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Abstract: The increase in the number of personal vehicles per capita often leads to traffic
congestion in highly urbanized areas. A solution to this problem consists of optimizing traffic
signal control (TSC) policies using deep reinforcement learning (DRL). For this reason, the
current thesis analyzed the TSC performance of two DRL algorithms introduced by Sabatelli et
al. (2020), namely Deep Quality-Value (DQV) and Deep Quality-Value-Max (DQV-Max). The
two algorithms were compared to classic DRL algorithms such as Deep Q-Network (DQN) and
Double Deep Q-Network (DDQN), as well as to heuristic strategies such as Longest-Queue-First
or Fixed-Timings. All algorithms were trained and tested in a simulated environment, created
using Eclipse SUMO, which involved a single cross intersection with 3 lanes. The DRL agents
were tasked with reducing the waiting time at the intersection by selecting which of the lanes were
granted a green light. The results showed that all DRL agents achieved lower average waiting
times than the heuristic strategies. Overall, the DQN and DQV-Max algorithms were more
stable and kept waiting times lower than DDQN and DQV. The latter algorithms presented
some instability, indicated by occasional waiting time spikes. While the environment was not
complex enough to provide incentives for real-world deployment, the thesis acted as a proof of

concept for the DQV and DQV-Max algorithms in the context of TSC.

1 Introduction

The past decades saw a rapid growth in the num-
ber of personal vehicles per capita, a tendency es-
pecially visible in highly urbanized areas. Because
of this, the demand for traffic infrastructure has
increased significantly, leading to traffic conges-
tion, which presents serious economic, environmen-
tal and public health issues (Samal et al., 2020).
A solution to alleviate this problem consists of im-
proving traffic signal control (T'SC) policies, which
manage how traffic lights change in an intersection.
Sub-optimal TSC policies lead to what is known as
green idling, which occurs when the traffic light for
a specific lane is green yet there is no vehicle on
that lane (Rasheed et al., 2020). Therefore, an op-
timized TSC should not allow green idling to occur.

However, manually optimizing TSC policies can
be an arduous task due to traffic’s stochastic na-
ture and the multitude of possible intersection con-
figurations. To this end, model-free Reinforcement
learning (RL) has shown promising results in dy-
namically adapting TSC policies to the needs of
specific intersections (Rasheed et al., 2020). The

principle behind model-free RL is to learn certain
value functions, named state-value and state-action
by using a trial-and-error approach when interact-
ing with the environment. The state-value function,
denoted as V(s), is employed to estimate how good
state s is with respect to the expected return of
the RL agent (Sutton et al., 2018). Similarly, the
state-action function, denoted as Q(s, a), allows the
agent to estimate the expected return when taking
action a in state s (Sutton et al., 2018). There-
fore, the two functions allow the agent to optimize
its behavior in order to increase this expected re-
turn, which represents the cumulative reward that
the agent receives from its environment. Model-free
Deep Reinforcement Learning (DRL), the combi-
nation between deep learning and model-free rein-
forcement learning, functions on the same princi-
ples by employing artificial neural networks to es-
timate such value functions. However, the classic
DRL algorithms present certain limitations since
they only estimate the @ function (Sabatelli et al.,
2020). In addition, this @ function is often overesti-
mated, which can lead to sub-optimal policies since



overestimation errors can be propagated through
learning (van Hasselt et al., 2015).

For these reasons, two model-free DRL al-
gorithms, Deep Quality-Value (DQV) and Deep
Quality- Value-Max (DQV-Max), which approxi-
mate both the V and @ functions, were introduced
by Sabatelli et al. (2020). The aim of this thesis
is to test the performance of the DQV and DQV-
Max algorithms in the context of TSC optimiza-
tion. The thesis should thus act as a proof of con-
cept for the two algorithms, taking them closer to
real-world deployment. To this end, the thesis will
first cover the current developments in the field of
reinforcement learning (Section 2.1) and deep re-
inforcement learning (Section 2.3). Afterwards, the
environment (Section 3.1) as well as the heuristic
strategies (Section 3.2) and the DRL agents (Sec-
tion 3.3) will be discussed. In addition, an extra em-
ployed method, called Prioritized Experience Re-
play (Section 3.5), will be explained, followed by
the experimental setup (Section 3.6). Finally, the
results (Section 4) along with a discussion (Section
5), covering both limitations and future work will
be presented.

