2 ) , s t r a t ( dem iter ( ang cho i ce ( a n g i t e r ( g1 ) , dual ( dem test ( or (p2 , p1 ) )

↪→ ) ) ) , p3 ) )
s3

Listing 1: An example of a well-formed input for the model checker. Using this input, a local model check
is performed on the state named s3.

Page 17



parse convert to ASTTree cst

generate evaluation game

convert to PGSolver format map[Position, EvalGamePosData] evalGame

readInput file

PGSolver str parSolverInput

str inputString

interpret str parSolverOutputstr checkResult

AInput ast 

AGameModel model

AFormula formula

str state

AInput input 

AGameModel model

AFormula formula

str state

convert to DNNF

(1)

(8) (7) (6)

(5)

(4)(3)(2)

Figure 3.3: High-level overview of the processing steps of the model checker. Rounded rectangles represent
instances of data types which the program uses. Arrows represent a processing step (a function call, a
sequence of function calls, or the execution of an external program). All data types shown are present in the
actual program.

3.3.4 Process

When an input is given to the model checker, it performs a local or global model check through a sequence
of processing steps. These steps are shown in Figure 3.3 and work as follows:

(1) The input file is read into the program and its content is converted to a string. The format that the
input file must have is defined in module ConcreteSyntax, which can be found in Appendix D.6.

(2) The input string is converted to a CST. This conversion results in an instance of the built-in Rascal
data type Tree. A CST contains a large amount of metadata that is not necessary for the model check
(e.g., the location of each character of the input file on the machine).

(3) The CST is converted to an AST, which is stripped of all the unnecessary metadata. The data type
of the AST is called AInput (abstract input) and can be found in module AbstractSyntax located in
Appendix D.5. The conversion is performed by module AST in Appendix D.7

(4) The formula to be checked is converted to DNNF in preparation of the evaluation game generation.
The conversion function is defined in module DNNF in Appendix D.3.

(5) The evaluation game is generated and represented by a collection of parity game positions. This
collection is represented internally by a hash table (Rascal data type: map) which maps instances
of Position to instances of EvalGamePosData. These data types and the functions to generate an
evaluation game are defined in the module EvalGame in Appendix D.2. A Position closely imitates
the definition of an evaluation game position in [10], as it consists of a state or neighbourhood, along
with a formula. An instance of EvalGamePosData contains the data that is required by PGSolver
to model the evaluation game (an integer identifier, a priority, the owner, and a list of identifiers of
neighbouring positions). By mapping Positions to EvalGamePosData, we keep track of the way the
evaluation game corresponds to the output that PGSolver will produce, which is necessary for the

Page 18



output interpretation (step 8). Additionally, the use of a hash table provides lookup of elements by
key in constant time, allowing the evaluation game generation procedure to quickly determine whether
a new node is required for an edge to connect to or an edge to an existing node should be added.

(6) All the evalGamePosData elements from the evaluation game representation are converted to a PGSolver
input string of the form defined in Figure 3.1.

(7) The requested parity game solver from the PGSolver collection is executed with the generated input
string.

(8) The output of PGSolver is interpreted using the mapping created in step (5) and converted to a model
check result as described in Section 3.3.6.

In between steps (3) and (4), a check takes place whether the AST contains any contradictions with itself.
This check is performed by the Consistency module in Appendix D.4. The AST is checked for

• references to states that were not defined in the state definitions of the game model (before the neigh-
bourhood frames);

• references to propositions in the formula that were not defined in the game model;

• references to atomic games in the formula that were not defined in the game model;

• the existence of more than one neighbourhood frame corresponding to the same atomic game;

• the existence of more than one mapping of a state to a set of neighbourhoods within the same neigh-
bourhood frame;

• the existence of more than one state definition with the same name.

If one or more of these situations occur in the AST, the program prints a descriptive error message for
each of them and terminates.

3.3.5 Key Procedures

We consider the pivotal procedures of the model checker. The most crucial part of the tool is the translation
step from a game model and a formula to a parity game representation that is accepted by PGSolver. This
representation requires four elements per position on the game board: an identifier (a natural number), a
priority (a natural number), an owner (0 or 1, which we assign to the players Eloise and Abelard respectively),
and a list of identifiers of successors. Algorithm 1 (GENERATEBOARD) describes how this translation is
performed in the model checker. Here, the PosData data type is used (correspondingly EvalGamePosData in
the source code in Appendix D.2). This data type has the four elements described above, with names id,
prio, owner, and succ, where succ is a set of natural numbers. The algorithm returns a position-indexed
relation to PosData elements, after which only a conversion to a string representation according to the
grammar of Figure 3.1 is required before PGSolver can be executed.

Algorithm 1 repeatedly makes procedure calls to REACHABLEPOSITIONS (Algorithm 2), which adds
to F all those positions recursively reachable from b in accordance with Figure 2.3 and increases inext
accordingly. Algorithm 1 and 2 together ensure that the position identifiers are as low as possible, as
PGSolver will generate redundant positions when this is not the case [11].

Any parity function which adheres to the conditions set out in Definition 11 can be used to assign
priorities to fixpoint operators in Algorithm 2. We use the canonical parity function here, as it is easily
computed and adheres to the aforementioned conditions. A description of the implementation is described
in Algorithm 3 (PARITY).

Page 19



Algorithm 1 GENERATEBOARD: Generate all evaluation game positions for a model check (corresponds
to evalGamePositions, Appendix D.2). Return a relation from positions to PosData.

Require: M = (S, γ,Υ): A game model.
Require: φ: A game logic formula.
Require: S ⊇ Scheck: A list of states to perform the model check for (equal to S for a global check, only

contains one state for a local model check).
1: F ← ∅ ▷ The relation mapping positions to PosData.
2: inext ← 0 ▷ The highest id currently in use by a position.
3: for all s ∈ Scheck do
4: b← (s, φ)
5: if b /∈ Dom(F ) then
6: REACHABLEPOSITIONS(b, inext, F,M) ▷ Parameters are passed by reference.
7: end if
8: end for
9: return F

Algorithm 2 REACHABLEPOSITIONS: Generate all evaluation game positions reachable from a partic-
ular position b and store them in F (corresponds to registerPositions, Appendix D.2).

Require: b = (s, φ): The position to start from.
Require: inext ∈ N: The highest id currently in use by a position.
Require: F : The relation containing the positions which have been generated thus far, excluding b.
Require: M = (S, γ,Υ): A game model, invisibly needed for E and ΩE .
1: N ← E[b] ▷ Neighbours (moves) of b, defined in Figure 2.3.
2: db ← empty PosData instance
3: db.id← inext
4: db.prio← ΩE(b) ▷ Definition 11 is used, substituting Ωcan for Ω.
5: db.owner← owner(b) ▷ As defined in Figure 2.3.
6: db.succ← ∅
7: F [b]← db
8: inext ← inext + 1
9: for all n ∈ N do

10: if n /∈ Dom(F ) then
11: Add inext to F [b].succ.
12: REACHABLEPOSITIONS(n, inext, F,M) ▷ Parameters are passed by reference.
13: else
14: Add F [n].id to F [b].succ.
15: end if
16: end for

Page 20



Algorithm 3 PARITY: Determine the priority of an evaluation game position (corresponds to parity,
Appendix D.2).

Require: b = (s, φ) or (U,φ): The position to determine the priority for.
1: if b is of the form ( , ⟨α⟩ ) then ▷ Where can be anything which fits in its position and α ∈ G.
2: if α is an angelic iteration then
3: return 2 ·#Fix(α) + 1
4: end if
5: if α is a demonic iteration then
6: return 2 ·#Fix(α)
7: end if
8: end if
9: return 0

This implementation of the parity function has the disadvantage that it has to traverse all the subterms
of φ to calculate #Fix(α) every time the procedure is called. This could be mitigated by using an altered
data structure for φ (see Section 6.2). For the sake of better code clarity, the model checker uses a data
structure that imitates actual game logic formulas and games as closely as possible for now.

In addition to the conversion of a game model and a formula to a parity game representation, the
conversion of the PGSolver output to a model check result is rather important as well, though much more
straightforward. PGSolver consecutively prints the position identifiers in which player 0 has a winning
strategy and those in which player 1 has a winning strategy. Since we assigned player 0 to be Eloise, we
can conclude that, for a model check of a state s in a game model M and a formula φ: M, s |= φ iff the
identifier corresponding to (s, φ) is in the list of position identifiers from which Eloise has a winning strategy
(Theorem 2).

Besides the winning positions for each player, the PGSolver output also contains winning strategies for
some of the positions in the parity game when it is solved globally. This output is used to accommodate
for the functionality corresponding to requirement R-3.3. When globally model checking with a game model
M and a formula φ, the model checker looks for the identifiers corresponding to the position (s, φ) in the
PGSolver output for every state s in M. The transitions from state to neighbourhood are reported in the
model check result accordingly as described in Section 3.3.6. The reason that the model checker does not
perform this conversion starting from the PGSolver output, i.e., look through all position identifiers for
ones that correspond to a position ( , φ), with being either a state or a neighbourhood, is that PGSolver
(empirically) does not seem to report any transitions from a position that contains a neighbourhood to a
position that contains a state. This is also the reason why the functionality for R-3.3 is currently considered
incomplete. A possible solution to this issue is proposed in Section 6.2.

3.3.6 Output Format

The output of the model checker takes on a different form depending on whether the check is local or global.
In the local case, the output has the following form:

In state "<state>", the formula

"<formula>"

is <result>.

Here, <state> is the state for which the model check was performed, <formula> is the formula that was
checked, and <result> is the result of the check (“true” or “false”).

The output for a global model check is more elaborate. It looks as follows:

Page 21



The formula

"<formula>"

is true in states

{<true_states>}

and false in states

{<false_states>}

with winning moves

<winning_moves>

Here, <formula> has the same meaning as for local checks, <true states> is the list of states in which
<formula> is true, separated by commas and each state enclosed by double quotes, <false states> is the
list of states in which <formula> is false, separated by commas and each state enclosed by double quotes,
and <winning moves> is a list of winning moves, one for each state in the game model, separated by line
breaks. One such winning move has one of the following forms:

<state> -> <neighbourhood>

or

<state> -> stay

In the former case, the winning player has a winning strategy that involves choosing the neighbourhood
<neighbourhood> when they are in the state <state>. In the latter case, the winning player does not have
any state transitions starting from state <state> or never reaches it. Examples of model check outputs can
be found in Appendix B.1.

3.4 Installation and Usage

The complete annotated code of the model checker can be found in Appendix D. The entry point is the
function main in module ModelChecker in Appendix D.1.

To run the program, a Rascal installation5, either the command line REPL or the Eclipse plugin, is
required, as well as an installation of PGSolver6. Installing the model checker using the command line
REPL can be performed as follows:

1. Install a Java JDK 1.8 or higher7.

2. Create a root folder for the model checker to be inside and navigate into this root folder.

3. Create a folder named “src” and place all the source code files inside it.

4. Place the installation of PGSolver in the root folder (this should consist of a folder named “pgsolver”).

5. Create an empty folder named input files. This is where input files are read from.

6. Create a folder named “META-INF” and navigate into it.

7. Create a file named “RASCAL.MF” and populate it with the following string:

5https://www.rascal-mpl.org/start/
6https://github.com/tcsprojects/pgsolver
7https://www.oracle.com/java/technologies/downloads/

Page 22

https://www.rascal-mpl.org/start/
https://github.com/tcsprojects/pgsolver
https://www.oracle.com/java/technologies/downloads/


Manifest-Version: 0.0.1

Source: src

Main-Module: Plugin

Main-Function: main

Courses: courses

Project-Name: GameModelChecker

8. Place the installation of the Rascal command line REPL (called “rascal-shell-stable.jar” or similar) in
the root folder.

Now, the model checker is installed. It can be executed by typing “java -Xmx<n>G -Xss32m -jar rascal-
shell-stable.jar <input file>” on a command line in the root folder. Here, <n> is the number of gigabytes
of memory which is allocated to the program. Usually, 1 gigabyte is sufficient. <input file> is the name
of the file containing the input. Optionally, the flag “-solver” can be added, followed by a valid parity
game solver name in PGSolver. For local model checking, these solvers are “modelchecker”, “stratim-
prloc2”, and “stratimprlocal”. For global model checking, these solvers are “bigstep”, “dominiondec”,
“external solver”, “external solver univ”, “fpiter”, “genetic”, “guessstrategy”, “modelchecker”, “optstratim-
prov”, “policyiter”, “prioprom”, “priopromdel”, “priopromdeluniv”, “priopromplus”, “priopromplusuniv”,
“priopromrec”, “priopromrecuniv”, “priopromuniv”, “recursive”, “satsolve”, “smallprog”, “stratimprdisc”,
“stratimprloc2”, “stratimprlocal”, “stratimprove”, “stratimprsat”, “succinctsmallprog”, and “viasat”. The
properties of these solvers can be found via Friedmann and Lange [11].

Executing the model checker in this way takes some time to start the JDK and to generate parsers
every time. If consecutive model checks of several input files are desired, it is faster to start the interactive
Rascal interpreter using the command “java -Xmx<n>G -Xss32m -jar rascal-shell-stable.jar”, followed by
importing the library (“import ModelChecker;”) and typing the command “main(["<input file>"]);” in the
interpreter for each model check. Using this method, the exposed function for reporting the key parameters
regarding the execution time with the input file can also be used by typing “import ComplexityAnalysis;”
followed by “reportComplexityParams(["<input file>"]);”. If command line flags are desired using this
method, they can be added in the list argument of the main function. E.g., “main(["input file.txt", "-
solver", "modelchecker"]);” would be a valid function call to perform a model check on the model and
formula described in the file “input file.txt” with the parity game solver called “modelchecker”.

4 Program Testing

Testing of the model checker was performed by evaluating whether it produces the right output for various
trivial test-cases, followed by tests with randomly generated large input files to see if these give rise to any
errors or exceptions. The tests were carried out on a machine with an Intel Core i7-9750H processor at 2.6
GHz with 4 GB of memory allocated, running on Ubuntu 18.04. The expected output was observed in all
tests.

4.1 Small Inputs

The set of small inputs consists of one file per formula and game type (see Definition 1). This makes for
a total of 13 tests (the diamond modality does not require its own test, as it would be equivalent to the
one for atomic games). In each of these tests, a small varying game model is used. Only global model
checks are included here, as their local counterparts produce equivalent, but less informative results. Below
follows a description of each small input in game logic notation with its result, along with a reference to its
corresponding input and output of the model checker (Appendix B.1). No distinction is made between the
expected result and the actual result, as these are identical for every test.

Page 23



M = (S, γ,Υ) Test: atomic proposition

S = {s0, s1, s2, s3, s4, s5, s6, s7, s8}

γ = ∅

Υ is defined by:

Proposition p Υ(p)

p0 {s0, s3, s5, s7}
p1 {s1, s4}
p2 {s1, s2}
p3 {s1, s3}
p4 {s4, s5}
p5 {s5}
p6 {s4}
p7 {s4, s7, s8}

φ = p0

Result: φ is true in s0, s3, s5, and s7.

The input and output corresponding to this test can be found in Listing 2 and Listing 3, repectively.

M = (S, γ,Υ) Test: negation

S = {s1, s2}

γ = ∅

Υ is defined by:

Proposition p Υ(p)

p1 {s1}

φ = ¬p1

Result: φ is only true in s2.

The input and output corresponding to this test can be found in Listing 4 and Listing 5, repectively.

Page 24



M = (S, γ,Υ) Test: conjunction

S = {s1, s2, s3}

γ = ∅

Υ is defined by:

Proposition p Υ(p)

p1 {s1, s3}
p2 {s3}

φ = p1 ∧ p2

Result: φ is only true in s3.

The input and output corresponding to this test can be found in Listing 6 and Listing 7, repectively.

M = (S, γ,Υ) Test: disjunction

S = {s1, s2, s3}

γ = ∅

Υ is defined by:

Proposition p Υ(p)

p1 {s1, s3}
p2 {s3}

φ = p1 ∨ p2

Result: φ is true in s1 and s3.

The input and output corresponding to this test can be found in Listing 8 and Listing 9, repectively.

Page 25



M = (S, γ,Υ) Test: atomic game

S = {s1, s2}

γ is defined by:

Game g State s ⟨|g|⟩(s)

g1 s1 {{s1, s2}}
s2 {{s2}, {s1, s2}}

Υ is defined by:

Proposition p Υ(p)

p1 {s1, s2}
p2 {s2}

φ = ⟨g1⟩p2

Result: φ is only true in s2.

The input and output corresponding to this test can be found in Listing 10 and Listing 11, repectively.

M = (S, γ,Υ) Test: dual game

S = {s1, s2}

γ is defined by:

Game g State s ⟨|g|⟩(s)

g1 s1 {∅, {s1, s2}}
s2 {{s1}{s1, s2}}

Υ is defined by:

Proposition p Υ(p)

p1 {s1}
p2 {s2}

φ = ⟨gd1⟩p2

Result: φ is false in all states.

The input and output corresponding to this test can be found in Listing 12 and Listing 13, repectively.

Page 26



M = (S, γ,Υ) Test: angelic choice

S = {s1, s2, s3}

γ is defined by:

Game g State s ⟨|g|⟩(s)

g1 s1 {{s2, s3}}
s2 {s2, s3}

g2 s1 {{s2, s3}}
s3 {{s1}, {s2}}

Υ is defined by:

Proposition p Υ(p)

p1 {s1, s3}
p2 {s2}
p3 {s3}

φ = ⟨g1 ∪ g2⟩p1

Result: φ is only true in s3.

The input and output corresponding to this test can be found in Listing 14 and Listing 15, repectively.

Page 27



M = (S, γ,Υ) Test: demonic choice

S = {s1, s2, s3}

γ is defined by:

Game g State s ⟨|g|⟩(s)

g1 s1 {{s2}, {s3}}
s2 {{s2, s3}}
s3 {{s1, s2}}

g2 s1 {{s2, s3}}
s3 {{s1}, {s2}}

Υ is defined by:

Proposition p Υ(p)

p1 {s1, s2}
p2 {s3}
p3 {s2}

φ = ⟨g1 ∩ g2⟩p1

Result: φ is only true in s3.

The input and output corresponding to this test can be found in Listing 16 and Listing 17, repectively.

M = (S, γ,Υ) Test: composition

S = {s1, s2, s3}

γ is defined by:

Game g State s ⟨|g|⟩(s)

g1 s1 {{s2, s3}}
s2 {{s1, s2}}

g2 s1 {{s1}}
s2 {{s1}}

Υ is defined by:

Proposition p Υ(p)

p1 {s1, s2}
p2 {s2}

φ = ⟨g1; g2⟩p1

Result: φ is only true in s2.

The input and output corresponding to this test can be found in Listing 18 and Listing 19, repectively.

