
Simulations of zero-one laws in modal logics GL,

S4 and K4

Bachelor’s Project Thesis

Jakub Zbigniew Lucki, s3986209, j.z.lucki@student.rug.nl,

Supervisors: Prof. Dr. Rineke Verbrugge

Abstract: A zero-one law is a property of modal logics stating that any formula is either almost
always valid or almost always invalid in a given modal logic. This property can concern both
model validity and frame validity. Furthermore, it has been shown that all modal logics obey
zero-one laws concerning model validity. However, in the case of frame validity, only a modal
logic GL has been successfully proven to have a zero-one law, while several others, such as modal
logics S4 and K4, are only hypothesised to obey it. This study aims to empirically confirm
the proof for frames and models in GL, and check whether zero-one laws hold for frames and
models of S4 and K4. To accomplish this, each of 8047 distinct formulas was validated in 5000
randomly generated models and 500 randomly generated frames of each modal logic. Kleitman
and Rothschild’s result about the structure of almost all finite partial orders was used as a base
for generating models and frames. The experiment’s results suggest that the above-mentioned
modal logics obey zero-one laws for both models and frames.

1 Introduction

Model theory is a field at the intersection of math-
ematics and philosophy, which is concerned with
formal languages and their interpretations (Hodges,
2022). Syntactical rules of a language are nothing
more than a framework. Therefore, to make any
inferences about their semantics we need to infuse
them with context or in different words interpret
them. Such interpretation results in a model, which
sets the context for particular situation. As a con-
sequence we can deliberate about it through the
notion of model-theoretic truth.

Models are not restricted in size by definition
and many techniques in classical logic assume them
to be infinite (Hodges, 2022). However, infinite
structures are infeasible in real-world applications.
Therefore, to make use of models the study of finite
structures is needed (Immerman, 2012, p.6).

A finite structure contains a universe A which
is a finite set, and a vocabulary σ which contains
possible relations P,Q,R, ... with associated ari-
ties and possibly constants c, d, ... (Ebbinghaus &
Flum, 2005). Examples of finite structures include
graphs, orders and most importantly for us finite
Kripke frames and finite Kripke models.

One of the most intriguing properties of such

structures are zero-one laws. In probability the-
ory, zero-one laws refer to events the occurrence
of which is determined by random variables with
probabilities of either 0 or 1 (Prokhorov, 2011).
However, the zero-one laws which hold only for a
subset of all finite structures are slightly different,
since they are concerned with limits rather than
raw probabilities.

The zero-one law for finite structures is defined
as follows (adapted from Verbrugge, 2021). Let L
be a vocabulary such as first-order logic without
function symbols and let An(L) be the set of all
labelled L-structures with universe 1, ..., n. Now let
µn(σ) indicate the fraction of members of An(L) in
which formula σ is true, that is:

µn(σ) =
|M ∈ An(L) : M |= σ|

|An(L)|
,

where M is a model or in other words an
L-structure. Then for every σ ∈ L, either
limn→∞µn(σ) = 0 or limn→∞µn(σ) = 1. We can
refer to this as a formula being almost surely valid
or almost surely not valid with respect to mod-
els. However, we can also formulate this law for
frame validity, by changing the meaning of An(L)
to the set of all possible frames, where L indicates

1

a modal language, and letting M indicate a partic-
ular frame.

The zero-one law has been proved for finite struc-
tures in first-order logic without function symbols
first by Glebskii, Kogan, Liogon’kii, and Talanov
(1972), and then independently, by Fagin (1976).
Since that time, zero-one laws have been examined
for other, more expressive, logics such as monadic
existential second-order logic (Kaufmann & Kauf-
mann, 1988), where it does not hold.

Halpern and Kapron (1994) have shown that a
zero-one law for Kripke models follows from its
counterpart for first-order logic via the translation
method introduced by Van Benthem (1984). How-
ever, this translation does not allow to conclude
zero-one laws for frame validity, nor does it provide
axiomatizations for model validity.

For these purposes, separate attempts have been
made. Halpern and Kapron (1994) proved that
zero-one laws hold for model validity in modal log-
ics K, T, S4, S5. Their paper also covers the proofs
for zero-one laws regarding frame validity, together
with corresponding axiomatizations. However, the
axiomatization and proof for K was rendered false
by Le Bars (2002), who has shown that no zero-one
law holds for frames in modal logic K. Furthermore,
the proof and axiomatization for S4 has been found
invalid by Verbrugge (2021). Ultimately, the proof
and axiomatization for T, could also be prone to
mistakes given previous errors, but the case is un-
settled (Verbrugge, 2021).

Given the proof for zero-one laws for first-order
logic restricted to partial orders (Compton, 1988)
and the possibility of translating a modal language
to it (Van Benthem, 1984), the zero-one law for
model validity in provability logic (GL) follows.
Nevertheless, Verbrugge (2021) provided a stronger
proof for this property as well as proved it with re-
spect to frame validity. Moreover, the author has
axiomatized the sets of almost surely valid formu-
las with respect to both models and frames.

Verbrugge (2021) used the combinatorial result
by Kleitman and Rothschild (1975), which pro-
vides a very specific structure of reflexive partial
orders, and extended it to irreflexive ones. Kleit-
man and Rothschild’s result was previously used in
a proof by Compton (1988). Moreover, Halpern and
Kapron (1994) have proven that almost surely ev-
ery transitive and reflexive relation is a (non-strict)
partial order, thus making the combinatorial result

applicable to a wider range of modal logics.
Modal logic itself has applications in, among oth-

ers, linguistics, economics and computer science
(Grädel et al., 2007). Furthermore, the abovemen-
tioned zero-one laws and other limit laws have ap-
plications in database theory (e.g. Halpern, 2006).
General asymptotic probabilities, their relation to
default reasoning and degrees of belief have been of
great interest in the field of AI (Verbrugge, 2021).

So far there have been only theoretical proofs for
zero-one laws in modal logics. However, an empir-
ical approach, while not providing a strong proof,
has several advantages. First it can verify existing
proofs. Secondly, it can provide insights and inspi-
ration for future proofs and axiom systems. For in-
stance, proofs for modal logics S4 and K4 are being
developed currently (Verbrugge, 2021).

Therefore, this paper will focus on the following
research question: “Do simulations of formulas in
models and frames confirm zero-one laws for GL,
S4 and K4 modal logics?” The last two languages
were chosen to aid the proof development, whereas
GL was selected to verify the proof of (Verbrugge,
2021).

To answer this question, a random formula gen-
eration was built, then the generated formulas
were checked in models and frames using a model
checker. Modal checking is a vast field on its own,
concerning verification of systems with respect to
their specifications (Clarke & Schlingloff, 2001).
For this purpose many model checkers have been
built (for comprehensive list see: Wikipedia con-
tributors, 2022). However, they primarily use very
purpose-specific languages such as Computational
Tree Logic or Temporal logic. As a consequence,
there is lack of model checkers for standard modal
logics such as K (Clarke & Schlingloff, 2001).
Therefore, a dedicated model checker had to be de-
veloped.

1.1 Partial orders

A binary relation R (for instance ≤) is called a
“partial order” on a set S if it is:

• reflexive: xRx,

• antisymmetric: if xRy and yRx, then x = y,

• transitive: if xRy and yRz, then xRz,

2

for each x, y, z ∈ S.
There is also a variation of partial orders indi-

cated by the preceding adjective “strict”. Relations
of this type (for instance <) are:

• irreflexive: not xRx,

• asymmetric: if xRy, then not yRx,

• transitive: if xRy and yRz, then xRz,

for each x, y, z ∈ S (see for instance Wallis, 2013).

1.2 Kleitman and Rothschild’s com-
binatorial result

Kleitman and Rothschild (1975) have shown that
with asymptotic probability 1 all finite partial or-
ders have a very specific structure. This result holds
for both strict and non-strict partial orders. Firstly,
there are no chains aRbRcRd of more than 3 ele-
ments.

Then, let us denote the number of elements in a
partial order with n. These elements can be parti-
tioned into 3 layers:

L1 - set of minimal elements of asymptotic size n
4 ,

L2 - set of elements immediately succeeding ele-
ments in L1 of asymptotic size n

2 ,

L3 - set of elements immediately succeeding ele-
ments in L2 of asymptotic size n

4 .

Each element in L1 has 50% chance to be related
to a given element in L2, therefore, every element in
the minimal set is connected to asymptotically half
of the elements in L2. Similarly, each element in L2

has 50% chance to be related to a given element in
L3.