2 Background

2.1 Reinforcement Learning

Reinforcement learning (RL) involves an agent
which explores and interacts with its environment
in order to maximize the reward it receives. There-
fore, at each specific time step denoted as t, the
agent can find itself in a finite set of states S =
{s',s?,...,sn}, in which it can perform a finite set
of actions A (Sutton et al., 2018). Performing an
action a; € A(s¢) at time step ¢, while in state
s¢ € § makes the agent transition to state syi1,
according to the transition probability distribution
P(St4+1]8¢, ar). For each transition, the agent also re-
ceives a reward r¢, determined by the reward func-
tion R(s¢,ar). However, since RL tasks are often
continuous, an additional term, the discount fac-
tor, is used. This term is denoted as v € [0,1) and
controls the current value of future rewards (Sutton
et al., 2018).

A RL agent acts according to a policy 7 : § — A,
which indicates what action is appropriate in a spe-
cific state. With this in mind, the definition of the

state-value function V™ can be seen in Equation
2.1, while the state-action Q™ function is defined in
Equation 2.2 (Sutton et al., 2018). The two equa-
tions calculate the expected cumulative discounted
reward received under policy 7, when starting in
state s (2.1) or when taking action a in state s
(2.2). Therefore, the goal of the RL agent is to op-
timize its policy so that the two value functions are
maximized for all states or state-action pairs.
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2.2 Q-Learning

One of the most popular RL algorithms, designed
to learn the @ function, is known as @-Learning,
defined in Equation 2.3. « denotes the learning rate.

Q(st,at) = Q(s¢,a¢) + Oé[Tt + Vgleaj(Q(StH, a)
— Q(St, at)] (23)

This algorithm uses Temporal Difference (TD)
Learning (Sutton, 1988) since it samples experi-
ences from the environment in order to create fu-
ture estimations, with which it updates the value
of the @ function. More specifically, TD-Learning
involves creating a TD-Error 4, defined in Equation
2.4, and using this error to update the @ function.
The first two elements of this TD-Error are denoted
as the TD-Target, which is defined as the sum be-
tween the reward received at the current time step,
r¢, and the discounted maximum expected () value
of the next time step, fyrgleacQ(stH, a). Q-Learning

is thus an off-policy algorithm since the estimated
Q@ value of the next time step is greedily chosen
using the max operator.

O=r;+ 72116&}@(8”1’ a) — Q(st, az) (2.4)



2.3 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is an im-
provement over traditional RL techniques since it
employs artificial neural networks, considered uni-
versal function approximators (Hornik et al., 1989),
to approximate value functions. The main advan-
tage of this approach is that it allows for much
larger state-action spaces than classic, tabular RL
methods do. The most well known DRL algorithm
is called Deep Q-Network (DQN) and was first
introduced as a solution to the high dimensional
inputs of Atari games (Mnih et al., 2013). The
original DQN algorithm employed a convolutional
neural network, specialized in analyzing visual im-
agery, in order to approximate the @ function. This
was accomplished by turning the TD-Error from
Q-Learning into a differentiable loss function (see
Equation 2.5) which the neural network, denoted as
6, must minimise (Mnih et al., 2013). However, the
addition of neural networks also introduced more
instability in the algorithm. For this reason, the
loss function employed two extra methods, named
Target-Network and Experience-Replay, which in-
crease stability during training.

L(0) = E(s, a0,r0,5011)~U (D) [

(re + ’yl(?eaj(Q(stJrh a;07) — Q(s¢, ar; 9))2} (2.5)

Target Network This method involves using a
second neural network, denoted as the target net-
work 67, to calculate the TD-Target (Mnih et al.,
2013). This target network has the same architec-
ture as the main online network 6 but a different
update frequency. While the online network is up-
dated at every training step, the target network’s
weights are frozen and the update is done period-
ically by completely copying the weights from the
online network.

Experience-Replay The second method in-
volves storing the agent’s experiences in a mem-
ory buffer and then creating training batches by
uniformly sampling from this buffer (Lin, 1992;
Mnih et al., 2013). The memory buffer functions
as a queue and the experiences are stored as tu-
ples (s¢, at, 7, Se+1). This method breaks the auto-

correlation between consecutive experiences and
thus further increases stability during training.

