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Abstract 
Diet tracking is at the core of ecological animal research. However, current methods are expensive, 
labor-intensive, and time-consuming. So, there is a need for new methods. DNA metabarcoding is an 
upcoming new method. Metabarcoding uses gut content or feces to look at the DNA of prey. 
Specifically, it looks at conserved regions in the DNA like, e.g., the Cytochrome Oxidase subunit 1 
(COI) gene to identify species. Metabarcoding is potentially cheaper, less labor-intensive, and better 
for the researched animals, but the method also has potential biases. This review investigates if 
metabarcoding can be used for diet research in insectivorous birds. First, we address the general 
workflow of metabarcoding and highlight the potential biases. Then we look at how metabarcoding 
performs compared with traditional methods through the literature. It was found that 
metabarcoding generally performs better than traditional methods. Using metabarcoding, more taxa 
were identified and to a taxonomic level that is often impossible for traditional methods. However, 
we also found that metabarcoding can be improved. The reference databases are not yet covering all 
species and using single marker genes often led to under-identification compared to using multiple 
marker genes. Altogether we conclude that metabarcoding is a suitable method for diet research in 
insectivorous birds, provided that a researcher considers potential biases.  
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Introduction 
The world is going through unprecedented change due to man-made climate change. This impacts 
nature all around the world. The phenology of plants and animals around the world is especially 
affected. Phenology is the timing of seasonal activities of animals and plants, and they have been 
shown to occur progressively earlier since the 1960s (Walther et al., 2002). This has already caused 
significant problems for animals. Many animals have an optimal time window in which 
environmental conditions are most advantageous, and often their reproduction is timed to be 
synchronized with this period. This window is usually set by the phenology of other species (Visser & 
Gienapp, 2019). This would not be a problem if all species reacted equally to climate change. 
However, this is not the case. It has been shown that different trophic levels have a different 
sensitivity to climate change (Thackeray et al., 2016). Lower trophic levels react stronger than the 
higher levels. This can lead to a trophic mismatch; this occurs when there is a phenological 
desynchronization between trophic levels. An example from the wild is the pied flycatcher (Ficedula 
hypoleuca). This migratory bird typically tries to have young when the caterpillar peak is happening 
so that there is enough food for the young. However, caterpillars reacted to climate change while the 
pied flycatcher did less. This led to a mismatch that caused local population declines of 90% in the 
pied flycatcher populations with an early food peak (Both et al., 2006).  

To fully understand the impact of climate change on migratory birds, we need a better 
understanding of their ecology. A good start for this is the question: What do migratory birds eat? 
Variants of this question have always been at the heart of animal ecological research. The diet can 
teach us about a lot of different topics like predator-prey relationships (Leray & Knowlton, 2015), 
niche partitioning (Kartzinel et al., 2015), and the flow of energy in whole food webs (McCann, 2007). 
However, diet research has several problems. The first one lies with humans: species are often not 
easily distinguished. Often techniques are used that rely on morphological characters. This requires 
experienced taxonomists, but there are too few experienced taxonomic experts, and the existing 
expertise is declining. (Pearson et al., 2011). The second problem lies more with the animals; Animals 
are variable during the year. If conditions are unfavorable, they can change their diet or even habitat. 
This leads to complex foraging patterns in time and space (McMeans et al., 2015). As a result, one 
needs to observe the diet in multiple places during extended periods of time. This is both costly and 
labor-intensive. Lastly, not all animals are easily tracked; some are elusive or incredibly rare. 
Altogether this has led to a search for new techniques.  

One of the techniques that is becoming increasingly popular is DNA metabarcoding 
(hereafter metabarcoding). Metabarcoding aims to use a small piece of the genome to recognize all 
living taxa. Then a library would be constructed of this small piece of the genome so that one only 
needs to sequence this small part of the genome to recognize the species. For this to work, a DNA 
fragment needs to be found that has the following properties: 
 

"1. The DNA fragment must be nearly identical in specimens of the same species but 
different between individuals of different species, 
2. The section must be standardised (the same section should be used in different taxonomic 
groups), 
3. The marker must be robust, with conservative primer binding sites that allow it to be 
readily amplified and sequenced." (Fišer Pečnikar & Buzan, 2014)    

