
Addressing Bootstrapping Errors in Offline

Reinforcement Learning with Ensembles

Bachelor’s Project Thesis

Marco Andrea Gallo, s3680622, m.a.gallo@student.rug.nl

Supervisor: Dr. Matthia Sabatelli

Abstract: Interest in Reinforcement Learning has surged in recent years on pair with its success
stories. Nonetheless, deployment of Reinforcement Learning systems to real-world applications
is still not on the scale of standard supervised learning models, which are able to exploit vast
offline datasets. Through algorithms that can learn from data collected by other policies, off-
policy Reinforcement Learning aims to improve the low sample efficiency of standard online
algorithms and to better exploit existing offline datasets. One key challenge for off-policy value-
based algorithms is the bootstrapping error (Kumar et al., 2019), where actions outside of the
training data distribution incorrectly influence policy optimization. This error is exacerbated
in the offline setting, and common solutions pertaining to uncertainty-based methods focus on
bootstrap ensembles. This research seeks to assess whether the DQV algorithmic family (Sabatelli
et al., 2020) benefits from the simple ensemble technique of Ensemble-DQN (Agarwal et al., 2020)
for bootstrapping error control. Empirical studies are performed on two classic control OpenAI
Gym environments, tracking the algorithms’ accumulated reward and value estimates evolution
during evaluation. Preliminary results found offline DQV and DQV-Max robust to bootstrapping
errors due to their particular temporal difference updates. The proposed ensemble technique
confirmed moderate bootstrapping error correction for offline DQN on one environment, yet
no significant advantage was found for the DQV family, suggesting that these deep off-policy
algorithms are already strong in the offline setting.

1 Introduction

In the past decade, machine learning methods have
encountered major success over a wide number of
real-world applications, ranging from Computer Vi-
sion to Natural Language Processing tasks. Much
of the progress in these areas can be attributed to
the development of data-driven, scalable learning
methods. In fact, although advancements in models
and architectures are an integral part of this success
story, the learning techniques these models employ
are well-founded and understood, and major im-
provements in model performance stem from the
availability of large and diverse training datasets.
Such data-driven methods do not map to the Rein-
forcement Learning (RL) framework equally well.
RL involves sequential decision making problems
where the best behavior strategy is learned through
active interaction with the environment. This nat-

urally online learning paradigm prevents effective
exploitation of the rich offline datasets that make
supervised learning methods so powerful. More-
over, data collection for complex real-world RL ap-
plications such as autonomous driving or health-
care support systems can often be expensive or haz-
ardous. Therefore, developing safe and capable of-
fline RL agents has a great appeal: by efficiently
learning from large amounts of data, we could cre-
ate “generalizable and powerful decision making
engines” (Levine et al., 2020) to aid solving many
real-world open problems.

In offline RL, an agent learns a policy from a
static dataset of logged experiences produced by
a behavior policy. This differs from classical online
RL, where an agent can actively collect new expe-
rience by interacting with its environment (Sutton
& Barto, 2018). For an offline agent to improve,
it is therefore crucial that it is able to partake

1



in counterfactual reasoning to accurately estimate
the outcomes of a decision different from the cor-
responding one in the training dataset (Levine et
al., 2020). By contrast, an online RL agent could
explore and learn on its own the effects of a de-
cision different than the one previously chosen in
the same situation. This additional constraint of
offline RL is problematic, and it exceeds the capa-
bilities of current machine learning methods that
use expressive function approximators (neural net-
works) to generalize across examples. For one, it
violates the assumption of independent and iden-
tically distributed data (i.i.d.) that standard su-
pervised learning algorithms rely on: an offline RL
agent may be trained under one distribution but
tested under a different one. In addition, an offline
agent must be able to reason differently from the
data-generating policy in order to produce novel
– and possibly favorable – courses of actions; this
requirement breaks the i.i.d. assumption too. The
mismatch between the behavior policy-induced dis-
tribution and the one learned during training is
called distributional shift, and it presents a fun-
damental challenge for the efficacy of offline RL
(Levine et al., 2020).
Distributional shift generally affects off-policy

RL algorithms. These are methods that learn about
a target policy using a different behavior policy
(Sutton & Barto, 2018), such as the popular Q-
learning agent (Watkins & Dayan, 1992). Due to
their ability to learn from data generated by an-
other policy, off-policy algorithms naturally lend
themselves to offline RL. It is well known that
off-policy methods exhibit high estimates variance
(Sutton & Barto, 2018); additionally, off-policy al-
gorithms which employ a maximization operation
in the bootstrapping step, such as Q-learning, are
prone to overoptimistic value estimates (Thrun &
Schwartz, 1993). In the offline setting, this form of
bootstrapping error results in the selection of ac-
tions that lie outside of the training data distribu-
tion (Kumar et al., 2019) which disrupt the training
process and drive it towards regions of uncertainty.
To address distributional shift and bootstrapping

errors in off-policy learning, many techniques found
in the literature employ ensemble-based methods
(Osband et al., 2016; Anschel et al., 2017; Fujimoto
et al., 2019, appendix D.2). Most relevant for this
research, ensembling methods have demonstrated
a successful approach in offline RL, as seen in the

REM agent by Agarwal et al. (2020). The present
paper investigates to which extent results concern-
ing bootstrapping error prevention based on ensem-
ble variants of Q-learning transfer to other model-
free, value-based RL algorithms in the context of
offline RL. In particular, we will inquire whether
benefits concerning bootstrapping error reduction
stemming from simple ensemble methods apply to
the deep RL agents of the DQV algorithmic family
(Sabatelli et al., 2020).

1.1 Background

The following subsections will introduce definitions
and prior knowledge needed to understand this pa-
per.