1.3 Modal logic

Let us inductively define modal logic L(Φ) over the
finite set of propositional atoms Φ = {p1, ..., pk} for
some natural number k:

1. If p ∈ Φ then p ∈ L(Φ).

2. If A ∈ L(Φ) and B ∈ L(Φ), then also ¬A ∈
L(Φ), □A ∈ L(Φ), ♢A ∈ L(Φ), (A ∧ B) ∈
L(Φ), (A ∨ B) ∈ L(Φ), (A → B) ∈ L(Φ) and
(A↔ B) ∈ L(Φ),

3. Nothing is a formula of L(Φ) unless it was cre-
ated through finitely many repeated applica-
tions of 1 and 2.

Moreover, a Kripke frame is a pair F = (W,R),
where W = {1, 2, ..., n} is a non-empty set of worlds
and R ⊆W ×W , is a binary accessibility relation.
A Kripke model M = (W,R, V) contains a frame
F = (W,R) and a valuation V , which assigns a
truth value 1 or 0 to each atomic proposition in each
world. The truth definition is as usual in modal
logic, including the clause:

M,w |= □φ if and only if for all

w′ such that wRw′,M,w′ |= φ.

A formula φ is valid in model M if and only if for
all w ∈W , M,w |= φ.

A formula φ is valid in frame F if and only if
for all valuations V and for all worlds w ∈ W ,
F, V,w |= φ (definitions adapted from Verbrugge,
2021).

1.4 Types of modal logic

All types of modal logic used in this paper extend
the K system, which has the following axioms (Gar-
son, 2021):

All (instances of) propositional tautologies

□(φ→ ψ) → (□φ→ □ψ)

Moreover, the rules of inference include modus
ponens and necessitation:

if K ⊢ φ→ ψ and K ⊢ φ, then K ⊢ ψ,
if K ⊢ φ, then K ⊢ □φ.

This system does not impose any restrictions on
its frames.

1.4.1 Provability logic

This modal logic (GL) extends K though the fol-
lowing axiom (Verbrugge, 2017):

□(□φ→ φ) → □φ

Moreover, provability logic is sound and complete
with respect to all transitive and converse well-
founded (there is no infinitely ascending sequence

3

x1Rx2Rx3...) frames. From these two constraints a
third follows: irreflexivity.

Given these constraints, we can conclude that
sufficiently large finite frames of GL are strict par-
tial orders and therefore, will have the structure
described by Kleitman and Rothschild (1975).

1.4.2 System K4

This system imposes the transitivity constraint on
its frames (Garson, 2021). Therefore, it extends K
by the following axiom:

□φ→ □□φ

1.4.3 System S4

This system imposes reflexivity and transitivity
constraints on its frames (Garson, 2021). Therefore,
it extends the K system with the following axioms,
respectively:

□φ→ φ

□φ→ □□φ

Given that Halpern and Kapron (1994) have
proven that almost surely every transitive and re-
flexive relation is a partial order, we can represent
sufficiently large finite frames of this system using
the result by Kleitman and Rothschild (1975).

2 Problem analysis

In modal systems “validity in all finite models”
coincides with “validity in all finite frames”, how-
ever, this is not the case for “almost sure validity”
as there are many more formulas that are almost
surely valid in models than in frames (Verbrugge,
2021). Therefore, this work will focus on six sub-
problems: almost sure validity in models and frames
for GL, K4, and S4. Given different characteristics
of each problem, the Kleitman and Rothschild’s
(henceforth, KR) result needs to be adjusted ac-
cordingly.

Across all subproblems, elements in the KR re-
sult correspond to worlds in modal logic and a rela-
tion corresponds to the accessibility relation. How-
ever, transitivity cannot be directly translated from
the KR result to modal frames. In the first case it
is implicit, while in the latter case we have to make

it explicit by introducing an accessibility relation
from the worlds in layer L1 to worlds in L3, which
are reachable via layer L2.

Apart from being transitive, provability logic
is also converse well-founded. The combination of
these constraints entails irreflexivity. Therefore, to
match these constraints irreflexive Kleitman and
Rothschild structures have to be used for simulat-
ing formulas in GL.

In case of system S4, we need to additionally im-
pose the reflexivity constraint on the partial order.
This can be done by introducing a reflexive acces-
sibility relation in each world.

System K4 is only transitive. To accommodate
undetermined reflexivity we can introduce reflexive
relation in exactly half of the worlds in each layer,
as suggested by Verbrugge (n.d.).

2.1 Exhaustive approach

Thanks to KR result we do not have to generate
all possible Kripke models and Kripke frames to
check almost sure validity. Instead, we can gener-
ate models and frames based on the KR structure.
However, even then the cardinality of the set of all
structures (|An(L)|) is enormous.

A model in a modal language consists of a set of
worlds (of cardinality n, given during generation),
a relation and a valuation function. Usually, a rela-
tion refers to a set of ordered pairs indicating which
worlds can access which, however, for simplicity of
the explanation, in the reminder of this chapter I
will refer to each ordered pair as a relation. There-
fore, the total number of possible models will be
the product of the number of all possible combi-
nations of relations and the number of all possible
valuation functions.

A combination of a structure’s relations is a
unique subset of all possible relations in a struc-
ture. The total number of relations in a KR struc-
ture consisting of n worlds is

2 × 2m×m = 4m2,

where m (= n
4) is the number of worlds in layers

L1 and L3 each, and 2m (= n
2) is the number of

worlds in layer L2.
As a consequence, the number of possible com-

binations of relations in this case is 24m
2

, because
each relation has two possible states: present and

4

absent. It is important to mention that the accessi-
bility relations resulting from the transitivity con-
straint do not affect these numbers because they
are fully dependent on the arrangement of other
relations in the structure.

Let Φ = {p1, ..., pk} be a set of propositional
atoms with cardinality k. Then the number of pos-
sible valuations will be equal to (2k)4m, where
m (= n

4).
Therefore, the number of all models of a given

size is

24m
2

× (2k)4m = 24m
2+4km.

This is a number of models in which one would have
to check a formula’s validity in order to determine
whether it is almost surely valid∗.

A frame in a modal language consists only of a
set of worlds (of cardinality n, given during gener-
ation) and a set of relations. Therefore the number
of frames in which a formula’s validity needs to be
checked in order to determine almost sure validity
is 24m

2

. Although, there are less frames to generate
in total than models, to check a formula’s validity
in a given frame we need to check all possible val-
uations on this frame, which effectively multiplies
the previous number by (2k)4m.

2.2 Infinite approach

In the previous section we considered generating all
possible structures, which turned out to be imprac-
tical due to exponential growth. We can partially
alleviate this problem by precluding structures con-
taining features which will disappear as the number
of worlds grows larger. The features were extracted
from the work of (Verbrugge, 2021). They are as
follows:

• Dead-ends - This feature describes worlds in
layers L1 and L2 from which there are no out-
going accessibility relations to higher layers. It
can be easily seen that as the number of worlds
increases the fraction of structures containing
dead-ends decreases.

• Dead-starts - This feature describes worlds in
layers L2 and L3 to which there are no incom-
ing accessibility relations. Again, as the num-

∗In fact to check it one would have to repeat the proce-
dure for several sizes of models, or choose a very large n.

ber of worlds increases the fraction of struc-
tures containing dead-starts decreases.

By using these features we filter out improbable
structures. As a consequence we enforce that every
world in L1 can reach at least one world in layer
L3, which was also given in (Verbrugge, 2021).

Now we can reassess the number of combinations
of relations in a structure of size n. The approach
to compute that number is to subtract number of
relation combinations containing one of the above-
mentioned features and subtract that number from
the total number of possible relation combinations.

First, lets focus on the relations between layers
L1 and L2. Dead-ends, in the L1 layer, can occur in
a single world, but also in all of them. To capture
all arrangements in which dead-ends can appear we
can use the following summation:

m∑
i=0

(
m

i

)
.

To capture the number of arrangements in which
dead-starts occur in combination with all arrange-
ments of dead-ends we can use this summation:

m∑
i=0

2m∑
j=0

(
m

i

)(
2m

j

)
.

Now we have a way to compute all arrangements
of dead-ends together with dead-starts. However,
this formula does not cover all the possible arrange-
ments of the relations which are connecting worlds
which are neither dead-ends nor dead-starts. To ac-
count for all such arrangements we first need to
define how many relations there can be in between
the first two layers given a number i of dead-ends
and a number j of dead-starts. There is maximum
of (m− i)(2m− j) of such relations. Now we need
to define how many relations can be missing from
the maximum without a risk of encountering an
arrangement where there is an unaccounted dead-
ends or dead-starts. We can capture this in a func-
tion f(i, j) = max(min(m − i, 2m − j) − 1, 0). For
example, if we have m = 4, i = 1, j = 0, so there
is only one dead-end and no dead-starts, we would
have f(1, 0) = 2, hence we can have at most two
relations missing from their maximum number.

To account for all the arrangements of dead-
ends, dead-starts together with the relations be-
tween other worlds, we can define the function

5

g(m):

m∑
i=0

2m∑
j=0

(
m

i

)(
2m

j

)f(i,j)∑
k=0

(
(m− i)(2m− j)

(m− i)(2m− j) − k

) .

However, g(m) also accounts for the arrange-
ment where there is no dead-ends, nor dead-starts,
namely when i = 0, j = 0. To offset this we need
to subtract the following from g(m):

m−1∑
l=0

(
(m)(2m)

(m)(2m) − l

)
.