 
Because of these needed properties, mitochondrial DNA makes a good target. Mitochondrial DNA 
has three benefits, recombination is rare in mitochondrial DNA, it has no introns, and it is always 
inherited from the mother, which reduces variation (Hebert et al., 2003). For animals, the 
mitochondrial gene encoding for cytochrome c oxidase subunit 1 (COI) has been proposed as the 
standardized gene (Kress et al., 2015). This gene is involved in the respiratory chain that catalyzes the 
reduction of oxygen to water. This step is crucial in cellular respiration, and as result, the gene is very 
slow to evolve (Fišer Pečnikar & Buzan, 2014). But the gene still allows for enough change to 
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recognize species from each other. COI sequencing allowed the discrimination of 98% of the animal 
species (Fišer Pečnikar & Buzan, 2014).  
Metabarcoding can be used to identify environmental DNA (eDNA). Environmental DNA includes 
DNA coming from feces and stomach contents (Alberdi et al., 2019). This then can teach us what an 
animal has eaten. Using metabarcoding in diet research has several advantages. First, the resolution: 
metabarcoding can identify species down to taxonomic species levels. This usually is hard or even 
impossible to do with traditional methods (Alberdi et al., 2019). The second advantage is the 
workload: a large part of the work in metabarcoding is lab-based, and unlike traditional methods, 
there is no need to do all samples one by one. Multiple samples can be processed parallel during the 
lab work, which dramatically decreases the workload (Alberdi et al., 2019). Lastly, there is the benefit 
that metabarcoding can detect prey items that are either soft or liquid (Nielsen et al., 2018). These 
items are normally degraded, making them hard to detect with traditional methods. However, there 
are also downsides; it is hard to distinguish between DNA from prey and DNA from other sources. 
This can vary from secondary predations to DNA in water that is ingested together with aquatic prey 
(Nielsen et al., 2018). This problem is further increased because there is still debate about how we 
should process the data recovered from metabarcoding (Deagle et al., 2019). Lastly, there is the fact 
that metabarcoding can only tell you which species you have and not the size of the prey or in which 
life stages it is. Especially not knowing the life stage can be a handicap. For example, some insects 
change habitat depending on their life stage. Not knowing the life stage makes it impossible to know 
where the prey was found.  

Altogether metabarcoding looks like a promising new technique for diet research, but it also 
has a few downsides. In this paper, we will examine if metabarcoding is a suitable method for diet 
research. We will do this with the question: How does DNA metabarcoding compare to traditional 
methods. We will first outline the general workflow for a metabarcoding study to answer this 
question. Then we will investigate how metabarcoding performs with mock samples and in field 
conditions. Lastly, we shortly provide some context to the debate of how metabarcoding should be 
analyzed. Altogether we hope to provide a framework that shows the strengths and weaknesses of 
metabarcoding for researchers considering this method.  
 

The metabarcoding workflow 

Study design 
The first step of a metabarcoding diet study is the study design. A metabarcoding study should 
adhere to a robust ecological design, as with all ecological studies. That is to say; one should aim for a 
proper number of sites and replicates to have enough statistical power for the analysis. To further 
improve the analysis, one should also collect a good set of environmental parameters (Creer et al., 
2016). If this groundwork is in order, one should also take multiple decisions into account that are 
specific to a metabarcoding study. One of the initial decisions should be taxonomic level because this 
will influence most of the choices downstream. Depending on the chosen taxonomic level, a marker 
region should be selected. This marker region should have a reference library compatible with the 
chosen taxonomic level. For animals, the COI gene is the most used gene for metabarcoding. The 
Barcode Of Life Database (BOLD) (Ratnasingham & Hebert, 2007) is an extensive library, but it does 
not yet include all species. As of writing, the database contains 242K animal species (Bold Systems 
V4, n.d.), and the coverage differs between geographical regions. So, it is necessary to check if the 
library contains the species that are expected in the diet. Otherwise, it might be necessary to build a 
library for the study by, e.g., using samples that are analyzed using traditional methods.  
Next, the primers should be designed or selected, depending on the taxonomic level. Primer design is 
complicated by the fact that the COI gene is encoding a protein. Since mutations in the protein-
encoding region often result in a protein that does not function, the protein-encoding part is highly 
conserved, but this is not the case for the primer binding site since changes here do not always 
influence the protein. So, it is challenging to locate a conserved area that can serve as a primer 
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region for all (study) species (Deagle et al., 2014). Altogether this makes it almost impossible to 
design primers that do not have a mismatch with at least some of the target species (Alberdi et al., 
2018).  
The mismatches with species can lead to a lower detection of these species. However, this does not 
have to be all bad. If a mismatch can be created for non-target species the PCR yields more DNA for 
the target species(Verkuil et al., 2022). Since both the marker region and the primer choice can affect 
downstream results it is wise to beforehand select them beforehand. This gives the opportunity to 
consider potential biases and decided if biases are relevant to the results.  
 