1.1.1 Reinforcement Learning

Reinforcement Learning seeks to solve a Markov
Decision Process (MDP) (S,A, p, R). In RL, an
agent interacts with an environment at discrete
time steps t = 0, 1, 2, 3, . . .. At each time step t,
the agent receives a representation of the environ-
ment st ∈ S, on which it can perform some action
at ∈ A(s) that makes it transition to a new state
st+1 according to a dynamics model p : S×S×A →
[0, 1] , p (s′ | s, a) .

= Pr {s′ = st+1 | s = st, a = at}.
At st+1, the agent receives reward rt from a reward
function R : S ×A → R, rt = R (st, at). The goal of
a RL agent is then to find a mapping from states
to action probabilities, called a policy π : S ×A →
[0, 1] , π (a | s) = Pr {at = a, st = s}, which maxi-
mizes the expected return Gt

.
=

∑∞
t=0 γ

tR (st, at)
where γ ∈ [0, 1] is a discount factor that scales
the importance of future rewards. Each policy π
has a matching state value function V π (s) =
E [Gt | s = st], which indicates the expected re-
turn obtained starting from state s therefore fol-
lowing π. This function can also be expressed in
terms of state-action pairs as a state-action value
function Qπ (s, a) = E [Gt|s = st, a = at], indicat-
ing the expected return taking action a in state
s and consequently following π. Altogether, the
RL optimization problem aims to achieve a pol-
icy π∗ characterized by the optimal Q value func-
tion Q∗ (s, a)

.
= maxπ Q

π (s, a) for all s ∈ S and
a ∈ A (s), whose solution is provided by the Bell-

2



man optimality equation

Q∗ (st, at) = E
[
R (st, at)+

γmax
a∈A

Q∗ (st+1, a)

∣∣∣∣st = s, at = a

]
(1.1)

(Bellman, 1957). Note that the latter can also be
expressed as the optimal state value function V ∗ (s)
by replacing the optimal Q value estimate at the
next state maxa∈A Q∗ (st+1, a) with V ∗ (st+1).
Q∗ (s, a) and V ∗ (s) can both be learned by Tem-

poral Difference (TD) learning (Sutton, 1988), and
Q-learning is the most popular TD method; it
learns the state-action value function using the up-
date rule

Q (st, at)← Q (st, at)+α
[
yTD

QL −Q (st, at)
]
, (1.2)

where

yTD

QL = R (st, at) + γmax
a∈A

Q (st+1, a) (1.3)

(Watkins & Dayan, 1992). When the state space
S is large and high-dimensional the Q function
is approximated with deep neural networks, hence
the name of Deep Reinforcement Learning (DRL).
DRL agents such as Deep Q-Learning (DQN)
(Mnih et al., 2013) have attained super-human
performance on a range of complex tasks such as
the ALE benchmark suite (Bellemare et al., 2013).
DRL algorithms generally adapt the Q function to
include a neural network parameterized by θ, and
reformulate the standard Q-learning update rule to
a differentiable loss function

L(θ) = E⟨st,at,rt,st+1⟩∼D

[(
yTD

DQN −Q (st, at; θ)
)2]
(1.4)

where

yTD

DQN = rt + γmax
a∈A

Q
(
st+1, a; θ

−) , (1.5)

D is the Experience Replay buffer (Lin, 1992) used
to store and sample trajectories during training,
and θ− are the parameters of a frozen target net-
work commonly used to stabilize value estimates.
The use of this different set of parameters is concep-
tually related to the bootstrapping error, as further
explained in Section 1.1.2.
Finally, in offline RL – also known as batch RL

– the standard MDP formulation remains valid,

but the agent loses the ability to transition from
state st to state st+1 by actively choosing and
performing action at. Instead, an offline RL agent
is given a logged dataset B of experience tuples
⟨st, at, st+1, rt⟩ generated by a behavior policy πβ ,
and its task is to learn a (possibly better) policy
than πβ from these trajectories. Since learning oc-
curs under a state-action distribution induced by
a policy different from the current one, offline RL
is also known as fully off-policy RL, and an offline
agent needs to maximize data exploitation because
it lacks the possibility to explore.

1.1.2 The Off-Policy Bootstrapping Error

Off-policy RL is systematically afflicted by a source
of error denoted as extrapolation error (Fujimoto et
al., 2019). Due to a mismatch between the state-
action distribution induced by the current pol-
icy and the one contained in the experience re-
play batch, the Q function is unable to correctly
estimate the value of unseen state-action pairs.
As a result, such inputs receive inflated estimates
which skew the Q function, and possibly cause it
to diverge. Fujimoto et al. (2019) remark that,
when combined with RL algorithms which em-
ploy a maximization operator to compute Q∗ (s, a)
like Q-learning, the extrapolation error induces a
consistent positive overestimation bias (Thrun &
Schwartz, 1993) in the Q function.
The bootstrapping error (Kumar et al., 2019)

is a form of extrapolation error which appears in
algorithms that bootstrap to compute their tar-
gets. These algorithms create the true target of
a regression problem using their own current es-
timate of such target, which is a biased estima-
tor. Referring to update rules 1.3 and 1.5, it is
clear that Q-learning-based algorithms are prone
to the bootstrapping error since their respective
TD-targets both come from a present estimate of
Q. To stabilize the Q function’s recursive regres-
sion, DRL algorithms form their target estimates
from another static estimator, simulated by keep-
ing a copy of parameters θ− frozen and only up-
dating them at intervals. Moreover, since the TD
targets are arbitrarily wrong during training, max-
imizing the Q-values with respect to actions at the
next state as in Equation 1.5 might evaluate the Q
function on actions that do not correspond to the
training data distribution. Such out-of-distribution

3



(OOD) actions (Kumar et al., 2019) are not con-
tained in the training batch, and their true value
is unknown; a naive maximization will then pick
the overoptimistic Q-values, therefore compound-
ing and propagating the bootstrapping error during
training through Bellman backups (Equation 1.2).
In the most extreme case where the Q function is
initialized with high positive values only at OOD
actions, a Q-learning based agent will thus learn to
perform these very actions and disregard informa-
tion gathered from the behavior policy πβ .
The bootstrapping error is especially detrimental

in offline RL, where no additional data collection is
possible. In the online case, the wrong estimation
of Q (s, a) for some (s, a) pair can be adjusted by
actually performing a in s and assessing its result.
However, the dataset B used by an offline RL agent
is fixed and it does not allow for further exploration.
Dealing with bootstrapping errors is therefore cru-
cial for the success of offline RL algorithms.