Finally, we can subtract this result from the num-
ber of all possible combinations:

2m×2m −

(
g(m) −

m−1∑
l=0

(
(m)(2m)

(m)(2m) − l

))
.

However, this only takes into account relations
between layers L1 and L2 and we also need to con-
sider the ones between layers L2 and L3. To do
that, we need to realise that if we rotate a struc-
ture by 180° and look at relations between layers
L2 and L3, dead-ends become dead-starts and vice
versa. Therefore, they are symmetrical. As a con-
sequence, the result above also gives the number of
combinations of the relations between layers L2 and
L3. Hence, we can simply square the result above
as a way to compute all the combinations of the
two sets of relations:(

2m×2m −

(
g(m) −

m−1∑
l=0

(
(m)(2m)

(m)(2m) − l

)))2

.

3 Implementational details

This section covers the design of the algorithms and
data structures used throughout the experiments.
Every functionality will be explained in a dedi-
cated module. We treat them as building blocks
and, thus, they will be presented in a bottom-up
way where every consequent module depends on
the previous ones.

This project has been implemented in the Julia

programming language version 1.7.2. It is a rel-
atively new language, which tends to be faster
than more common alternatives such as Python (see

for example, Lin, 2020; Moura, 2021). Given that
the main experiment is computationally expensive,
speed was one of the most significant objectives
when selecting a language. Moreover, Julia has
a significant support and contains all features of
a modern language, which is not necessarily the
case for the C programming language. The code
used for this project can be accessed on Github us-
ing the following link: https://github.com/J4Q8/
zero-one-laws.

During development of the experiment’s in-
frastructure, I noticed that Julia does not
have any advanced facilities that could be di-
rectly used for logic research. Therefore, the
code used for this project has been adapted for
more general use and transformed to a package
LogicToolkit in a hope to facilitate future logical
simulations. It can be installed from general
registry of Julia packages. However, it can also
be accessed directly through the following link:
https://github.com/J4Q8/LogicToolkit.jl.

3.1 Binary Trees

Propositional and modal operators have arity of at
most 2. Moreover, operators have to have a speci-
fied hierarchy, in order to avoid ambiguity. There-
fore, the choice of binary trees, which provide the
two abovementioned features, as a representation
of formulas is a natural choice. For instance, the
main axiom of GL, □(□φ → φ) → □φ would be
represented as shown in Appendix A.

Another design choice was to always make unary
connectives right children of a binary node. Due to
this decision, inorder traversal returns a formula in
a string format.

However, using this data structure has one down-
side. It cannot explicitly express associativity and
commutativity. To overcome this, special functions
had to be designed, which for example return all
conjuncts of a given formula.

3.2 Parser

To make the user experience easier, a parser was
built. First it replaces connective symbols which
are easy to type with their correct versions. There-
fore, for instance “ˆ” becomes “∧” and “v” becomes
“∨”. The complete list of accepted symbols is in

6

Appendix B. Input transformed in this way is then
parsed using the grammar shown in Appendix C. If
a formula follows this grammar, it will be converted
into a binary tree, through a series of recursive calls.

3.3 Simplifier

The functionality of this module entails the ability
to reduce formulas to their least trivial form. To
perform this reduction, a set of formulas contain-
ing truth values and their equivalences was created.
Using them, we can remove trivialities in formulas.
The subset of commutative rules, for which the lo-
cation of a truth value (⊥,⊤) in the original for-
mula does not matter, is the following:

φ ∧ ⊤ ⇔ φ φ ∧ ⊥ ⇔ ⊥
φ ∨ ⊤ ⇔ ⊤ φ ∨ ⊥ ⇔ φ

φ↔ ⊤ ⇔ φ φ↔ ⊥ ⇔ ¬ φ

Then, the subset of equivalences for which the order
of the atoms is fixed is as follows:

φ→ ⊤ ⇔ ⊤ φ→ ⊥ ⇔ ¬ φ

⊤ → φ⇔ φ ⊥ → φ⇔ ⊤
¬⊥ ⇔ ⊤ ¬⊤ ⇔ ⊥
□⊤ ⇔ ⊤ ♢⊥ ⇔ ⊥
¬¬φ⇔ φ

However, it is also possible for trivialities to arise
without truth values only due to the interplay of
formulas. To remove them, the following set of
equivalences was formed, where the original formu-
las are commutative:

φ ∧ φ⇔ φ φ ∧ ¬ φ⇔ ⊥
φ ∨ φ⇔ φ φ ∨ ¬ φ⇔ ⊤
φ↔ φ⇔ ⊤ φ↔ ¬ φ⇔ ⊥

These sets of equivalences were selected, because
they provide an optimal balance between appli-
cation complexity and a level of captured trivial-
ity. One could further enhance the simplifier with
distributive law, De Morgan’s laws, or modus po-
nens and modus tolens. However, this would sig-
nificantly harm the performance of this algorithm
which needs to be frequently applied throughout
the experiment desribed in Section 4. Moreover,

these enhancements can be seen as logical infer-
ence rather than removing triviality from formulas.
Hence, they were not implemented in this module.

The next challenge in developing the simplifier
was combination of associativity and commutativ-
ity, which is the case for the conjunction, disjunc-
tion and biconditional operators. Given that bi-
nary trees are not able to express these proper-
ties innately, it could be the case that for instance
(φ∧ψ)∧¬ φ would not be reduced to ⊥ because φ
and ¬ φ are not children of the same node. There-
fore, whenever one of the abovementioned opera-
tors is encountered all of its sub-elements, let us
call them juncts, connected through repetitions of
a given operator will be found. For example, the
formula (φ∧ψ) ∧¬ φ would result in three juncts:
φ,ψ,¬ φ.

The simplifier oftentimes needs to check whether
two formulas are equivalent. This is done by com-
paring the set of juncts of one formula with the set
of juncts of the other formula. If the two sets are
equal, meaning that all juncts in both sets have an
equivalent junct in the other set, then the two for-
mulas are equivalent. This method is robust with
regards to associativity and commutativity, which
means that, for instance, formulas (φ ∨ σ) ∨ ψ and
(ψ ∨ φ) ∨ σ will be recognized as equivalent.

During the simplification process, every subtree
of a formula is broken down into juncts (formula
can have only one junct, e.g. □φ). Then all juncts
are replaced with equivalent simplified formulas.
This step is repeated until no new replacement can
be made. As a consequence, resulting formula con-
tains no repeating juncts and contains no triviali-
ties as given in lists of equivalences.

To improve the performance of the algorithm, the
equivalences that result in a truth value are tried
first. For example, when disjunction is the main
connective of a formula, we first check if any of its
juncts is ⊤ or if there are two opposite formulas
such as φ and ¬ φ. This allows to avoid redundant
recursive calls.

3.4 Formula generator

The computational cost per formula of the exper-
iment described in Section 4 is high. Therefore, it
was imperative to test original and potentially in-
teresting formulas, the truth valuation of which is
not trivial, which could be the case for completely

7

stochastic formula generator. To avoid it, the de-
veloped formula generator relies heavily on the sim-
plifier and underlining principles introduced in Sec-
tion 3.3.

Additionally, this generator is able to produce
formulas of arbitrary depth and arbitrary maxi-
mum modal depth. The former indicates the depth
of the binary tree of a formula, with the root node
counting as 1. The latter indicates the deepest nest-
ing of modal operators (MD) in a formula and is
defined inductively as follows:

1. MD(pi) = 0, for all propositional atoms pi;

2. MD(φ⊕ψ) = maximum({MD(φ),MD(ψ)}),
where ⊕ ∈ {¬,∧,∨,→,↔};

3. MD(⊗φ) = MD(φ) + 1, where ⊗ ∈ {□,♢}.

The formulas are generated in a top-down man-
ner. Thus, the first operator to be selected will be a
main connective of a new formula. Then, the chil-
dren of the main connective are generated in a re-
cursive manner. At the end of each step, the result-
ing intermediate formula is reduced to its simplest
form via the simplifier. This ensures originality of
each formula.

A secondary objective for this formula genera-
tor was to produce a reliable sample (free from
bias) of all interesting formulas. Therefore, at ev-
ery step the operator was chosen from the set of
available symbols using uniform distribution. The
original set contains all operators, all atoms and
truth values. However, the set of available symbols
changes dependently on the directly higher connec-
tive, maximum modal depth and maximum formula
depth. To improve performance of this algorithm
and make the simplifier’s job easier, certain opera-
tors are banned given their predecessors. Therefore,
negation cannot have another negation as a parent
and truth values cannot appear in trivial scenarios
specified in Section 3.3. Once a required formula
depth is reached, the algorithm is forced to place a
random atom and thus stop building the tree there.
Moreover, modal operators are a subset of the avail-
able symbols set until the maximum modal depth
is reached.