Having defined the two methods, the loss function
for DRL agents can be defined as:

L(Q) = E<St’at,7’t’5t+1>~U(D) [62]

where D is the Experience-Replay memory buffer
and 07 is defined as the quadratic loss of the TD-
Error parameterized by the network 6. Equation
2.5 also follows the same structure.

3 System description

3.1 Environment

The agent’s environment is created using the open-
source, multi-modal traffic simulation package,
Eclipse SUMO (Simulation of Urban MObility)
(Lopez et al., 2018). Environments created in this
package are controllable using the traffic control in-
terface library, TraCl, programmed in Python, a
high-level programming language (Van Rossum &
Drake, 2009). This specific package was chosen be-
cause it seems to be the most popular tool for im-
plementing RL and DRL algorithms for TSC (Hay-
dari & Yilmaz, 2022).

The environment itself consists of a single cross-
intersection, controlled using traffic lights (see Fig-
ure 3.1). Each of the four intersection legs has three
lanes and a length of 200 meters. According to real
world conventions, the rightmost, middle and left-
most lanes, seen from the driver’s perspective, will
be considered the first, second and third lane, re-
spectively.

The intersection’s TSC has in total 8 traffic light
phases, 4 responsible for green light signals and
4 responsible for yellow light signals. Each green
phase is followed by a 3 second yellow phase in
which the intersection gets cleared, thus acting as a
safety mechanism. The vehicle’s behavior for yellow
light signals is to pass through the intersection if a
safe stop is not possible, otherwise to decelerate.
As for the green light signals, vehicles decelerate
on approach until reaching the visibility distance of
4.5 meters away from the intersection (Lopez et al.,
2018). Afterwards, if the intersection is clear, they
pass through. For the red light signal, vehicles must
come to a complete stop.



Figure 3.1: The agent’s environment: a single
cross-intersection with 3 lanes, seen in phase 2

The 4 green phases can be observed in Figure
3.2. In the first two phases, vehicles can go straight
using the first and second lanes or turn right via
the first lane (see 3.2a, 3.2b). In the other two
phases, vehicles can only turn left from the third
lane (see 3.2c, 3.2d). The agent’s actions involve
choosing one of the four green phases to be applied
to the traffic lights. When choosing a new green
phase, the simulation automatically switches to the
3 seconds yellow phase corresponding to the current
green phase. After the 3 seconds pass, the intersec-
tion will switch to the new chosen green phase.

As for the traffic, vehicles are generated at the
end of the approach lanes and are removed from the
simulation at the end of the depart lanes. The route
of each vehicle is created using the random trips
tool provided by SUMO. Two different fixed scenar-
ios were randomly generated using this tool, repre-
senting medium and high traffic. These scenarios
contain the route of each vehicle as well as the sim-
ulation time at which they are generated. There-
fore, vehicles are generated 1.15 seconds apart for
medium traffic or each second for high traffic. Fi-
nally, there are two types of vehicles generated in
the simulation, passenger vehicles and buses. Pas-
senger vehicles have a length of 4.5 meters and a
maximum speed of 35 meters/second and are gen-
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Figure 3.2: The 4 green light phases

erated with a 90% probability. The buses have a
length of 14 meters and a maximum speed of 30
meters/second and are generated with a probabil-
ity of 10%.

3.2 Heuristic Strategies

In order to have a baseline comparison for the
DRL agents, three other agents that act according
to heuristic strategies were implemented. The first
agent follows a Random policy by always choosing
the next green phase randomly. The second agent
implements a Longest-Queue-First policy, which in-
volves choosing the green light phase corresponding
to the lane with the most vehicles. Finally, the third
agent follows a Fixed-Timings policy by selecting
consecutive green light phases that last 45 seconds
each. For all three agents, a 3 second yellow phase
is automatically introduced to make the transition
between the current green phase and the next. For
the random and longest-queue-first agents, green
light phases last for at least 10 seconds. More specif-
ically, the agents are able to choose a new green
light phase only after the 10 seconds have passed.



3.3 Deep Reinforcement Learning
Agents

In total, four DRL agents are implemented to opti-
mize the TSC policy for the simulated intersection.
The first two agents represent classic DRL algo-
rithms, denoted as Deep Q-Network (DQN) (Mnih
et al., 2013) and Double Deep Q-Network (DDQN)
(van Hasselt et al., 2015). The other two agents are
the Deep Quality-Value (DQV) and Deep Quality-
Value-Max (DQV-Max) algorithms, introduced by
Sabatelli et al. (2020).