Sample collection 
There are two possible sample types possible for a diet metabarcoding study. The first is stomach 
contents; for this method, the stomach's content is collected post-feeding immediately. This has the 
significant advantage that the DNA of the prey should be less degraded than in other methods 
(Alberdi et al., 2019). However, this method has a significant downside. Extracting stomach contents 
is highly invasive for an animal. It requires capture, sedation, and in some cases, even killing the 
animal. These methods can significantly impact an animal and the study system. This can have 
consequences for the study itself, but these methods also face legal and ethical questions (Alberdi et 
al., 2019).  
Consequently, feces is the more popular sample type for dietary analyses. In contrast to stomach 
content, feces can be collected non-invasively. It can either be collected directly from captured 
animals or the environment. The direct collection is preferable because there is less distortion by the 
environment. This is especially the case when animals defecate nearby (potential) prey items, e.g., 
arthropod eaters that eat arthropods that like to feed on feces. However, collection from the 
environment has a major benefit: you do not need to find the animal itself; this is a benefit when 
dealing with elusive, sensitive, or aggressive animals.  
Regardless of the chosen sample type, it is essential to handle the sample afterward carefully. Any 
contamination can add foreign DNA to the sample, distorting the results. Furthermore, it is important 
to stop the degradation of DNA after collection. However, not all methods are suitable for preserving 
DNA; transformed alcohols and formalin should be avoided since these compounds denature nucleic 
acids. Denatured nucleic acids make the downstream analysis of the DNA impossible. Nonetheless, 
DNA is quite robust against other preservation forms; methods like drying, -20 °C freezing, and 100% 
ethanol are suitable (Creer et al., 2016). Although these are suitable methods, there is not much 
research about the effects of using different preservatives on metabarcoding results. So, it is highly 
recommended to use the same method for all samples (Alberdi et al., 2019). 
 

Sample processing 
After all the previous steps, there should now be a sample consisting of feces or stomach contents. 
Of this sample, only the DNA is needed for the metabarcoding. So, the next step is to isolate the DNA 
from the sample. Commonly this is done by using commercial DNA extraction kits. A plethora of kits 
are available, but analysis shows that different kits can result in different results (Dopheide et al., 
2019; Verkuil et al., 2022). It is recommended to use only one type of extraction kit for all samples 
and report the type used when publishing.  
With the isolated DNA, the PCR can be performed. Metabarcoding only relies on a small marker 
region in the DNA, so the PCR is performed with primers specific to the marker region. However, not 
all primers are identical; metabarcoding primers always have certain biases since it is virtually 
impossible to design primers that work the same for all taxa. In silico comparisons also reported large 
differences between primer sets (Piñol et al., 2019), proving that it is crucial to select proper primers 
beforehand. Additionally, it is important to use high-fidelity DNA polymerases because errors made 
by the DNA polymerases can lead to misidentification (Liu et al., 2020). 
But primers are not the only thing that can influence the results of the PCR. There is some 
randomness involved in a standard PCR. To copy the DNA, a primer needs to meet the template. This 
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is a random process, and by pure chance, certain templates may be copied less. This will influence 
the results, and in the worst-case DNA is copied at such a low rate that it leads to a false negative. 
This problem is further increased because environmental samples are complex and can have low 
temple DNA (Ficetola et al., 2015). It is recommended to do at least 6-8 replicates. This should detect 
even the rarest taxa (Ficetola et al., 2015).  
Lastly, there is the problem of chimeric sequences. Chimeric sequences are artifact sequences 
resulting from two or more sequences that have joined incorrectly. According to Shin et al., these are 
mainly formed due to sequence similarities and premature termination of DNA extension near the 
primer region (Shin et al., 2014). This can be a significant problem since metabarcoding always 
targets a similar (marker) region. However, there are algorithms that can detect chimeric sequences, 
although the chimeras formed in metabarcoding studies are particularly hard to detect (Alberdi et al., 
2019).  
After the PCR, there is now a sample with all copied and amplified marker region genes. The last step 
before analysis is reading out the nucleotide sequence of these genes. Typically this is done with a 
process called sequencing. Here the gene is copied using labeled nucleotides. The labeled 
nucleotides are then used to read out the nucleotide sequence. This method is used universally in 
studies that use DNA. However, two things need some more attention in a metabarcoding study. The 
first one is library preparation. In this process, the samples are given a tag used to recognize from 
which sample the DNA comes. This tag is attached with PCR using generic primers and is typically a 
5′-nucleotide tag (Schnell et al., 2015). However, experiments show a phenomenon called tag-
jumping during this process (Schnell et al., 2015). Tag-jumps happen when pieces of DNA are tagged 
with an incorrect tag. Later downstream, this DNA is then counted to the wrong sample. For 
example, Schnell et al. found bat diet in leech diet samples and vice versa when sequencing them 
together. Schnell et al. suggest that tag jumping is the result of blunt-ending of pools of tagged 
amplicons and chimera formation. So they advise avoiding methods that rely on blunt ending during 
the library build step and employing techniques to prevent or reduce chimera formation during the 
library index PCR (Schnell et al., 2015). 
 