It is important to notice that given the uni-
form distribution, it is possible that a formula tree
will be closed (have only atoms in its leaves) be-
fore reaching the desired formula depth. In that

case, the generator will be rerun until the desired
depth is reached. Similar situation can happen with
modal depth, but then the algorithm is not re-
run, given that user can select arbitrary maximum
model depth and not any particular model depth
of a formula.

Once a formula is generated, it is checked against
all previous formulas for equivalences. If there are
none, it is added to the final list.

3.5 Tableau solver

Throughout the project, a tableau solver for GL,
S4 and K4 was built. This algorithm facilitated
checking whether a given formula is a contradiction
or a tautology in these three modal languages.

3.5.1 Semantic tableaux

Semantic tableaux are a method used to check va-
lidity of an inference. Priest (2008, p. 56-60) has
shown that the method of semantic tableaux is
sound and complete with respect to the semantics
of modal language Kρ, which has the reflexivity
constraint, and modal language K4, which has the
transitivity constraint. The proof for soundness and
completeness of this method with respect to the se-
mantics of S4 can be derived from the proofs for
K4 and Kρ. Semantic tableaux are also sound and
complete with respect to provability logic (see for
example Van Loo, 2017).

A tableau starts as an initial list containing all
premises and the negation of the consequent of the
inference, accompanied by a label for a world (usu-
ally 0). Then, by repeated application of rules we
try to discover a counter-model. If none can be
found, such tableau is said to be closed and the
inference holds.

Since all three logics GL, S4 and K4 extend
modal logic K, all rules for K-tableaux are applica-
ble to them as well. A comprehensive list of tableau
rules is given by Priest (2008). Moreover, K4 is ex-
tended by a tableau rule for transitivity, whereas
S4 is extended by both transitive and reflexive rules
given below:

8

transitivity reflexivity

irj
jrk

irk

·

iri

where i, j, k are worlds introduced on the branch.
To accommodate the converse well-foundedness
constraint of GL, a special □-rule and ♢-rule were
developed by Van Loo (2017). They are as follows:

□φ, i
irj

□φ, j
φ, j

♢φ, i

irj
¬♢φ, j
φ, j

In case of □-rule, j was already on the branch;
however, for ♢-rule, a new j is introduced. These
rules already incorporate the transitive constraint
in GL, therefore, the extra transitivity rule does
not have to be used for this logic.

It is important to note that there are also spe-
cial rules available for the negations of these modal
operators (for all three modal languages). They are
not given here, because they are not used in the al-
gorithm. Instead, to all such formulas □φ⇔ ¬♢¬φ
equivalence is applied. This decision aims to sim-
plify the implementation of ¬-rules.

One can use semantic tableaux to check whether
a formula φ is a tautology by starting a tableau
with initial list: ¬ φ, 0. If the tableaux closes it
means that φ is a tautology of the system.

To check whether a formula φ is a contradiction
we can start a tableau with initial list φ, 0 If the
tableaux closes in this case, it means that by using
formula φ we can prove anything which is a clear
indication of contradiction.

3.5.2 Design

There are multiple heuristics available, which are
supposed to make the proof-search more efficient.
One of them is converting input formulas into
Negated Normal Form (NNF), which allows only
conjunctions, disjunctions and negations of atoms.
However, the advantage it was supposed to provide

was found to be doubtful for formulas of various
sizes (Van Loo, 2017).

Another heuristic is to convert the formulas to
predicate logic. Then, for example □φ becomes
∀x(¬wRx ∨ φx). However, this introduces addi-
tional complexity which deviates the tableaux from
its textbook form (Schwarz, 2022). To improve
readability and transparency of this algorithm, I
decided to use the form of textbook tableaux, so I
did not use this improvement.

The tableau is solved in a depth-first search man-
ner, so that one branch had to be closed to explore
the other. This approach has been successfully ap-
plied by Van Gelder (2021) in his Bachelor thesis,
which resulted in good performance. More impor-
tantly it avoided out-of-memory errors, which were
prevalent in the breadth-first search approach used
by Van Loo (2017).

The formulas on the initial list and the current
branch were stored in an ordered list and for each
formula, information is saved whether a rule has
been applied to it or not. A second list stores all
relations that have been introduced in the tableau
along with the locations of the formulas which in-
troduced them. A separate list stores formulas to
be applied on a next branch, together with the posi-
tion in the tableau where the next branch should be
opened. Whenever a branch is closed, all formulas,
relations that were introduced after the branching
“fork” are removed and replaced with formulas that
are supposed to be on the new branch.

The main list is then iterated, rules are applied
to formulas which were not used so far and result-
ing formulas are added at the end of the list.This
approach was chosen over sorting a main list for
several reasons. First is that sorting formulas is
time consuming, especially as their number in-
creases and iterating the complete list cannot be
completely avoided, since the □-rule needs to be
checked every time a new relation is introduced.
Secondly, it interferes with the clear chronology
of applied rules, which can be problematic when
switching to a new branch. Every iteration list is
checked for contradiction, truth negation or two op-
posite formulas in order to close a branch as soon
as possible.

To improve the performance and reduce the num-
ber of branches, all possible non-branching rules
are applied first to the current branch and re-
sulting formulas. This will stop only when there

9

are no more such rules to be applied. This is the
case of all three modal languages. However, for
GL all possible modal rules are applied before all
branching rules. This decision was made due to
converse well-foundedness of the provability logic,
which precludes infinitely increasing chains of rela-
tions. Hence, modal rules can be applied first with-
out a danger of encountering an infinite branch.
For S4 and K4, this is not the case, since they
both are transitive, but not converse well-founded.
Therefore, infinite branches are possible and not as
infrequent as one would wish. Thus, in these two
languages, modal rules and branching rules are ap-
plied in an alternating manner in order to balance
the risk of encountering an infinite branch with
the computational cost of having more branches to
check.

Tableaux of some formulas are very large and
complex to an extent where it is hard to determine
whether a particular branch is actually infinite or
just complex. Therefore, despite the infinite branch
detector described in the next subsection a 30 sec-
ond, time limit per inference was implemented. If a
formula takes more than 30 seconds, then the algo-
rithm treats such inference as inconclusive and the
results are discarded.

3.5.3 Infinite branches

In order to make the tableau solver more versatile
and robust, an infinite branch detector was imple-
mented. However, infinite branches come in more
shapes and sizes than expected. Therefore, the de-
velopment of this detector took several iterations.

First, a naive assumption was made that on an
infinite branch, formulas will be repeated in every
new world. Thus, a simple pattern detector was
built, which checked whether the set of formulas in
the last world is a subset of the formulas in the pre-
vious world. Then the number of worlds for which
this subset relation held was counted and tested
against a threshold. Unfortunately, on the infinite
branches, formulas do not have to repeat in every
new world.

Therefore, a second assumption was made that
on an infinite branch, formulas will repeat in new
worlds periodically. This resulted in a second ver-
sion of a pattern detector which allowed for formu-
las to be repeated periodically in new worlds. Al-
though this improved the versatility of the infinite

branch detector, on some branches formulas were
indeed repeating but each formula had a different
period.

The next approach was to completely abandon
the apparent structure of a tableau and instead fo-
cus on how the worlds are related within a tableau.
Therefore, relations from a given branch were anal-
ysed and orders of worlds were obtained. For in-
stance, if there is 1r2, 2r3 on a branch then the
chain of worlds would be ⟨1, 2, 3⟩. Then the previ-
ous two assumptions were tested not on a whole
tableau, but on each chain individually. Unfortu-
nately, this approach failed to capture the nature
of the infinite branches.

The idea of chains and the first two assump-
tions were also tried together with the idea that
infinite branches are directly caused by repeating
♢ formulas, since they are the ones opening new
worlds. Nevertheless, some formulas still had infi-
nite branches which were not captured by this algo-
rithm. Moreover, at this point the checking whether
a branch is infinite was significantly slowing down
the algorithm.

Therefore, a last algorithm was tried which
counts the number of newly introduced worlds
which do not include at least one unique formula.
By unique, I mean not appearing previously on a
tableau (possibly in a different world). If there is
no such unique formula in the last introduced 100
worlds, then such a branch is deemed infinite. This
relatively light-weight solution provided at least as
good results as the complex pattern checkers dis-
cussed above.

3.6 Model/frame generator

KR structures are represented as directed graphs
using Julia package LightGraphs. The valuation
function was stored in an array of dictionaries
where each element corresponded to a single world.

The relations between the bottom layer (with m
worlds) and middle layer (with 2m worlds) can be
represented as Boolean adjacency matrix M1 ∈
Rm×2m. Similarly, relations between middle layer
(with 2m worlds) and upper layer (with m worlds)
can be captured in a Boolean adjacency matrix
M2 ∈ Rm×2m. In both M1 and M2, rows indi-
cate a world with outgoing relations and columns
indicate worlds with incoming relations.

10

Adjacency matrices facilitate unbiased random-
ness when generating structures, because they
can be easily sampled from a uniform distribu-
tion. Once M1,M2 are sampled, they are checked
whether they do not contain any dead-ends or dead-
starts (nodes in middle and higher layer that do
not have any incoming relations). This is done by
verifying that there is no column, nor row, which
contains only 0s.