Page 28



M = (S, γ,Υ) Test: angelic iteration

S = {s0, s1, s2, s3, s4, s5, s6, s7, s8, s9}

γ is defined by (note the absence of a mapping for s7):

Game g State s ⟨|g|⟩(s)

g0 s0 {{s1}}
s1 {{s2}}
s2 {{s3}}
s3 {{s4}}
s4 {{s5}}
s5 {{s6}}
s6 {{s7}}
s8 {{s9}}
s9 {{s0}}

Υ is defined by:

Proposition p Υ(p)

p0 {s0}
p1 {s1}
p2 {s2}
p3 {s3}
p4 {s4}
p5 {s5}
p6 {s6}
p7 {s7}
p8 {s8}
p9 {s9}

φ = ⟨g∗0⟩p1

Result: φ is true in the states s0, s1, s8, and s9.

The input and output corresponding to this test can be found in Listing 20 and Listing 21, repectively.

Page 29



M = (S, γ,Υ) Test: demonic iteration

S = {s0, s1, s2, s3, s4, s5, s6, s7, s8, s9}

γ is defined by:

Game g State s ⟨|g|⟩(s)

g0 s0 {{s1}}
s1 {{s2}}
s2 {{s3}}
s3 {{s4}}
s4 {{s5}}
s5 {{s0}}
s6 {{s7}}
s7 {{s8}}
s8 {{s9}}
s9 {{s6}}

Υ is defined by:

Proposition p Υ(p)

p0 {s0, s1, s2, s3, s4, s5, s7, s8, s9}

φ = ⟨g×0 ⟩p0

Result: φ is true in the states s0, s1, s2, s3, s4, and s5.

The input and output corresponding to this test can be found in Listing 22 and Listing 23, repectively.

M = (S, γ,Υ) Test: angelic test

S = {s1, s2, s3}

γ = ∅

Υ is defined by:

Proposition p Υ(p)

p1 {s1}
p2 {s1, s2}

φ = ⟨p1?⟩p2

Result: φ is only true in s1.

The input and output corresponding to this test can be found in Listing 24 and Listing 25, repectively.

Page 30



M = (S, γ,Υ) Test: demonic test

S = {s1, s2, s3}

γ = ∅

Υ is defined by:

Proposition p Υ(p)

p1 {s3}
p2 {s2, s3}
p3 {s1}

φ = ⟨p2!⟩p1

Result: φ is true in s2 and s3.

The input and output corresponding to this test can be found in Listing 26 and Listing 27, repectively.

4.2 Large Inputs

Since the large input sets are too sizeable for a full description of them to be included here, only a description
of the parameters relevant for the running time of the model checker (|M|, |S|, |φ|, ad(φ) see Table 1) is given.
Input sets were generated using the method described in Section 5.4.1.

When creating large input files, two methods could be considered: keeping all parameters constant, while
varying one at a time, or increasing all parameters at the same time. Since the former of these is utilized
in Section 5, we will restrict our focus to the latter method here. To be able to execute the model checker
with very large input files within a reasonable time frame, we require a parity game solver with a running
time that balances out the running time of the model checker as the parameters increase. The way in which
the input parameters of the model checker relate to the running time of a parity game solver is explained
in Section 5.2. We will use the big step algorithm by Schewe [27] here, as it does not perform poorly with
respect to any parameter in particular. Its time complexity is shown in Equation 1. To be able to execute
the large inputs within a reasonable time frame, the alternation depth is kept to 1, as high values drastically
increase the running time of the model checker. Tests with higher alternation depths can be found in Section
5.5, where the time complexity of the model checker is analyzed.

With ad(φ) = 1, the triple (|M|, |S|, |φ|) was varied in the range [(10, 3, 20), (2000, 600, 4000)] with
step size (10, 3, 20). The largest input file in this set was processed by the model checker in 15 minutes
and 16 seconds. For reference of the approximate form of a generated input file, the actual input with
|M| = 100, |S| = 30, and |φ| = 200 can be found in Appendix B.2. The model checker did not generate any
errors or exceptions when executed with one of the large inputs.

5 Experimental Time Complexity Verification

This section presents a collection of experiments performed with the model checker regarding its time com-
plexity with varying parameters. The results of these experiments are then compared to the theoretical
analysis by Pauly [7], who set forth two theoretical upper time bounds on global model checking of game
models. Conclusions are drawn regarding the efficiency of the tool and the accuracy of the theoretical time
bounds.

Page 31



5.1 Theoretical Upper Time Bounds

Pauly [7] theorized that global game model checking can be performed within the upper time bound described
in Equation 2, withM the game model and φ the game logic formula for which to perform a model check.
Table 1 can be used for swift reference of the meaning of each of the mentioned parameters.

O(|M|ad(φ)+1 × |φ|) (2)

In addition to the rough upper bound of Equation 2, Pauly also provided a more precise bound, which
is usually much lower, given that |S| is usually smaller than |M|. The more accurate bound can be found
in Equation 3.

O(|S|ad(φ) × |M| × |φ|) (3)

As the reasoning behind the time bounds falls largely outside the scope of this work, the reader is referred
to [7, Theorem 6.21] and the corresponding proof for reference.

5.2 Upper Time Bound Parity Game Solver

As the upper time bounds given by Pauly concern global model checking, the experiments here are carried
out with the global setting of the model checker. The default global parity game solver, the big step algorithm
due to Schewe [27], is used for all experiments, as it does not perform particularly weakly with respect to
one parameter when compared to any of the other options in the PGSolver collection. Additionally, using
the same parity game solver for all experiments provides some consistency amongst the results, the absence
of which may lead to wrong conclusions when comparing the plots. The upper time complexity bound of the
big step algorithm can be found in Equation 1, which is repeated below for easy reference. Here, e represents
the number of edges in the parity game, n the number of nodes, and d the number of unique priorities that
are present.

O(e · n 1
3d)

To make the parity game solver bound meaningful in the context of the model checker, we should clarify
which input variables for the model checker influence which parameters in the bound. This information can
be extracted from Figure 2.3. Given a game logic formula in DNNF, the number of edges e

1. increases linearly with the number of diamond operators that do not work directly on an atomic game
or the dual of one;

2. increases exponentially with base 2 with the sum of the number of disjunctions and the number of
conjunctions in the formula to be checked;

3. multiplies by the number of states that can be mapped to by an atomic game g for each subterm of
the form ⟨g⟩φ or ⟨gd⟩φ.

This means that e is large for formulas with many conjunctions or disjunctions or for formulas with many
diamond operators in combination with atomic games that map to many large neighbourhoods (e.g., when
the neighbourhood frames used meet the monotonic property).

The number of nodes n increases with the same parameters and the same relations as e. However, n is
strictly bound by e, as new edges can be formed to existing nodes, whereas no new nodes can be formed
without also creating a new edge.

The number of different priorities d is equal to 1 + #Fix(φ).

Page 32



5.3 Hypotheses

As the known theoretical upper time bounds for game model checking are expressed in terms of the pa-
rameters shown in Table 1, these parameters are also the ones isolated in the inputs for the complexity
verification.

Symbol Meaning

|S| The number of states in the game model being model checked.

|M| Size of the game modelM being model checked (see Definition 6).

|φ| The size of the formula φ (see Definition 7).

ad(φ) The alternation depth of the formula φ (see Definition 8).

teg The execution time of a global game model check.

Table 1: Meaning of various symbols used for the experimental time complexity verification. A subset of the
symbols is shared with Pauly [7].

Since any upper time-bound is ideally as strict as possible for practical purposes, we will seek to verify
the more strict time-bound given in Equation 3. We can dissect the verification of the time bound into the
following hypotheses, where ∀i: ai, ci and ni are constants:

H1: teg ≤ a1|M| for constant |φ|, ad(φ) = 0, and |S| = |M| ∀|M| ≥ n1.
H2: teg ≤ a2|φ| for constant |M| and ad(φ) = 0 ∀|φ| ≥ n2.
H3: teg ≤ a3|φ|cad(φ) for constant |M| and constant |S| = c3 ∀ ad(φ) ≥ n3.

H4: teg ≤ a4|S|c4 for constant |M|, constant |φ|, and constant ad(φ) = c4 ∀|S| ≥ n4.
H5: teg ≤ a5|M| for constant |S|, constant ad(φ), and constant |φ| ∀|M| ≥ n5.
H6: teg ≤ a6|φ| for constant |S|, constant ad(φ), and constant|M| ∀|φ| ≥ n6.

H7: teg ≤ a7cad(φ)
7 for constant |M|, constant |φ|, and constant |S| = c7 ∀ ad(φ) ≥ n7.

The hypotheses are split up into two parts: H1 up to and including H3 and H4 up to and including H7.
There are some essential differences between these parts, which can be found in Table 2.

We will attempt to verify these hypotheses one by one by isolating the relevant input parameter, while
fixing all the others.

Page 33



H1 - H3 H4 - H7

Constant parameter values as simple (low) as
possible.

Constant parameter values are higher.

Models and formulas behind constant parameter
values are identical. E.g., for experiment 2:
|S| = 3 means that an identical set of states

with the same properties holding true in them
were used for all tests in this experiment.

Models and formulas behind constant
parameter values differ for each value of the

isolated parameter. E.g., for experiment 4: the
model and formula used for |S| = 50 are
completely different from the model and

formula used for |S| = 60. (Between the 5 runs
for the same |S|, however, they are identical.)

Meant for initial observations to compare to the
results of experiment 4 through 7.

Meant to result in strong evidence for or against
the time complexity in Equation 3 holding true

for the model checker.

Possibly isolate more than one parameter,
making the varying parameters depend on each

other.

Vary exactly one parameter, while keeping the
others constant.

Table 2: Differences between the two sets of hypotheses for the experimental time complexity verification.

5.4 Experimental Set-Up

The experiments are set up such that each hypothesis corresponds to one experiment. The experiment that
corresponds to a certain hypothesis is used exclusively to verify that hypothesis. As such, the experiments
are numbered with the same index as the hypothesis they are intended to verify. Each experiment is listed
in sections 5.4.2 through 5.4.8 with

1. the goal of the experiment;

2. the parameters that were kept constant and their values;

3. the parameter that was varied and its range;

4. a description of the (game model, formula) pairs that were used to obtain these parameter values for
H1 through H3 (as these were randomly generated for each input for H4 through H7).

The experiments were carried out by executing the model checker with each input and measuring the
time teg in milliseconds from the moment the input has been parsed until the model check result has been
obtained.

This measurement was performed a number of times per (game model, formula) pair, after which the
minimum of the measurements was taken as the most accurate result to alleviate the effect of background
processes on the execution time. A consideration here is the number of times to run the program for each
input. Figure 5.1b (data: Appendix C.1, Table 10) shows the minimum execution time for a single input
(|M| = 500, |S| = 100, |φ| = 100, ad(φ) = 2) after a number of runs. It suggests that after three to four runs,
the execution time is unlikely to decrease much further. To be safe, all measurements for these experiments
were performed five times before taking the minimum. These most accurate results were used to create the
tables in Appendix C.1 and to generate the graphs of the results in Section 5.5.

Page 34



(a) Model checker execution times measured a number of
times against the same input.

(b) Model checker minimum execution times after running
a number of times against the same input.

Figure 5.1: Model checker execution times and minimum times against the number of runs for identical input
(|M| = 500, |S| = 100, |φ| = 100, ad(φ) = 2).

5.4.1 Input Generation

The program used for randomly generating the inputs works by first generating the possible propositions
of the model with an amount in the range [1,min(|S|, 500)] (in the description of the input generator, any
range that a value is randomly chosen from has a uniform probability distribution). These propositions are
given identifiers p0, p1, ..., p(np − 1) with np the number of propositions.

After generating the possible propositions, a set number (|S|) of states is generated (with identifiers
s0, s1, ..., s(|S| − 1)) where in each state, a random sample of propositions with a size in the range [0, np] is
true.

Next, a number ng = min(|M|−|S|, ⌈|M|/|S|⌉) of atomic games (with identifiers g0, g1, ..., g(ng−1)) and
corresponding neighourhood functions are generated, with the restriction that the sum of the cardinalities
of all (not necessarily unique) neighbourhoods that can be mapped to through the neighbourhood frames
is equal to ns tot = |M| − |S|. To this end, every neighbourhood frame nbhfi is given an exact sum of

neighbourhood cardinalities ns nbhfi that it must contain, with the condition that

ng−1∑
i=0

ns nbhfi = ns tot.

For each neighbourhood frame, the number of mappings it contains lies in the range [1, ns nbhfi ]. Each
mapping mapj then has its own exact sum of neighbourhood cardinalities to contain, ns mapj

. Accordingly,
a permutation of neighbourhoods is generated for each mapping, where for each neighbourhood Uk, |Uk| lies
in the range [0,min(|S|, ns mapj )].

Finally, the input requires a formula φ to be generated with an exact length |φ|. This is done by recursively
generating smaller formulas and games which are part of φ. In the base case, |φ| = 1, an atomic game or
proposition is used. We distinguish the recursive cases |φ| = 2 and |φ| > 2. When |φ| = 2, an operator that
takes one parameter is randomly chosen as the formula. When |φ| > 2, any operator is randomly chosen.

To be able to generate formulas with certain alternation depths while still being randomly generated,
additional recursive cases are defined that override those mentioned above. Let add(φ) be the desired
remaining alternation depth in φ and let l be the desired remaining length. At any point in the recursion, if
the term being generated is a game, a fixpoint operator is generated such that the alternation depth increases

Page 35



with probability 2 ·add(φ)/l. If the term being generated is a formula, a diamond modality ⟨α⟩ψ is generated
with probability 2(add(φ) + 2)/l, giving room for the alternation depth to increase in α. This strategy does
not guarantee φ to have an exact alternation depth, but it does make it highly probable.

After generating each input, an additional check was performed to ensure the correctness of the in-
put parameters using the function reportComplexityParams of the ComplexityAnalysis module listed
in Appendix D.9. If this check indicates the presence of incorrect parameters, the corresponding input is
re-generated until the desired parameter values are obtained.

5.4.2 Description Experiment 1

Goal: show a linear relation between teg and |M| when |S| = |M| and ad(φ) = 0. To this end, it suffices
to show a linear relation between teg and |S|, since the expression |S|ad(φ) × |M| × |φ| from Equation 3
simplifies to |S| × |φ| under the given conditions.

Parameter Value or range

|S| |M|
|M| [1000, 5000, 10000, ..., 150000]

|φ| 1

ad(φ) 0

Table 3: Parameter values for experiment 1.

Let the game model for experiment 1 beM1 = (S1, γ1,Υ1), then:

S1 =

{
{s0, s1, ..., s999} for input 1

{s0, s1, ..., s5000(i−1)−1} for input i,∀i ∈ [2, 31]

γ1 = ∅

Υ1 = {(p, T )}, where T is a set that contains a state s with probability 0.5 ∀s ∈ S1.

φ = p

5.4.3 Description Experiment 2

Goal: show a linear relation between teg and |φ| for a simple game model and no fixpoint operators present
in φ.

Parameter Value or range

|S| 3

|M| 12

|φ| [534, ..., 308792]

ad(φ) 0

Table 4: Parameter values for experiment 2.

Let the game model for experiment 2 beM2 = (S2, γ2,Υ2), then:

S2 = {s0, s1, s2}

Page 36



γ2 is defined by:

Game g State s ⟨|g|⟩(s)

g0 s1 {{s0, s2}}
s2 {{s2}}

g1 s0 {{s0, s2}}
s2 {{s0, s1, s2}}

Υ2 = {(p0, {s0, s2}), (p1, {s1}), (p2, {s1, s2})}

φ was randomly generated as described in Section 5.4.1, with the exception that it was generated with
varying nesting depths rather than varying lengths due to a limitation of the input generator script at the
time.

5.4.4 Description Experiment 3

Goal: show an approximately exponential relation between teg and ad(φ) when |φ| = ad(φ)+3 (this condition
is alleviated in experiment 7, Section 5.4.8).

Parameter Value or range

|S| 3

|M| 12

|φ| ad(φ) + 3

ad(φ) [6, 7, ..., 29]

Table 5: Parameter values for experiment 3.

The game modelM3 for experiment 3 is identical toM2.

φ = ⟨(((g×1 )∗)...)∗⟩p2, where the number of fixpoint operators is equal to ad(φ) and the outermost and
innermost fixpoint operators vary.

5.4.5 Description Experiment 4

Goal: show a quadratic relation between teg and |S| when ad(φ) = 2.

Parameter Value(s)

|S| [50, 60, ..., 490]

|M| 500

|φ| 100

ad(φ) 2

Table 6: Parameter values for experiment 4.

5.4.6 Description Experiment 5

Goal: show a linear relation between teg andM.

Page 37



Parameter Value(s)

|S| 25

|M| [5004, ..., 200146] with steps of ∼5000
|φ| 200

ad(φ) 2

Table 7: Parameter values for experiment 5.

5.4.7 Description Experiment 6

Goal: show a linear relation between teg and |φ|.
Parameter Value(s)

|S| [100, 200, ..., 5000]

|M| 400

|φ| 100

ad(φ) 2

Table 8: Parameter values for experiment 6.

5.4.8 Description Experiment 7

Goal: show an exponential relation between teg and ad(φ).

Parameter Value(s)

|S| 5

|M| 50

|φ| 500

ad(φ) [0, 1, ..., 20]

Table 9: Parameter values for experiment 7.

5.5 Results

5.5.1 Results Experiment 1

The result data for experiment 1 are shown in Figure 5.2 and Table 11. The graphs seem to suggest that
teg may be linearly distributed in terms of the state count, as it stays close to the regression line. However,
Figure 5.2b shows that the data points form a convex curve under the linear regression line, indicating that
the relation between teg and |S| may actually be greater than linear.

Page 38



(a) Model checker execution times against varying state
counts for experiment 1.

(b) Model checker execution times against varying state
counts with a least-squares regression line (y = 0.3220x−
2685.9835) for experiment 1.

Figure 5.2: Model checker execution times measured against state count for experiment 1.

5.5.2 Results Experiment 2

The result data for experiment 2 are shown in Figure 5.3 and Table 12. The graphs show that teg seems to
be linearly related to |φ|, meaning that H2 is likely correct.

Page 39



(a) Model checker execution times against varying formula
sizes for experiment 2.

(b) Model checker execution times against varying for-
mula sizes with a least-squares regression line (y =
0.4161x− 737.6438) for experiment 2.

Figure 5.3: Model checker execution times measured against formula size for experiment 2.

5.5.3 Results Experiment 3

The result data for experiment 3 are shown in Figure 5.4 and 5.5 and Table 13 and 14 respectively.
For this experiment, initial trials resulted in extremely fluctuating graphs. This fluctuation was largely

eliminated by separating the input sets into one with formulas in which the alternation depth ends in an
angelic iteration (Figure 5.4, Table 13) and one where it ends in a demonic iteration (Figure 5.5, Table 14).
In the resulting semi-log plots, the graphs seem to neatly follow a line as the alternation depth increases,
indicating a possibility that teg is exponentially related to ad(φ). Interestingly, the tests with an angelic
ending to the alternation increase in run time much faster than those ending with a demonic iteration.
Whether this observation holds for more complicated models and formulas is tested in experiment 7, Section
5.4.8 and 5.5.7. Finally, a consistent oscillating pattern can be observed in all of the graphs of 5.4 and 5.5.
Perhaps the run time is slightly affected by whether the alternation depth starts and ends with the same
type of iteration as well.