Data processing  
After sequencing, the data now needs to be analyzed. This process is called bioinformatics. During 
this process, a so-called pipeline is constructed that converts the sequenced data into an OTU table 
(Operational Taxonomic Unit). The sequences of the OTUs are then matched with sequences of the 
reference database, to assign the correct taxonomic level (family, genus, species) to each OTU. Since 
this process typically falls outside the expertise of (field) biologists, it is recommended to consult a 
bioinformatics expert (Liu et al., 2020). Since bioinformatics has enough content for a whole paper, 
we cannot fully explain it, so we will only elaborate on the databases. Potential further reading on 
bioinformatics can be done in reviews on the matter (Deiner et al., 2017; Piper et al., 2019).  
 Databases are needed for the crucial last step of metabarcoding. Without them, the OTUs 
cannot be matched to taxons in the real world. However, it is important to consider the reliability of 
matches between OTUs and the database. This reliability depends on three things (Alberdi et al., 
2019). The first one is the similarity between generated and reference sequences. This seems 
obvious at first glance: The better the match, the more reliable. This is the case, but this is also 
reliant on the second point of attention: the length of the sequence. Short sequences have a higher 
probability that they perfectly match a reference sequence than a longer sequence. However, this is 
not always desirable. If a short sequence matches multiple things, it is impossible to tell which one it 
should be. Lastly, an important point is the completeness of the database. This one might be the 
most important to think about beforehand. You can't find a match if your expected species are not in 
the database. But maybe more dangerous is a partial database. If you have a genus with three 
species A and B, but only A is in the database, you might high matches with A for B. This can lead to 
the conclusion that it is species A, while a complete database would have given a high match for A 
and B. In the latter case, only the genus identification was certain, while species stayed uncertain. 
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This is also why a good database can lead to a lower identification at lower levels of taxonomy. 
 

FOO vs. RRA 
After the whole DNA metabarcoding, there is now data to analyze. However, there is still debate 
what the best way to analyze metabarcoding data. Since this matters for the results of all studies, we 
will shortly explain the two schools of thought in this debate.   
In essence, the debate revolves around whether we can use metabarcoding to quantify the 
abundance of species in the diet. The most common method does not quantify the abundance of 
species in the diet. Instead, it analyses the presence or absence of taxa. This is then often converted 
into Frequency Of Occurrence (FOO). Which is the percentage of samples that a taxon occurs in. 
Commonly there is a threshold set for the minimum amount of sequences needed. If it is above that, 
the taxa are present; otherwise, the taxa are absent. This method is considered safe and reliable 
because the result should be the same even when biological or technical biases distort the ratio 
between taxa. Because biological and technical biases are thought to be influential in metabarcoding, 
most studies state that using quantitative methods is not yet possible (Galan et al., 2018; 
Mcclenaghan et al., 2019; Swift et al., 2018; Vesterinen et al., 2016). This is often supported by 
references to papers like (Piñol et al., 2015; Thomas et al., 2014). 
However, there is pushback against this idea. More recent papers point out that FOO also has its 
flaws. Deagle et al. point out that most molecular ecologists would agree that there should be a 
difference between a food taxon with 10.000 reads and one with only a few (Deagle et al., 2019). 
This difference will be discarded if you run an analysis with only presence/absence. As a result, there 
is little difference between a diet item that makes up 80% of the diet and an item that makes up 5% 
of the diet. Opponents of FOO argue that this leads to overestimating the importance of rare items. 
In turn, this can increase problems with contamination and secondary predation. Although these 
problems add only a little DNA to the sample, it can be enough to be detected with 
presence/absence (Deagle et al., 2019).  

The alternative method of analysis would be relative read abundance (RRA). This method 
uses the percentages of DNA belonging to each prey species as a proxy for biomass consumed. This is 
beneficial because it retains the difference between a food item with only a few reads and one with 
many. Additionally, it lowers the problems with contamination and secondary predation, these things 
will add reads to the total, but the correct reads should still dominate the overall sample(Deagle et 
al., 2019). However, this method also has a significant drawback. It is especially vulnerable to 
biological or technical biases. If one of these biases leads to an over-or underestimation of one of the 
food items, it will also influence the other items in the sample since it is converted to percentages. 
Nonetheless, these biases can be mitigated, and there are already examples showing that RRA works 
and reflects data out of the field more accurately than FOO (Verkuil et al., 2022).  

The debate if we should use FOO or RRA will continue for the foreseeable future. But more 
knowledge about the biases of metabarcoding and their causes might swing the favor of RRA. 
However, to do this, there is a need for more empirical studies to show the differences between FOO 
and RRA accurately. For the rest of this paper, it is important to remember that RRA and FOO studies 
are not the same and, as a result, are not always directly comparable to each other.  
 