All three modal languages require transitive clo-
sure. It could be naively computed through depth-
first search, but this method becomes inefficient as
matrices get larger. Therefore, a new method was
developed, which allows the transitive closure ad-
jacency matrix M3 to be computed via:

σ(M1M2),

where σ is a threshold function:

σ(x) =

{
1 if x > 0

0 otherwise

Given the way matrix multiplication works, every
entry in M3 is the thresholded result of a dot prod-
uct of a row of M1 and a column of M2. This dot
product represents all possible ways a given world
in the upper layer is reachable from a given world
in the lower layer. Therefore, if this dot product is
not zero, it means that there is at least one path to
reach that world.

Additionally, for frames in S4, the reflexive con-
nections are added to all worlds and in K4 the
reflexive connections are added to exactly half of
worlds in each layer. This ends the process of frame
generation.

To generate a model given a frame, each world
gets a random valuation function sampled from a
uniform distribution.

3.7 Model checker

The purpose of the model checking algorithm is to
check whether a formula is valid in a given model.
In order to check validity, a formula has to hold in
every world of the model. This is done via exhaus-
tive search in order to ensure the lack of false pos-
itives. As a consequence, this algorithm becomes a
bottleneck of the experiment described in Section
4.

To maximize its performance, several heuristics
were used.

• Early stopping - once a formula was found in-
valid in a single world, we can conclude that it
is invalid in a whole model.

• Caching formulas - once an intermediate for-
mula is evaluated in a given world, its truth
value in that world is stored. Given network-
like structure of KR frames, formulas are often
evaluated multiple times in the same world.
Therefore, instead of evaluating it multiple
times, the following evaluations will simply use
cached truth values. This heuristic has been in-
spired by model checker introduced in Lagniez,
Le Berre, de Lima, and Montmirail (2016).

• Upper layer first - formulas are checked in
worlds of the upper layer first. This heuristic
is supposed to quickly invalidate formulas of
structure ♢φ in frames of GL and K4. Since
in these languages there are worlds in the up-
per layer which do not have any outgoing re-
lations, formulas with ♢ as a main connective
can be deemed invalid almost immediately.

3.8 Frame checker

In order to exhaustively check whether a formula is
valid in a given frame, one would have to generate
all possible valuations and evaluate them using the
model checker. However, I have shown in Section 2
that this is not feasible as the number of valuations
increases exponentially with the number of atomic
propositions and number of worlds in a frame.

To overcome this limitation, I propose a proba-
bilistic algorithm: x random valuations on a frame
will be generated, then every one of them will be
evaluated. Given a valuation and a frame, there can
be only two outcomes of such evaluation: a formula
can be either valid or invalid. If a formula is found
invalid in one of the valuations on a frame, then we
can conclude that it is invalid on a frame.

To determine the error probability of this
method, we need to realise that on average, a given
formula is valid in less than 1

2 of all models. For
each formula φ, at most one of φ and ¬ φ is valid
in a model. Hence, ≤ 1

2 of all formulas are valid in a
model. Furthermore, there are formulas φ for which

11

neither φ, nor ¬ φ are valid in a model. For exam-
ple, the formula φ can be one of the propositional
atoms, then for φ or ¬φ to be valid in a model, all
worlds would have to have the same valuations for
that propositional atom, which is highly unlikely
for large models. Therefore, strictly less than 1

2 of
all formulas are valid in a model. Then if we pick
a formula and a random valuation on a frame, the
chance that the formula is valid in that model is less
than 1

2 , on average. Therefore, a chance that an in-
valid formula is found valid on a frame, because of
the unfortunate sample of random valuations is less
than (1

2)x.

3.9 Tests

All described modules have been profoundly tested
either directly or indirectly.

The tableau solver has been tested using verified
inferences compiled from Priest (2008), Van Gelder
(2021) and self-verified formulas generated by the
formula generator (51 inferences in total). The ex-
amples include inferences in all three languages,
closed and open tableaux, as well as formulas which
result in infinite branches.

The simplifier was tested on 41 cases, which were
carefully crafted to represent multiple trivialities of
varying extent.

Model and frame checkers were tested on 62 for-
mulas each, which included tautologies and contra-
dictions of the three modal logics. Some of the for-
mulas overlap with the test cases for the tableau
solver, whereas the others were randomly generated
and checked to be contradictions or tautologies.

All inferences and formulas used as test cases can
be found on the project’s website on Github.

4 Experimental Design

For the experiment, 8000 formulas of depth 6 to
13 were generated based on the set of two propo-
sitional atoms: {p, q}. These parameters were se-
lected in order to generate interesting and complex
formulas, but short enough to be comprehensible.
All of the formulas had maximal modal depth of
five. Given that KR structures have only 3 layers,
greater depth did not seem to provide any benefits.

If a formula was a contradiction or a tautology
in all three modal languages, then it was excluded

from the experiment. Tautologies and contradic-
tions inherently support zero-one laws, thus it is
redundant to check whether they are almost surely
valid. If a formula was not a tautology or a con-
tradiction in at least one of the languages, this in-
formation would lay foundations for several of the
analysis made in the Section 5.

Additionally, 47 formulas were selected based on
their special meaning. For instance, axioms for al-
most sure model validity introduced by Verbrugge
(2021) are on this list. The complete set of these
formulas can be found in the Appendix D.

Zero-one laws are based on a limit therefore,
trends are more important than absolute values.
In order to check these trends, each experiment
will be performed on KR structures consisting of
40, 48, 56, 64, 72, 80 worlds. Henson, Rideout,
Sorkin, and Surya (2017) have shown experimen-
tally that the partially ordered sets start to display
the asymptotic behaviour described by Kleitman
and Rothschild only around n = 40, where n is the
number of elements. Therefore, in order to success-
fully apply the KR result, it seems logical to start
simulations with at least n = 40.

4.1 Model validity

To check whether a formula is almost surely valid
in models, 5000 KR models were generated. Then,
a given formula was evaluated in every one of them
and the number of models in which it was valid was
computed.

This procedure was repeated for every formula,
every modal language and every size of KR struc-
tures.

4.1.1 Model validity check

An additional experiment aimed at validating the
main experiment was performed. Verbrugge (2021)
introduced a 12-world canonical asymptotic Kripke
model, which is supposed to resemble a countably-
infinite KR model. Therefore, if a formula is valid
in the asymptotic model it will be valid in an infi-
nite KR model. A canonical model, has worlds with
every possible valuation in each layer. In GL, no
world has a reflexive relation, in S4 all worlds have
them. In K4 there is 24-worlds, because each val-
uation in each layer occur once in a world without

12

reflexive relation and once in a world with reflexive
relation.

Every formula was then evaluated in the asymp-
totic model. If a formula was found to be invalid in
sampled models, but was valid in the asymptotic
model, it would indicate mistakes in the implemen-
tation of one of the modules of this project.

4.2 Frame validity

To test if a formula is almost surely valid in frames,
500 KR frames were generated. Then the formula
was evaluated in each of them and frames in which
the formula was valid were counted.

In order to test frame validity, I used the proba-
bilistic algorithm described in Section 3.8. The de-
cision was made to test 50 valuations per frame.
This results in an error probability of less than
(1
2)50 ≈ 9 × 10−16. A single instance of this error

results in the final count being off by one. There-
fore, exhaustive validity check does not seem to be
necessary.

This experiment was repeated for every formula,
every modal language and every size of KR struc-
tures.

5 Results

First, we need to understand the data we gathered
in the main experiment. For each simulated for-
mula, for each language, for each structure we have
six data points. Each data point is a tuple consist-
ing of a structure size n and a number of structures
in which that formula was valid. For example, for-
mula ♢⊤ → ♢(p ∧ q), in GL, in models, has the
following data points:

⟨40, 524⟩ ⟨48, 734⟩
⟨56, 947⟩ ⟨64, 1132⟩
⟨72, 1430⟩ ⟨80, 1698⟩

5.1 Main experiment

Using these data points, a density plot has been
created for each language and structure. An exam-
ple of such graph for frames in GL is Figure 5.1.
On each plot there are 6 categories corresponding
to different sizes of simulated structures.

Figure 5.1: Density of formulas which are valid
in x out of 5000 GL models.

Figure 5.2: Density of formulas which are valid
in x out of 5000 K4 models.

Moreover, each plot consists of two subplots. The
upper one represents the relative density of formu-
las that were found valid in a particular number
of structures. The x-axis indicates the particular
number of simulated structures in which a formula
is valid. For instance, if a formula is valid in all 5000
simulated models, then it will be represented as a
small peak in the rightmost part of the x-axis. The
peaks from all formulas are summed into the den-

13

sity function visible on the graph. The higher the
value of the function at a location on the x-axis,
the more formulas were found valid in this partic-
ular number of structures.