Page 40



(a) Model checker execution times against varying for-
mula alternation depths, where the alternations end in
an angelic iteration of an atomic game, for experiment 3.

(b) Model checker execution times against varying for-
mula alternation depths, where the alternations end in an
angelic iteration of an atomic game (an angelic iteration is
the innermost fixpoint operator of the alternation). The
red curve is a least-squares regression on the natural loga-
rithm of the execution time (log10(y) = 0.7748x−5.4798),
weighted with the square root of the execution time to
eliminate bias against high values, then taken as a power
of e to invert the logarithm.

(c) Semi-log plot of model checker execution times against
varying formula alternation depths, where the alterna-
tions end in an angelic iteration of an atomic game, for
experiment 3.

(d) Semi-log plot of model checker execution times against
varying formula alternation depths, where the alterna-
tions end in a angelic iteration of an atomic game (an an-
gelic iteration is the innermost fixpoint operator of the al-
ternation), with a least-squares regression line (log10(y) =
0.7748x− 5.4798) for experiment 3.

Figure 5.4: Model checker execution times measured against alternation depth with an angelic iteration as
the innermost fixpoint operator for experiment 3.

Page 41



(a) Model checker execution times against varying for-
mula alternation depths, where the alternations end in a
demonic iteration of an atomic game, for experiment 3.

(b) Model checker execution times against varying for-
mula alternation depths, where the alternations end in a
demonic iteration of an atomic game. The red curve is
a least-squares regression on the natural logarithm of the
execution time (log10(y) = 0.5507x − 4.8549), weighted
with the square root of the execution time to eliminate
bias against high values, then taken as a power of e to
invert the logarithm.

(c) Semi-log plot of model checker execution times against
varying formula alternation depths, where the alterna-
tions end in a demonic iteration of an atomic game, for
experiment 3.

(d) Semi-log plot of model checker execution times against
varying formula alternation depths, where the alterna-
tions end in a demonic iteration of an atomic game, with a
least-squares regression line (log10(y) = 0.5507x−4.8549)
for experiment 3.

Figure 5.5: Model checker execution times measured against alternation depth with a demonic iteration as
the innermost fixpoint operator for experiment 3.

Page 42



5.5.4 Results Experiment 4

The result data for experiment 4 are shown in Figure 5.6 and Table 15.
Since ad(φ) = 2 for experiment 4, it is to be expected that teg = a|S|2 + b here. I.e., teg is expected to

form a parabola when plotted against |S|, and to form a straight line when plotted against |S|2. However,
Figure 5.6b shows that teg does not seem to be quadratic in |S|. Additionally, 5.6d shows that teg actually
forms a (jagged) straight line when graphed against |S|, suggesting a linear relation. The jaggedness of the
line also indicates that some variables outside the scope of the experiment may be affecting teg, as it increases
with |S|. Random fluctuations caused by background processes would be independent of |S|.

(a) Model checker execution times against varying
squared state counts for experiment 4.

(b) Model checker execution times against varying
squared state counts with a least-squares regression line
(y = 0.0265x+ 1969.8433) for experiment 4.

(c) Model checker execution times against varying state
counts for experiment 4.

(d) Model checker execution times against varying state
counts with a least-squares regression line (y = 14.5778x+
525.0625) for experiment 4.

Figure 5.6: Model checker execution times measured against state count for experiment 4.

Page 43



5.5.5 Results Experiment 5

The result data for experiment 5 are shown in Figure 5.7 and table and 16. Here, teg seems to be linearly
related to |M|, but the data points form a very jagged line, becoming more jagged as |M| increases. Since
background processes that are unrelated to the model checker would randomly increase the execution time
independently of |M|, the results suggest that there may be factors influencing teg here that fall outside the
scope of the experiment.

(a) Model checker execution times against varying model
sizes for experiment 5.

(b) Model checker execution times against varying model
sizes with a least-squares regression line (y = 0.0134x +
908.0869) for experiment 5.

Figure 5.7: Model checker execution times measured against model size for experiment 5.

5.5.6 Results Experiment 6

The result data for experiment 6 are shown in Figure 5.8 and Table 17. As also suggested in the results
of experiment 2, teg again seems to be linearly related to |φ|, since the data form quite a neat line along
the linear regression line. Furthermore, fluctuations in the execution time again become greater as the free
variable (|φ|) grows, hinting at the existence of unknown variables affecting teg.

Page 44



(a) Model checker execution times against varying formula
sizes for experiment 6.

(b) Model checker execution times against varying for-
mula sizes with a least-squares regression line (y =
3.3807x+ 122.3469) for experiment 6.

Figure 5.8: Model checker execution times measured against formula size for experiment 6.

5.5.7 Results Experiment 7

The result data for experiment 7 are shown in Figure 5.9, 5.10, and 5.11 and Table 18, 19, and 20 respectively.
Having seen the results of experiment 3, we expect to see a considerable difference here between the effect

of alternations that end in an angelic iteration and alternations that end in a demonic iteration. What we
observe instead is rather unpredictable execution times regardless of angelic end or demonic end. In each
of the 3 test sets (angelic end, demonic end, either end), the data points form a relatively neat line up to
ad(φ) = 12, after which the trend becomes completely inconclusive.

Page 45



(a) Model checker execution times against varying alter-
nation depths for experiment 7.

(b) Model checker execution times against varying al-
ternation depths. The red curve is a least-squares re-
gression on the natural logarithm of the execution time
(log10(y) = 0.3387x + 5.8936), weighted with the square
root of the execution time to eliminate bias against high
values, then taken as a power of e to invert the logarithm.

(c) Semi-log plot of model checker execution times against
varying alternation depths for experiment 7.

(d) Semi-log plot of model checker execution times against
varying alternation depths with a least-squares regression
line (log10(y) = 0.3387x+ 5.8936) for experiment 7.

Figure 5.9: Model checker execution times measured against alternation depth for experiment 7.

Page 46



(a) Model checker execution times against varying alter-
nation depths, where the alternations end in an angelic
iteration, for experiment 7.

(b) Model checker execution times against varying alter-
nation depths, where the alternations end in an angelic
iteration. The red curve is a least-squares regression on
the natural logarithm of the execution time (log10(y) =
0.3909x + 3.7231), weighted with the square root of the
execution time to eliminate bias against high values, then
taken as a power of e to invert the logarithm.

(c) Semi-log plot of model checker execution times against
varying alternation depths, where the alternations end in
an angelic iteration, for experiment 7.

(d) Semi-log plot of model checker execution times against
varying alternation depths, where the alternations end in
an angelic iteration, with a least-squares regression line
(log10(y) = 0.3909x+ 3.7231) for experiment 7.

Figure 5.10: Model checker execution times measured against alternation depth with an angelic iteration as
the innermost fixpoint operator for experiment 7.

Page 47



(a) Model checker execution times against varying alter-
nation depths, where the alternations end in a demonic
iteration, for experiment 7.

(b) Model checker execution times against varying al-
ternation depths, where the alternations end in a de-
monic iteration. The red curve is a least-squares re-
gression on the natural logarithm of the execution time
(log10(y) = 0.2650x + 5.0146), weighted with the square
root of the execution time to eliminate bias against high
values, then taken as a power of e to invert the logarithm.

(c) Semi-log plot of model checker execution times against
varying alternation depths, where the alternations end in
a demonic iteration, for experiment 7.

(d) Semi-log plot of model checker execution times against
varying alternation depths, where the alternations end in
a demonic iteration, with a least-squares regression line
(log10(y) = 0.2650x+ 5.0146) for experiment 7.

Figure 5.11: Model checker execution times measured against alternation depth with a demonic iteration as
the innermost fixpoint operator for experiment 7.

Page 48



5.6 Conclusion

Strong evidence was found for hypotheses H1, H2, and H3, under the premises that the models and formulas
used are rather rudimentary and identical for each test case within each experiment. Given that these are
strong conditions, no conclusions can be drawn about the time complexity of the model checker or the
theoretical time complexity in Equation 3 by only considering these experiments. They do, however, provide
additional insight in the validity of hypotheses 4 through 7. For example, experiment 1 demonstrates a
probable linear relation between |S| and teg, as well as between |M| and teg, which is expected to turn non-
linear for alternation depths greater than 1, but experiment 4 (especially Figure 5.6b) suggests that this may
not hold, at least for ad(φ) = 2. Experiment 5 strengthens the observations from experiment 1, as a linear
relation between |M| and teg seems to hold here without the premise of simple and constant models and
formulas as well. Additionally, experiment 5 demonstrates that there may be variables influencing teg which
are outside the scope of the current experiments, as fluctuations in the execution time increase with |M|.
Experiment 6 reinforces this possibility, as here, the fluctuations in teg also increase with |φ|. Furthermore,
it shows a rather close fit of the data points to the regression line in Figure 5.8b, providing strong evidence
towards the validity of H6. From experiment 3, alternation depths ending in angelic iterations seemed to
have a much longer run time than those ending in a demonic iteration. Experiment 7, however, shows no
such observation to be made in the more general complex case. Unfortunately, this is all that experiment
7 demonstrates, as teg becomes increasingly unpredictable with increasing alternation depths. Additionally,
the run time of the model checker increases so rapidly that obtaining a large number of data points for
experiment 7 was infeasible on the utilized hardware.

Out of the hypotheses with potential to make strong claims regarding the theoretical time complexity
of Equation 3 in relation to the model checker (H4 up to and including H7), only H6 was verified with
reasonable certainty. Experiment 4 provided evidence towards a possibly tighter time bound in regards to
|S| than set forth in H4. H5 and especially H7 require more extensive analysis to make any significant claims
concerning the time complexity of the model checker or the practical validity of Equation 3.

6 Conclusion

6.1 General Conclusions

In this work, we set out to answer two questions: 1) “How can the model checking problem for game logic
be programmatically converted to a parity game representation for an existing parity game solver?” and 2)
“How can the output of this solver be converted back to a model check result for the game model?”. An
answer to both of these questions has been given through the model checker that was implemented, which
can be found in Appendix D and installed by the steps given in Section 3.4.

Of greater interest than the singular answers that were given here are the various ways in which the
answers could be different or improved. Considerations were made regarding the programming language
(Section 3.3.1), the time complexity (Section 3.3.5, 5), the choice of parity game solver (Section 3.3.2), and
the input (Section 3.3.3) and output (Section 3.3.6) format. Suboptimalities in each of these are discussed
in Section 6.2.

Considering the performance of the application, an input with a model size of 2000 and a formula size
of 4000 can be processed in just over 15 minutes on a machine with an Intel Core i7-9750H processor at
2.6 GHz with 4 GB of memory allocated, running on Ubuntu 18.04. A more nuanced analysis of the time
complexity can be found in Section 5. Whether this performance is of any use is difficult to assess at this
time, as concrete practical applications for a game logic model checker are scarce at best. Regardless, there
is promising room for improvement, which is considered in Section 6.2.

In spite of all the enhancements that the model checker could still undergo, the tests that were carried
out and the implemented functionality show that the project has been a success at its core. With the model
checker that has been implemented, the creation of game models that adhere to predefined conditions has

Page 49



been made less prone to human error. Ideally, the tool will spark interest in other researchers to create
superior versions and one day be utilized to ensure the correctness of an actual protocol backed by a game
model.

6.2 Future Work

There is a lot of potential for future work regarding both the model checker itself and the time complexity
analysis, each of which are discussed here separately. In addition to these, the issue of finding concrete
instances of practical applications for a model checker for game logic persists, a search for which is a possible
piece of future work in itself.

6.2.1 Program Modifications

As mentioned in Section 3.3.5, there is still room for optimization in the model checker. For one, the time
complexity of the parity function procedure can be greatly improved upon by, e.g., performing a bottom-up
recursion over the formula once and saving the calculated priorities in its nodes (by changing the AFormula
data structure, Appendix D.5) or in a map. Using this method, the parity function could be executed in
constant time, or even be removed from the program in favour of a simple look-up every time it would
otherwise be used.

Furthermore, the strategy that was chosen for the execution of a global model check, solving the generated
parity game globally and reporting back with the subset of the positions that correspond to the correct (state,
formula) pairs for the game model, could be suboptimal for certain inputs. For further optimization, tests
could be performed with game models and formulas with different parameters to see whether the current
strategy is optimal for them or one with several sequential local solves of the parity game.

Another performance increase could be achieved by including more, varying parity game solvers in the
program. In particular, the implementation of Zielonka’s algorithm [28] in the more modern collection of
parity game solvers, called Oink, has been shown to outperform the PGSolver implementation [12]. In the
case of such a one-to-one improvement, the model checker could be modified to use the Oink implementation
instead. Additionally, the Oink solvers could be analyzed to see if they contain a solver that is more fitting
to be the default for the model checker than the big step algorithm [27]. In general, including more parity
game solvers leads to more flexibility in the types of game models and formulas which can be model checked
efficiently by a well-informed user.

In addition to performance increases, there are additions to be made to the program to fulfill the remaining
parts of the requirements. First, the functionality for R-3.3 can be extended to include the moves of player 2
as well. The PGSolver output does not contain any transitions from a neighbourhood to a particular state,
leaving out half of the play in the model check results. To accommodate for moves for player 2 as well, the
model checking problem itself could be inspected, as opposed to the corresponding evaluation game, to find
out how the diamond modalities unfold for particular inputs and give a more elaborate description of the
play this way.

Finally, an input format could be added to the model checker that is more representative of game logic
syntax for fomulas (R-3.2). To this end, inspiration can be taken from Worthington’s proof transformation
tool for game logic [29], also written in Rascal.

6.2.2 Time Complexity Evaluation

When it comes to the time complexity evaluation, we can divide the future work up into two categories:
what requires more investigation and how this investigation can be sustained. We start by considering the
former.

As can be observed by the results of experiment 4, there appears to exist a time bound for teg in terms
of the alternation depth that is sharper than the one described in Equation 3. This relation could be

Page 50



investigated further by varying the state count for more alternation depths (as experiment 4 limited itself
to ad(φ) = 2 to accommodate for higher state counts), and observing whether this results in teg being
quadratic, cubic, quartic, ... in |S|.

Due to the large fluctuations that were observed in the results of experiment 5, 6, and 7, conclusions
regarding the time complexity of the model checker could only be hinted at, rather than shown with strong
evidence. To diminish the amount of fluctuation in these results, tests could be performed in a similar
manner, but averaging teg for different randomly generated inputs with the same parameter values and
plotting this average instead of a singular measurement.

The observation of fluctuations becoming greater with larger values of the running variable introduces
the possibility that parameters outside the scope of Equation 3 may be influencing teg. After implementing
the optimizations to the model checker mentioned in Section 6.2.1, the hypotheses could be re-evaluated to
see if the fluctuations persist. If so, the possibility of other variables being at play could be investigated
by using different ways of generating random inputs, by closely inspecting the program itself, or by gaining
more results through the use of larger test sets, a more powerful machine, more computation time, or the
use of specialized parity game solvers for each experiment.

Page 51



References

[1] E. W. Dijkstra, “The humble programmer,” Communications of the ACM, vol. 15, no. 10, p. 859–866,
1972.

[2] C. Stirling and D. Walker, “Local model checking in the modal mu-calculus,” in TAPSOFT ’89 (J. Dı́az
and F. Orejas, eds.), (Berlin, Heidelberg), pp. 369–383, Springer Berlin Heidelberg, 1989.

[3] M. Y. Vardi, “An automata-theoretic approach to linear temporal logic,” in Logics for Concurrency,
p. 238–266, Springer Berlin Heidelberg, 1996.

[4] T. Hafer and W. Thomas, “Computation tree logic ctl* and path quantifiers in the monadic theory of
the binary tree,” in Automata, Languages and Programming, p. 269–279, Springer, 1987.

[5] L. Lamport, “The temporal logic of actions,” ACM Trans. Program. Lang. Syst., vol. 16, no. 3,
p. 872–923, 1994.

[6] R. Parikh, “Propositional game logic,” in 24th Annual Symposium on Foundations of Computer Science
(sfcs 1983), IEEE, 1983.

[7] M. Pauly, Logic for Social Software. PhD thesis, University of Amsterdam, 2001.

[8] D. Berwanger, “Game logic is strong enough for parity games,” Studia Logica, vol. 75, no. 2, p. 205–219,
2003.

[9] S. Enqvist, H. H. Hansen, C. Kupke, J. Marti, and Y. Venema, “Completeness for game logic,” in 2019
34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE, 2019.

[10] H. H. Hansen, C. Kupke, J. Marti, and Y. Venema, “Parity games and automata for game logic,” in
Dynamic Logic. New Trends and Applications (A. Madeira and M. Benevides, eds.), (Cham), pp. 115–
132, Springer International Publishing, 2018.

[11] O. Friedmann and M. Lange, “The pgsolver collection of parity game solvers.” Tue.nl [Online] Avail-
able: https://www.win.tue.nl/~timw/downloads/amc2014/pgsolver.pdf, 2014. [Accessed: 03-May-
2022].

[12] T. van Dijk, “Oink: An implementation and evaluation of modern parity game solvers,” in Tools and
Algorithms for the Construction and Analysis of Systems (D. Beyer and M. Huisman, eds.), (Cham),
pp. 291–308, Springer International Publishing, 2018.

[13] J. Fearnley, “Efficient parallel strategy improvement for parity games,” in Computer Aided Verification
(R. Majumdar and V. Kunčak, eds.), (Cham), pp. 137–154, Springer International Publishing, 2017.

[14] M. J. Fischer and R. E. Ladner, “Propositional dynamic logic of regular programs,” Journal of computer
and system sciences, vol. 18, no. 2, p. 194–211, 1979.

[15] H. H. Hansen, “Monotonic modal logic,” Master’s thesis, University of Amsterdam, 2003.

[16] M. Pauly and R. Parikh, “Game logic - an overview,” Studia Logica, vol. 75, no. 2, p. 165–182, 2003.

[17] E. Grädel, W. Thomas, and T. Wilke, “Parity games,” in Automata, Logics, and Infinite Games, (Berlin,
Heidelberg), p. 94–131, Springer, 2002.

[18] R. Cleaveland and B. Steffen, “A linear-time model-checking algorithm for the alternation-free modal
mu-calculus,” Formal methods in system design, vol. 2, no. 2, p. 121–147, 1993.

Page 52

https://www.win.tue.nl/~timw/downloads/amc2014/pgsolver.pdf


[19] O. V. Sokolsky and S. A. Smolka, “Incremental model checking in the modal mu-calculus,” in Computer
Aided Verification, p. 351–363, Springer Berlin Heidelberg, 1994.

[20] R. Cleaveland, M. Klein, and B. Steffen, “Faster model checking for the modal mu-calculus,” in
Computer Aided Verification, p. 410–422, Springer Berlin Heidelberg, 1993.

[21] J. Bradfield and I. Walukiewicz, “The mu-calculus and model checking,” in Handbook of Model
Checking, p. 871–919, Springer International Publishing, 2018.

[22] Y. Okawa and T. Yoneda, “Symbolic computation tree logic model checking of time petri nets,”
Electronics and Communications in Japan. Part 3, Fundamental Electronic Science, vol. 80, no. 4,
p. 11–20, 1997.