All DRL agents used the same state-action space,
received the same rewards and had the same goal.
The state was defined as the number of vehicles per
lane. However, since the first and second lanes share
green light phases, they were merged into a single
lane. Therefore, the number of vehicles for the two
lanes was summed, creating a state size of 8, each
intersection leg only providing 2 lanes instead of 3.
In addition, a special case was defined for vehicles
which wanted to turn left but the third lane was al-
ready full, thus forcing them to wait on the first or
second lanes. This behavior was a limitation of the
simulation environment, which continued to gener-
ate vehicles despite the fact that the desired lane
was full. In such cases, vehicles were counted as be-
ing found in the third lane to ensure that agents
learn the proper policy in the first training steps,
when actions were often taken randomly.

Furthermore, the agents had 4 possible actions,
which involved choosing one of the 4 green phases
to be used in the intersection. However, the agents
were forced to maintain the green light phase for
at least 10 seconds before being able to choose a
new phase. This was implemented to ensure traffic
lights are not changed too often or sudden, which
would be unsafe in real-world scenarios.

Finally, the reward received at each time step was
the negative accumulated waiting time, averaged
for all vehicles in the simulation. More specifically,
the accumulated waiting time represents the entire
waiting time for each vehicle since it entered the
simulation. Therefore, the goal of each agent was
to decrease this average accumulated waiting time.

3.3.1 DQN

The first algorithm, also discussed in Section 2.3, is
DQN (Mnih et al., 2013), the DRL implementation

of Q-Learning. DQN aims to minimise the loss func-
tion shown in Equation 2.3, where the TD-Error dy,
parameterized by the network 6, is defined as:

6o = 71 + ymaxQ(se41,a;07) — Q(st, ar;0)
acA

As mentioned before, DQN uses the Experience-

Replay memory buffer D to sample training batches

and the Target-Network 67, to calculate the TD-

Target.

3.3.2 DDQN

The DDQN (van Hasselt et al., 2015) algorithm,
inspired by the Double Q-Learning algorithm (Has-
selt, 2010), comes as a solution to DQN’s @ value
overestimation problem. This problem is caused by
Q-Learning’s method of calculating the TD-Target
by using the same estimated @) value for action se-
lection and evaluation (Hasselt, 2010). Double Q-
Learning sought to reduce the overestimation of the
classic Q-Learning algorithm by separating the ac-
tion selection and evaluation steps. Therefore, the
main idea behind DDQN is to use the online net-
work 6 to select the action and the target network
0~ to evaluate it. Similarly to DQN, the target
network 6~ is updated periodically by copying the
weights of the online network 6. Equation 3.1 shows
the formula for the DDQN’s TD-Error dy, used in
the loss function from Equation 2.3.

dg = 1t +YQ(S¢41,arg H;aXQ(StH, a,0);607)
(1S

—Q(st,at;0) (3.1)

As it can be seen in Equation 3.1, the arg max op-
acA
erator first selects the action that maximizes the @

value estimated by 6. This action is then used to
evaluate the @ value of the next state, predicted by
0.

3.3.3 DQV

DQYV is an on-policy algorithm which aims to learn
both the V' and @ value functions, by using two dif-
ferent neural networks, denoted as ® and 0, respec-
tively (Sabatelli et al., 2020). The loss function, pa-
rameterized by 6, is defined in Equation 2.3, while



the one parameterized by ® can be seen in Equa-
tion 3.2. The corresponding TD-Errors d¢ and dy
of each loss function are then defined in Equations
3.3 and 3.4, respectively.

L((P) = E<St7atart;3t+1>NU(D) [5%] (32)

The main idea behind DQYV is to learn the V func-
tion via TD-Learning and then use V'’s correspond-
ing target network ®~ to calculate the TD-Target
for the @ function. This can be seen in Equations
3.3 and 3.4, used to learn V and Q.

0 = 1 + YV (si41;97) — Vi(sy; @) (3.3)

59 = Tt + ’VV(St+1;q)_) — Q(8t7at;9) (34)

As it can be seen, both TD-Error equations use
the same TD-Target parameterized by the target
network @, corresponding to the V' function.