The bottom subplot displays each formula indi-
vidually. Each formula is an individual bar placed
on a location on the x-axis, corresponding to num-
ber of simulated structures in which it was valid.
Each of the six layers of the subplot represent re-
sults of simulating structures of a particular size.
The higher the level, the larger structures were sim-
ulated. Although one cannot see how many formu-
las there are at the certain position of x-axis, it is
perfect for observing obscure behaviour, which dis-
appears in the upper density plot consisting of 8047
formulas.

Figure 5.3: Density of formulas which are valid
in x out of 5000 S4 models.

Figure 5.1 shows the results of the simulation for
5000 GL models. We can observe that the num-
ber of almost never valid formulas is overwhelm-
ing compared to to the number of almost surely
valid formulas. On the upper density plot there are
no noticeable differences between different sizes of
structures. However, the bottom plot clearly shows
that as the number of worlds increases, the gap be-
tween formulas approaching 0 and those approach-
ing 5000 on the x-axis increases steadily.

Figure 5.2 summarises the results of simulating
formulas in 5000 K4 models. We can see that they
are quite similar to the GL simulation in models.

Nevertheless there are a few minor differences. First
the number of almost surely valid formulas is even
smaller. Secondly, the formulas are approaching va-
lidity in 0 models at a slower rate than in the case
of GL.

Figure 5.4: Density of formulas which are valid
in x out of 500 GL frames.

Figure 5.5: Density of formulas which are valid
in x out of 500 K4 frames.

Figure 5.3 displays the results of simulating for-
mulas in 5000 S4 models. Again, the differences are
minor compared to the previous two. They include

14

Logic Tautologies Fraction of all formulas
GL 113 1.4%
S4 917 11.4%
K4 9 0.1%

Table 5.1: Table showing a total number of tau-
tologies in each modal language and what frac-
tion of 8047 formulas they represent.

converging to the either side of x-axis at a faster
pace, as well as containing significantly more formu-
las that are almost surely valid. The latter is most
likely the consequence of the fact that significantly
more formulas are tautologies in S4 compared to
GL or K4. This0 can be seen in Table 5.1.

Figure 5.6: Density of formulas which are valid
in x out of 500 S4 frames.

Figures 5.4, 5.5, 5.6 display the results of sim-
ulating the formulas in 500 frames of each modal
language. We can see that while the upper density
plots are rather similar to their model counterparts,
the bottom plots differ significantly. In every lan-
guage there is a group of formulas that approach
the rightmost side of the x-axis as the number of
worlds increases. However, now there is seemingly
no second group that would approach the leftmost
side of x-axis right from the beginning. Instead,
there are groups of formulas, which start transi-
tioning to the right hand side of the x-axis only
when the number of worlds in simulated structures

is relatively large.

These “delayed” formulas occur in all 3 modal
languages. However, they do so at different pace.
Whereas for GL and S4 the delay is significant and
only for 72 or 80 worlds this transition is noticeable,
for K4 the formulas start to migrate much sooner
and at a higher pace.

5.2 Further analysis

Density graphs clearly show that vast majority of
formulas are already at the extrema of the spec-
trum both in the case of models and in the case
of frames. Moreover, the complementary subplots
clearly indicate asymptotic behaviour of the other
formulas. Therefore, we can assume for the follow-
ing analysis that zero-one laws hold for almost sure
validity in models and frames in all three logics.

In order to further analyse the results we need
to classify which formulas are almost always valid
and which are almost never valid. Given that the
definition of zero-one laws is based on a limit, we
need to capture a trend as the number of worlds ap-
proaches infinity. Therefore, to distinguish between
almost surely valid formulas and their opposites, we
decided to check whether the fraction of structures
in which a formula is valid increases or decreases
as the number of worlds grows. The importance
of checking general behaviour rather than concrete
values is shown in the above example where the
number of models where that formula is valid is
much less than the simulated 5000, but the trend
is clearly increasing.

One of the ways to check the trend in a sample is
linear regression. For data in the form of ⟨x, y⟩, such
as ours, this algorithm aims to fit the line equation:
y(x) = mx + c, where m is the gradient and c is
y-intercept, to the sample. The fitting is performed
by finding a line for which the sum of the squared
distances between the data points and the line it-
self is smallest. If m > 0 the trend line is increasing
and thus the formula is almost always valid. We
had to introduce an extra check, because if a for-
mula is always valid m = 0 as the trend line is
a constant placed at a number of simulated struc-
tures. Therefore, if m = 0 and c = 500 for frames,
or c = 5000 for models, then formula is also al-
most always valid. Otherwise a formula is treated
as almost never valid.

15

Figure 5.7: Six data points of formula ¬(♢♢¬p ∧
¬p) simulated in GL, in models. It shows in how
many out of 5000 randomly generated models
this formula was valid for each model size.

There are other ways to check a trend, for in-
stance by checking monotonicity. However, they are
less robust than linear regression. Since our simu-
lations are based on a sample of all possible struc-
tures it is possible that sometimes the data is not
strictly monotonic. Let us take for example formula
¬(♢♢¬p∧¬p) in GL in models and plot it in Figure
5.7. There we can see that although the number of
models in which it is valid is decreasing it is not
monotonic.

One additional analysis concerned the compari-
son between the number of formulas which are al-
most surely valid in models to those almost surely
valid in frames. However, before the direct compar-
ison the tautologies were removed from each modal
language. The result can be see in Figure 5.8.

Figure 5.8: Number of almost surely valid for-
mulas in models and frames after excluding tau-
tologies in each language.

We can see that across all languages there are
more formulas almost surely valid in models than
in frames. Nevertheless the difference is relatively
small, as it does not exceed 0.6 percentage point.
We can see that in Table 5.2 which shows the per-
centages of non-tautology formulas that are almost
surely valid in models and in frames.

Logic Percentage of
almost surely

valid formulas in
models

Percentage of
almost surely

valid formulas in
frames

GL 5.9% 5.3%
S4 2.8% 2.5%
K4 3.6% 3.2%

Table 5.2: Table shows a percentage of non-
tautology formulas that are almost surely valid
in models and in frames per logic.

Furthermore, we can observe that there are sig-
nificantly more almost surely valid formulas in GL
compared to S4 and K4.

Next analysis entailed verifying if a formula will
be almost surely valid in K4 if it is almost surely
valid in GL and S4. This seems to be the case in
general as indicated by high correlation of validity
in K4 to validities in GL and S4 (see Appendix
E). However, this is not a rule, because counter-
examples have been found. In the case of model
validity there are 2 such formulas and in the case of
frame validity there are 9 of them. They are shown
in Appendix F.

5.3 Asymptotic model experiment

This experiment was supposed to validate the
methods used in this project. For every language,
validity of every formula was checked on the asymp-
totic model and compared to the empirically de-
termined almost sure model validity. For each lan-
guage an adjusted asymptotic model was used, to
reflect the constraints of that language. Specific ad-
justments are given in Section 4.1.1

After checking all formulas, the set of formulas
valid in asymptotic model is the same as the set
of formulas empirically determined to be almost
surely valid in models in GL and S4.

However, in the case of K4 there were 5 formu-
las, which were almost surely not valid according to

16

empirical data, but they were valid in asymptotic
model. These 5 formulas can be found in the Ap-
pendix G. As an additional experiment, these 5 for-
mulas were simulated in 5000 K4 models contain-
ing 1000 worlds. In these enormous models, these
formulas were always valid.

Therefore, this experiment confirms the correct-
ness of our implementation.

6 Discussion

Throughout this project several tools for logical
simulations and analysis were developed. Then, a
set of 8047 formulas was tested in models and
frames of 6 different sizes across three modal lan-
guages. Ultimately, the results were analysed pri-
marily through a combination of density plots.

Density plots clearly indicate existence of zero-
one laws for all three modal languages. In case of
model validity the behaviour appears to be clear,
given that all formulas approach the limit of either
0 or 1.

However, the result for frame validity is much
more surprising. Although the majority of the for-
mulas are located at the limits, we can see that
some formulas only start to be almost surely valid
when the number of worlds is significant.

This has several potential consequences. First,
given that we have modeled structures of up to
80 worlds, there can be formulas which are almost
surely valid but their “delay” is even more signifi-
cant, requiring the number of worlds reaching hun-
dreds. This entails that we can never empirically
determine whether a formula is almost surely in-
valid, because it might be the case that it needs
larger structure size to begin the transition. How-
ever, once a formula starts to approach the limit of
1 we can be certain that it is almost surely valid.

Although this behaviour is very prominent for
frame validity, the experiment with asymptotic
model in K4 shows that there can be formulas,
which need a significant structure size to exhibit
that they are almost surely valid in models.

A possible explanation for this behaviour being
prevalent in frames but not in models is the follow-
ing. To check frame validity, we need to de facto
check 50 models and if even one of them is invalid
then the formula is not valid on that frame. There-
fore, if a formula is not almost surely valid in most

models, there is a high chance that it will be in-
valid in at least one of the 50 valuations on that
frame. Hence, such formula will be found valid in
no frames even in small structures. This is not the
case for models, because there can be some arrange-
ments of relations where almost surely invalid for-
mula will be valid. Therefore, for small structures
where chance of this happening is high there are
formulas in the middle of the spectrum. Only with
the increasing size of structures these formulas will
tend to limit of 0.