[23] P. Baltazar, R. Chadha, and P. Mateus, “Quantum computation tree logic — model checking and
complete calculus,” International journal of quantum information, vol. 6, no. 2, p. 219–236, 2008.

[24] D. Kernberger and M. Lange, “Model checking for the full hybrid computation tree logic,” in 2016 23rd
International Symposium on Temporal Representation and Reasoning (TIME), pp. 31–40, IEEE, 2016.

[25] Y. Li, Y. Li, and Z. Ma, “Computation tree logic model checking based on possibility measures,” Fuzzy
Sets and Systems, vol. 262, pp. 44–59, 2015.

[26] Y. Li, L. Lei, and S. Li, “Computation tree logic model checking based on multi-valued possibility
measures,” Information sciences, vol. 485, p. 87–113, 2019.

[27] S. Schewe, “Solving parity games in big steps,” in FSTTCS 2007: Foundations of Software Technology
and Theoretical Computer Science (V. Arvind and S. Prasad, eds.), (Berlin, Heidelberg), pp. 449–460,
Springer Berlin Heidelberg, 2007.

[28] W. Zielonka, “Infinite games on finitely coloured graphs with applications to automata on infinite trees,”
Theoretical Computer Science, vol. 200, no. 1, pp. 135–183, 1998.

[29] C. Worthington, “Proof transformations for game logic.,” Bachelor’s thesis, University of Groningen,
2021.

Page 53



7 Appendix

A Proofs

Theorem 1. For any game modelM = (S, γ,Υ): M, s |= φ iff nmc(M), s |= φ, ∀s ∈ S, ∀φ ∈ F .

Proof. Since nmc(M) is identical to M up to its collection of neighbourhood frames, the theorem is
trivially true for any formula that does not concern a state transition (anything but a diamond modality).
As such, it suffices to show that “for any game model M = (S, γ,Υ): M, s |= ⟨α⟩ψ iff nmc(M), s |= ⟨β⟩ψ,
∀s ∈ S, ∀α ∈ G,∀ψ ∈ F , where β is the game in nmc(M) which was constructed from α” (1). By β
being constructed from α, we mean that all the subgames of β were recursively constructed from their cor-
responding subgames of α, down to the level of atomic games. Due to the semantics in Definition 4, we
can then be sure that for any neighbourhood U ∈ ⟨|α|⟩(s), either U ∈ ⟨|β|⟩(s) or U ⊇ U ′ ∈ ⟨|β|⟩(s) for all s ∈ S.

First, we show that nmc(M), s |= ⟨β⟩ψ ⇒M, s |= ⟨α⟩ψ (2). To this end, consider the situation in which
nmc(M), s |= ⟨β⟩ψ, then Angel has a strategy in β to ensure an outcome state in which ψ holds starting
from s. In other words, Angel chooses a neighbourhood U ∈ ⟨|β|⟩(s) such that nmc(M), t |= ψ ∀t ∈ U .
Since ⟨|α|⟩(s) is a superset of ⟨|β|⟩(s), we know that U ∈ ⟨|α|⟩(s). Thus, Angel can choose the neighbourhood
U to transition to when playing α in the state s, ensuring an outcome state in which ψ holds. Therefore,
nmc(M), s |= ⟨β⟩ψ ⇒M, s |= ⟨α⟩ψ.

Next, we show that M, s |= ⟨α⟩ψ ⇒ nmc(M), s |= ⟨β⟩ψ (3). Consider the situation in which M, s |=
⟨α⟩ψ, then Angel has a strategy in α to ensure an outcome state in which ψ holds starting from s. In
other words, Angel chooses a neighbourhood U ∈ ⟨|α|⟩(s) such that M, t |= ψ ∀t ∈ U . Since ⟨|α|⟩(s) =
⟨|β|⟩(s) ∪ (⟨|α|⟩(s) \ ⟨|β|⟩(s)), and ⟨|α|⟩(s) \ ⟨|β|⟩(s) only contains neighbourhoods of which subsets exist in
⟨|β|⟩(s), we know that ⟨|β|⟩(s) contains some set U ′ ⊆ U . Furthermore, since M, t |= ψ ∀t ∈ U , nec-
essarily M, t |= ψ ∀t ∈ U ′. Thus, Angel can choose the neighbourhood U ′ to transition to when playing
β in the state s, ensuring an outcome state in which ψ holds. Therefore,M, s |= ⟨α⟩ψ ⇒ nmc(M), s |= ⟨β⟩ψ.

Combining (2) and (3), we conclude that the bi-implication (1) holds, proving the theorem.

Page 54



B Program Testing

B.1 Small Inputs

model
s t a t e 0 prop0 ,
s t a t e 1 prop1 prop2 prop3 ,
s t a t e 2 prop2 ,
s t a t e 3 prop3 prop0 ,
s t a t e 4 prop1 prop4 prop6 prop7 ,
s t a t e 5 prop5 prop4 prop0 prop9 ,
s tate6 ,
s t a t e 7 prop0 prop7 ,
s t a t e 8 prop7 ;
end model
prop0

Listing 2: Small input for the test case concerning the atomic proposition.

The formula
”prop (” prop0 ”)”

i s t rue in s t a t e s
{” s t a t e 3 ” ,” s t a t e 5 ” ,” s t a t e 7 ” ,” s t a t e 0 ”}

and f a l s e in s t a t e s
{” s t a t e 1 ” ,” s t a t e 2 ” ,” s t a t e 4 ” ,” s t a t e 6 ” ,” s t a t e 8 ”}

with winning moves
s t a t e 1 −> s tay
s t a t e2 −> s tay
s t a t e3 −> s tay
s t a t e4 −> s tay
s t a t e5 −> s tay
s t a t e6 −> s tay
s t a t e7 −> s tay
s t a t e8 −> s tay
s t a t e0 −> s tay

Listing 3: Output of the test case concerning the atomic proposition.

Page 55



model
s t a t e 1 prop1 ,
s t a t e 2 ;
end model
not ( prop1 )

Listing 4: Small input for the test case concerning the negation.

The formula
”not ( prop (” prop1 ”))”

i s t rue in s t a t e s
{” s t a t e 2 ”}

and f a l s e in s t a t e s
{” s t a t e 1 ”}

with winning moves
s t a t e 1 −> s tay
s t a t e2 −> s tay

Listing 5: Output of the test case concerning the negation.

model
s t a t e 1 prop1 ,
s tate2 ,
s t a t e 3 prop2 prop1 ;
end model
and ( prop1 , prop2 )

Listing 6: Small input for the test case concerning the conjunction.

The formula
”and ( prop (” prop1 ”) , prop (” prop2 ”))”

i s t rue in s t a t e s
{” s t a t e 3 ”}

and f a l s e in s t a t e s
{” s t a t e 1 ” ,” s t a t e 2 ”}

with winning moves
s t a t e 1 −> s tay
s t a t e2 −> s tay
s t a t e3 −> s tay

Listing 7: Output of the test case concerning the conjunction.

Page 56



model
s t a t e 1 prop1 ,
s tate2 ,
s t a t e 3 prop2 prop1 ;
end model
or ( prop1 , prop2 )

Listing 8: Small input for the test case concerning the disjunction.

The formula
” or ( prop (” prop1 ”) , prop (” prop2 ”))”

i s t rue in s t a t e s
{” s t a t e 1 ” ,” s t a t e 3 ”}

and f a l s e in s t a t e s
{” s t a t e 2 ”}

with winning moves
s t a t e 1 −> s tay
s t a t e2 −> s tay
s t a t e3 −> s tay

Listing 9: Output of the test case concerning the disjunction.

model
s t a t e 1 prop1 ,
s t a t e 2 prop1 prop2 ;
g1 :

s t a t e 1 −> s t a t e 1 s t a t e 2 ;
s t a t e 2 −> s tate2 , s t a t e 2 s t a t e 1 ;

end func
end model
s t r a t ( g1 , prop2 )

Listing 10: Small input for the test case concerning the atomic game.

The formula
” s t r a t ( atomic (” g1 ”) , prop (” prop2 ”))”

i s t rue in s t a t e s
{” s t a t e 2 ”}

and f a l s e in s t a t e s
{” s t a t e 1 ”}

with winning moves
s t a t e 1 −> s tay
s t a t e2 −> { s t a t e 2 }

Listing 11: Output of the test case concerning the atomic game.

Page 57



model
s t a t e 1 prop1 ,
s t a t e 2 prop2 ;
g1 :

s t a t e 1 −> s t a t e 1 s tate2 , Empty ;
s t a t e 2 −> s tate1 , s t a t e 2 s t a t e 1 ;

end func
end model
s t r a t ( dual ( g1 ) , prop2 )

Listing 12: Small input for the test case concerning the dual game.

The formula
” s t r a t ( dual ( atomic (” g1 ” ) ) , prop (” prop2 ”))”

i s t rue in s t a t e s
{}

and f a l s e in s t a t e s
{” s t a t e 1 ” ,” s t a t e 2 ”}

with winning moves
s t a t e 1 −> {}
s t a t e 2 −> { s t a t e 1 }

Listing 13: Output of the test case concerning the dual game.

Page 58



model
s t a t e 1 prop1 ,
s t a t e 2 prop2 ,
s t a t e 3 prop1 prop3 ;
g1 :

s t a t e 1 −> s t a t e 2 s t a t e 3 ;
s t a t e 2 −> s t a t e 2 s t a t e 3 ;

end func
g2 :

s t a t e 3 −> s tate2 , s t a t e 1 ;
s t a t e 1 −> s t a t e 2 s t a t e 3 ;

end func
end model
s t r a t ( ang cho i ce ( g1 , g2 ) , prop1 )

Listing 14: Small input for the test case concerning the angelic choice.

The formula
” s t r a t ( angChoice ( atomic (” g1 ”) , atomic (” g2 ” ) ) , prop (” prop1 ”))”

i s t rue in s t a t e s
{” s t a t e 3 ”}

and f a l s e in s t a t e s
{” s t a t e 1 ” ,” s t a t e 2 ”}

with winning moves
s t a t e 1 −> s tay
s t a t e2 −> s tay
s t a t e3 −> { s t a t e 1 }

Listing 15: Output of the test case concerning the angelic choice.

Page 59



model
s t a t e 1 prop1 ,
s t a t e 2 prop1 prop3 ,
s t a t e 3 prop2 ;
g1 :

s t a t e 2 −> s t a t e 2 s t a t e 3 ;
s t a t e 1 −> s tate2 , s t a t e 3 ;
s t a t e 3 −> s t a t e 1 s t a t e 2 ;

end func
g2 :

s t a t e 1 −> s t a t e 2 s t a t e 3 ;
s t a t e 3 −> s tate2 , s t a t e 1 ;

end func
end model
s t r a t ( dem choice ( g1 , g2 ) , prop1 )

Listing 16: Small input for the test case concerning the demonic choice.

The formula
” s t r a t ( demChoice ( atomic (” g1 ”) , atomic (” g2 ” ) ) , prop (” prop1 ”))”

i s t rue in s t a t e s
{” s t a t e 3 ”}

and f a l s e in s t a t e s
{” s t a t e 1 ” ,” s t a t e 2 ”}

with winning moves
s t a t e 1 −> s tay
s t a t e2 −> s tay
s t a t e3 −> s tay

Listing 17: Output of the test case concerning the demonic choice.

Page 60



model
s t a t e 1 prop1 ,
s t a t e 2 prop1 prop2 ,
s t a t e 3 ;
g1 :

s t a t e 1 −> s t a t e 2 s t a t e 3 ;
s t a t e 2 −> s t a t e 1 s t a t e 2 ;

end func
g2 :

s t a t e 2 −> s t a t e 1 ;
s t a t e 1 −> s t a t e 1 ;

end func
end model
s t r a t ( seq ( g1 , g2 ) , prop1 )

Listing 18: Small input for the test case concerning the composition.

The formula
” s t r a t ( seq ( atomic (” g1 ”) , atomic (” g2 ” ) ) , prop (” prop1 ”))”

i s t rue in s t a t e s
{” s t a t e 2 ”}

and f a l s e in s t a t e s
{” s t a t e 1 ” ,” s t a t e 3 ”}

with winning moves
s t a t e 1 −> s tay
s t a t e2 −> { s tate1 , s t a t e 2 }
s t a t e 3 −> s tay

Listing 19: Output of the test case concerning the composition.

Page 61



model
s t a t e 0 prop0 ,
s t a t e 1 prop1 ,
s t a t e 2 prop2 ,
s t a t e 3 prop3 ,
s t a t e 4 prop4 ,
s t a t e 5 prop5 ,
s t a t e 6 prop6 ,
s t a t e 7 prop7 ,
s t a t e 8 prop8 ,
s t a t e 9 prop9 ;
game0 :

s t a t e 0 −> s t a t e 1 ;
s t a t e 1 −> s t a t e 2 ;
s t a t e 2 −> s t a t e 3 ;
s t a t e 3 −> s t a t e 4 ;
s t a t e 4 −> s t a t e 5 ;
s t a t e 5 −> s t a t e 6 ;
s t a t e 6 −> s t a t e 7 ;
s t a t e 8 −> s t a t e 9 ;
s t a t e 9 −> s t a t e 0 ;

end func
end model
s t r a t ( a n g i t e r ( game0 ) , prop1 )

Listing 20: Small input for the test case concerning the angelic iteration.

The formula
” s t r a t ( ang I t e r ( atomic (”game0 ” ) ) , prop (” prop1 ”))”

i s t rue in s t a t e s
{” s t a t e 1 ” ,” s t a t e 8 ” ,” s t a t e 9 ” ,” s t a t e 0 ”}

and f a l s e in s t a t e s
{” s t a t e 2 ” ,” s t a t e 3 ” ,” s t a t e 4 ” ,” s t a t e 5 ” ,” s t a t e 6 ” ,” s t a t e 7 ”}

with winning moves
s t a t e 1 −> s tay
s t a t e2 −> s tay
s t a t e3 −> s tay
s t a t e4 −> s tay
s t a t e5 −> s tay
s t a t e6 −> s tay
s t a t e7 −> s tay
s t a t e8 −> { s t a t e 9 }
s t a t e 9 −> { s t a t e 0 }
s t a t e 0 −> { s t a t e 1 }

Listing 21: Output of the test case concerning the angelic iteration.

Page 62



model
s t a t e 0 prop0 ,
s t a t e 1 prop0 ,
s t a t e 2 prop0 ,
s t a t e 3 prop0 ,
s t a t e 4 prop0 ,
s t a t e 5 prop0 ,
s tate6 ,
s t a t e 7 prop0 ,
s t a t e 8 prop0 ,
s t a t e 9 prop0 ;
game0 :

s t a t e 0 −> s t a t e 1 ;
s t a t e 1 −> s t a t e 2 ;
s t a t e 2 −> s t a t e 3 ;
s t a t e 3 −> s t a t e 4 ;
s t a t e 4 −> s t a t e 5 ;
s t a t e 5 −> s t a t e 0 ;
s t a t e 6 −> s t a t e 7 ;
s t a t e 7 −> s t a t e 8 ;
s t a t e 8 −> s t a t e 9 ;
s t a t e 9 −> s t a t e 6 ;

end func
end model
s t r a t ( dem iter ( game0 ) , prop0 )

Listing 22: Small input for the test case concerning the demonic iteration.

The formula
” s t r a t ( demIter ( atomic (”game0 ” ) ) , prop (” prop0 ”))”

i s t rue in s t a t e s
{” s t a t e 1 ” ,” s t a t e 2 ” ,” s t a t e 3 ” ,” s t a t e 4 ” ,” s t a t e 5 ” ,” s t a t e 0 ”}

and f a l s e in s t a t e s
{” s t a t e 6 ” ,” s t a t e 7 ” ,” s t a t e 8 ” ,” s t a t e 9 ”}

with winning moves
s t a t e 1 −> s tay
s t a t e2 −> s tay
s t a t e3 −> s tay
s t a t e4 −> s tay
s t a t e5 −> s tay
s t a t e6 −> s tay
s t a t e7 −> s tay
s t a t e8 −> s tay
s t a t e9 −> s tay
s t a t e0 −> s tay

Listing 23: Output of the test case concerning the demonic iteration.

Page 63



model
s t a t e 1 prop1 prop2 ,
s t a t e 2 prop2 ,
s t a t e 3 ;
end model
s t r a t ( ang t e s t ( prop1 ) , prop2 )

Listing 24: Small input for the test case concerning the angelic test.

The formula
” s t r a t ( angTest ( prop (” prop1 ” ) ) , prop (” prop2 ”))”

i s t rue in s t a t e s
{” s t a t e 1 ”}

and f a l s e in s t a t e s
{” s t a t e 2 ” ,” s t a t e 3 ”}

with winning moves
s t a t e 1 −> s tay
s t a t e2 −> s tay
s t a t e3 −> s tay

Listing 25: Output of the test case concerning the angelic test.

model
s t a t e 1 prop3 ,
s t a t e 2 prop2 ,
s t a t e 3 prop1 prop2 ;
end model
s t r a t ( dem test ( prop2 ) , prop1 )

Listing 26: Small input for the test case concerning the demonic test.

The formula
” s t r a t ( demTest ( prop (” prop2 ” ) ) , prop (” prop1 ”))”

i s t rue in s t a t e s
{” s t a t e 2 ” ,” s t a t e 3 ”}

and f a l s e in s t a t e s
{” s t a t e 1 ”}

with winning moves
s t a t e 1 −> s tay
s t a t e2 −> s tay
s t a t e3 −> s tay

Listing 27: Output of the test case concerning the demonic test.