Field studies 
Now the general principles of metabarcoding should be clear. However, the biggest question 
remains. Is this method suitable for diet research? To answer this question, we will look at multiple 
field studies that compare the performance of metabarcoding with either controlled conditions or 
compare it to traditional methods. Literature on this topic was searched on Web of Science.  
We used the following criteria: 

• The study uses metabarcoding to investigate diet 
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• The study validates metabarcoding in some way 

• The study uses field samples 

• The study subjects are insectivorous birds or bats.  
Ideally, we would have only selected studies with insectivorous birds. However, since metabarcoding 
is a relatively new technique, there are not enough studies focusing on insectivorous birds. To still 
have enough literature, we also included bats. Metabarcoding research has been done in bats for a 
longer time, and they also forage on insects. This makes them a suitable proof of concept for 
metabarcoding an insectivorous diet. If a study also focussed on different topics like a nectivorous 
diet, we only deemed it suitable when the results of the insect component were presented 
separately. A overview of the used studies is given in supplement 1.  
 

Known samples  
To know if a method is suitable for diet research, we need to see if we measure what the animal 
eats. One way to do that is to feed an animal a known diet and test if the method picks up on 
everything that was part of the diet. Swift et al. used this method to test the effectiveness of 
metabarcoding in bats (Swift et al., 2018). Their study presented a population of zoo bats (A. pallidus)  
with eleven insect species and allowed them to feed ad libitum on preferred items. After having this 
diet for a week, the guano pellets of the bats were collected for three days. Then they used two 
markers, 16S and COI, to look if they could find the fed prey taxa in the diet. Using both markers 
together, they consistently found five of the diet items in the diet which was in line with dietary 
preferences observed by the zoo staff(Swift et al., 2018). Because this study used a known diet, they 
could create a mock sample based on the offered prey samples. They did this to control their results 
and found significant differences between the performance of the different markers. The 16S marker 
detected 8 out of the 11 species, while COI only identified 6. These results are not that good, and 
they think marker resolution and gaps in the database were to blame for the low identification. 
However, using both markers together led to identifying 10 out of the 11 species (91%) (Swift et al., 
2018).  
A similar experiment was done by Galan et al. (Galan et al. 2018). In this study, they tested mock 
samples and compared the results to the literature. In contrast to Swift et al., they used only COI as a 
marker. They made two different mock samples by mixing premade sequences with fixed 
percentages to test between FOO and RRA. In the first mock sample, they could detect 11 out of 12 
species, and in the second mock sample 7 out of 7. However, they could not identify two species 
because they had no references in the used database. Three other species had multiple hits on 
species level because the sequences were too similar to closely related species(Galan et al., 2018). 
Furthermore, they found that they could not rely on the RRA. Their first mock sample had 12 species 
with an equal share, so all species should be 8.3%. However, species ranged between 0.4%-30.1%. 
The second mock sample had similar results: the frequencies should be 14.3% with seven species, 
but the values ranged from 1.5% to 27.3%. These results suggest that FOO works appropriately but 
that the PCR biases are too severe to analyze using RRA. However, this seems to be a somewhat 
preplanned risk. Galan et al. point out multiple sources of potential causes of PCR biases, with as 
most severe a mismatch of the primer for certain species. But their study does not seem to employ 
measures to lessen these biases. So while their current PCR protocol might lead to unusable RRA this 
might be improved by optimizing the PCR properly.  
Taken together, these studies are promising for metabarcoding. Analysis of the mock communities 
shows that most sequences can be identified and down to species level. Achieving such a taxonomic 
resolution is typically difficult using traditional methods. Nevertheless, they also found that the 
technique is not yet perfect. Galan et al. showed that while FOO works well for the mock samples, 
their current PCR protocol was not ready for analysis using RRA. Additionally, both studies had 
problems identifying all their sequences due to gaps in the databases. However, using multiple 
markers improved the situation for Swift et al.  
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Morphological analysis  
Galan et al. also looked at field samples to compare them to morphological data in the literature 
(Galan et al., 2018). In their study, Galan et al. captured bats between June and September 2015 
from their summer roots on 18 sites in Western France. The bats were placed in a cotton holding bag 
during measurement. From this cotton bag, fecal pellets were collected and stored in microtubes. 
357 samples were collected from 16 bat species. However, since the first intent was to analyze the 
fecal pellets using morphological analysis, the samples were stored at room temperature for 45-162 
days. These conditions are not suitable for DNA; as mentioned earlier in this paper, the samples 
should be stored in ethanol or kept a -20 °C. But even with these conditions, they managed to get 
data out of 82% of the samples. The study investigated the dietary composition of 16 bat species 
using FOO. Their results were in line with the literature. That is to say; they found a high FOO for the 
orders reported by the literature.  
Furthermore, metabarcoding was found to give a greater taxonomic resolution than the literature. 
The literature was based on morphological analysis; this allows for identification to order level or, at 
best, family level. Metabarcoding provided identification down to genus and species level (Galan et 
al., 2018).  