3.3.4 DQV-Max

DQV-Max is similar to DQV in the sense that it
uses two different neural networks ® and 6 to learn
both the V' and @ functions, respectively. However,
the TD-Targets are different since the V' function

is approximated by using the mzﬁ( operator, which
ac

involves off-policy learning (Sabatelli et al., 2020).
More specifically, the TD-Target used for updating
V is the same as the TD-Target used in DQN, also
including the target network #~ that corresponds
to the @ network 6. This can be seen in Equation
3.5, which shows the TD-Error dg of the V function.

0o = 14 + vmeaj(Q(st_H,a;G*) —V(s;®) (3.5)

As for the Q) function, the TD-Error dg can be seen
in Equation 3.6, which calculates the TD-Target by
using the V' value estimated by the online network
®. The TD-Errors for the @ function are similar for
both DQV and DQV-Max, with the exception that
DQYV uses the target network @~ while DQV-Max
uses the online network ®.

do = 1 + YW(sir1:®) — Q(s4,a430)] (3.6)

3.4 Neural Network Architectures

The neural network models for all DRL agents were
created using the application programming inter-
face (API) Keras (Chollet et al., 2015). This API
runs on top of the end-to-end, open-source plat-
form for machine learning, Tensorflow (Abadi et
al., 2015).

All DRL agents employed an online neural net-
work 0 to approximate the @) function. The archi-
tecture of f involves 3 fully connected hidden layers,
each with 32 nodes. All hidden layers used the Rec-
tified Linear Unit (ReLU) activation function while
the output layer used a linear activation function.
The input layer receives a state of the agent con-
taining 8 positive integers, while the output layer
produces the 4 estimated @ values, one for each ac-
tion. This neural network was trained using the loss
function shown in Equation 2.3. Finally, DQN and
DDQN employed the Adam optimizer (Kingma &
Ba, 2014) with a learning rate of 0.001, while DQV
and DQV-Max used the RMSProp optimizer, as in-
troduced in the Coursera course given by Hinton et
al. (2016). The RMSProp optimizer used a learn-
ing rate of 0.001, a discounting factor of 0.95 and
€ = 0.01, the constant ensuring numerical stability.
In addition to #, DQV and DQV-Max used a second
neural network ® to approximate the V function.
® is almost identical to 6 with the sole exception
that the output layer has a size of 1, producing the
estimated V value for the given state. ® minimized
the loss function defined in Equation 3.2. Finally,
the target networks #~ and @~ had the same archi-
tecture as the corresponding 6 and ®, respectively.

3.5 Prioritized Experience Replay

Prioritized Experience-Replay (PER) is a type of
Experience-Replay which was employed for all im-
plemented DRL agents. The reason for using this
method was that previous studies showed that
PER can significantly increase the performance of
DRL algorithms tasked with TSC (Fang et al.,
2019). The main idea behind PER is to replace
the uniform sampling of traditional Experience-
Replay with prioritized sampling (Schaul et al.,
2015). More specifically, the priority p; of experi-
ence i = (8¢, ag, r¢, S¢41) is dictated by its TD-Error
d;, as seen in the following equation:



where ¢ = 0.01 represents a constant that ensures
p; > 0 and thus a non-zero probability for sam-
pling each experience. The reasoning behind this
non-zero probability is that prioritizing experiences
with high TD-Errors can reduce diversity. This ef-
fect can be alleviated by using stochastic prioriti-
zation (Schaul et al., 2015), which defines the prob-
ability P(7) of sampling experience i as:

) j23
P(i) = L
) 2ok PR
where o determines the prioritization level. For in-
stance, when a = 0, all probabilities are equal,
meaning that the sampling is uniform. In this case,
a was set to 0.8. Furthermore, k indicates that the
denominator is the sum of all priorities.

In addition, prioritized experiences tend to be
over-sampled since a bias for high TD-Errors is
introduced. This bias can be alleviated by using
importance-sampling (IS) weights (Schaul et al.,
2015), as defined in Equation 3.9. The equation
defines the weight w; corresponding to experience
i, which has the role of down-weighting experi-
ences with a high probability P(i) of being sam-
pled and up-weighting those with a low probability.
This weight is then included in the priority calcu-
lation by replacing §; with w;§; in Equation 3.7.
N represents the number of experiences stored in
the experience buffer, while 8 controls how much
importance-sampling correction is applied to each
TD-Error. Initially, 8 was set to 0.3, however, this
value was annealed to 1 by an increment of 0.0005
every time a batch is sampled. This was done to
correct the bias more aggressively towards the end
of the training, when the algorithm converges and
thus requires updates to be unbiased (Schaul et al.,