Page 64



B.2 Large Input Example

model
s2 p2 ,
s19 ,
s28 ,
s20 ,
s17 p1 p4 p3 p2 ,
s10 ,
s23 ,
s0 p1 p3 p2 ,
s3 p3 p4 p2 ,
s5 p4 p3 p2 p1 ,
s13 p4 p1 p2 p3 ,
s12 p2 p3 ,
s16 p1 p2 p3 p4 ,
s7 p1 p4 p3 p2 ,
s11 ,
s24 p3 ,
s25 p4 p1 ,
s1 ,
s8 p1 ,
s4 p4 p2 p1 ,
s9 p1 p2 ,
s27 p4 p1 p3 p2 ,
s18 p3 p2 ,
s26 p4 ,
s21 p3 ,
s22 p1 p2 p3 p4 ,
s15 p3 ,
s14 p2 ,
s6 p2 p1 ,
s29 p3 p4 p1 ;
g0 :

s28 −> s29 , s18 ;
s19 −> s10 , s19 , s18 ;
s1 −> s26 , s18 s25 ;
s13 −> s21 s23 s7 , Empty ;
s15 −> s21 s5 ;
s21 −> s16 , s28 , s2 ;
s3 −> s5 , s10 ;
s11 −> s10 ;
s10 −> s1 s17 ;
s5 −> s16 s2 s4 ;
s24 −> Empty ;

end func
g2 :

s22 −> s17 s8 ;
end func

Page 65



g1 :
s5 −> s6 , s25 ;
s21 −> s11 s17 s20 s23 s5 s9 , s6 ;
s15 −> s19 s6 ;
s6 −> s0 ;
s11 −> s23 s24 s3 s6 , s2 ;
s0 −> s8 , s16 , s28 s7 , s11 ;

end func
g3 :

s20 −> s26 ;
s6 −> Empty ;
s16 −> s17 ;
s14 −> s12 ;
s13 −> s5 , s22 ;
s23 −> Empty ;
s4 −> s14 , s17 ;
s8 −> s1 s2 ;
s12 −> s15 ;
s15 −> s22 , s24 ;
s11 −> s24 ;
s29 −> s8 ;
s17 −> s11 , s23 ;
s28 −> s7 ;
s1 −> Empty ;
s5 −> s11 s7 ;
s22 −> s2 s3 ;
s27 −> s22 ;

end func
end model
not ( or ( or ( not ( not ( s t r a t ( dem choice ( dem iter ( ang t e s t ( s t r a t ( a n g i t e r ( seq ( dual (

↪→ dem test ( s t r a t ( dem choice ( ang cho i ce ( g1 , g3 ) , a n g i t e r ( g1 ) ) , p2 ) ) ) ,
↪→ ang cho i ce ( dem choice ( dual ( g1 ) , g2 ) , g0 ) ) ) , not ( not ( s t r a t ( dem iter ( dual ( seq
↪→ ( g3 , g2 ) ) ) , s t r a t ( ang cho i ce ( seq ( an g i t e r ( seq ( dual ( g3 ) , dem choice ( g3 , g2 ) ) )
↪→ , dem iter ( g1 ) ) , dual ( dem iter ( g1 ) ) ) , p2 ) ) ) ) ) ) ) , dual ( dem choice ( dem iter (
↪→ ang cho i ce ( dem test ( s t r a t ( g0 , p1 ) ) , dual ( g1 ) ) ) , a n g i t e r ( dual ( dem test ( not (
↪→ p1 ) ) ) ) ) ) ) , and ( s t r a t ( ang t e s t ( and ( not ( and ( s t r a t ( ang t e s t ( s t r a t ( g1 , p2 ) ) , p4
↪→ ) , s t r a t ( g0 , p2 ) ) ) , s t r a t ( dem choice ( g3 , dual ( a n g i t e r ( dem choice ( dual ( g0 ) ,
↪→ dual ( dem choice ( g2 , g0 ) ) ) ) ) ) , p1 ) ) ) , s t r a t ( a n g i t e r ( dual ( ang t e s t ( s t r a t (
↪→ ang i t e r ( dual ( g0 ) ) , p1 ) ) ) ) , p3 ) ) , not ( not ( or ( or ( s t r a t ( ang cho i ce ( a n g i t e r (
↪→ dem test ( not ( p2 ) ) ) , g2 ) , p3 ) , s t r a t ( dual ( a n g i t e r ( dem choice ( dem test ( s t r a t
↪→ ( a n g i t e r ( ang t e s t ( not ( p2 ) ) ) , p3 ) ) , ang cho i ce ( dual ( g3 ) , seq ( dual ( g1 ) ,
↪→ ang cho i ce ( ang cho i ce ( ang t e s t ( not ( p4 ) ) , dual ( g1 ) ) , dem test ( not ( p3 ) ) ) ) ) ) )
↪→ ) , s t r a t ( a n g i t e r ( g0 ) , p4 ) ) ) , s t r a t ( g3 , p1 ) ) ) ) ) ) ) ) , or ( and ( s t r a t ( ang cho i ce (
↪→ dual ( g2 ) , dual ( a n g i t e r ( g0 ) ) ) , p3 ) , and ( s t r a t ( a n g i t e r ( dual ( g2 ) ) , p4 ) , s t r a t (
↪→ dem iter ( g1 ) , p2 ) ) ) , not ( s t r a t ( dem choice ( dual ( dual ( dual ( a n g i t e r ( g2 ) ) ) ) ,
↪→ g3 ) , p2 ) ) ) ) , and ( s t r a t ( dem choice ( g1 , g3 ) , p4 ) , and ( s t r a t ( dem iter ( dual ( g2 ) ) ,
↪→ p3 ) , s t r a t ( dem iter ( ang t e s t ( s t r a t ( g2 , p3 ) ) ) , p4 ) ) ) ) )

Listing 28: Example of a moderately large input file with |M| = 100, |S| = 30, |φ| = 200, and ad(φ) = 1.

Page 66



C Time Complexity Verification

C.1 Tables of Execution Time Measurements

Run Execution time (ms) Minimum execution time (ms)
1 1441 1441
2 1201 1201
3 1135 1135
4 1131 1131
5 1134 1131
6 1143 1131
7 1126 1126
8 1133 1126
9 1134 1126
10 1153 1126
11 1125 1125
12 1132 1125
13 1138 1125
14 1175 1125
15 1251 1125
16 1588 1125
17 1574 1125
18 1243 1125
19 1241 1125
20 1583 1125
21 1127 1125
22 1134 1125
23 1191 1125
24 1135 1125
25 1140 1125
26 1122 1122
27 1132 1122
28 1181 1122
29 1120 1120
30 1118 1118

Table 10: Model checker execution times and minimum times against the number of runs for identical input
(|M| = 500, |S| = 100, |φ| = 100, ad(φ) = 2).

Page 67



|S| Execution time (ms)
1000 208
5000 1153
10000 2403
15000 3718
20000 4577
25000 5839
30000 6811
35000 8514
40000 10985
45000 10989
50000 12609
55000 14704
60000 14646
65000 17412
70000 17772
75000 18811
80000 20654
85000 21295
90000 23748
95000 24426
100000 28474
105000 31868
110000 32701
115000 36195
120000 37057
125000 38031
130000 39531
135000 42660
140000 43157
145000 46277
150000 48583

Table 11: Model checker execution times against varying state counts for experiment 1.

Page 68



|φ| Execution time (ms)
534 206
573 214
1109 407
1184 455
1670 572
1816 647
1841 597
1894 610
2083 1163
3120 1219
4712 1709
6294 2058
6584 2196
6852 2309
7459 4221
9897 3799
10371 3551
10708 5568
11098 4455
13253 4300
14049 4647
27226 9944
28144 10345
34554 12294
39832 15578
41440 16280
50069 18773
57871 21723
62465 22779
65458 23448
79052 30261
125274 51555
168370 68028
308792 130739

Table 12: Model checker execution times against varying formula sizes for experiment 2.

Page 69



ad(φ), angelic end Execution time (ms)
6 13
7 15
8 17
9 24
10 30
11 55
12 69
13 161
14 223
15 618
16 878
17 2562
18 3685
19 11281
20 16197
21 52834

Table 13: Model checker execution times against varying formula alternation depths, where the innermost
fixpoint operator is an angelic iteration for experiment 3.

ad(φ), demonic end Execution time (ms)
6 12
7 14
8 15
9 16
10 18
11 20
12 23
13 25
14 33
15 39
16 61
17 81
18 149
19 208
20 414
21 577
22 1475
23 2131
24 4091
25 6197
26 13454
27 20030
28 44158
29 64806

Table 14: Model checker execution times against varying formula alternation depths, where the innermost
fixpoint operator is a demonic iteration for experiment 3.

Page 70



|S| Execution time (ms) |S| Execution time (ms) |S| Execution time (ms)
5 96 170 3977 335 7346
10 205 175 3359 340 6534
15 267 180 1956 345 4003
20 399 185 3700 350 3803
25 423 190 2664 355 4886
30 526 195 4367 360 5008
35 772 200 2892 365 5828
40 770 205 4970 370 4383
45 645 210 4729 375 7714
50 1287 215 3581 380 8582
55 692 220 4351 385 7338
60 1126 225 5235 390 6930
65 1557 230 2602 395 6249
70 1794 235 3579 400 4739
75 1430 240 3346 405 2814
80 1139 245 3573 410 4691
85 1748 250 5269 415 6865
90 1597 255 4866 420 7182
95 1905 260 5078 425 6823
100 1802 265 5048 430 6630
105 2492 270 5378 435 7987
110 1469 275 6867 440 4967
115 2079 280 4284 445 11777
120 2285 285 6649 450 5320
125 1525 290 4585 455 10164
130 2289 295 6723 460 7275
135 2897 300 5749 465 7286
140 2724 305 4382 470 6668
145 1809 310 5396 475 8123
150 3211 315 481 480 3323
155 4456 320 5305 485 9479
160 3382 325 4123 490 7173
165 3504 330 6602 495 4924

Table 15: Model checker execution times against varying state counts for experiment 4.

Page 71



|M| Execution time (ms) |M| Execution time (ms)
5004 931 105091 2183
10008 1003 110095 2809
15012 1028 115099 2451
20018 1300 120088 2431
25021 1400 125083 3248
30030 1312 130106 2963
35027 1476 135130 2711
40027 1361 140114 3038
45043 1323 145137 2914
50047 1487 150118 2938
55031 1384 155142 2461
60048 1961 160125 2638
65055 1433 165133 2851
70058 1506 170139 2492
75055 1850 175156 3758
80049 2417 180138 2978
85055 2240 185173 3400
90075 2655 190166 3280
95091 2101 195141 5110
100071 1731 200146 2766

Table 16: Model checker execution times against varying model sizes for experiment 5.

Page 72



|φ| Execution time (ms) |φ| Execution time (ms)
100 497 2600 8868
200 718 2700 9069
300 1153 2800 8464
400 1318 2900 11356
500 1514 3000 11310
600 2143 3100 10673
700 2434 3200 11036
800 2882 3300 10579
900 3333 3400 8926
1000 3546 3500 13777
1100 4150 3600 12485
1200 4712 3700 11849
1300 5103 3800 13030
1400 5239 3900 14209
1500 5078 4000 13014
1600 5828 4100 15266
1700 5767 4200 13657
1800 5420 4300 13937
1900 6204 4400 13947
2000 6713 4500 14954
2100 6171 4600 16719
2200 7977 4700 15056
2300 7420 4800 15530
2400 8624 4900 17374
2500 9346 5000 18787

Table 17: Model checker execution times against varying formula sizes for experiment 6.

ad(φ) Execution time (ms)
0 511
1 556
2 646
3 708
4 749
5 786
6 856
7 858
8 756
9 1953
10 1052
11 996
12 1584
13 66386
14 4096
15 41660
16 25325
17 130429

Table 18: Model checker execution times against varying alternation depths with differing innermost fixpoint
operators for experiment 7.

Page 73



ad(φ) Execution time (ms)
0 346
1 551
2 583
3 694
4 589
5 645
6 721
7 751
8 832
9 813
10 922
11 968
12 960
13 833
14 927
15 5005
16 1277
17 15872
18 19706
19 121680
20 14918

Table 19: Model checker execution times against varying alternation depths with an angelic iteration as the
innermost fixpoint operator for experiment 7.

ad(φ) Execution time (ms)
0 348
1 526
2 578
3 694
4 711
5 661
6 780
7 781
8 843
9 903
10 1280
11 1295
12 902
13 3900
14 1219
15 1181
16 1164
17 20821
18 25135
19 10138

Table 20: Model checker execution times against varying alternation depths with a demonic iteration as the
innermost fixpoint operator for experiment 7.

Page 74



D Source Code (per module)

D.1 ModelChecker

1 module ModelChecker
2

3 import AbstractSyntax ;
4 import AST;
5 import Cons i stency ;
6 import DNNF;
7 import EvalGame ;
8 import IO ;
9 import L i s t ;

10 import Map;
11 import Set ;
12 import S t r ing ;
13 import Ut i l ;
14 import u t i l : : Benchmark ;
15 import u t i l : : Fi leSystem ;
16 import u t i l : : She l lExec ;
17

18 // Al l the pa r i t y game s o l v e r s that are cu r r en t l y supported by the model check ing t o o l . Up
↪→ to date with pgso lv e r as o f June 7 , 2022 .

19 pr i va t e l i s t [ s t r ] LOCAL SOLVERS = [ ”modelchecker ” , ” s t r a t impr l o c2 ” , ” s t r a t imp r l o c a l ” ] ;
20 pr i va t e l i s t [ s t r ] GLOBAL SOLVERS = [ ” b i g s t ep ” , ”dominiondec” , ” e x t e r n a l s o l v e r ” , ”

↪→ e x t e r n a l s o l v e r u n i v ” , ” f p i t e r ” , ” g en e t i c ” , ” gue s s s t r a t e gy ” ,
21 ”modelchecker ” , ” optst rat improv ” , ” p o l i c y i t e r ” , ”prioprom” , ” pr iopromdel ” , ”

↪→ pr iopromdeluniv ” , ” pr iopromplus ” , ” pr iopromplusuniv ” ,
22 ” priopromrec ” , ” pr iopromrecuniv ” , ”priopromuniv ” , ” r e c u r s i v e ” , ” s a t s o l v e ” , ” smal lprog ” ,

↪→ ” s t r a t imprd i s c ” , ” s t r a t impr l o c2 ” ,
23 ” s t r a t imp r l o c a l ” , ” s t rat improve ” , ” s t r a t impr sa t ” , ” suc c in c t sma l l p rog ” , ” v i a s a t ” ] ;
24

25 pr i va t e s t r DEFAULT LOCAL SOLVER = LOCAL SOLVERS [ 0 ] ;
26 pr i va t e s t r DEFAULT GLOBAL SOLVER = GLOBAL SOLVERS [ 0 ] ;
27 pr i va t e l o c PG INPUT LOCATION = | cwd : // / | ;
28 pr i va t e s t r PG INPUT FILENAME = ”pgInput . txt ” ;
29 pub l i c s t r DEFAULT CHECKER INPUT = ” de f au l t i npu t . txt ” ;
30

31 // Return whether a should appear be f o r e b in an ordered l i s t o f EvalGamePosData e lements
32 pr i va t e bool comparePosData (EvalGamePosData a , EvalGamePosData b) = a . id < b . id ;
33

34 // Sort a s e t o f EvalGamePosData by ID , re turn a so r t ed l i s t
35 pr i va t e l i s t [ EvalGamePosData ] sortPosData ( s e t [ EvalGamePosData ] posData ) = so r t ( posData ,

↪→ comparePosData ) ;
36

37 // Return a map from the i d s to the p o s i t i o n s at which E l o i s e wins based on the input o f the
↪→ checker and the s o l v e r and the output o f the s o l v e r

38 pr i va t e map [ int , Po s i t i on ] w inn ingPos i t i on sE l o i s e (AInput checkerInput , s e t [ s t r ] a l l S t a t e s ,
↪→ s t r pgOutputLineEloise , map [ Pos i t ion , EvalGamePosData ] i npu tPo s i t i on s ) {

39 l i s t [ Po s i t i on ] i n i t P o s i t i o n s = [ pos ( s ta te , checkerInput . formula ) | s t a t e <− a l l S t a t e s ] ;
40 s t r e l o i s e P o s i t i o n s = pgOutputLineEloise [ 3 . . s i z e ( pgOutputLineEloise ) −1];
41 l i s t [ s t r ] e l o i s eP o s S t rL i s t = s p l i t ( ” , ” , e l o i s e P o s i t i o n s ) ;
42 t ry
43 t o In t ( e l o i s eP o s S t rL i s t [ 0 ] ) ;
44 catch :
45 e l o i s eP o s S t rL i s t = [ ] ;
46 s e t [ i n t ] e l o i s ePo sS e t = { t o In t ( posStr ) | posStr <− e l o i s eP o s S t r L i s t } ;
47 r e turn ( id : p | p <− i n i tP o s i t i o n s , meta ( id , , , ) <− [ i npu tPo s i t i on s [ p ] ] , id in

↪→ e l o i s ePo sS e t ) ;
48 }
49

50 // Return whether p conta in s a s t a t e ( not a neighbourhood )

Page 75



51 bool hasState ( Pos i t i on p) {
52 switch (p) {
53 case pos ( s t r s ta te , ) : r e turn true ;
54 }
55 r e turn f a l s e ;
56 }
57

58 // Return whether p conta in s a neighbourhood ( not a s t a t e )
59 bool hasNeighbourhood ( Pos i t i on p) = ! hasState (p) ;
60

61 // Return a map from each s t a t e to a d e s c r i p t i o n o f the winning move/play from that s t a t e ( a
↪→ sequence o f s t a t e s and neighbourhoods )

62 map [ s t r , s t r ] getAllWinningMoves ( s e t [ s t r ] a l l S t a t e s , AFormula startFormula , map [ Pos i t ion ,
↪→ Pos i t i on ] w inn ingS t ra t eg i e s ) {

63 map [ s t r , s t r ] winningMoves = ( ) ;
64 f o r ( s t r s t a t e <− a l l S t a t e s ) {
65 Pos i t i on prevPos = pos ( s ta te , startFormula ) ;
66 Pos i t i on nextPos = prevPos ;
67 winningMoves [ s t a t e ] = s t a t e ;
68 whi le ( nextPos in w inn ingS t ra t eg i e s ) {
69 prevPos = nextPos ;
70 nextPos = winn ingS t ra t eg i e s [ nextPos ] ;
71 i f ( hasState ( prevPos ) && hasNeighbourhood ( nextPos ) ) winningMoves [ s t a t e ] += ” −\> {<

↪→ i n t e r c a l a t e ( ” , ” , nextPos . neighbourhood )>}” ;
72 i f ( hasNeighbourhood ( prevPos ) && hasState ( nextPos ) ) winningMoves [ s t a t e ] += ” −\> <

↪→ nextPos . s ta te>” ;
73 }
74 }
75 r e turn winningMoves ;
76 }
77

78 // Return output o f a l o c a l model check based on the output o f pg so lv e r
79 pr i va t e s t r loca lOutput ( s t r pgOutput , AInput checkerInput ) {
80 l i s t [ s t r ] outputLines = s p l i t ( ”\n” , pgOutput ) ;
81 bool e l o i s eWins = endsWith ( outputLines [ 7 ] , ”0” ) ;
82 r e turn ” In s t a t e \”<checkerInput . s ta te >\”, the formula
83 ’ \”<checkerInput . formula>\”
84 ’ i s <e lo i seWins >.” ;
85 }
86

87 // Return output o f a g l oba l model check based on the output o f pg so lve r
88 pr i va t e s t r globalOutput ( s t r pgOutput , AInput checkerInput , map [ Pos i t ion , EvalGamePosData ]

↪→ i npu tPo s i t i on s ) {
89 l i s t [ s t r ] outputLines = s p l i t ( ”\n” , pgOutput ) ;
90 s e t [ s t r ] a l l S t a t e s = modelStates ( checker Input . model ) ;
91 map [ int , Po s i t i on ] eloisePosMap = winn ingPos i t i on sE l o i s e ( checkerInput , a l l S t a t e s ,

↪→ outputLines [ 8 ] , i npu tPo s i t i on s ) ;
92 map [ int , Po s i t i on ] a l lPos i t i onsMap = ( inpu tPos i t i on s [ p ] . id : p | p <− i npu tPo s i t i on s ) ;
93 l i s t [ s t r ] w inSt ra tS t r i ng s = s p l i t ( ” , ” , outputLines [ 1 0 ] [ 3 . . s i z e ( outputLines [ 1 0 ] ) −1]) +

↪→ s p l i t ( ” , ” , outputLines [ 1 5 ] [ 3 . . s i z e ( outputLines [ 1 5 ] ) −1]) ;
94 map [ int , i n t ] w inn ingS t r a t e g i e s I d s = ( to In t ( o r i g ) : t o In t ( des t ) | s t r i n g <− winStratSt r ings