Another study, done by da Silva et al.,  
made a direct comparison (da Silva et al., 2019).  
They analyzed 115 feces of Black Wheatears 
(Oenanthe leucura) by doing both morphological 
identification and metabarcoding. They used three 
markers, one universal for eukaryotes (18S) and 
two specific for arthropods, namely, 16S and COI. 
They found that there were multiple significant 
differences between morphological methods and 
metabarcoding. As shown in table 1, they found 
23 taxa out of 8 orders with morphological 
analysis, while all metabarcoding markers found 
more orders and more taxa. Secondly, the study found 
significant differences in composition among morphological and 
molecular methods. Lastly, they looked at the overlap between 
different methods. For this, they used the Czekanowski index. 
The formula of the Czekanowski index is: 

 
 
 
 
 

 
Where both p's are the proportions of the ith diet item used by 
the prey and S as the total number of diet items, their results 
are shown in figure 1. They found an overlap of 0.435-0.673 
between morphology and the metabarcoding markers. This 
means there is only between 45 and 67% overlap between the results. Da Silva et al. do not 
elaborate on why this is. However, looking at their results, it is clear that it results from higher 
detection by the markers. The only exception is the COI marker ZBJ. This marker fails to detect the 
Hymenoptera family Formicidae, while the other markers and morphological analysis detect this as 
an important diet item. However, ZBJ detects Lepidoptera significantly more than the other markers, 
and morphological analysis misses Lepidoptera entirely. This also leads to the striking results that the 
markers have only a slightly higher overlap between each other, 0.525-0.781. So Da Silva et al. also 
tested metabarcoding using all markers together. With this approach, there were 28 animal orders 

Method 
Number of samples  
with prey (N=115) Orders Taxa 

Morphological  
examination 112 8 23 

18S 94 21 91 

16S 113 21 244 

COI 108 18 231 

Table 1. Performance of morphological examination and 

metabarcoding using three different markers(da Silva et al., 

2019).  

Czekanowski overlap for different methods.  (da 

Silva et al., 2019).  
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detected in 112 samples. The overlap with morphology was 0.563, while the overlap with individual 
markers was 0.711-0.777 (da Silva et al., 2019). It is commendable that Da Silva et al. also tested this 
multimarker approach because these results show that this is the best approach. Using multiple 
overlapping markers looks redundant, but they show that it is complementing. This is especially clear 
with Lepidoptera and Formicidae. Lepidoptera was under-detected by markers other than ZBJ, but 
ZBJ missed the family Formicidae. The multimarker approach detected both.  

Altogether these two studies show that metabarcoding performs better than morphology. 
Galan et al. found metabarcoding led to similar results for bats but with greater taxonomic 
resolution. While da Silva et al. showed that morphological examination detected far fewer taxa than 
metabarcoding. However, the study of Da Silva et al. and Swift et al. indicated that a single marker 
approach might be fallible. Both studies showed that markers failed to identify all species and, as 
result, missed parts of the diet. As shown by both studies, a multi-marker approach lessens this 
problem.   

 

Camera traps  
So far, we have looked at traditional methods that relied on the morphological examination of feces. 
However, this has a downside: the prey is already digested, so it is hard to detect soft-bodied insects. 
So, performing equal to or better than this method might not be enough. However, Verkuil et al. also 
showed that metabarcoding performs well compared to camera data(Verkuil et al., 2022). In their 
study, Verkuil et al. looked at the diet of the pied flycatcher. The study recorded the diet of nestlings 
using camera traps during 39 sessions on different nests for three years. From the resulting footage, 
the food item was identified down to the lowest taxonomical level possible. In addition, the relative 
size of the prey in relation to the adult's beak was scored. Lastly, the scaled biomass contribution of 
each taxon was calculated by multiplying the prey counts by a multiplication factor based on the prey 
size relative to the bill. This data was then compared to the metabarcoding data. 
For the metabarcoding, the feces of 1-3 nestlings were collected. The feces were then mixed, 
resulting in 1 sample per nest sampled. The study used COI as marker gene, but instead of the 
common ZBJ primers, primers designed to match less with bird DNA and better with spiders were 
used. Another notable thing about this study is that it looked not only at FOO but also at whether 
RRA could be used as a quantitative estimate of the relative biomass contributed by each taxon. The 
study showed that metabarcoding performed better in identifying prey items than camera records. 
COI barcodes found 22 orders, and in contrast, camera records found 18. At the family level, the 
difference was larger. In the six most abundant orders, metabarcoding found 105 taxa, while camera 
records found 50 taxa. Furthermore, the study examined the correlation between the metabarcoding 
results and the scaled biomass detected on camera. It found that FOO had a correlation of 0.65 on 
order level and 0.61 on family level. More strikingly, the study found that RRA had a higher 
correlation, respectively 0.85 on order level and 0.74 on family level. This shows that RRA can be 
used as a quantitative estimate for relative biomass(Verkuil et al., 2022). This contrasts with the 
findings of Galan et al., who found that the PCR biases skewed the data of the RRA too much.  
 