2015).
o (le ) Pii))ﬁ

3.6 Experimental Setup

(3.8)

(3.9)

3.6.1 Training procedure and parameters

All DRL agents were trained on the medium traf-
fic scenario and then tested on both the medium
and the high traffic scenarios. The reason for this

approach was to test the adaptability of the DRL
agents compared to the heuristic strategies. Train-
ing involved using the agent’s experiences to op-
timize the weights of the neural networks & and
0, tasked with learning V' and . During testing,
the pre-trained network 6 was employed for ac-
tion selection, without any update in the network’s
weights. Each agent was trained for 30000 simu-
lation steps, using the PER technique. The mem-
ory buffer had a maximum capacity of 2000 ex-
periences and training started when there were at
least 300 experiences in the buffer. Once this min-
imum threshold was reached, the online networks
were updated at each simulation step by sampling
with priority training batches of size 32. The tar-
get networks, on the other hand, had an update fre-
quency of 500 training steps. More specifically, once
training started, target networks were updated ev-
ery 500 steps. Finally, network updates used a dis-
count factor v = 0.99 and a learning rate of 0.001.
These hyperparameters were chosen empirically.

In addition, each DRL agent used the e-greedy
exploration strategy, which balances the explo-
ration and exploitation trade-off. The main idea
behind this strategy is to explore the environment
with a probability of € and exploit the learned pol-
icy with a probability of 1—e. Exploration is accom-
plished by having the agent take random actions,
while exploitation involves choosing the action that
maximizes the expected ) value for the next state.
In this experiment, € had an initial value of 0.7 and
was annealed to 0.1 by a 3 x 10~° increment every
simulation step.

3.6.2 Agent evaluation

All agents were evaluated based on the accumulated
waiting time averaged for all vehicles in the simula-
tion. Therefore, an optimal agent would keep wait-
ing times as low as possible while also being stable
enough to ensure fairness between lanes. The main
idea behind the latter statement is that a high fluc-
tuation in waiting times indicates a lack of fairness
between lanes, meaning that some lanes are not
given enough priority.
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medium traffic.
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Figure 4.2: The average accumulated waiting
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high traffic.

4 Results

In order to have a baseline comparison, the av-
erage accumulated waiting times achieved by the
heuristic strategies can be seen in Figures 4.1 and
4.2. Figure 4.1 shows that the Longest-Queue-First
policy manages to reduce waiting times the most
for medium traffic. On the other hand, Figure 4.2
shows that the Fixed-Timings policy achieved lower
and more stable waiting times for high traffic. This
trend can also be seen in Table 4.1, which shows the
accumulated waiting times averaged over the 30000
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Figure 4.3: The average accumulated waiting
times achieved by the trained DRL agents at
each simulation step for medium traffic. The
longest-queue-first policy was also included as
a baseline.

simulation steps. For medium traffic, the Longest-
Queue-First policy achieved an average waiting
time of 28.11 seconds, almost 20 seconds less than
the 46.09 seconds given by the Fixed-Timings pol-
icy. The trend is reversed for high traffic, in which
Fixed-Timings achieves an average waiting time of
47.36 seconds, compared to 70.77 seconds given by
the Longest-Queue-First policy. As expected, ran-
domly choosing green light phases leads to longer
waiting times, regardless of the traffic situation.
Furthermore, Figures 4.3 and 4.4 present the av-
erage accumulated waiting times achieved by the
trained DRL agents at each simulation step, com-
pared to the optimal heuristic for the specific traf-

Table 4.1: The accumulated waiting time (s)
for each agent, averaged over 30000 simulation
steps | Medium and High Traffic scenarios

Agent | Medium  High
Random 84.62s 122.35s
Fixed-Timings 46.09s 47.36s
Longest-Queue-First | 28.11s  70.77s
DQN 22.89s 35.27s
DDQN 23.25s 45.60s
DQV 26.80s 43.80s
DQV-Max 21.53s  34.02s
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Figure 4.4: The average accumulated waiting
times achieved by the trained DRL agents at
each simulation step for high traffic. The Fixed-
Timings policy was also included as a baseline.
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Figure 4.5: The average accumulated waiting
times achieved by the DRL agents at each sim-
ulation step when training on medium traffic.
The longest-queue-first policy was also included
as a baseline.

