
Object Anchoring for Human-Robot Interaction:

Connecting Sensor Data to Symbols

Bachelor’s Project Thesis

Nikolai Herrmann, n.a.herrmann@student.rug.nl

Supervisor: Dr. Hamidreza Kasaei, hamidreza.kasaei@rug.nl

Department of Artificial Intelligence

Abstract: Tracking algorithms, which track objects in motion, tend to fail when objects get close
to one another, overlap, or are temporarily occluded. To combat this limitation, the anchoring
framework can be applied, allowing objects to be tracked symbolically such that they can be
uniquely identified at any moment. This is achieved by maintaining correspondence between raw
perceptual data from sensors and abstract symbols, using a matching function. Here, we use a
bottom-up approach where the matching function either acquires a new object or reacquires a
previously seen one. Four different binary classifiers were trained to accomplish this task. To avoid
manual labelling we track objects separately by color to maintain a ground truth. In addition,
two approaches of the reacquire functionality are explored: one which continuously anchors and
one which anchors only stationary objects while still observing moving ones. Scenarios of different
difficulties and category were tested including the Three-Card Monte and the Shell Game. Our
results demonstrate limited success with the first approach due to data sensitivity, but the second
approach shows clear improvements with the help of motion analysis and the Kalman filter.

1 Introduction

Three-Card Monte is a simple card game, often
played on the street with bets. A player will initially
be presented with three standard downward facing
playing cards, one of which the dealer will flip to
reveal its type. The target card is then flipped back
and the dealer begins to shuffle the cards, switch-
ing around two cards at a time. The task of the
player is to follow the initial flipped card and iden-
tify it again once the shuffling has stopped. The
game appears straightforward at first but, in real-
ity, it is not so simple. The Metropolitan Police De-
partment in DC has a dedicated web-page explain-
ing that Three-Card Monte is a scam due to its un-
foreseeable difficulty. They recommend to avoid the
situation and to get the attention of a police unit
if approached to play. A similar difficulty occurs in
the Shell game presented in the work of Persson et
al. (2019), where cups and a small ball hidden in-
side one of the cups are used instead of cards. These
scenarios raise the following questions:

• What makes these games so difficult?

• How can we build an autonomous system which
can cope with the task of playing such games?

The introduction of these questions not only
stems from curiosity but possible approaches to
solutions have great applications in navigation
and surveillance domains (Coradeschi & Saffiotti,
2000). Coradeschi et al. (2013) present examples,
from unmanned aerial vehicles collaborating with
one another to robots mastering spatial relations.
These relations allow for a high-level human-robot
interaction. For example, the robot would be able
to handle the following query: “pick up the red book
on the counter”.

We will start by examining the first question
more formally with the hope that it will lead us to
the second. The first thing to consider is that de-
spite all three cards being identical when face down,
the target card is most valuable. Thus, the player
holds an abstract representation of the cards no
matter their location, rotation or whether they are
flipped or not. While shuffling, the player is contin-
uously provided with perceptual information. The
difficulty of the game arises from having the task of

1

https://mpdc.dc.gov/page/three-card-monte

constantly matching perceptual data of a physical
card with its corresponding abstract representation
(Coradeschi & Saffiotti, 2000). For example, if the
target card is swapped with the middle laying card,
the player needs to now match the middle card with
the target card. Saffiotti (1994) was one of the first
to define the process of maintaining such a corre-
spondence as anchoring.
This leads us to the answer of the second ques-

tion, that to build an autonomous system capable
of successfully playing Three-Card Monte, an an-
choring system is needed. It is important to note
that the accuracy of an anchoring system is limited
by its matching capability (Coradeschi & Saffiotti,
2000). Bredeche et al. (2003) report that design-
ing and programming a matching function based on
rules is a difficult task because of constant changes
in the environment. Therefore they recommend a
machine learning approach. This is achieved by su-
pervised learning where the task is to learn a func-
tion that decides whether incoming perceptual data
matches with a specific abstract representation. A
model is trained on snapshots of the environment
where the correct matching decisions are known
(Bredeche et al., 2003).
Persson et al. (2019) successfully trained an ac-

curate anchoring system for the Shell game. Their
approach is unique, as they focused on coupling
their anchoring system with probabilistic reason-
ing in order to establish a semantic world model.
This type of modelling is based on the works of
Elfring et al. (2013) which demonstrated the work-
ings of multiple hypotheses anchoring to make pre-
dictions about object entities. Using this method is
necessary as the intricacies of building an anchoring
system truly erupt when it becomes a requirement
to accurately maintain objects which are fully oc-
cluded. This is especially the case with the Shell
game where the ball is underneath one of the cups
for the majority of the game.