Environmental traps  
So far, we have focussed on finding out what the animal has eaten. However, this is only one part of 
the puzzle. It requires knowledge of what an animal has available to understand the diet truly. 
Research into prey availability often samples the environment using traps. The prey in those traps is 
identified using time-consuming traditional methods. Using metabarcoding instead might be an 
improvement, so multiple studies looked into metabarcoding.  

The first study was a proof-of-concept study by Rytkönen et al (Rytkönen et al., 2019). In this 
study, COI was used as a marker not only to describe the diet of four tit species but also to monitor 
the availability of potential invertebrate prey. To do this, feces of the birds and larvae (frass) were 
collected. Metabarcoding could identify 95% of OTUs to order level, 74% to family level, 66% to 
genus, and 60% to species level. The results showed that around three-quarters of the diet consisted 
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of Lepidoptera, which is consistent with the literature. However, compared to the literature, 
metabarcoding allowed further identification often to species level. Furthermore, the study showed 
that prey species could be identified using their frass. Although there was little overlap between the 
diet and the frass samples, this proves that metabarcoding can be used to determine a predator's 
diet and prey availability from their respective feces (Rytkönen et al., 2019).  

Another study investigated barn swallow nestlings (Hirundo rustica) (Mcclenaghan et al., 
2019). This study used COI metabarcoding to compare the diet with insects found in Malaise traps. 
The insects found in the Malaise traps were measured and identified by an expert, after which a 
selection of the insects was identified using metabarcoding. Using metabarcoding, 87.4 of the 
specimens were identified. Of these, 99.1% were identified to order level, 97.5% to family, 71.7% to 
genus, and 40.2% to species levels. This data was then used to create a custom database for the diet 
metabarcoding. For the diet, three fresh feces were collected and pooled every two days from day 
eight after hatching till fledging. From these feces, 88.8% of the OTUs were matched to a reference 
sequence; of these, 53.1% matched the custom database. Of the identified OTUs, 100% were 
identified to order level, 98.5% to family, 82.8% to genus level, and 14.5% to species level. The 
study's last step investigated prey selection, specifically if barn swallows preferred taxa of larger size. 
This was done by matching the diet OTUs with the custom database. Since this database also had 
length measurements, matches were used to assign both taxa and length. The study found that the 
diet had more prey of larger size (>3mm) than the environmental samples, leading to the conclusion 
that barn swallows preferred larger prey. The study mentions that metabarcoding cannot be used for 
quantitative methods due to biases, including the digestibility of prey items. Because of this, the 
study uses FOO. However, this leaves questions about the prey selection conclusion. First, why would 
differences in digestibility not influence FOO? Large prey items could digest slower, possibly leading 
to more detection, especially since samples are only taken every two days. Additionally, it is a known 
critique of FOO that it overestimates the importance of rare diet items. The environmental data 
shows that large insects are the rare category. Lastly, there is the question of how they compare. The 
study says that it uses FOO as qualitative measurement because quantitative is not possible with 
their metabarcoding setup. However, the abundance of insects in the environment is a quantitative 
measurement. Usually, these are not directly comparable, so it needs more explanation why they 
compare the frequency of occurrence of large prey items with the abundance in the environment.  

Together these two studies show promise that metabarcoding can be used to describe birds' 
diet and their prey's availability. Both studies show that it is possible to use metabarcoding combined 
with a sampling method to identify prey availability in the environment. Nonetheless, the studies 
were not more than a proof of concept. Rytkönen et al. describe a low overlap between prey species 
found with the environmental samples and prey detected in the diet. At the same time, 
McClenaghan et al. could only identify 53.1% of the diet using sequences obtained from 
environmental samples.  
 
 

Conclusion 
This paper aimed to examine if metabarcoding was a suitable method to use in diet metabarcoding. 
We have shown that the basis of metabarcoding is solid; metabarcoding performed well in describing 
mock samples and a known diet in zoo bats(Swift et al., 2018). Additionally, the performance 
compared to traditional methods was good. Comparison with morphological analysis (both direct 
and with literature) showed that metabarcoding found what morphological analysis also found. 
However, in the case of Galan et al., metabarcoding gave a greater taxonomic resolution (Galan et 
al., 2018), while Da Silva et al. found both a greater taxonomic resolution and taxa that went 
undetected by morphological analysis (da Silva et al., 2019). Comparison with camera data gave the 
same picture; metabarcoding was comparable with camera data but detected more taxa (Verkuil et 
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al., 2022). Lastly, we looked at environmental traps. Both studies showed that it was possible to use 
metabarcoding to identify prey in their environment and diet. 
Nonetheless, it also showed that comparing metabarcoding data with abundances is complicated, 
especially when using FOO. However, this might be improved by the use of RRA. This method was 
previously thought to be unusable due to biases during the metabarcoding process, but Verkuil et al. 
showed that it is possible to use RRA. But even with RRA, metabarcoding can only be used for 
relative measurements, not absolute ones.  
Even though metabarcoding provided well, it was also shown that metabarcoding could miss certain 
taxa while they are important parts of the diet. Two problems mainly caused this. The first was 
lacking database coverage (Galan et al., 2018; Swift et al., 2018). This emphasizes the need to check if 
there is a suitable database when planning to use metabarcoding. Secondly, primer mismatches lead 
to underdetection of certain taxa. Altogether it is advisable to use multiple markers since the studies 
using multiple markers showed that these problems were mitigated in their design. If this is not 
possible, it is advisable to have some way of validation within the study to detect potential primer 
mismatches or gaps in the database.  
All together, we can recommend metabarcoding as a suitable method for diet research. It is faster, 
cheaper, and offers a greater taxonomic resolution, provided that a researcher familiarizes 
themselves with the potential biases and pitfalls of metabarcoding beforehand.  
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Supplement 1  