1.1.3 Bootstrapping Error Correction

In offline reinforcement learning, techniques to cor-
rect bootstrapping errors explicitly, or implicitly by
minimizing distributional shift, involve either policy
constraint or uncertainty-based methods (Levine et
al., 2020).
The Q function is evaluated on the same states

that it is trained on. Therefore, only the action
inputs across states can be out of distribution in
the training process. Policy constraint methods ad-
dress this issue by bounding the distribution over
actions used for the computation of the TD-targets,
π (a′|s′), to stay in the proximity of the one induced
by the behavior policy, πβ (a

′|s′). In this way, the
Q function regression is driven by target values for
which enough reliable information is found in πβ .
The difference between these techniques resides in
the metrics they employ to define distributional
proximity. For example, Batch-Constrained deep
Q-Learning (BCQ) (Fujimoto et al., 2019) trains
a generative model – a variational auto-encoder
(VAE) (Kingma & Welling, 2013) – to produce ac-
tions which are likely given the data in B and are
then used to compute the TD-targets. By substitut-
ing the standard TD-target maximum over all pos-
sible actions at the next state with the maximum
over actions likely under πβ , BCQ ensures that the
learned policy π is centered around πβ and that the

Q function is not queried on OOD actions which
cause bootstrapping errors. Bootstrapping Error
Accumulation Reduction Q-Learning (BEAR-QL)
(Kumar et al., 2019) also follows the intuition of
placing constraints on the learned action distribu-
tion, but it achieves so with fewer restrictions than
BCQ. This makes it more viable for π to improve on
πβ , a capability hindered by the tight constraint of
BCQ. Instead of requiring the learned policy to be
close in distribution to πβ , BEAR demands a sup-
port constraint (Kumar, Aviral, 2019). This loose
condition means that the learned policy must place
non-zero probability on all those actions that have
non-negligible probability according to the behav-
ior policy. With this precaution BEAR is able to
improve over suboptimal, even random off-policy
trajectories, where BCQ would instead learn a pol-
icy close to uniform (Kumar et al., 2019).

By contrast, uncertainty-based methods do not
aim to restrict the learned policy to a safe region;
rather, they rely on estimating epistemic uncer-
tainty in the Q function and integrating this infor-
mation in the computation of target values. This
means learning an uncertainty distribution over Q
functions as induced by the offline dataset B, de-
noted PB (Qπ). When this is known, a penalty term
of the form −αUnc (PB (Qπ)) can be added to the
TD-targets in order to produce a conservative es-
timate of the actual Q function that, ideally, is
proportional to the model’s confidence in the data.
Since OOD actions are outside of the training data
distribution, they should naturally have large un-
certainty estimates and result in desirably conser-
vative Q-values (Levine et al., 2020).

One common way of learning PB (Qπ) is to use
bootstrap ensembles (Osband et al., 2016; Kumar
et al., 2019; Agarwal et al., 2020). A Q function
ensemble trains multiple Qi functions on samples
from B drawn with replacement, then it compounds
the different Qi (s, a) predictions – typically by av-
eraging in a regression problem – to obtain the fi-
nal population prediction Q (s, a). It is known that
ensemble methods help stabilizing highly unstable
prediction procedures (Breiman, 1996); in fact, sim-
ply using K approximators to estimate Q in DQN
yields a K-fold variance reduction, with improved
accuracy in TD-targets estimation and diminished
overestimation bias (Anschel et al., 2017). When es-
timating uncertainty using ensembles, one common
choice of ‘Unc’ is the variance across the ensemble

4



Q-value predictions (Kumar et al., 2019). Random
Ensemble Mixture (REM) (Agarwal et al., 2020),
a strong off-policy algorithm based on DQN, ob-
tained state-of-the-art results in discrete and con-
tinuous domain offline RL using Q function ensem-
bles. As a measure of uncertainty, REM employs a
convex weighted sum of each Q function’s estimate
which is minimized globally by the ensemble.

2 Methods

The preliminary experiments in this research aimed
at determining the presence of offline bootstrap-
ping errors in DQV and DQV-Max, the two algo-
rithms in the DQV algorithmic family (Sabatelli et
al., 2020). Subsequently, in line with the research
question, a second experiment sought to assess the
impact of value function ensembles on the suscep-
tibility of these algorithms to the offline bootstrap-
ping error.

2.1 DQV and DQV-Max

DQV and DQV-Max were chosen because they are
model-free, value-based deep RL algorithms like
DQN, suitable for learning on discrete domains.
Moreover, differently from DQN, both algorithms
add a state-value function V to the optimization
problem to obtain more robust value estimates and
be less prone to the overestimation bias (Sabatelli
et al., 2020). Given two neural networks Q (s, a; θ)
and V (s;ϕ) with corresponding target parameters
θ− and ϕ−, and trajectory batches sampled from
the Experience Replay Buffer D, the objective func-
tions used by DQV become

L (ϕ) = E⟨st,at,rt,st+1⟩∼D

[(
yTD

DQV − V (st;ϕ)
)2]

(2.1)

L (θ) = E⟨st,at,rt,st+1⟩∼D

[(
yTD

DQV −Q (st, at; θ)
)2]

,

(2.2)

where

yTD

DQV = rt + γV
(
st+1;ϕ

−) . (2.3)