1.1 Our Approach

In order to train a model for an anchoring sys-
tem, a ground truth must be maintained. In terms
of anchoring this simply means that at any given
frame (i.e. snapshot of the environment) it is known
whether any detected objects have been seen before
or are new ones. This is easily achieved by assign-
ing each object an unique identification (ID). The

methodology used by Persson et al. (2019) to ac-
complish this is cumbersome as they manually la-
beled each object in each frame.

Alternative to manual labeling, it is possible to
track objects by some unique feature. This can be
as simple as detecting the type of object. For ex-
ample, a convolutional neural network (CNN) such
as YOLO could be trained to detect specific ob-
jects in real-time (Redmon & Farhadi, 2018). More-
over, symbols are also an option; objects would be
marked by a character which maps to a unique ID.
Our solution was to maintain a ground truth of ob-
jects using color. The advantage of color is that in
the case an object is partially occluded, it will still
be detectable. In this way, the process of collect-
ing training data from a given input stream can
be automated. For this method to be successful for
training, we make the core assumption that each
object in the environment has a unique and differ-
entiable color.

Using the collected training data, we evaluate
the accuracy of different classifiers comparing:
Naive Bayes, K-Nearest Neighbour (KNN), Logis-
tic Regression and Decision Trees. Naive Bayes and
Logistic Regression are both linear models making
classifications based on probability (Bhowmik,
2015). KNN and Decision Trees in contrast are
non-linear using distance to determine similarity
and a hierarchical structure respectively (Mo-
hanapriya & Lekha, 2018). Using the introduced
color tracking approach we investigate:

How accurately can a classifier (matching func-
tion) be learned to maintain anchors of physical
objects and which type of classifier does this best?

The exact notion of the implemented anchoring
framework is presented in the following section.

2 Framework Specification

We here adopt the formal anchoring definitions pro-
posed by Coradeschi & Saffiotti (2000). They intro-
duce the following two time invariant sub-systems
summarised in Figure 2.1, where the following def-
initions apply:

• Symbol system − manages the abstract
representation of objects and contains two

2

Symbol system

Perceptual system

Individual symbols Predicate symbols

{Disk_99, Box_2} {Small, Square,

Large, Circular}

g

 area=420

contour points =
[(10,15), ...]

Anchoring
Module

Figure 2.1: Showing the three main components
of an anchoring system based on Figure 1 and 2
presented in Coradeschi & Saffiotti (2003).

sets. The first is a set of individual symbols:
X = {x1, x2, ...}. Each element uniquely iden-
tifies a physical object in the environment as
shown in Figure 2.1 where we have: X =
{Disk 99,Box 2}. The second set, containing
predicate symbols, is used to describe individ-
ual symbols: P = {p1, p2, ...}. Disk 99 for ex-
ample is defined by the set {Large,Circular}.

• Perceptual system − regulates incoming
perceptual data. Similarly as above, two sets
are included in the system. Firstly, it includes
a set of percepts: Π = {π1, π2, ...}. In terms of
video input, a percept is a pixel region indicat-
ing the detection of physical object. For exam-
ple, in Figure 2.1 the blue and brown outlining
contours within the bounding boxes indicate
percepts. From each percept measurable val-
ues can be extracted, known as attributes. Φ =
{ϕ1, ϕ2, ...} defines the set of all attributes. In
Figure 2.1 we have Φ = {shape, size}. Each
attribute has values in a given domain Di. It
should be noted that color cannot be an at-

tribute as it is used as a ground truth refer-
ence.

The task of the anchoring system is to then make
a correspondence between individual symbols and
percepts with the help of a predicate grounding re-
lation (g) (Coradeschi & Saffiotti, 2003). We will
characterize g as a matching function. In order to
implement such a correspondence between these
two systems an internal data structure known as
an anchor is used (Coradeschi & Saffiotti, 2000).
An anchor is denoted by αx

t , such that at each time
step, t, it identifies itself with exactly one individual
symbol, x (Persson et al., 2019). Moreover, Persson
et al. (2019) define an anchor that has matched
with a given percept to be in a grounded state.