↪→ , [ o r ig , des t ] <− [ s p l i t ( ”−\>” , s t r i n g ) ] ) ;
95 map [ Pos i t ion , Pos i t i on ] w inn ingS t ra t eg i e s = ( a l lPos i t i onsMap [ id ] : a l lPos i t i onsMap [

↪→ winn ingS t r a t e g i e s I d s [ id ] ] | id <− winn ingS t r a t e g i e s I d s ) ;
96 map [ s t r , s t r ] winningMoves = getAllWinningMoves ( a l l S t a t e s , checker Input . formula ,

↪→ winn ingS t ra t eg i e s ) ;
97 s e t [ s t r ] t r u eS ta t e s = { s t a t e | pos ( s t r s ta te , ) <− range ( eloisePosMap ) } ;
98 s e t [ s t r ] f a l s e S t a t e s = modelStates ( checker Input . model ) − t ru eS ta t e s ;
99 r e turn ”The formula

100 ’ \”<checkerInput . formula>\”
101 ’ i s t rue in s t a t e s
102 ’ <t rueState s>

Page 76



103 ’ and f a l s e in s t a t e s
104 ’ < f a l s e S t a t e s>
105 ’ with winning moves<
106 f o r ( s t r s t a t e <− winningMoves ) {>
107 ’ <winningMoves [ s t a t e ] == s t a t e ? ”<s ta te> −\> s tay ” : winningMoves [ s t a t e ]><
108 }>” ;
109 }
110

111 // Generate the pgso lv e r input and wr i t e i t to the f i l e s p e c i f i e d by pgInputLoc
112 // Return whether the model check i s l o c a l a long with the input mapping f o r pg so lv e r
113 pr i va t e tup l e [ bool , map [ Pos i t ion , EvalGamePosData ] ] g ene ra t eSo lve r Input (AInput checkerInput ,

↪→ l o c pgInputLoc ) {
114 map [ Pos i t ion , EvalGamePosData ] i npu tPo s i t i on s = evalGamePosit ions ( checkerInput ) ;
115 s t r pgInput = so lv e r Input ( sortPosData ( range ( i npu tPo s i t i on s ) ) ) ;
116 wr i t eF i l e ( pgInputLoc , pgInput ) ;
117 r e turn <checkerInput . s t a t e != ”” , inputPos i t i ons >;
118 }
119

120 // Return the user chosen s o l v e r based on the given arguments
121 // Use the d e f a u l t s at the top o f t h i s f i l e i f no s o l v e r i s g iven or i f the g iven s o l v e r i s

↪→ i n v a l i d
122 pr i va t e s t r solverToUse ( l i s t [ s t r ] args , bool i sLocalCheck ) {
123 s t r s o l v e r = isLocalCheck ? DEFAULT LOCAL SOLVER : DEFAULT GLOBAL SOLVER;
124 f o r ( idx <− index ( args ) ) {
125 i f ( a rgs [ idx ] == ”−s o l v e r ” && s i z e ( args ) > idx ) s o l v e r = args [ idx + 1 ] ;
126 }
127 i f ( ( i sLocalCheck && so l v e r not in LOCAL SOLVERS) | | ( ! i sLocalCheck && so l v e r not in

↪→ GLOBAL SOLVERS) ) {
128 s t r i n v a l i d S o l v e r = s o l v e r ;
129 s o l v e r = isLocalCheck ? DEFAULT LOCAL SOLVER : DEFAULT GLOBAL SOLVER;
130 p r i n t l n ( ”The pa r i t y game s o l v e r \”< i n va l i dSo l v e r >\” i s not a va l i d opt ion f o r <

↪→ i sLocalCheck ? ” l o c a l ” : ” g l oba l ”> model check ing .
131 ’ Using the d e f au l t s o l v e r i n s t ead (< so l ve r >) . ” ) ;
132 } ;
133 r e turn s o l v e r ;
134 }
135

136 // Perform a model check on a game model l o ca t ed in the f i l e s p e c i f i e d by args [ 0 ] r e l a t i v e
↪→ to the input f i l e s f o l d e r , or in d e f au l t i npu t . txt

137 pr i va t e s t r checkModel ( l i s t [ s t r ] a rgs ) {
138 i f ( anyFalse ( [ e x i s t s ( | cwd : /// s r c | ) , e x i s t s ( | cwd :/// input%20 f i l e s | ) , e x i s t s ( | cwd :///

↪→ pgso lve r | ) ] ) )
139 r e turn ”Could not f i nd f i l e s r equ i r ed to run the model checker . Are you working from the

↪→ root f o l d e r ( parent o f \” input f i l e s \”) ?” ;
140

141 l o c inputLoc = | cwd : /// input%20 f i l e s | + (( isEmpty ( args ) | | s tartsWith ( args [ 0 ] , ”−”) ) ?
↪→ DEFAULT CHECKER INPUT : args [ 0 ] ) ;

142 i f ( ! e x i s t s ( inputLoc ) ) re turn ”The input f i l e could not be found . ” ;
143

144 // Turn checker input in to input f o r a pa r i t y game s o l v e r
145 AInput checker Input = parseInput ( inputLoc ) ;
146

147 checkerInput . formula = dnnf ( checker Input . formula ) ;
148 i f ( checkerInput == empty ( ) | | ! i sCon s i s t e n t ( checkerInput ) ) re turn ”” ;
149 tup l e [ bool isLocalCheck , map [ Pos i t ion , EvalGamePosData ] p o s i t i o n s ] pgInput =

↪→ gene ra teSo lve r Input ( checkerInput , PG INPUT LOCATION + PG INPUT FILENAME) ;
150

151 s t r s o l v e r = solverToUse ( args , pgInput . i sLoca lCheck ) ;
152 s t r pgOutput = exec ( ” pgso lve r / bin / pgso lv e r ” ,
153 args=(pgInput . i sLocalCheck ? [ ”− l o c a l ” , s o l ve r , ”0” ] : [ ”−g l oba l ” , s o l v e r ] ) + [

↪→ PG INPUT FILENAME] ,
154 workingDir=re so l v eLoca t i on ( | cwd : // / | ) ) ;

Page 77



155 s t r checkerOutput = pgInput . i sLocalCheck ? loca lOutput ( pgOutput , checkerInput ) :
↪→ globalOutput ( pgOutput , checkerInput , pgInput . p o s i t i o n s ) ;

156 r e turn checkerOutput ;
157 }
158

159 pub l i c void main ( l i s t [ s t r ] a rgs ) = p r i n t l n ( checkModel ( args ) ) ;
160

D.2 EvalGame

1 module EvalGame
2

3 import AbstractSyntax ;
4 import Boolean ;
5 import L i s t ;
6 import Set ;
7 import Ut i l ;
8

9 // An eva lua t i on game po s i t i o n as de f ined in https : // l i n k . s p r i n g e r . com/ chapter
↪→ /10.1007/978−3−319−73579−5 8

10 data Pos i t i on = pos ( s t r s ta te , AFormula formula ) | pos ( l i s t [ s t r s t a t e ] neighbourhood ,
↪→ AFormula formula ) ;

11

12 // Metadata about a po s i t i o n that i s r equ i r ed f o r the pa r i t y game s o l v e r input
13 data EvalGamePosData = meta ( i n t id , i n t pr io , bool owner , l i s t [ i n t ] s u c c e s s o r s ) ;
14

15 // Generate the input f o r a pa r i t y game s o l v e r based on po s i t i o n metadata
16 pub l i c s t r s o l v e r Input ( l i s t [ EvalGamePosData ] metaData ) {
17 l i s t [ s t r ] l i n e s = [ ”<meta . id> <meta . pr io> <t o In t (meta . owner )><succ >;”
18 | meta <− metaData , succ <− [ isEmpty (meta . s u c c e s s o r s ) ? ”” : ” < i n t e r c a l a t e ( ” , ” , meta .

↪→ s u c c e s s o r s )>” ] ] ;
19 r e turn ” pa r i t y <s i z e (metaData ) − 1>;\n” + i n t e r c a l a t e ( ”\n” , l i n e s ) ;
20 }
21

22 // Return a mapping from the eva lua t i on game po s i t i o n to unique i n t e g e r i d e n t i f i e r s
23 pub l i c map [ Pos i t ion , EvalGamePosData ] evalGamePosit ions (AInput input ) {
24 AFormula formula = input . formula ;
25 AGameModel model = input . model ;
26 s e t [ s t r ] i n i t i a l S t a t e s = isLocalCheck ( input ) ? { input . s t a t e } : modelStates ( input . model ) ;
27 map [ Pos i t ion , EvalGamePosData ] found = ( ) ;
28 i n t nextId = 0 ;
29 map [ s t r , s e t [ s t r ] ] statePropMap = ( s t a t e : toSet ( props ) | s ta t eDe f ( s ta te , props ) <− model .

↪→ s t a t eDe f s ) ;
30 f o r ( s t r s t a t e <− i n i t i a l S t a t e s ) {
31 i f ( pos ( s ta te , formula ) not in found )
32 <nextId , found> = r e g i s t e r P o s i t i o n s ( pos ( s ta te , formula ) , found , nextId , statePropMap ,

↪→ model . nbhfs ) ;
33 }
34 r e turn found ;
35 }
36

37 // Return the number o f f i x p o i n t ope ra to r s nested in a formula
38 pr i va t e i n t numFixpointOperators (AGame game) {
39 i n t count = 0 ;
40 v i s i t (game) {
41 case ang I t e r ( ) : count += 1 ;
42 case demIter ( ) : count += 1 ;
43 }
44 r e turn count ;
45 }
46

Page 78



47 // Return the p r i o r i t y o f a po s i t i o n in an eva lua t i on game
48 pr i va t e i n t pa r i t y ( pos ( , s t r a t (AGame game , ) ) ) {
49 switch (game) {
50 case ang I t e r ( ) : r e turn 2∗numFixpointOperators (game) + 1 ;
51 case demIter ( ) : r e turn 2∗numFixpointOperators (game) ;
52 }
53 r e turn 0 ;
54 }
55 pr i va t e i n t pa r i t y ( ) = 0 ;
56

57 // Return the neighboorhouds o f a s t a t e based on a neighbourhood func t i on
58 pr i va t e l i s t [ l i s t [ s t r ] ] neighbourhoodsOf ( s t r s ta te , ANeighbourhoodFunc nbhf ) {
59 f o r (AStateMap stateMap <− nbhf . stateMaps ) {
60 i f ( s t a t e == stateMap . s t a t e ) re turn [ s t a t e s | nbh( s t a t e s ) <− stateMap . neighbourhoods ] ;
61 }
62 r e turn [ ] ;
63 }
64

65 // Return the neighbourhood func t i on cor respond ing to the atomic game given
66 // Precond i t i on : nbhfs conta in s exac t l y one neighbourhood func t i on cor re spond ing to

↪→ atomicGame
67 pr i va t e ANeighbourhoodFunc nbhFuncOf ( s t r atomicGame , l i s t [ ANeighbourhoodFunc ] nbhfs ) {
68 f o r (ANeighbourhoodFunc nbhf <− nbhfs ) {
69 i f ( atomicGame == nbhf . atomicGame ) re turn nbhf ;
70 }
71 r e turn nbhf ( atomicGame , [ ] ) ;
72 }
73

74 // Return whether Abelard owns a po s i t i o n and the ne ighbour ing p o s i t i o n s
75 // When i t does not matter who owns the pos i t i on , f a l s e i s returned f o r the owner ( l a s t 7

↪→ ca s e s )
76 pr i va t e tup l e [ bool , l i s t [ Po s i t i on ] ] ownerAndNeighbours ( Pos i t i on p , map [ s t r , s e t [ s t r ] ]

↪→ s tateDe f s , l i s t [ ANeighbourhoodFunc ] nbhfs ) {
77 switch (p) {
78 case pos ( s t r s ta te , prop (name) ) :
79 i f (name in s t a t eDe f s [ s t a t e ] )
80 r e turn <true , [ ] > ;
81 e l s e
82 r e turn < f a l s e , [ ] > ;
83 case pos ( s t r s ta te , not ( prop (name) ) ) :
84 i f (name in s t a t eDe f s [ s t a t e ] )
85 r e turn < f a l s e , [ ] > ;
86 e l s e
87 r e turn <true , [ ] > ;
88 case pos ( s t r s ta te , and ( f1 , f 2 ) ) : r e turn <true , [ pos ( s ta te , f 1 ) , pos ( s ta te , f 2 ) ]> ;
89 case pos ( s t r s ta te , or ( f1 , f 2 ) ) : r e turn < f a l s e , [ pos ( s ta te , f 1 ) , pos ( s ta te , f 2 ) ]> ;
90 case pos ( s t r s ta te , s t r a t ( atomic ( g ) , f ) ) :
91 r e turn < f a l s e , [ pos (nbh , s t r a t ( atomic ( g ) , f ) ) | nbh <− neighbourhoodsOf ( s ta te ,

↪→ nbhFuncOf (g , nbhfs ) ) ]> ;
92 case pos ( l i s t [ s t r ] nbh , s t r a t ( atomic ( ) , f ) ) : r e turn <true , [ pos ( s ta te , f ) | s t a t e <−

↪→ nbh ]> ;
93 case pos ( s t r s ta te , s t r a t ( dual ( atomic ( g ) ) , f ) ) :
94 r e turn <true , [ pos (nbh , s t r a t ( dual ( atomic ( g ) ) , f ) ) | nbh <− neighbourhoodsOf ( s ta te ,

↪→ nbhFuncOf (g , nbhfs ) ) ]> ;
95 case pos ( l i s t [ s t r ] nbh , s t r a t ( dual ( atomic ( ) ) , f ) ) : r e turn < f a l s e , [ pos ( s ta te , f ) |

↪→ s t a t e <− nbh ]> ;
96 case pos ( s t r s ta te , s t r a t ( seq ( g1 , g2 ) , f ) ) : r e turn < f a l s e , [ pos ( s ta te , s t r a t ( g1 , s t r a t (

↪→ g2 , f ) ) ) ]> ;
97 case pos ( s t r s ta te , s t r a t ( angChoice ( g1 , g2 ) , f ) ) : r e turn < f a l s e , [ pos ( s ta te , or ( s t r a t ( g1

↪→ , f ) , s t r a t ( g2 , f ) ) ) ]> ;
98 case pos ( s t r s ta te , s t r a t ( demChoice ( g1 , g2 ) , f ) ) : r e turn < f a l s e , [ pos ( s ta te , and ( s t r a t (

↪→ g1 , f ) , s t r a t ( g2 , f ) ) ) ]> ;

Page 79



99 case pos ( s t r s ta te , s t r a t ( ang I t e r ( g ) , f ) ) : r e turn < f a l s e , [ pos ( s ta te , or ( f , s t r a t ( g ,
↪→ s t r a t ( ang I t e r ( g ) , f ) ) ) ) ]> ;

100 case pos ( s t r s ta te , s t r a t ( demIter ( g ) , f ) ) : r e turn < f a l s e , [ pos ( s ta te , and ( f , s t r a t ( g ,
↪→ s t r a t ( demIter ( g ) , f ) ) ) ) ]> ;

101 case pos ( s t r s ta te , s t r a t ( angTest ( f 1 ) , f 2 ) ) : r e turn < f a l s e , [ pos ( s ta te , and ( f1 , f 2 ) ) ]> ;
102 case pos ( s t r s ta te , s t r a t ( demTest ( f 1 ) , f 2 ) ) : r e turn < f a l s e , [ pos ( s ta te , or ( f1 , f 2 ) ) ]> ;
103 }
104 r e turn < f a l s e , [ ] > ;
105 }
106

107 // Reg i s t e r pos and a l l p o s i t i o n s r eachab l e from pos in found with t h e i r metadata
108 // Return found , a long with the su c c e s s o r o f the h i ghe s t id cu r r en t l y in use in found
109 pr i va t e tup l e [ int , map [ Pos i t ion , EvalGamePosData ] ] r e g i s t e r P o s i t i o n s ( Pos i t i on pos , map [

↪→ Pos i t ion , EvalGamePosData ] found , i n t nextId , map [ s t r , s e t [ s t r ] ] s ta teDe f s , l i s t [
↪→ ANeighbourhoodFunc ] nbhfs ) {

110 <owner , neighbours> = ownerAndNeighbours ( pos , s ta teDe f s , nbhfs ) ;
111 EvalGamePosData posData = meta ( nextId , pa r i t y ( pos ) , owner , [ ] ) ;
112 // Add s e l f −loop to dead−end nodes and s e t the p r i o r i t y co r r e spond ing ly to ensure

↪→ i d e n t i c a l r e s u l t s to ac tua l dead−end nodes
113 // This i s requ i red , as pg so lv e r does not support dead−end nodes
114 i f ( isEmpty ( ne ighbours ) ) {
115 neighbours = [ pos ] ;
116 posData . p r i o = to In t ( ! owner ) ;
117 }
118 found [ pos ] = posData ;
119 nextId += 1 ;
120 f o r ( Pos i t i on nextPos <− neighbours ) {
121 i f ( nextPos not in found ) {
122 found [ pos ] . s u c c e s s o r s += [ nextId ] ;
123 <nextId , found> = r e g i s t e r P o s i t i o n s ( nextPos , found , nextId , s tateDe f s , nbhfs ) ;
124 } e l s e {
125 found [ pos ] . s u c c e s s o r s += [ found [ nextPos ] . id ] ;
126 }
127 }
128 r e turn <nextId , found>;
129 }
130

D.3 DNNF

1 module DNNF
2

3 import AbstractSyntax ;
4

5 // Rewrite r u l e s taken from lemma 2 o f
6 // https : // l i n k . s p r i ng e r . com/ chapter /10.1007/978−3−319−73579−5 8
7 // along with gene ra l r ewr i t e r u l e s f o r obta in ing negat ion normal form in p r opo s i t i o n a l

↪→ l o g i c
8

9 // dnnf ( formula ) r e tu rn s an equ iva l en t formula in Dual Negation Normal Form
10

11 pub l i c AFormula dnnf (AFormula o r i g ) {
12 switch ( o r i g ) {
13 case not ( s t r a t (AGame g , AFormula f ) ) : r e turn s t r a t ( dnnf ( dual ( g ) ) , dnnf ( not ( f ) ) ) ;
14 case s t r a t ( dual (AGame g ) , AFormula f ) : r e turn dnnf ( not ( s t r a t ( g , not ( f ) ) ) ) ;
15 case not ( s t r a t (AGame g , not (AFormula f ) ) ) : r e turn s t r a t ( dnnf ( dual ( g ) ) , f ) ;
16 case not ( or (AFormula f1 , AFormula f2 ) ) : r e turn and ( dnnf ( not ( f 1 ) ) , dnnf ( not ( f 2 ) ) ) ;
17 case not ( and (AFormula f1 , AFormula f2 ) ) : r e turn or ( dnnf ( not ( f 1 ) ) , dnnf ( not ( f 2 ) ) ) ;
18 case not ( not (AFormula f ) ) : r e turn dnnf ( f ) ;
19 case and (AFormula f1 , AFormula f2 ) : r e turn and ( dnnf ( f 1 ) , dnnf ( f 2 ) ) ;
20 case or (AFormula f1 , AFormula f2 ) : r e turn or ( dnnf ( f 1 ) , dnnf ( f 2 ) ) ;