Now moving to the additional analyses, Ver-
brugge (2021) stated that there are significantly
more formulas which are almost surely valid in
models than in frames. This is true that number of
such formulas is higher, the difference is relatively
small.

Another interesting result came from checking
whether almost sure validity in GL and S4 implies
almost sure validity in K4. This seems to be true
for the most formulas but it does not always hold.
As a consequence, it appears that if a formula is
almost surely true in both reflexive and irreflexive
structures it is not necessarily almost surely true in
all structures, where reflexivity is not defined.

Ultimately, it is useful to notice that these results
can be extended to Grzegorczyk logic and its weak
counterpart.

6.1 Limitations

The most significant limitation of this project were
numbers. The correctness of the results could def-
initely be improved by increasing the number of
valuations checked per frame, as well as number of
frames and models verified per formula. Moreover,
more diverse and larger sizes of simulated struc-
tures would allow to investigate the “delay” of for-
mula transitions. Furthermore, increasing the num-
ber of formulas simulated would provide better dis-
tributions of almost surely valid formulas and their
opposites.

Another limitation is human error. Although the
code has been checked thoroughly, tested on a num-
ber of verified examples and verified with an addi-
tional experiment it is always possible that there
is a bug in the code influencing the results. How-
ever, given the precautions even if there is some, its
influence on the experiment is minimal.

17

6.2 Future research

This project relies on several assumptions, most im-
portant concern the imposed properties of struc-
tures. Although they were selected carefully, and
their impact on a project should be limited to in-
creasing the pace of the formulas’ transition, it
would be beneficial to perform the same experi-
ments using structures generated using completely
random KR framework.

Further research could also investigate what is
the maximum delay of the formulas undergoing the
transition and perhaps axiomatize the set of such
formulas.

References

Clarke, E. M., & Schlingloff, H. (2001). Model
checking. Communications of the ACM , 52 ,
74 - 84.

Compton, K. J. (1988, August). The computational
complexity of asymptotic problems I: Partial
orders. Information and Computation, 78 (2),
108–123. doi: 10.1016/0890-5401(88)90032-6

Ebbinghaus, H., & Flum, J. (2005). Finite model
theory: Second edition. Springer Berlin Hei-
delberg.

Fagin, R. (1976). Probabilities on finite models.
Journal of Symbolic Logic, 41 (1), 50–58. doi:
10.1017/S0022481200051756

Garson, J. (2021). Modal Logic. In E. N. Zalta
(Ed.), The Stanford encyclopedia of
philosophy (Summer 2021 ed.). Meta-
physics Research Lab, Stanford University.
https://plato.stanford.edu/archives/

sum2021/entries/logic-modal/.
Glebskii, Y. V., Kogan, D. I., Liogon’kii, M. I.,

& Talanov, V. A. (1972). Range and de-
gree of realizability of formulas in the re-
stricted predicate calculus. Cybernetics, 5 (2),
142–154. doi: 10.1007/bf01071084

Grädel, E., Kolaitis, P., Libkin, L., Marx, M.,
Spencer, J., Vardi, M., . . . Weinstein, S.
(2007). Finite model theory and its applica-
tions. Springer Berlin Heidelberg.

Halpern, J. Y. (2006). From statistical knowl-
edge bases to degrees of belief. In Pro-
ceedings of the twenty-fifth ACM SIGMOD-
SIGACT-SIGART symposium on principles

of database systems - PODS '06. ACM Press.
doi: 10.1145/1142351.1142367

Halpern, J. Y., & Kapron, B. M. (1994). Zero-
one laws for modal logic. Annals of Pure and
Applied Logic, 69 , 157–193.

Henson, J., Rideout, D., Sorkin, R. D., & Surya,
S. (2017). Onset of the asymptotic regime
for (uniformly random) finite orders. Exper-
imental Mathematics, 26 (3), 253-266. doi:
10.1080/10586458.2016.1158134

Hodges, W. (2022). Model Theory. In E. N. Zalta
(Ed.), The Stanford encyclopedia of
philosophy (Spring 2022 ed.). Meta-
physics Research Lab, Stanford University.
https://plato.stanford.edu/archives/

spr2022/entries/model-theory/.
Immerman, N. (2012). Descriptive complexity.

Springer New York.
Kaufmann, M., & Kaufmann, M. (1988). A

counterexample to the 0-1 law for existential
monadic second-order logic. In CLI Internal
Note 32, Computational Logic Inc.

Kleitman, D. J., & Rothschild, B. L. (1975).
Asymptotic enumeration of partial orders on
a finite set. Transactions of the American
Mathematical Society , 205 , 205–220.

Lagniez, J.-M., Le Berre, D., de Lima, T., & Mont-
mirail, V. (2016, July). On Checking Kripke
Models for Modal Logic K. In Proceedings
of the 5th Workshop on Practical Aspects
of Automated Reasoning co-located with In-
ternational Joint Conference on Automated
Reasoning (IJCAR 2016), Coimbra, Portu-
gal, July 2nd, 2016. Coimbra, Portugal.

Le Bars, J.-M. (2002). The 0-1 law fails for frame
satisfiability of propositional modal logic. In
Proceedings 17th annual IEEE symposium on
logic in computer science (p. 225-234). doi:
10.1109/LICS.2002.1029831

Lin, T. (2020, May). Benchmark of popular
graph/network packages v2. Timothy Lin.
Retrieved from https://www.timlrx.com/

blog/benchmark-of-popular-graph

-network-packages-v2

Moura, D. (2021, Jul). R vs. python vs. ju-
lia. Towards Data Science. Retrieved
from https://towardsdatascience.com/r

-vs-python-vs-julia-90456a2bcbab

Priest, G. (2008). An introduction to non-
classical logic: From if to is (2nd ed.).

18

Cambridge University Press. doi: 10.1017/
CBO9780511801174

Prokhorov, A. V. (2011). Zero-one law. En-
cyclopedia of Mathematics. Retrieved
from https://encyclopediaofmath.org/

index.php?title=Zero-one\ law&

oldid=11252

Schwarz, W. (2022, Jun). Wo/tpg: Tree proof gen-
erator. Github. Retrieved from https://

github.com/wo/tpg

Van Benthem, J. (1984). Correspondence theory.
In D. Gabbay & F. Guenthner (Eds.), Hand-
book of philosophical logic: Volume II: Exten-
sions of classical logic (pp. 167–247). Dor-
drecht: Springer Netherlands. doi: 10.1007/
978-94-009-6259-0 4

Van Gelder, J. (2021). A twitter bot based on a
tableau solver for GL logic [BSc AI thesis].
University of Groningen.

Van Loo, T. (2017). A tableau prover for GL prov-
ability logic. [BSc AI thesis]. University of
Groningen.

Verbrugge, R. (n.d.). Zero-one laws for provability
logic and some of its siblings.

Verbrugge, R. (2017). Provability Logic. In
E. N. Zalta (Ed.), The Stanford encyclopedia
of philosophy (Fall 2017 ed.). Meta-
physics Research Lab, Stanford University.
https://plato.stanford.edu/archives/

fall2017/entries/logic-provability/.
Verbrugge, R. (2021). Zero-one laws for prov-

ability logic: Axiomatizing validity in al-
most all models and almost all frames. In
L. Libkin (Ed.), Proceedings of the 36th an-
nual ACM/IEEE symposium on logic in com-
puter science.

Wallis, W. (2013). A beginner’s guide to discrete
mathematics. Birkhäuser Boston.

Wikipedia contributors. (2022). List of model
checking tools — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/

index.php?title=List of model checking

tools&oldid=1078214549. ([Online;
accessed 13-July-2022])

19

A Binary tree visualization

The following figure is an example of how a formula is represented within the program.

→

□

→

□

φ

φ

□

φ

Figure A.1: Axiom of GL □(□φ → φ) → □φ represented in a form of binary tree.

20

B Symbols accepted by parser

The table below shows which symbols are accepted by the parser and as which connectives they are
interpreted. The program uses the symbols on the left as the internal representations of the connectives.

‘⊥ ’ ⇐ ‘⊥ ’ | ‘F ’

‘⊤ ’ ⇐ ‘⊤ ’ | ‘T’

‘♢ ’ ⇐ ‘♢ ’ | ‘d ’

‘□ ’ ⇐ ‘□ ’ | ‘b ’

‘¬ ’ ⇐ ‘¬ ’ | ‘∼ ’

‘∧ ’ ⇐ ‘ ˆ ’ | ‘∧ ’ | ‘& ’

‘∨ ’ ⇐ ‘ v ’ | ‘V’ | ‘ | ’ | ‘∨ ’

‘→ ’ ⇐ ‘−>’ | ‘→ ’ | ‘⊃ ’

‘↔ ’ ⇐ ‘<>’ | ‘↔ ’ | ‘≡ ’ | ‘= ’

Figure B.1: Symbols accepted by parser together with their meanings.