 

 

 

 

 

Reference Database FOO RRA Taxonomic level Correlatie/result

Swift et al 2018 NCBI 0 0 species

 Diet:Metabarcoding found diet items in line with observations by zoo staff.

Mock: COI identified 8 out of 11 species, 16S 10/11 and combining both identified all species

Galan et al BOLD 1 1 species

Metabarcoding identified 11 out of 12 species and 8/8 out of two mock samples. 

However the RRA was not comparable with starting percentages

Results for metabarcoding were conguerent with literature based on morphological research. 

However metabarcoding provided greater taxonomic resolution

Da Silva et al 2019 BOLD, NCBI 1 0 Order and below 

Metabarcoding identified more taxa then morphological analysis.

 Multimarker performed best overall. Overlap between morphological analysis and multi marker metabarcoding =0.563 

Rytkonen et al 2018 BOLD 1 0 Order but mentioned that they can go lowerSucces in identifying prey species from both predator feces and their own feces

Verkuil et al 2022 GenBank 1 1 Order, Family

Metabarcoding results have a high correlation with results from camera data. 

RRA has the highest correlation (R=0.85), while FOO has considerable lower correlation (R=0.65)

McClenaghan et al 2019 Custom 1 0 Order, Family Succes in Identifying prey species from both predator feces and environomental samples. 

Reference Consumer Prey type Sample type Geography N Aim Marker Mark length (bp) Primers Database FOO RRA Taxonomic level Correlatie/result

Swift et al 2018 Bat Arthropods Guano United states 42 Feed known diet to look if metabarcoding works 16S/COI not mentioned ZBJ-ArtF1c/ZBJ-ArtR2 NCBI 0 0 species

 Diet:Metabarcoding found diet items in line with observations by zoo staff.

Mock: COI identified 8 out of 11 species, 16S 10/11 and combining both identified all species

Galan et al Bat Arthropods Faecal pellets France 336 Evaluate protocol with mock sample and do real samples and compare with litatureCOI 133/658 BOLD 1 1 species

Metabarcoding identified 11 out of 12 species and 8/8 out of two mock samples. 

However the RRA was not comparable with starting percentages

Results for metabarcoding were conguerent with literature based on morphological research. 

However metabarcoding provided greater taxonomic resolution

Da Silva et al 2019 Black wheatears Arthropods Feces Portugal 115 Comparing 3 markers with morphological analysis 

18S, 

IN16STK (16S), 

ZBJ (COI) not mentioned

COI= ZBJ 

16S = IN16STK-1F_mod/

N16STK-1R_mod 

18S = not specified BOLD, NCBI 1 0 Order and below 

Metabarcoding identified more taxa then morphological analysis.

 Multimarker performed best overall. Overlap between morphological analysis and multi marker metabarcoding =0.563 

Rytkonen et al 2018 4 tit species Arthropods Nestling faeces Finland 14 we test the metabarcoding methods in describing a boreal food web between insectivorous birdsCOI 157 ZBJ-ArtF1c/ZBJ-ArtR2 BOLD 1 0 Order but mentioned that they can go lowerSucces in identifying prey species from both predator feces and their own feces

Verkuil et al 2022 Pied flycatcher Arthropods Feces Netherlands 63 Compare diet found with metabarcoding with camera dataCOI not mentioned LCO1490T/HCO1777T GenBank 1 1 Order, Family

Metabarcoding results have a high correlation with results from camera data. 

RRA has the highest correlation (R=0.85), while FOO has considerable lower correlation (R=0.65)

McClenaghan et al 2019 Barn swallow Arthropods Nestling feces Canada 271 Compare diet found with metabarcoding with Insect trap dataCOI 157 ZBJ-ArtF1c/ZBJ-ArtR2 Custom 1 0 Order, Family Succes in Identifying prey species from both predator feces and environomental samples. 