Page 80



21 case s t r a t (AGame g , AFormula f ) : r e turn s t r a t ( dnnf ( g ) , dnnf ( f ) ) ;
22 de f au l t : r e turn o r i g ;
23 }
24 }
25

26 pub l i c AGame dnnf (AGame o r i g ) {
27 switch ( o r i g ) {
28 case dual ( dual (AGame g ) ) : r e turn dnnf ( g ) ;
29 case dual ( seq (AGame g1 , AGame g2 ) ) : r e turn seq ( dnnf ( dual ( g1 ) ) , dnnf ( dual ( g2 ) ) ) ;
30 case dual ( angChoice (AGame g1 , AGame g2 ) ) : r e turn demChoice ( dnnf ( dual ( g1 ) ) , dnnf ( dual ( g2 )

↪→ ) ) ;
31 case dual ( demChoice (AGame g1 , AGame g2 ) ) : r e turn angChoice ( dnnf ( dual ( g1 ) ) , dnnf ( dual ( g2 )

↪→ ) ) ;
32 case dual ( ang I t e r (AGame g ) ) : r e turn demIter ( dnnf ( dual ( g ) ) ) ;
33 case dual ( demIter (AGame g ) ) : r e turn ang I t e r ( dnnf ( dual ( g ) ) ) ;
34 case dual ( angTest (AFormula f ) ) : r e turn demTest ( dnnf ( not ( f ) ) ) ;
35 case dual ( demTest (AFormula f ) ) : r e turn angTest ( dnnf ( not ( f ) ) ) ;
36 case angChoice (AGame g1 , AGame g2 ) : r e turn angChoice ( dnnf ( g1 ) , dnnf ( g2 ) ) ;
37 case demChoice (AGame g1 , AGame g2 ) : r e turn demChoice ( dnnf ( g1 ) , dnnf ( g2 ) ) ;
38 case seq (AGame g1 , AGame g2 ) : r e turn seq ( dnnf ( g1 ) , dnnf ( g2 ) ) ;
39 case ang I t e r (AGame g ) : r e turn ang I t e r ( dnnf ( g ) ) ;
40 case demIter (AGame g ) : r e turn demIter ( dnnf ( g ) ) ;
41 case angTest (AFormula f ) : r e turn angTest ( dnnf ( f ) ) ;
42 case demTest (AFormula f ) : r e turn demTest ( dnnf ( f ) ) ;
43 de f au l t : r e turn o r i g ;
44 }
45 }
46

D.4 Consistency

1 module Cons i s tency
2

3 import AbstractSyntax ;
4 import AST;
5 import EvalGame ;
6 import L i s t ;
7 import Set ;
8 import Ut i l ;
9

10 import IO ;
11

12 // Return whether the input only conta in s r e f e r e n c e s to s t a t e s that were de f ined in i t s
↪→ s t a t e d e f i n i t i o n s

13 pr i va t e bool hasUndef inedStates (AInput input ) {
14 AGameModel model = input . model ;
15 s e t [ s t r ] d e f i n edS ta t e s = modelStates (model ) ;
16 s e t [ s t r ] ment ionedStates = { stateMap . s t a t e | nbhf <− model . nbhfs , stateMap <− nbhf .

↪→ stateMaps}
17 + { s t a t e | nbhf <− model . nbhfs , stateMap <− nbhf . stateMaps , nbh <− stateMap .

↪→ neighbourhoods , s t a t e <− nbh . s t a t e s } ;
18 i f ( input . s t a t e != ”” ) mentionedStates += input . s t a t e ;
19 bool c on s i s t e n t = mentionedStates <= de f i n edS ta t e s ;
20 i f ( ! c o n s i s t e n t )
21 p r i n t l n ( ”The given input conta in s r e f e r e n c e s to s t a t e s that were not de f ined in i t s

↪→ s t a t e d e f i n i t i o n s . (< i n t e r c a l a t e ( ” , ” , t oL i s t ( mentionedStates − de f i n edS ta t e s ) )>)” ) ;
22 r e turn ! c on s i s t e n t ;
23 }
24

25 // Return whether the input formula only conta in s r e f e r e n c e s to p r opo s i t i o n s that were
↪→ de f ined in the game model

Page 81



26 pr i va t e bool hasUndefinedProps (AInput input ) {
27 s e t [ s t r ] de f inedProps = modelProps ( input . model ) ;
28 s e t [ s t r ] mentionedProps = {} ;
29 v i s i t ( input . formula ) {
30 case prop ( s t r name) : mentionedProps += name ;
31 }
32 bool c on s i s t e n t = mentionedProps <= def inedProps ;
33 i f ( ! c o n s i s t e n t )
34 p r i n t l n ( ”The given formula conta in s r e f e r e n c e s to p r opo s i t i o n s that were not de f ined in

↪→ the game model (< i n t e r c a l a t e ( ” , ” , t oL i s t ( mentionedProps − def inedProps ) )>) . ” ) ;
35 r e turn ! c on s i s t e n t ;
36 }
37

38 // Return whether the input formula only conta in s atomic games that were de f ined in the
↪→ neighbourhood func t i on s o f the game model

39 pr i va t e bool hasUndefinedGames (AInput input ) {
40 AGameModel model = input . model ;
41 s e t [ s t r ] definedGames = modelGames (model ) ;
42 s e t [ s t r ] mentionedGames = {} ;
43 v i s i t ( input . formula ) {
44 case atomic ( s t r name) : mentionedGames += name ;
45 }
46 bool c on s i s t e n t = mentionedGames <= definedGames ;
47 i f ( ! c o n s i s t e n t )
48 p r i n t l n ( ”The given formula conta in s atomic games that were not de f ined in the

↪→ neighbourhood func t i on s o f the game model (< i n t e r c a l a t e ( ” , ” , t oL i s t (mentionedGames −
↪→ definedGames ) )>) . ” ) ;

49 r e turn ! c on s i s t e n t ;
50 }
51

52 // Return whether the re are mu l t ip l e neighbourhood func t i on s f o r the same atomic game
53 pr i va t e bool hasDuplicateGames ( l i s t [ ANeighbourhoodFunc ] nbhfs ) {
54 s e t [ s t r ] games = {} ;
55 f o r ( nbhf ( s t r game , ) <− nbhfs ) {
56 i f ( game in games ) {
57 p r i n t l n ( ”The given model conta in s mu l t ip l e neighbourhood func t i on s f o r the same atomic

↪→ game (<game>) . ” ) ;
58 r e turn true ;
59 }
60 games += game ;
61 }
62 r e turn f a l s e ;
63 }
64

65 // Return whether the re are mu l t ip l e mappings f o r the same s t a t e with in any neighbourhood
↪→ f unc t i on

66 pr i va t e bool hasDuplicateMappings ( l i s t [ ANeighbourhoodFunc ] nbhfs ) {
67 s e t [ s t r ] s t a t e s = {} ;
68 f o r ( nbhf ( , l i s t [ AStateMap ] stateMaps ) <− nbhfs ) {
69 f o r ( stateMap ( s t r s ta te , ) <− stateMaps ) {
70 i f ( s t a t e in s t a t e s ) {
71 p r i n t l n ( ”The given neighbourhood func t i on s conta in mul t ip l e mappings f o r the same

↪→ s t a t e (< s ta te >) . ” ) ;
72 r e turn true ;
73 }
74 s t a t e s += s t a t e ;
75 }
76 s t a t e s = {} ;
77 }
78 r e turn f a l s e ;
79 }
80

Page 82



81 // Return whether the re are mu l t ip l e s t a t e d e f i n i t i o n s with the same name
82 pr i va t e bool hasDup l i ca t eSta te s ( l i s t [ AStateDef ] s t a t eDe f s ) {
83 s e t [ s t r ] s e enSta t e s = {} ;
84 f o r ( s ta t eDe f ( s ta te , ) <− s t a t eDe f s ) {
85 i f ( s t a t e in s e enSta t e s ) {
86 p r i n t l n ( ”The given s t a t e d e f i n i t i o n s conta in mul t ip l e s t a t e s with the same name (<

↪→ s ta te >) . ” ) ;
87 r e turn true ;
88 }
89 s e enSta t e s += s t a t e ;
90 }
91 r e turn f a l s e ;
92 }
93

94 // Return whether the input conta in s any i n c o n s i s t e n c i e s with regards to s t a t e s , p r op e r t i e s
↪→ or atomic games and pr in t messages co r r e spond ing ly

95 pub l i c bool i sCon s i s t e n t (AInput input ) {
96 l i s t [ ANeighbourhoodFunc ] nbhfs = input . model . nbhfs ;
97 i f ( anyTrue ( [
98 hasUndef inedStates ( input ) , hasUndefinedProps ( input ) ,
99 hasUndefinedGames ( input ) , hasDuplicateGames ( nbhfs ) ,

100 hasDuplicateMappings ( nbhfs ) , hasDup l i ca t eSta te s ( input . model . s t a t eDe f s )
101 ] ) ) {
102 p r i n t l n ( ”Terminating program” ) ;
103 r e turn f a l s e ;
104 }
105 r e turn t rue ;
106 }
107

D.5 AbstractSyntax

1 module AbstractSyntax
2

3 // De f i n i t i o n f o r the ab s t r a c t syntax o f a complete input f o r the model checker
4 data AInput = input (AGameModel model , AFormula formula , s t r s t a t e )
5 | empty ( ) ;
6

7 // De f i n i t i o n s f o r the ab s t r a c t syntax o f a game model
8

9 data AGameModel = model ( l i s t [ AStateDef ] s t a t eDe f s , l i s t [ ANeighbourhoodFunc ] nbhfs ) ;
10 data AStateDef = sta teDe f ( s t r s ta te , l i s t [ s t r ] props ) ;
11

12 data ANeighbourhoodFunc = nbhf ( s t r atomicGame , l i s t [ AStateMap ] stateMaps ) ;
13 data AStateMap = stateMap ( s t r s ta te , l i s t [ ANeighbourhood ] neighbourhoods ) ;
14 data ANeighbourhood = nbh( l i s t [ s t r ] s t a t e s ) ;
15

16 // De f i n i t i o n s f o r the ab s t r a c t syntax o f a formula
17

18 data AFormula
19 = prop ( s t r name)
20 | not (AFormula f )
21 | and (AFormula f1 , AFormula f2 )
22 | or (AFormula f1 , AFormula f2 )
23 | s t r a t (AGame g , AFormula f ) ;
24

25 data AGame
26 = atomic ( s t r name)
27 | dual (AGame g )
28 | angChoice (AGame g1 , AGame g2 )
29 | demChoice (AGame g1 , AGame g2 )

Page 83



30 | seq (AGame g1 , AGame g2 )
31 | ang I t e r (AGame g )
32 | demIter (AGame g )
33 | angTest (AFormula f )
34 | demTest (AFormula f ) ;
35

D.6 ConcreteSyntax

1 module ConcreteSyntax
2

3 // Whitespace can be i n s e r t e d in between any two l i t e r a l s and/ or nontermina ls in the syntax
↪→ d e f i n i t i o n s

4 l ayout Whitespace = [\ t \n\ r \ ] ∗ ;
5

6 // Regular exp r e s s i on used f o r a l l i d e n t i f i e r s
7 l e x i c a l I d e n t i f i e r = [ a−zA−Z0−9 ] !<< [ a−zA−Z ] [ a−zA−Z0−9 ]∗ !>> [ a−zA−Z0−9 ] ;
8 l e x i c a l State = I d e n t i f i e r ;
9 l e x i c a l Propos i t i on = I d e n t i f i e r ;

10 l e x i c a l AtomicGame = I d e n t i f i e r ;
11

12 // De f i n i t i o n f o r the conc re t e syntax o f a complete input f o r the model checker
13 s t a r t syntax Input = GameModel Formula State ? ;
14

15 // De f i n i t i o n s f o r the conc r e t e syntax o f a game model
16

17 s t a r t syntax GameModel = ”model” StateDef s ” ; ” NeighbourhoodFunc∗ ”end model” ;
18

19 syntax StateDef s = StateDef RestStateDef ∗ ;
20 syntax StateDef = State Propos i t i on ∗ ;
21 syntax RestStateDef = ” , ” StateDef ;
22

23 syntax NeighbourhoodFunc = AtomicGame ” : ” StateMap+ ”end func ” ;
24 syntax StateMap = State ”−\>” Neighbourhoods ” ; ” ;
25 syntax Neighbourhoods = Neighbourhood RestNeighbourhood ∗ ;
26 syntax RestNeighbourhood = ” , ” Neighbourhood ;
27 syntax Neighbourhood = State+;
28

29 // De f i n i t i o n s f o r the conc r e t e syntax o f a formula ( i . e . , the l i t e r a l input s t r i n g s )
30

31 s t a r t syntax Formula
32 = Propos i t i on
33 | ”not ( ” Formula ” ) ”
34 | ”and ( ” Formula ” , ” Formula ” ) ”
35 | ” or ( ” Formula ” , ” Formula ” ) ”
36 | ” s t r a t ( ” Game ” , ” Formula ” ) ” ;
37

38 syntax Game
39 = AtomicGame
40 | ”dual ( ” Game ” ) ”
41 | ” ang cho i ce ( ” Game ” , ” Game ” ) ”
42 | ”dem choice ( ” Game ” , ” Game ” ) ”
43 | ” seq ( ” Game ” , ” Game ” ) ”
44 | ” ang i t e r ( ” Game ” ) ”
45 | ” dem iter ( ” Game ” ) ”
46 | ” ang t e s t ( ” Formula ” ) ”
47 | ” dem test ( ” Formula ” ) ” ;
48

Page 84



D.7 AST

1 module AST
2

3 import AbstractSyntax ;
4 import ConcreteSyntax ;
5 import IO ;
6 import ParseTree ;
7 import Set ;
8

9 // Concrete d e f i n i t i o n o f an empty neighbourhood . Wil l be converted to an empty l i s t o f
↪→ s t a t e s .

10 pr i va t e s t r EMPTYNBH = ”Empty” ;
11

12 // Take the f i l e l o c a t i o n o f a f i l e conta in ing a complete input and return i t s cor re spond ing
↪→ AST

13 pub l i c AInput parseInput ( l o c l ) {
14 Tree c s t ;
15 t ry
16 c s t = parse(#s t a r t [ Input ] , l , al lowAmbiguity=true ) ;
17 catch ParseError ( l o c l o c a t i o n ) : {
18 l o c re so lvedLoc = re so l v eLoca t i on ( l o c a t i o n ) ;
19 p r i n t l n ( ”A parse e r r o r occured at <re so lvedLoc . ur i> from ( l i n e , column ) (< r e so lvedLoc .

↪→ begin . l i n e >, <re so lvedLoc . begin . column>) u n t i l (< r e so lvedLoc . end . l i n e >, <r e so lvedLoc .
↪→ end . column>) . Terminating program . ” ) ;

20 r e turn empty ( ) ;
21 }
22 r e turn ast Input ( c s t ) ;
23 }
24

25 // Take a CST of a complete input and return the cor respond ing AST
26 pr i va t e AInput ast Input ( s t a r t [ Input ] t r e e ) {
27 bool ready = f a l s e ;
28 // Get r i d o f amb igu i t i e s at the root be f o r e c a l l i n g t r e e . top ( amb igu i t i e s do not have a

↪→ top )
29 do {
30 switch ( t r e e ) {
31 case amb( s e t [ Tree ] a l t e r n a t i v e s ) :
32 t r e e = getOneFrom( a l t e r n a t i v e s ) ;
33 de f au l t :
34 ready = true ;
35 }
36 } whi le ( ! ready ) ;
37 Input input = t r e e . top ;
38 r e turn as t ( input ) ;
39 }
40

41 // Disambiguate a CST whi le c r e a t i n g the AST
42 pr i va t e va lue as t (amb( s e t [ Tree ] a l t e r n a t i v e s ) ) = as t ( getOneFrom( a l t e r n a t i v e s ) ) ;
43

44 // Helpers f o r turn ing CST of a complete input in to an AST
45 pr i va t e AInput as t ( ( Input ) ‘<GameModel m><Formula f><State s> ‘) = input ( a s t (m) , a s t ( f ) , ”<s>”

↪→ ) ;
46 pr i va t e AInput as t ( ( Input ) ‘<GameModel m><Formula f > ‘) = input ( a s t (m) , a s t ( f ) , ”” ) ;
47

48 // Helpers f o r turn ing CST of a game model i n to an AST
49 pr i va t e AGameModel a s t ( (GameModel ) ‘model<StateDef s de fs>;<NeighbourhoodFunc∗ nbhfs>end model

↪→ ‘ ) = model ( a s t ( d e f s ) , [ a s t ( nbhf ) | nbhf <− nbhfs ] ) ;
50

51 pr i va t e l i s t [ AStateDef ] a s t ( ( StateDef s ) ‘<StateDef def><RestStateDef ∗ r e s t > ‘) = [ a s t ( de f ) ] +
↪→ [ a s t ( other ) | other <− r e s t ] ;

52 pr i va t e AStateDef a s t ( ( StateDef ) ‘<State s><Propos i t i on ∗ ps> ‘) = s ta teDe f ( ”<s>” , [ ”<p>” | p

Page 85



↪→ <− ps ] ) ;
53 pr i va t e AStateDef a s t ( ( RestStateDef ) ‘ ,< StateDef def > ‘) = as t ( de f ) ;
54

55 pr i va t e ANeighbourhoodFunc as t ( ( NeighbourhoodFunc ) ‘<AtomicGame g>:<StateMap+ ms>end func ‘ ) =
↪→ nbhf ( ”<g>” , [ a s t (m) | m <− ms ] ) ;

56 pr i va t e AStateMap as t ( ( StateMap ) ‘<State s>−\><Neighbourhood nbh><RestNeighbourhood∗ r e s t > ; ‘ )
↪→ = stateMap ( ”<s>” , [ a s t (nbh) ] + [ a s t ( other ) | other <− r e s t ] ) ;

57 pr i va t e ANeighbourhood as t ( ( Neighbourhood ) ‘<State+ s ta t e s > ‘) {
58 l i s t [ s t r ] s t a t e L i s t = [ ”<s>” | s <− s t a t e s ] ;
59 i f ( s t a t e L i s t [ 0 ] == EMPTYNBH) return nbh ( [ ] ) ;
60 r e turn nbh( s t a t e L i s t ) ;
61 }
62 pr i va t e ANeighbourhood as t ( ( RestNeighbourhood ) ‘ ,<Neighbourhood nbh> ‘) = as t (nbh) ;
63

64 // Helpers f o r turn ing CST of a formula in to an AST
65 pr i va t e AFormula as t ( ( Formula ) ‘< I d e n t i f i e r p> ‘) = prop ( ”<p>” ) ;
66 pr i va t e AFormula as t ( ( Formula ) ‘ not(<Formula f1>) ‘ ) = not ( a s t ( f 1 ) ) ;
67 pr i va t e AFormula as t ( ( Formula ) ‘ and(<Formula f1>,<Formula f2>) ‘ ) = and ( as t ( f 1 ) , a s t ( f 2 ) ) ;
68 pr i va t e AFormula as t ( ( Formula ) ‘ or(<Formula f1>,<Formula f2>) ‘ ) = or ( a s t ( f 1 ) , a s t ( f 2 ) ) ;
69 pr i va t e AFormula as t ( ( Formula ) ‘ s t r a t (<Game g1>,<Formula f1>) ‘ ) = s t r a t ( a s t ( g1 ) , a s t ( f 1 ) ) ;
70

71 // Helpers f o r turn ing CST of a game in to an AST
72 pr i va t e AGame as t ( (Game) ‘< I d e n t i f i e r atom> ‘) = atomic ( ”<atom>” ) ;
73 pr i va t e AGame as t ( (Game) ‘ dual(<Game g1>) ‘ ) = dual ( a s t ( g1 ) ) ;
74 pr i va t e AGame as t ( (Game) ‘ ang cho i ce (<Game g1>,<Game g2>) ‘ ) = angChoice ( a s t ( g1 ) , a s t ( g2 ) ) ;
75 pr i va t e AGame as t ( (Game) ‘ dem choice(<Game g1>,<Game g2>) ‘ ) = demChoice ( a s t ( g1 ) , a s t ( g2 ) ) ;
76 pr i va t e AGame as t ( (Game) ‘ seq(<Game g1>,<Game g2>) ‘ ) = seq ( as t ( g1 ) , a s t ( g2 ) ) ;
77 pr i va t e AGame as t ( (Game) ‘ a n g i t e r (<Game g1>) ‘ ) = angI t e r ( a s t ( g1 ) ) ;
78 pr i va t e AGame as t ( (Game) ‘ dem iter (<Game g1>) ‘ ) = demIter ( a s t ( g1 ) ) ;
79 pr i va t e AGame as t ( (Game) ‘ ang t e s t (<Formula f1>) ‘ ) = angTest ( a s t ( f 1 ) ) ;
80 pr i va t e AGame as t ( (Game) ‘ dem test(<Formula f1>) ‘ ) = demTest ( a s t ( f 1 ) ) ; module AST
81

82 import AbstractSyntax ;
83 import ConcreteSyntax ;
84 import IO ;
85 import ParseTree ;
86 import Set ;
87

88 // Concrete d e f i n i t i o n o f an empty neighbourhood . Wil l be converted to an empty l i s t o f
↪→ s t a t e s .