21

C BNF grammar of formulas accepted by the parser

For a formula to be accepted by the parser and converted to a binary tree it has to follow the grammar
described below.

<atom> : := ‘⊤ ’ | ‘⊥ ’ | < i d e n t i f i e r > | ‘ (’ <formula> ‘) ’

< l i t e r a l > : := <atom> { ‘¬ ’ <atom> | ‘□ ’ <atom> | ‘♢ ’ <atom> }

<conjunct ion> : := < l i t e r a l > { ‘∨ ’ < l i t e r a l > }

<d i s j unc t i on> : := <conjunct ion> { ‘∧ ’ <conjunct ion> }

<imp l i ca t i on> : := <d i s j unc t i on> [‘→ ’ <d i s j unc t i on>]

<formula> : := <imp l i ca t i on> [‘↔ ’ <imp l i ca t i on>]

Figure C.1: Grammar of formulas accepted by a parser in Backus Normal Form.

22

D Selected formulas

This is a list of 47 selected formulas used in the
experiment. The list is split into segments based
on the reason for the inclusion of a formula in this
list.

Axiom of model and frame validity in GL:

□□□⊥

The remaining axioms of model validity in GL:

♢⊤ → ♢(p ∧ q)
♢⊤ → ♢(p ∧ ¬q)
♢⊤ → ♢(¬p ∧ q)
♢⊤ → ♢(¬p ∧ ¬q)
♢♢⊤ → ♢(p ∧ (q ∧ ♢(p ∧ q)))
♢♢⊤ → ♢(p ∧ (q ∧ ♢(p ∧ ¬q)))
♢♢⊤ → ♢(p ∧ (q ∧ ♢(¬p ∧ q)))
♢♢⊤ → ♢(p ∧ (q ∧ ♢(¬p ∧ ¬q)))
♢♢⊤ → ♢(p ∧ (¬q ∧ ♢(p ∧ q)))
♢♢⊤ → ♢(p ∧ (¬q ∧ ♢(p ∧ ¬q)))
♢♢⊤ → ♢(p ∧ (¬q ∧ ♢(¬p ∧ q)))
♢♢⊤ → ♢(p ∧ (¬q ∧ ♢(¬p ∧ ¬q)))
♢♢⊤ → ♢(¬p ∧ (q ∧ ♢(p ∧ q)))
♢♢⊤ → ♢(¬p ∧ (q ∧ ♢(p ∧ ¬q)))
♢♢⊤ → ♢(¬p ∧ (q ∧ ♢(¬p ∧ q)))
♢♢⊤ → ♢(¬p ∧ (q ∧ ♢(¬p ∧ ¬q)))
♢♢⊤ → ♢(¬p ∧ (¬q ∧ ♢(p ∧ q)))
♢♢⊤ → ♢(¬p ∧ (¬q ∧ ♢(p ∧ ¬q)))
♢♢⊤ → ♢(¬p ∧ (¬q ∧ ♢(¬p ∧ q)))
♢♢⊤ → ♢(¬p ∧ (¬q ∧ ♢(¬p ∧ ¬q)))

Example axioms of frame validity in GL:

(♢♢⊤ ∧ (♢(♢⊤ ∧□p) ∧ ♢(♢⊤ ∧□q))) → □(♢⊤ → ♢(p ∧ q))
(♢♢⊤ ∧ (♢(♢⊤ ∧□p) ∧ ♢(♢⊤ ∧□¬q))) → □(♢⊤ → ♢(p ∧ ¬q))
(♢♢⊤ ∧ (♢(♢⊤ ∧□¬p) ∧ ♢(♢⊤ ∧□q))) → □(♢⊤ → ♢(¬p ∧ q))
(♢♢⊤ ∧ (♢(♢⊤ ∧□¬p) ∧ ♢(♢⊤ ∧□¬q))) → □(♢⊤ → ♢(¬p ∧ ¬q))
(♢♢⊤ ∧ (♢(□⊥ ∧ p) ∧ ♢(□⊥ ∧ q))) → ♢(♢p ∧ ♢q)

(♢♢⊤ ∧ (♢(□⊥ ∧ p) ∧ ♢(□⊥ ∧ ¬q))) → ♢(♢p ∧ ♢¬q)
(♢♢⊤ ∧ (♢(□⊥ ∧ ¬p) ∧ ♢(□⊥ ∧ q))) → ♢(♢¬p ∧ ♢q)

(♢♢⊤ ∧ (♢(□⊥ ∧ ¬p) ∧ ♢(□⊥ ∧ ¬q))) → ♢(♢¬p ∧ ♢¬q)

Examples of axioms taken from Halpern and
Kapron (1994):

¬(p ∧ ♢(¬p ∧ ♢(p ∧ ♢¬p)))
¬(p ∧ ♢(¬p ∧ (q ∧ ♢(¬q ∧ (p ∧ ♢¬p)))))
¬(p ∧ ♢(¬p ∧ (¬q ∧ ♢(q ∧ (p ∧ ♢¬p)))))
(p ∧ ♢(¬p ∧ ((p→ q) ∧ ♢¬(p→ q)))) → ♢(p ∧ ♢q)

(p ∧ ♢(¬p ∧ ((p↔ q) ∧ ♢¬(p↔ q)))) → ♢(p ∧ ♢q)

(p ∧ ♢(¬p ∧ ((p→ q) ∧ ♢¬(p→ q)))) → ♢(¬p ∧ ♢q)

(p ∧ ♢(¬p ∧ ((p↔ q) ∧ ♢¬(p↔ q)))) → ♢(¬p ∧ ♢q)

(p ∧ ♢(¬p ∧ ((p→ q) ∧ ♢¬(p→ q)))) → ♢(p ∧ ♢¬q)
(p ∧ ♢(¬p ∧ ((p↔ q) ∧ ♢¬(p↔ q)))) → ♢(p ∧ ♢¬q)
(p ∧ ♢(¬p ∧ ((p→ q) ∧ ♢¬(p→ q)))) → ♢(¬p ∧ ♢¬q)
(p ∧ ♢(¬p ∧ ((p↔ q) ∧ ♢¬(p↔ q)))) → ♢(¬p ∧ ♢¬q)
(p→ □p) ∨ ♢p

(p→ □p) ∨ ♢(p ∧ q)
(¬p→ □¬p) ∨ ♢p

(p→ □p) ∨ ♢(p ∧ q)
(¬p→ □¬p) ∨ ♢(p ∧ q)

Formulas used to disprove zero-one laws for modal
logic K:

q ∧ ¬p ∧□□((p ∨ q) → ¬♢(p ∨ q)) ∧□♢p

¬□□(p↔ ¬♢p)

23

E Pearson correlation analysis of the generated dataset

The following correlation matrix consists of the following variables: tautology in GL, contradiction in
GL, tautology in S4, contradiction in S4, tautology in K4, contradiction in K4, formula depth, almost
sure model validity in GL, almost sure frame validity in GL, almost sure model validity in S4, almost
sure frame validity in S4, almost sure model validity in K4, almost sure frame validity in K4.

We can observe that being a tautology in GL is highly correlated with its almost sure validity in GL
in both models and frames. The same can be said about tautologies in S4 and almost sure validity in S4,
but the correlation is much higher. Additionally, tautologies in S4 and GL are moderately correlated
with almost sure validity in K4 in both models and frames. Furthermore, tautologies in K4 seem to be
barely correlated to almost sure validities in that language. However, that is a due to there being only
9 tautologies in K4 in the dataset.

Moreover, almost sure validity in models is extremely highly correlated to its frame counterpart in all
3 logics. Again, we can see that almost sure validity in GL and S4 is highly correlated with almost sure
validity in , almost sure model validity in GL, almost sure frame validity in K4.

Figure E.1: Pearson correlation matrix

24

F Formulas almost surely valid in GL and S4, but not in K4

The following is the list of formulas which were found to be almost surely valid in models of GL
(transitive, irreflexive) and S4 (transitive, reflexive), but they were not almost surely valid in models of
K4 (transitive).

Figure F.1: Formulas almost surely valid in models of GL and S4, but not in K4.

The following is the list of formulas which were found to be almost surely valid in frames of GL
(transitive, irreflexive) and S4 (transitive, reflexive), but they were not almost surely valid in frames of
K4 (transitive).

Figure F.2: Formulas almost surely valid in frames of GL and S4, but not in K4.

25

G Formulas valid in asymptotic model, but invalid according
to empirical data

This is a list of 5 formulas which were found invalid in all models consisting of 80 worlds or less. However,
when tested in larger models (1000 worlds) they were always valid. This suggests that for this formulas
to display the asymptotic behaviour large structures are needed.

Figure G.1: 5 formulas which were found invalid in the main experiment, but were valid in the
asymptotic model.

26