Due to the lack of a maximization operation in the
TD-target yTD

DQV, DQV is an on-policy algorithm;
moreover, it should be noted that both the Q and
V function of DQV learn from the same TD-target

computed by V . Conversely, the objective functions
for DQV-Max are as follows:

L (ϕ) = E⟨st,at,rt,st+1⟩∼D

[(
vTD

DQV-Max − V (st;ϕ)
)2]
(2.4)

L (θ) = E⟨st,at,rt,st+1⟩∼D

[(
qTD

DQV-Max −Q (st, at; θ)
)2]

(2.5)

where

vTD

DQV-Max = rt + γmax
a∈A

Q
(
st+1, a; θ

−) (2.6)

qTD

DQV-Max = rt + γV (st+1;ϕ) . (2.7)

As seen in TD-target Equation 2.6 – equal to the
DQN TD-target Equation 1.5 – DQV-Max is an
off-policy algorithm, so of greater interest for of-
fline RL. In addition, DQV-Max uses two different
temporal difference targets, where the one used to
learn the state-action value function resembles the
TD-target for DQV but without employing a target
network.

2.2 Common experimental details

All experiments are conducted on the CartPole-v1
and Acrobot-v1 OpenAI Gym environments
(Brockman et al., 2016), two pole-balancing clas-
sic control problem well studied in the RL lit-
erature. Both environments provide continuous
state representations s ∈ Rn and discrete ac-
tion spaces, suitable for approximate dynamic pro-
gramming (i.e. value-based) methods such as Q-
learning. The algorithms involved in the experi-
ments are implemented using Google’s JAX ma-
chine learning library (Bradbury et al., 2018), then
trained and evaluated under standard DRL neural
networks architectures, hyper-parameters and pre-
processing settings following the Dopamine rein-
forcement learning framework (Castro et al., 2018);
see Table A.1 for the full hyper-parameters table.

Due to the offline nature of the proposed exper-
iments, the first common step was online data col-
lection. We replicated the data collection process
employed by Agarwal et al. (2020) for the DQN Re-
play Dataset on the ALE environments, adapting it
to the two proposed problems. A behavioral DQN
agent was trained online on each environment for a
total of approximately 500 000 steps (500 iterations
of at least 1000 steps), starting to fit the Q function

5

https://research.google/tools/datasets/dqn-replay/
https://research.google/tools/datasets/dqn-replay/


after experiencing 500 trajectories, then performing
a gradient update every 4 steps. Every trajectory
observed by the behavioral agent during training
was logged in order to gather a dataset of signifi-
cant size and diverse policy composition, vital for
the success of offline RL (Agarwal et al., 2020). This
process was repeated across 3 random seed initial-
izations to control for volatility due to stochasticity.
In the offline experiments, each run was paired with
one of these logged datasets, such that the reported
response metrics are averages over 3 redundancies.

2.3 Bootstrapping error in offline
DQV and DQV-Max

In order to detect the bootstrapping error, we need
to track the evolution of the Q estimates as a func-
tion of training steps – a proxy for the number of
Bellman backups. If the bootstrapping error occurs,
it will cause an overestimation bias in the Q func-
tion, and the agents will inflate the expected dis-
counted return Gt it believes it will gain starting
from state st. Since the chosen environments pro-
vide constant reward r at each time-step t until
the enforced episode termination at time M , it is
straightforward to compute the baseline discounted
return expected from state t as Gt =

∑M
k=t γ

kr.
Focusing on the first state s0 of each new episode
as given by maxa∈A Q (s0, a; θ), the evaluation-time
progression of Q values was recorded. It should be
noted that one evaluation iteration of 1000 time-
steps occurred every 5 training iterations; by in-
terleaving training and testing, we are still able to
analyze the Q estimates evolution as a temporal
sequence, and to assess the effects of bootstrap-
ping error accumulation. Results are presented in
Figure 3.1. Offline DQN is used as a baseline; the
full lines correspond to each agent’s Q estimates
at evaluation time, while the dashed line is the en-
vironment’s actual return Gt at an episode’s first
state s0.

2.4 Ensemble DQV and DQV-Max

To investigate the efficacy of ensembling meth-
ods for bootstrapping error prevention, an aver-
aging ensemble technique inspired by Ensemble-
DQN (Agarwal et al., 2020) was implemented. In
Ensemble-DQN, the Q function is approximated by
an ensemble of K heads parameterized by a weight

vector θ, with corresponding target weights θ−;
each Q-value prediction is then optimized with re-
spect to its own target, similarly to Bootstrapped-
DQN (Osband et al., 2016). Each head is initial-
ized with different parameters and trained on all
data using identical mini-batches; although boot-
strap ensembles actually require that each head is
trained on a different sample drawn with replace-
ment from the dataset D, it is well known in the
deep learning literature that initializing a model
with different parameters provides enough diver-
sity to obtain reliable uncertainty estimates (Os-
band et al., 2016; Levine et al., 2020). Finally, each
head optimizes a global loss which is the average of
the ensemble total loss; the objective function for
Ensemble-DQN thus takes the form

L (θ) = 1

K

k−1∑
k=0

E⟨st,at,rt,st+1⟩∼D[(
yTD

Ens-DQN −Q (st, at; θk)
)2]

,

(2.8)

where

yTD

Ens-DQN = rt + γmax
a∈A

Q
(
st+1, a; θ

−
k

)
. (2.9)

When translating the ensemble loss objective to
DQV and DQV-Max, we decided to use ensem-
bles for the TD-targets computation. The ratio-
nale for this choice is to mitigate the bootstrap-
ping error occurring precisely at this step; we ex-
pect that the compound estimate computed by the
ensemble is close to the true TD-target ŷ. As a re-
sult, Ensemble-DQV employs only one ensemble on
the V function to compute the common TD-target;
by contrast, since DQV-Max requires two differ-
ent TD-targets, Ensemble-DQV-Max uses ensem-
bles to estimate both the Q and V function, yet
the V heads lack target networks as in the original
DQV-Max algorithm. The modified objectives of
Ensemble-DQV and Ensemble-DQV-Max respec-
tively become