Table 4.2: The average required training time
(minutes) for each agent to complete the 30000
simulation steps| Medium Traffic scenario

Agent ‘ Training time
DQN 15.26 min
DDQN 15.53 min
DQV 19.51 min
DQV-Max | 20.76 min

fic scenario. It can be seen that the DRL agents
are, on average, an improvement over the heuristic
strategies, achieving lower waiting times for both
traffic scenarios. This is confirmed by analyzing Ta-
ble 4.1, which shows that all DRL agents achieve
lower average waiting times compared to the heuris-
tic strategies agents. However, DQN and DQV-Max
seem to produce lower and more stable waiting
times compared to DDQN or DQV, which show a
noticeable instability for high and medium traffic,
respectively. This instability is also visible in Table
4.1, where DDQN and DQV have on average longer
waiting times than DQN and DQV-Max.

Finally, Table 4.2 contains the number of minutes
required for each DRL agent to complete the 30000
training simulation steps. It can be seen that both
DQN and DDQN take around 15 minutes, while
DQV and DQV-Max around 20 minutes, which is
an approximated 33% increase. Despite this, Fig-
ure 4.5, which contains the average accumulated
waiting times achieved by the DRL agents at each
simulation step during training, shows that all DRL
agents converge in about the same number of sim-
ulation steps.

5 Discussion

All in all, the DRL agents show, on average, shorter
waiting times than what was achieved by the widely
used heuristic strategies, Longest-Queue-First or
Fixed-Timings. However, DDQN and DQV pre-
sented some instability in the form of waiting-
time spikes, allowing waiting times to sometimes
rise above the heuristic baseline. In the simula-
tion, such scenarios were often linked to lanes which
were forced to wait longer than the rest, which in-
creased the averaged waiting time for the entire
intersection. The two algorithms that were more
stable, DQN and DQV-Max, have a common ele-
ment in the sense that they both employed the I;lea;‘(

operator to calculate the TD-Error. More specif-
ically, DQN and DQV-Max select the maximum
expected @) value for the next state when updat-
ing the @ and V function, respectively. For DQV-
Max, this V function is then used to update the
Q@ function as well, which is responsible for the ac-
tion selection. With these results in mind, it can
be stated that DQV-Max shows similar or better
performance compared to classic DRL algorithms



when it comes to TSC. Moreover, despite its insta-
bility, DQV has on average shorter waiting times
than all heuristic strategies tested. However, its
performance for TSC seems to be at most similar
or slightly lower than DQN and DDQN.

Furthermore, it must be noted that the environ-
ment was less complex than other environments
usually employed for testing DRL agents, having
a small state-action space. More specifically, the
agent was able to perform only 4 actions while
the state itself consisted of 8 positive integers, also
limited in scale by how many vehicles could fit in
the intersection. Therefore, it might be the case
that more complex environments could favour the
DQV and DQV-Max algorithms, allowing them to
distance themselves from the classic DRL algo-
rithms. This occurred in Sabatelli et al. (2020),
where DQV and DQV-Max were tested on the more
complex Atari-2600 benchmark (Bellemare et al.,
2013) and showed a better performance than DQN
and DDQN. In addition, the simple environment
meant training times were short, around 15-20 min-
utes. In this thesis, the DQV and DQV-Max algo-
rithms had a longer training time but converged
in the same amount of simulation steps as DQN
and DDQN. The longer training time was to be
expected since both algorithms train two differ-
ent neural networks simultaneously, compared to
DQN and DDQN which only train a single neu-
ral network. However, it might be the case that
in more complex environments, DQV and DQV-
Max would require less steps to converge, which
could balance the higher training time. This was
the case in Sabatelli et al. (2020), where the two al-
gorithms converged significantly faster than DQN
and DDQN when deployed in the Atari-2600 bench-
mark (Bellemare et al., 2013). The reason for this
could be that the V function, which is used to train
the @ function, converges using a lower number of
parameters (Sabatelli et al., 2020).