89 pr i va t e s t r EMPTYNBH = ”Empty” ;
90

91 // Take the f i l e l o c a t i o n o f a f i l e conta in ing a complete input and return i t s cor re spond ing
↪→ AST

92 pub l i c AInput parseInput ( l o c l ) {
93 Tree c s t ;
94 t ry
95 c s t = parse(#s t a r t [ Input ] , l , al lowAmbiguity=true ) ;
96 catch ParseError ( l o c l o c a t i o n ) : {
97 l o c re so lvedLoc = re so l v eLoca t i on ( l o c a t i o n ) ;
98 p r i n t l n ( ”A parse e r r o r occured at <re so lvedLoc . ur i> from ( l i n e , column ) (< r e so lvedLoc .

↪→ begin . l i n e >, <re so lvedLoc . begin . column>) u n t i l (< r e so lvedLoc . end . l i n e >, <r e so lvedLoc .
↪→ end . column>) . Terminating program . ” ) ;

99 r e turn empty ( ) ;
100 }
101 r e turn ast Input ( c s t ) ;
102 }
103

104 // Take a CST of a complete input and return the cor respond ing AST
105 pr i va t e AInput ast Input ( s t a r t [ Input ] t r e e ) {
106 bool ready = f a l s e ;
107 // Get r i d o f amb igu i t i e s at the root be f o r e c a l l i n g t r e e . top ( amb igu i t i e s do not have a

Page 86



↪→ top )
108 do {
109 switch ( t r e e ) {
110 case amb( s e t [ Tree ] a l t e r n a t i v e s ) :
111 t r e e = getOneFrom( a l t e r n a t i v e s ) ;
112 de f au l t :
113 ready = true ;
114 }
115 } whi le ( ! ready ) ;
116 Input input = t r e e . top ;
117 r e turn as t ( input ) ;
118 }
119

120 // Disambiguate a CST whi le c r e a t i n g the AST
121 pr i va t e va lue as t (amb( s e t [ Tree ] a l t e r n a t i v e s ) ) = as t ( getOneFrom( a l t e r n a t i v e s ) ) ;
122

123 // Helpers f o r turn ing CST of a complete input in to an AST
124 pr i va t e AInput as t ( ( Input ) ‘<GameModel m><Formula f><State s> ‘) = input ( a s t (m) , a s t ( f ) , ”<s>”

↪→ ) ;
125 pr i va t e AInput as t ( ( Input ) ‘<GameModel m><Formula f > ‘) = input ( a s t (m) , a s t ( f ) , ”” ) ;
126

127 // Helpers f o r turn ing CST of a game model i n to an AST
128 pr i va t e AGameModel a s t ( (GameModel ) ‘model<StateDef s de fs>;<NeighbourhoodFunc∗ nbhfs>end model

↪→ ‘ ) = model ( a s t ( d e f s ) , [ a s t ( nbhf ) | nbhf <− nbhfs ] ) ;
129

130 pr i va t e l i s t [ AStateDef ] a s t ( ( StateDef s ) ‘<StateDef def><RestStateDef ∗ r e s t > ‘) = [ a s t ( de f ) ] +
↪→ [ a s t ( other ) | other <− r e s t ] ;

131 pr i va t e AStateDef a s t ( ( StateDef ) ‘<State s><Propos i t i on ∗ ps> ‘) = s ta teDe f ( ”<s>” , [ ”<p>” | p
↪→ <− ps ] ) ;

132 pr i va t e AStateDef a s t ( ( RestStateDef ) ‘ ,< StateDef def > ‘) = as t ( de f ) ;
133

134 pr i va t e ANeighbourhoodFunc as t ( ( NeighbourhoodFunc ) ‘<AtomicGame g>:<StateMap+ ms>end func ‘ ) =
↪→ nbhf ( ”<g>” , [ a s t (m) | m <− ms ] ) ;

135 pr i va t e AStateMap as t ( ( StateMap ) ‘<State s>−\><Neighbourhood nbh><RestNeighbourhood∗ r e s t > ; ‘ )
↪→ = stateMap ( ”<s>” , [ a s t (nbh) ] + [ a s t ( other ) | other <− r e s t ] ) ;

136 pr i va t e ANeighbourhood as t ( ( Neighbourhood ) ‘<State+ s ta t e s > ‘) {
137 l i s t [ s t r ] s t a t e L i s t = [ ”<s>” | s <− s t a t e s ] ;
138 i f ( s t a t e L i s t [ 0 ] == EMPTYNBH) return nbh ( [ ] ) ;
139 r e turn nbh( s t a t e L i s t ) ;
140 }
141 pr i va t e ANeighbourhood as t ( ( RestNeighbourhood ) ‘ ,<Neighbourhood nbh> ‘) = as t (nbh) ;
142

143 // Helpers f o r turn ing CST of a formula in to an AST
144 pr i va t e AFormula as t ( ( Formula ) ‘< I d e n t i f i e r p> ‘) = prop ( ”<p>” ) ;
145 pr i va t e AFormula as t ( ( Formula ) ‘ not(<Formula f1>) ‘ ) = not ( a s t ( f 1 ) ) ;
146 pr i va t e AFormula as t ( ( Formula ) ‘ and(<Formula f1>,<Formula f2>) ‘ ) = and ( as t ( f 1 ) , a s t ( f 2 ) ) ;
147 pr i va t e AFormula as t ( ( Formula ) ‘ or(<Formula f1>,<Formula f2>) ‘ ) = or ( a s t ( f 1 ) , a s t ( f 2 ) ) ;
148 pr i va t e AFormula as t ( ( Formula ) ‘ s t r a t (<Game g1>,<Formula f1>) ‘ ) = s t r a t ( a s t ( g1 ) , a s t ( f 1 ) ) ;
149

150 // Helpers f o r turn ing CST of a game in to an AST
151 pr i va t e AGame as t ( (Game) ‘< I d e n t i f i e r atom> ‘) = atomic ( ”<atom>” ) ;
152 pr i va t e AGame as t ( (Game) ‘ dual(<Game g1>) ‘ ) = dual ( a s t ( g1 ) ) ;
153 pr i va t e AGame as t ( (Game) ‘ ang cho i ce (<Game g1>,<Game g2>) ‘ ) = angChoice ( a s t ( g1 ) , a s t ( g2 ) ) ;
154 pr i va t e AGame as t ( (Game) ‘ dem choice(<Game g1>,<Game g2>) ‘ ) = demChoice ( a s t ( g1 ) , a s t ( g2 ) ) ;
155 pr i va t e AGame as t ( (Game) ‘ seq(<Game g1>,<Game g2>) ‘ ) = seq ( as t ( g1 ) , a s t ( g2 ) ) ;
156 pr i va t e AGame as t ( (Game) ‘ a n g i t e r (<Game g1>) ‘ ) = angI t e r ( a s t ( g1 ) ) ;
157 pr i va t e AGame as t ( (Game) ‘ dem iter (<Game g1>) ‘ ) = demIter ( a s t ( g1 ) ) ;
158 pr i va t e AGame as t ( (Game) ‘ ang t e s t (<Formula f1>) ‘ ) = angTest ( a s t ( f 1 ) ) ;
159 pr i va t e AGame as t ( (Game) ‘ dem test(<Formula f1>) ‘ ) = demTest ( a s t ( f 1 ) ) ;
160

Page 87



D.8 Util

1 module Ut i l
2

3 import AbstractSyntax ;
4

5 // Return whether any boo leans in a l i s t are t rue or f a l s e
6 pub l i c bool anyTrue ( l i s t [ bool ] l ) = true in l ;
7 pub l i c bool anyFalse ( l i s t [ bool ] l ) = f a l s e in l ;
8

9 // Return whether the user would l i k e to perform a l o c a l model check based on the input
10 pub l i c bool i sLoca lCheck (AInput input ) = input . s t a t e != ”” ;
11

12 // modelXXX re tu rn s the s e t o f XXXs that were de f ined in the game model
13 pub l i c s e t [ s t r ] modelStates (AGameModel model ) = { s t a t e | s ta t eDe f ( s ta te , ) <− model .

↪→ s t a t eDe f s } ;
14 pub l i c s e t [ s t r ] modelProps (AGameModel model ) = {prop | s ta t eDe f ( , props ) <− model . s ta teDe f s

↪→ , prop <− props } ;
15 pub l i c s e t [ s t r ] modelGames (AGameModel model ) = {game | nbhf (game , ) <− model . nbhfs } ;
16

D.9 ComplexityAnalysis

1 module ComplexityAnalys is
2

3 import AbstractSyntax ;
4 import AST;
5 import IO ;
6 import L i s t ;
7 import ModelChecker ;
8 import Ut i l ;
9 import u t i l : : Math ;

10 import Set ;
11 import S t r ing ;
12

13 pr i va t e data Predeces sor = ang e l i c ( ) | demonic ( ) | ne i t h e r ( ) ;
14

15 // https : // l i n k . s p r i ng e r . com/ a r t i c l e /10.1023/A:1027354826364
16 // Return the s i z e o f a formula ( the number o f symbols i t conta in s )
17 pr i va t e i n t fo rmulaS i ze (AFormula formula ) {
18 i n t s i z e = 0 ;
19 v i s i t ( formula ) {
20 case s t r : ;
21 case : s i z e += 1 ;
22 }
23 r e turn s i z e ;
24 }
25

26 // https : // l i n k . s p r i ng e r . com/ a r t i c l e /10.1023/A:1027354826364
27 // Return the s i z e o f a game model ( s t a t e s + neighbourhoods )
28 pr i va t e i n t modelSize (AGameModel model ) {
29 i n t numStates = s i z e ( modelStates (model ) ) ;
30 t ry
31 r e turn numStates + sum ( [ s i z e ( s t a t e L i s t ) | nbhf <− model . nbhfs , stateMap <− nbhf .

↪→ stateMaps , nbh( s t a t e L i s t ) <− stateMap . neighbourhoods ] ) ;
32 catch EmptyList ( ) : r e turn numStates ;
33 }
34

35 // https : // l i n k . s p r i ng e r . com/ a r t i c l e /10.1023/A:1027354826364
36 // Return a l i s t o f a l t e r n a t i o n depths that are nested in a game , the maximum of which i s

↪→ the a l t e r n a t i o n depth o f the whole game

Page 88



37 pr i va t e l i s t [ i n t ] a l tDepths ( Predeces so r predeces so r , AGame game , l i s t [ i n t ] depths ) {
38 switch (game) {
39 case atomic ( ) : r e turn depths ;
40 case dual ( g ) : r e turn altDepths ( predeces sor , g , depths ) ;
41 case angChoice ( g1 , g2 ) : r e turn altDepths ( predeces sor , g1 , [ head ( depths ) ] ) + altDepths (

↪→ predeces sor , g2 , [ head ( depths ) ] ) + t a i l ( depths ) ;
42 case demChoice ( g1 , g2 ) : r e turn altDepths ( predeces sor , g1 , [ head ( depths ) ] ) + altDepths (

↪→ predeces sor , g2 , [ head ( depths ) ] ) + t a i l ( depths ) ;
43 case seq ( g1 , g2 ) : r e turn altDepths ( predeces sor , g1 , [ head ( depths ) ] ) + altDepths (

↪→ predeces sor , g2 , [ head ( depths ) ] ) + t a i l ( depths ) ;
44 case ang I t e r ( g ) : {
45 i f ( p r edec e s s o r == ang e l i c ( ) ) r e turn altDepths ( predeces so r , g , depths ) ;
46 r e turn altDepths ( ang e l i c ( ) , g , [ head ( depths ) + 1 ] + t a i l ( depths ) ) ;
47 }
48 case demIter ( g ) : {
49 i f ( p r edec e s s o r == demonic ( ) ) re turn altDepths ( predece s sor , g , depths ) ;
50 r e turn altDepths ( demonic ( ) , g , [ head ( depths ) + 1 ] + t a i l ( depths ) ) ;
51 }
52 case angTest ( f ) : r e turn altDepths ( n e i t h e r ( ) , f , [ 0 ] ) + depths ;
53 case demTest ( f ) : r e turn altDepths ( n e i t h e r ( ) , f , [ 0 ] ) + depths ;
54 }
55 }
56

57 // https : // l i n k . s p r i ng e r . com/ a r t i c l e /10.1023/A:1027354826364
58 // Return a l i s t o f a l t e r n a t i o n depths that are nested in a formula , the maximum of which i s

↪→ the a l t e r n a t i o n depth o f the whole formula
59 pr i va t e l i s t [ i n t ] a l tDepths ( Predeces so r predeces so r , AFormula formula , l i s t [ i n t ] depths ) {
60 switch ( formula ) {
61 case prop ( ) : r e turn depths ;
62 case not ( f ) : r e turn altDepths ( predece s sor , f , depths ) ;
63 case and ( f1 , f 2 ) : r e turn altDepths ( predece s sor , f1 , [ head ( depths ) ] ) + altDepths (

↪→ predeces sor , f2 , [ head ( depths ) ] ) + t a i l ( depths ) ;
64 case or ( f1 , f 2 ) : r e turn altDepths ( predece s sor , f1 , [ head ( depths ) ] ) + altDepths (

↪→ predeces sor , f2 , [ head ( depths ) ] ) + t a i l ( depths ) ;
65 case s t r a t ( g , f ) : r e turn altDepths ( predece s sor , f , [ head ( depths ) ] ) + altDepths (

↪→ predeces sor , g , [ head ( depths ) ] ) + t a i l ( depths ) ;
66 }
67 }
68

69 // Return the a l t e r n a t i o n depth o f a formula
70 pr i va t e i n t a l t e rnat ionDepth (AFormula formula ) {
71 r e turn max( altDepths ( n e i t h e r ( ) , formula , [ 0 ] ) ) ;
72 }
73

74 // Pr int some s t a t i s t i c s about an input f i l e that are r e l e van t to time complexity ana l y s i s
75 pub l i c void reportComplexityParams ( l i s t [ s t r ] a rgs ) {
76 i f ( anyFalse ( [ e x i s t s ( | cwd : ///bin | ) , e x i s t s ( | cwd :/// s r c | ) , e x i s t s ( | cwd :/// input%20 f i l e s | ) ,

↪→ e x i s t s ( | cwd :/// pgso lv e r | ) ] ) ) {
77 p r i n t l n ( ”Could not f i nd f i l e s r equ i r ed to run the model checker . Are you working from

↪→ the root f o l d e r ( parent o f \” input f i l e s \”) ?” ) ;
78 r e turn ;
79 }
80 l o c inputLoc = | cwd : /// input%20 f i l e s | + (( isEmpty ( args ) | | s tartsWith ( args [ 0 ] , ”−”) ) ?

↪→ DEFAULT CHECKER INPUT : args [ 0 ] ) ;
81 i f ( ! e x i s t s ( inputLoc ) ) {
82 p r i n t l n ( ”The input f i l e could not be found . ” ) ;
83 r e turn ;
84 }
85 AInput input = parseInput ( inputLoc ) ;
86 p r i n t l n (
87 ”Model s i z e : <modelSize ( input . model )>
88 ’ Formula s i z e : <f o rmulaS i ze ( input . formula )>

Page 89



89 ’ A l t e rnat i on depth : <a l te rnat ionDepth ( input . formula )>
90 ’Number o f s t a t e s : <s i z e ( modelStates ( input . model ) )>”
91 ) ;
92 }
93

Page 90


	Introduction and Motivation
	Preliminaries
	Game Logic
	Parity Games
	The Evaluation Game

	Model Checking

	Program Description
	Requirements
	Must Have
	Should Have
	Could Have

	Functionality
	Implementation
	Programming Language
	Parity Game Solver
	Input Format
	Process
	Key Procedures
	Output Format

	Installation and Usage

	Program Testing
	Small Inputs
	Large Inputs

	Experimental Time Complexity Verification
	Theoretical Upper Time Bounds
	Upper Time Bound Parity Game Solver
	Hypotheses
	Experimental Set-Up
	Input Generation
	Description Experiment 1
	Description Experiment 2
	Description Experiment 3
	Description Experiment 4
	Description Experiment 5
	Description Experiment 6
	Description Experiment 7

	Results
	Results Experiment 1
	Results Experiment 2
	Results Experiment 3
	Results Experiment 4
	Results Experiment 5
	Results Experiment 6
	Results Experiment 7

	Conclusion

	Conclusion
	General Conclusions
	Future Work
	Program Modifications
	Time Complexity Evaluation


	Appendix
	Proofs
	Program Testing
	Small Inputs
	Large Input Example

	Time Complexity Verification
	Tables of Execution Time Measurements

	Source Code (per module)
	ModelChecker
	EvalGame
	DNNF
	Consistency
	AbstractSyntax
	ConcreteSyntax
	AST
	Util
	ComplexityAnalysis