L (ϕ) = 1

K

k−1∑
k=0

E⟨st,at,rt,st+1⟩∼D[(
yTD

Ens-DQV − V (st;ϕk)
)2] (2.10)

L (θ) = 1

K

k−1∑
k=0

E⟨st,at,rt,st+1⟩∼D[(
yTD

Ens-DQV −Q (st, at; θ)
)2]

,

(2.11)

6



where

yTD

Ens-DQV = rt + γV
(
st+1;ϕ

−
k

)
(2.12)

and

L (ϕ) = 1

K

k−1∑
k=0

E⟨st,at,rt,st+1⟩∼D[(
vTD

Ens-DQV-Max − V (st;ϕk)
)2] (2.13)

L (θ) = 1

K

k−1∑
k=0

E⟨st,at,rt,st+1⟩∼D[(
qTD

Ens-DQV-Max −Q (st, at; θk)
)2]

,

(2.14)

where

vTD

Ens-DQV-Max = rt + γmax
a∈A

Q
(
st+1, a; θ

−
k

)
(2.15)

qTD

Ens-DQV-Max = rt + γV (st+1;ϕk) . (2.16)

The ensembles were implemented using a multi-
head architecture: each head shares the same body
of layers except for a final fully connected layer, ini-
tialized with different parameters across heads; this
architecture is also employed by REM (Agarwal et
al., 2020). The experiments concerning the ensem-
ble version of DQV and DQV-Max follow the same
setup outlined in Section 2.3, however in this case
maxa∈A

1
K

∑k−1
k=0 Q (s0, a; θk) was recorded to track

the evolution of value estimates. For each experi-
ment on the aforementioned environments a num-
ber of heads K = 4 was used; although other ex-
amples in the literature use a greater number of
heads (e.g. K = 10 for Bootstrapped-DQN (Os-
band et al., 2016)), we settled on 4 due to compu-
tational limitations. Results are presented in Fig-
ure 3.2, where offline Ensemble-DQN is used as the
baseline.

3 Results

The learning curves in Figure 3.1 show the Q-values
evolution for the standard agents as a result of of-
fline training, while the ones in Figure 3.2 show
the same metric for their respective ensemble ver-
sion. Every proposed offline agent learns to solve
both classic control environments, and the reward
curves are presented in Appendix A.1. The reward

signals for the CartPole-v1 environment are gener-
ally noisier compared to the ones for Acrobot-v1;
this is in line with the performance of the online
behavioral DQN agent πDQN, which also produced
unstable learning curves on this problem.

3.1 Offline bootstrapping error in
the DQV family

As seen in Figure 3.1, the experiments confirmed
previous findings for Q-learning-based agents run
offline on continuous domain problems (Fujimoto
et al., 2019; Kumar et al., 2019): the Q function
incurs in a heavy overestimation bias produced by
bootstrapping errors. This is most evident on the
CartPole-v1 environment, where DQN’s Q-value
estimates quickly escalate above the true value for
s0. Since the offline agent has no access to ground
truth values due to lack of exploration, it cannot
adjust the Q function estimates during training and
the whole estimation process diverges. Offline DQN
suffers overestimation on the Acrobot-v1 problem
too, but no divergence in Q estimates is observed
here; this might be because the behavioral data for
this environment are less noisy compared to those
of CartPole-v1.
Among the studied algorithms, offline DQV is

the most robust one to the bootstrapping error.
On the CartPole-v1 environment it is almost
able to correctly estimate the true value of s0 for
each episode, never incurring in overoptimistic es-
timates. However, on the Acrobot-v1 problem, of-
fline DQV still suffers from stable overestimation,
despite coming closest to the true value of s0. DQV
avoids the bootstrapping error because it is an on-
policy algorithm. Although theoretically it should
not be able to learn in the offline setting, its strong
performance compared to the other agents is proba-
bly due to efficient usage of the large offline dataset,
which enables it to learn on-policy discovering effec-
tive behaviors in the data. Moreover, DQV forms
its TD-target using only the state-value function
V , therefore it cannot possibly base predictions on
those very out-of-distribution actions which are re-
sponsible for bootstrapping errors.

Offline DQV-Max is also more resilient to the
bootstrapping error than offline DQN. On the
CartPole-v1 environment, it estimates the true
value for s0 nearly perfectly, showing no detrimen-
tal effects due to misaligned bootstrap estimates.

7



Figure 3.1: The Q-value estimates of offline DQN, DQV and DQV-Max at evaluation time. The
shaded areas are ±1 standard deviation from the mean of 3 different simulations.

As it is the case for offline DQV and DQN, it
still overestimates the real Q-value for s0 on the
Acrobot-v1 problem, positioning in between the
estimates of DQN and DQV. The low Q-values on
the CartPole-v1 environment are most likely in
virtue of DQV-Max’s decoupling of selection and
evaluation (Van Hasselt et al., 2016). DQV-Max
forms its temporal difference regression targets (se-
lection) from a model different than the one it uses
to compute value estimates (evaluation). This sep-
aration is especially important for DQV-Max’s TD-
targets for the V function of Equation 2.6, where
evaluating out-of-distribution actions could disrupt
the function’s convergence to the true V ∗. Sabatelli
et al. (2020) note that this disentanglement makes
DQV-Max less prone to the overestimation bias in
the online setting, and these experiments confirm
the results in the offline one.