Regarding the real-world deployment of DRL al-
gorithms in the context of TSC, there are some is-
sues which must be addressed. Firstly, training on
real-world traffic would be unfeasible because of the
trial-and-error approach of RL algorithms, which
would cause significant traffic congestion (Rasheed
et al., 2020). The alternative, which involves us-
ing simulated environments, has the drawback that
such environments are often not realistic enough
to account for unexpected driver or pedestrian be-

havior. In addition, simulated environments allow
DRL agents to use traffic data which is impracti-
cal to gather in real-world scenarios. For instance,
one common approach for DRL optimised TSC is
to gather information about the traffic from aerial
images or videos given by the simulation (Rasheed
et al., 2020). However, in real-world scenarios, em-
ploying cameras to gather aerial images is imprac-
tical, expensive and can also be affected by poor
weather conditions. While some research found that
higher-dimensional state representations are bene-
ficial for DRL optimized TSC (Zhang et al., 2018),
it has to be investigated whether the extra per-
formance can out-weight the practical matters of
data gathering. On the contrary, Genders & Razavi
(2018) found no difference in performance between
lower and higher-dimensional state representations.
This could be an additional argument for employ-
ing simpler states determined using sensors, rather
than the more complex states that require cameras,
radars or even vehicles connected to the same net-
work.

For these reasons, the current thesis opted to
train the DRL agents on much simpler states,
namely the number of vehicles on each lane, which
can be computed using simple sensors. To be noted
that the number of vehicles per lane is not equiv-
alent to the queue length, which would imply that
vehicles are stationary. The limitation of queue
lengths comes from the fact that slow moving vehi-
cles are not considered to be in a queue and would
thus be ignored by the TSC. In order to count the
number of vehicles for each lane, a threshold which
determines where the counting begins should be set
in place. However, this was not required in the cur-
rent thesis since a single intersection was imple-
mented, whose lanes did not feed into other inter-
sections.

Overall, the current literature presents a major
obstacle in the way of real-world deployment of
DRL agents for TSC. More specifically, there seems
to be no widely adopted benchmark for realistic
TSC simulations. In this way, algorithms are tested
on different intersection layouts and traffic scenar-
ios, each measuring different metrics with regards
to success. This makes comparing algorithms dif-
ficult, which would dispel potential early adopters
of DRL optimized TSC. Furthermore, many algo-
rithms are tested in unrealistic environments, which
was also the case for the current thesis. While such
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approaches can act as a proof of concept for dif-
ferent algorithms, they do not meet the criteria
for deployment. The solution for this would be the
adoption of realistic TSC benchmark tools such as
LemgoRL, a realistic simulation of an intersection
found in Lemgo, Germany (Muller et al., 2021).
Such tools, which employed real-world data and en-
sured safety regulations compliance, could acceler-
ate the real-world deployment of DRL agents in the
context of TSC. As a final note, it should be stated
that heuristic strategies are already a good enough
solution for intersections that do not present a high
risk of congestion. Therefore, deploying DRL agents
for TSC in such cases would often not be worth-
while.

5.1 Limitations

The fact that vehicles were generated each sec-
ond or each 1.15 seconds did not cover the true
stochastic nature of traffic. Moreover, in the real-
world, some lanes and routes are in higher demand
than others, which would change the performance
of some heuristic strategies. Therefore, it cannot
be estimated exactly how well the DRL algorithms
would perform in a truly stochastic and realistic en-
vironment. Finally, hyperparameter tuning in the
context of DRL is often a highly demanding task,
time and processing power wise. For this reason, the
four DRL agents implemented used the same hyper-
parameters in most situations. However, it might be
the case that some hyperparameter values are not
optimal for all DRL agents analyzed in this thesis.

5.2 Conclusion and future work

Finally, DQV and DQV-Max present an alterna-
tive to classic algorithms currently used in the DRL
field. The current thesis showed that their per-
formance is similar or surpasses classic DRL al-
gorithms and heuristic strategies in the context
of simulated TSC. Future studies should analyze
whether the algorithms would benefit from a soft
update of the target networks. More specifically,
rather than completely copying the weights from
the online network, a soft update would imply more
frequent, partial updates of the target network
(Kobayashi & Ilboudo, 2021). Moreover, it should
be inspected whether DQV and DQV-Max overes-
timate the @ value when used for TSC. Sabatelli

et al. (2020) showed that the two algorithms do
not suffer from @ overestimation like DQN does.
However, this was only tested for the Atari-2600
benchmark, not for TSC. A final aspect which could
be analyzed would be the removal of the 10 sec-
onds minimum green time. This would give the
DRL agent more freedom when learning, which
might improve performance. However, safety con-
cerns should be taken into considerations to ensure
dangerous traffic light switches do not occur.
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