3.2 Offline bootstrapping error on
the ensemble variants

On the CartPole-v1 environment, Offline
Ensemble-DQN suffers from a milder overes-
timation bias than offline DQN. The Q-value
estimates on this problem decreased significantly
with the implementation of the ensemble strategy

(t = 7.40, p < .01); interestingly, in line with the
theoretical analysis of Anschel et al. (2017), the
observed decrease in Q estimates variance was
proportional to the ensemble number of heads K
(8755.07 vs. 2330.90 for Ensemble-DQN and DQN,
respectively). The Q-value for s0 still diverges
from the true baseline, as seen in Figure 3.2;
this is symptomatic that a simple ensemble of
Q functions alone does not prevent the DQN
bootstrapping error. Since the behavior policy
πDQN produced a noisy reward signal on the
CartPole-v1 environment, the lower Q estimates
compared to base DQN are actually desirable and
better capture the ensemble’s uncertainty about
the true value of s0. This naturally results in a
significant drop in performance for Ensemble-DQN
(t = 2.62, p < .01), showing that the agent uses
the Q-values as a proxy for predicted reward;
full results can be found in Table 3.1. Again, the
Q estimates on the Acrobot-v1 environment for
Ensemble-DQN are stable and overoptimistic, but
they do not significantly differ from those of base
offline DQN.

Concerning the offline ensemble versions of DQV
and DQV-Max, no significant change in value esti-
mates from their standard counterparts were ob-
served on both environments. The Q-values for

8



Figure 3.2: Evaluation time Q-value estimates of the ensemble version of offline DQN, DQV and
DQV-Max. The shaded areas are ±1 standard deviation from the mean of 3 different simulations.

these agents in Figure 3.2 appear very similar to the
non-ensemble variants in Figure 3.1. One notable
exception is the performance of offline Ensemble-
DQV on the CartPole-v1 environment, where a
significant drop was registered (t = 2.40, p < .01).
However, the Q estimates distributions for s0 be-
tween this agent and offline DQV almost perfectly
overlap as seen in Figure 3.3. Both offline DQV
and Ensemble-DQV converge to basically the same
Q-value for s0, and both cannot incur in an over-
estimation bias since they only use the V function
to compute the TD-target. Therefore, one plausi-
ble reason for this performance drop is the combi-
nation of DQV’s “on-policyness” with the ensem-
ble technique. Theoretically, on-policy algorithms
should not be able to learn from off-policy data,
yet offline DQV is still able to solve the problems
correctly due to their relative ease. However, it is
likely that the incorrect estimations derived from
being on-policy compound together from each head
of the ensemble, producing a sub-optimal policy. To
this regard, it should be noted that the reward ac-
cumulated by Ensemble-DQV on CartPole-v1 is
lower than that of base DQV mostly in the early
stages of learning (first 50 000 steps) across each
run, subsequently stabilizing at the maximum for
the environment.

3.3 Additional study: Ensemble-
DQV-Max ablations

Since no change was found when using ensembles
to estimate both Q and V in DQV-Max, two ad-
ditional experiments were performed where either
the Q or the V function were approximated by an
ensemble, respectively. This further investigation is
motivated by the fact that, like DQN, DQV-Max is
an off-policy algorithm, hence of interest for offline
RL. Moreover, since DQV-Max already decouples
selection and evaluation, we want to assess whether
either value function involved in the computation of
DQV-Max’s TD-targets drives more bootstrapping
error than the other, based on the assumption that
ensemble techniques should dampen Q-values. As
seen in Figure 3.4, results for these experiments are
clear: ensembling the Q function (EnsembleDQV-
MaxOnQ) or the V function (EnsembleDQVMax-
OnV) results in fundamentally the same Q esti-
mates for s0 as produced by ensembling both func-
tions. Looking at the DQV-Max temporal differ-
ence targets for V and Q (Equation 2.6 and 2.7,
respectively) the reason is evident: the Q function
regresses towards targets computed by V , which
cannot suffer from the action distributional shift,
and updates to Q are thus in-distribution with re-

9



Figure 3.3: Distribution of maximum Q-values for s0 for each agent and its ensemble variant

spect to the training data. Ultimately, this is prob-
ably enough to correct bootstrapping errors arising
when computing the targets for V , and the two
value functions are able to balance their respective
estimates such that using an ensemble on either one
results in no significant change.

4 Conclusion

The experiments presented in the previous section
provide an answer to the question of whether the
DQV algorithmic family benefits from ensemble
techniques in offline RL. According to the empirical
results, simply re-framing the learning problem of
offline RL to use multiple copies of the same agent is
not enough to prevent the bootstrapping error. En-
sembles of function approximators are a well-known
performance boost in machine learning, but it is
crucial to properly exploit the additional informa-
tion they provide compared to a single learner. If
this point is not correctly addressed, the possible
uncertainty estimation gains are overlooked, and
such information is critical for an offline RL agent.

When testing whether the simple ensemble tech-
nique of Ensemble-DQN can be generalized to other
algorithms, translating it to DQV and DQV-Max
becomes a limitation of this study. In fact, as al-
ready mentioned, these algorithms disentangle se-
lection – the choice of the regression targets for the
state or state-action value function – from evalu-
ation – the estimation of a state or state-action
pair’s value. This is one important factor in the
infamous deadly triad of off-policy RL (Sutton &
Barto, 2018), and the main focus of this research
under the form of bootstrapping error. Where such
decoupling is absent, as in the DQN algorithm, us-
ing a simple ensemble was in fact enough to ob-
serve gains in terms of variance reduction, which
is directly related to the overestimation bias (An-
schel et al., 2017) and is caused by misaligned
value estimates – also known as bootstrapping er-
rors. This was the case for the experiments with
offline Ensemble-DQN on the CartPole-v1 envi-
ronment. When it comes to the DQV algorithmic
family and controlling the bootstrapping error with
ensembles, these algorithms’ strength thus becomes

10



Table 3.1: Response metrics summary. Each agent is compared to its ensemble version, and colored
cell-pairs highlight significant differences

Agent

CartPole-v1 Acrobot-v1

Reward Q-Value Reward Q-Value

Mean Var Mean Var Mean Var Mean Var

DQN 440.36 15540.87 208.71 8755.07 -70.48 2533.65 -45.22 14.57

Ensemble-DQN 410.55 23157.11 163.70 2330.90 -76.02 2949.21 -45.78 15.70

DQV 489.09 2473.61 79.68 79.68 -70.86 2032.89 -51.45 19.04

Ensemble-DQV 475.88 6657.30 79.56 81.74 -82.43 5457.53 -51.60 31.53

DQV-Max 445.77 14386.91 99.70 109.31 -69.90 1718.89 -48.06 10.45

Ensemble-DQV-Max 430.85 18011.71 98.12 98.26 -77.73 3544.01 -48.42 11.61

an architectural weakness for the proposed exper-
iments. In fact, base DQV and DQVMax show a
robust performance in the offline setting that is un-
affected by the addition of more heads to estimate
uncertainty. By using a function to form the TD-
targets different from the one dedicated to evaluate
current states, these algorithms already take sig-
nificant steps to prevent the bootstrapping error,
which makes them unfit candidates for the simple
ensemble strategy of Ensemble-DQN.

Another limitation is the naive ensemble
technique employed throughout the experiments
adapted from Ensemble-DQN. Given the empirical
results, it is not sufficient to increase the number of
prediction heads in DQV and DQV-Max, to apply
standard value-based regression methods (i.e. tem-
poral difference learning) individually on each, and
finally to train every head on the average of the en-
semble total loss. As previously stated, the former
are two strong off-policy algorithms; yet for offline
RL they could still benefit from the uncertainty es-
timated by an ensemble of Q or V functions, if this
information is properly integrated in their learning
formulation. The simple averaging technique imple-
mented in this research does not fully exploit the
uncertainty information provided by the ensembles
of Q and V functions. It would be interesting to
see what happens when conservative estimates are
formed in the face of uncertainty, for example, by
down-scaling the TD-targets by the variance of the
ensemble predicted Q-values as discussed in Levine
et al. (2020).

For future work with a setup similar to this re-

search, different lines of experimentation are possi-
ble. For example, the size and diversity of the offline
dataset B collected by πβ could be manipulated to
asses the generalization capabilities of offline DQV
and DQV-Max. As seen in some of the experiments
for the REM agent (Agarwal et al., 2020), the size
of the dataset B could be reduced to find the min-
imum amount of trajectories needed to obtain an
acceptable performance level. Alternatively, offline
DQV and DQV-Max could be given only expert
or quasi-random data, thus decreasing B’s diver-
sity. The offline agents in this research learned on
the full set of policies encountered during online
training of πDQN, in lieu of the importance of train-
ing datasets’ diverse composition highlighted by the
REM results. Learning on data produced by a small
number of policies or by highly suboptimal ones
matters for offline DQV and DQV-Max because it
resembles what is available from many settings in
the real world, where behavioral data are collected
by a handful of static policies – or even a single one.

Finally, regarding uncertainty estimation in of-
fline RL, the ensemble component could be ex-
tracted from the single algorithm scope and applied
to different learners. This means having a multitude
of agents (e.g. both DQV and DQV-Max) learn
and collaborate on the same problem, implement-
ing a voting procedure to decide, for example, on
the TD-targets for the whole ensemble. The same
information relating to uncertainty estimation pur-
poses available from individual heads in the cur-
rent setup could then come from different RL algo-
rithms that inform the ensemble decisions. Voting

11



Figure 3.4: Evaluation time Q-value estimates of the ablated variants of offline Ensemble-DQV-
Max. The shaded areas are ±1 standard deviation from the mean of 3 different simulations.

ensembles are a well-defined concepts in machine
learning, and in the case of DQV and DQV-Max it
could be of interest to assess if the relative strength
of each agent taken individually – lower variance
for the first on-policy algorithm, greater learning
generality for the second off-policy one – can be
combined in a meaningful way in the offline RL
setting.

References

Agarwal, R., Schuurmans, D., & Norouzi, M.
(2020). An optimistic perspective on offline rein-
forcement learning. In International conference
on machine learning (pp. 104–114).

Anschel, O., Baram, N., & Shimkin, N. (2017).
Averaged-dqn: Variance reduction and stabiliza-
tion for deep reinforcement learning. In Interna-
tional conference on machine learning (pp. 176–
185).

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowl-
ing, M. (2013). The arcade learning environ-
ment: An evaluation platform for general agents.
Journal of Artificial Intelligence Research, 47 ,
253–279.

Bellman, R. (1957). Dynamic programming,
princeton univ. Press Princeton, New Jersey .

Bradbury, J., Frostig, R., Hawkins, P., Johnson,
M. J., Leary, C., Maclaurin, D., . . . Zhang,
Q. (2018). JAX: composable transformations
of Python+NumPy programs. Retrieved from
http://github.com/google/jax

Breiman, L. (1996). Bagging predictors. Machine
learning , 24 (2), 123–140.

Brockman, G., Cheung, V., Pettersson, L., Schnei-
der, J., Schulman, J., Tang, J., & Zaremba, W.
(2016). Openai gym. arXiv. Retrieved from
https://arxiv.org/abs/1606.01540 doi: 10
.48550/ARXIV.1606.01540

Castro, P. S., Moitra, S., Gelada, C., Kumar,
S., & Bellemare, M. G. (2018). Dopamine:
A Research Framework for Deep Reinforcement
Learning. Retrieved from http://arxiv.org/

abs/1812.06110

Colas, C., Sigaud, O., & Oudeyer, P.-Y. (2019).
A hitchhiker’s guide to statistical comparisons
of reinforcement learning algorithms. arXiv.
Retrieved from https://arxiv.org/abs/1904

.06979 doi: 10.48550/ARXIV.1904.06979

12

http://github.com/google/jax
https://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110
https://arxiv.org/abs/1904.06979
https://arxiv.org/abs/1904.06979


Fujimoto, S., Meger, D., & Precup, D. (2019,
09–15 Jun). Off-policy deep reinforcement
learning without exploration. In K. Chaud-
huri & R. Salakhutdinov (Eds.), Proceed-
ings of the 36th international conference on
machine learning (Vol. 97, pp. 2052–2062).
PMLR. Retrieved from https://proceedings

.mlr.press/v97/fujimoto19a.html

Henderson, P., Islam, R., Bachman, P., Pineau,
J., Precup, D., & Meger, D. (2017). Deep
reinforcement learning that matters. CoRR,
abs/1709.06560 . Retrieved from http://arxiv

.org/abs/1709.06560

Kingma, D. P., & Welling, M. (2013). Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114 .

Kumar, A., Fu, J., Soh, M., Tucker, G., & Levine,
S. (2019). Stabilizing off-policy q-learning via
bootstrapping error reduction. Advances in Neu-
ral Information Processing Systems, 32 .

Kumar, Aviral. (2019). Data-Driven Deep Re-
inforcement Learning. https://bair.berkeley

.edu/blog/2019/12/05/bear/. ([Online; ac-
cessed 11-July-2022])

Levine, S., Kumar, A., Tucker, G., & Fu, J. (2020).
Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv
preprint arXiv:2005.01643 .

Lin, L.-J. (1992). Self-improving reactive agents
based on reinforcement learning, planning and
teaching. Machine learning , 8 (3), 293–321.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., & Riedmiller, M.
(2013). Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602 .

Osband, I., Blundell, C., Pritzel, A., & Van Roy,
B. (2016). Deep exploration via bootstrapped
dqn. Advances in neural information processing
systems, 29 .

Sabatelli, M., Louppe, G., Geurts, P., & Wiering,
M. A. (2020). The deep quality-value family of
deep reinforcement learning algorithms. In 2020
international joint conference on neural networks
(ijcnn) (pp. 1–8).

Sutton, R. S. (1988). Learning to predict by the
methods of temporal differences. Machine learn-
ing , 3 (1), 9–44.

Sutton, R. S., & Barto, A. G. (2018). Reinforce-
ment learning: An introduction. MIT press.

Thrun, S., & Schwartz, A. (1993). Issues in using
function approximation for reinforcement learn-
ing. In Proceedings of the 1993 connectionist
models summer school hillsdale, nj. lawrence erl-
baum (Vol. 6, pp. 1–9).

Van Hasselt, H., Guez, A., & Silver, D. (2016).
Deep reinforcement learning with double q-
learning. In Proceedings of the aaai conference
on artificial intelligence (Vol. 30).

Virtanen, P., Gommers, R., Oliphant, T. E., Haber-
land, M., Reddy, T., Cournapeau, D., . . . SciPy
1.0 Contributors (2020). SciPy 1.0: Funda-
mental Algorithms for Scientific Computing in
Python. Nature Methods, 17 , 261–272. doi:
10.1038/s41592-019-0686-2

Watkins, C. J., & Dayan, P. (1992). Q-learning.
Machine learning , 8 (3), 279–292.

13

https://proceedings.mlr.press/v97/fujimoto19a.html
https://proceedings.mlr.press/v97/fujimoto19a.html
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1709.06560
https://bair.berkeley.edu/blog/2019/12/05/bear/
https://bair.berkeley.edu/blog/2019/12/05/bear/


A Appendix

Following the practice from Henderson et al. (2017)
and Colas et al. (2019), Welch’s t-test was used
to test whether each ensemble variant of the ana-
lyzed algorithms performed worse than its respec-
tive base version in terms of the defined response
metrics. Significant results are highlighted in Ta-
ble 3.1. For the Ensemble-DQV-Max ablations ex-
periment, a Kruskal-Wallis H-test was used to com-
pare the former agent to its ablated variants. Both
test were performed with the corresponding rou-
tines from the SciPy Python package (Virtanen et
al., 2020).

A.1 Additional plots

Figure A.1: Evaluation time reward signal for of-
fline DQN, DQV and DQV-Max, averaged over
3 runs

Figure A.2: Evaluation time reward signal for
the ensemble variants of offline DQN, DQV and
DQV-Max, averaged over 3 runs

Figure A.3: Distribution of rewards: each offline
agent is compared against its ensemble variant

Figure A.4: Ensemble-DQV-Max reward signals
for the ablations experiment, averaged over 3
runs

Figure A.5: Distribution of maximum Q-values
for s0 for Ensemble-DQV-Max compared against
its ablations

14



Figure A.6: Distribution of rewards for
Ensemble-DQV-Max compared to its abla-
tions

A.2 Hyper-parameters

15



Table A.1: Hyper-parameters used for online data collection and in the experiments

Hyper-parameter Value (online and offline)
(Training/Evaluation) steps 1000
Iterations 500
Redundancy 3
Reward clipping [−1, 1]
Target network update period (steps) 100
Discount factor γ 0.99
Exploration strategy ϵ-greedy
Evaluation ϵ 0.001
Replay memory size 500 000 trajectories
Mini-batch size 32
Replay scheme Uniform
Optimizer Adam
Adam ϵ 3.125e− 4
Adam learning rate 0.001
Loss function Mean Squared ErrorTraining ϵ
Networks number of layers 2
Hidden units per layer 512
Hyper-parameter Online Offline
Training period (steps) 4 1
Min. memory size for replay 500 -
Training ϵ 0.01 -
Evaluation period (iterations) - 5

16


	Introduction
	Background
	Reinforcement Learning
	The Off-Policy Bootstrapping Error
	Bootstrapping Error Correction


	Methods
	DQV and DQV-Max
	Common experimental details
	Bootstrapping error in offline DQV and DQV-Max
	Ensemble DQV and DQV-Max

	Results
	Offline bootstrapping error in the DQV family
	Offline bootstrapping error on the ensemble variants
	Additional study: Ensemble-DQV-Max ablations

	Conclusion
	Appendix
	Additional plots
	Hyper-parameters