The general process of correspondence can be
achieved through a bottom-up, top-down or hybrid
approach (Coradeschi & Saffiotti, 2003). We will
use bottom-up anchoring as recommended by Pers-
son et al. (2019), whereby environment interactions
apparent in sensor data initiate anchor creation.
The standard approach in the anchoring framework
is for g to map between discrete predicate symbols
and continuous attributes. Persson et al. (2019),
however, highlight that this may neglect rich infor-
mation provided by the perceptual system. There-
fore, they propose to move the matching function
down to the perceptual system. Correspondence is
then achieved through two core functions, given a
newly detected physical object:

• Acquire − is called to create a new anchor α.
This means that no existing anchor matches
the detected object. The base functionality is
to allocate for a new structure α: initialized
with a unique symbol, x, time step, t, and the
attributes, Φ, from the perceptual data.

• Reacquire − is called to update the anchor,
α, when a match has been found. The percep-
tual data from time step t− k will be updated
to the most recent attribute measurements ex-
tracted at t.

The functionality incorporating a bottom-up ap-
proach can be seen in the revised Figure 2.2.

In addition to these two functions, it is custom
in the anchoring framework to have a special case
of the reacquire function. Coradeschi & Saffiotti
(2000) introduced this functionality with a track

3

Symbol system
Individual symbols

{Disk_99, Box_2}

Anchoring
Module

Motion
Detector Matching

Function

Perceptual system

Reacquire

Acquire
Track

Figure 2.2: Showing anchoring functionalities:
acquire, reacquire and the special case track.
Based on Figure 2 illustrated in Persson et al.
(2019).

function, shown in Figure 2.2 by the dotted line.
The idea behind this addition is that if an object
is constantly being observed it may be redundant
and thus computationally expensive to repeatedly
reacquire it. Persson et al. (2019) note that this
function has under gone much revision; the latest
improvements include the conjunction of a point
cloud library presented by Persson et al. (2017).
Since there is no standardized approach to a track
function, the upcoming methodology will be di-
vided into two approaches. The first approach will
attempt to build a matching function without the
need of supplementary tracking while the second
approach will incorporate a track function based
on motion detection as shown in Figure 2.2.

3 Methods

All code was written in Python (v3.8.1) using
the OpenCV library (v4.5.5) for computer vision
and the scikit-learn (v1.0.2) package for machine

learning models (Bradski, 2000; Pedregosa et
al., 2011). The complete code and other minor
dependencies can be found on Github under
github.com/NikolaiHerrmann/Anchor-Tracking.
General methodologies which apply to both
approaches are described first.

3.1 Color Segmentation

3.1.1 Color Space

The standard color space for images and videos is
RGB (red, green, blue) as it is most suitable for the
majority of current displays. However, a caveat of
RGB is that different levels of brightness results in
shifting RGB values (Sebastian et al., 2008). Thus,
continuous frames in a video may be extremely sus-
ceptible to color instability. RGB can be converted
to other color spaces to overcome this limitation.
Sebastian et al. (2008) found that tracking accuracy
was improved when using YCbCr or HSV (hue, sat-
uration, value) rather than RGB or grayscale.

The HSV color space was selected. It is part
of the Munsell-like color spaces which allows hu-
mans to pick colors more easily (Bradski, 2000).
The hue channel dictates the color type, which can
be fine-tuned through the saturation channel, con-
trolling the amount of color used, and the value
channel which regulates the brightness of the color.
A graphical user interface (GUI) was built to seg-
ment an objects color by manually narrowing down
the threshold of each HSV channel. This can be
seen in Figure 3.1 where the minimum and maxi-
mum HSV channel bounds for the color light blue
are determined.

3.1.2 Contours

The thresholding results in a binary image mask;
an array of intensities of 0 (black) indicating the
background or 255 (white) marking an object. A
morphological operation is then applied such that
the mask is dilated by a kernel of size 3 × 3 in
order to combat incorrect thresholds at the edges
due to shadows. This mask is then used to find
contours: an array of continuous points that define
the boundary of a (white) shape (Bradski, 2000).
OpenCV uses a border following algorithm to make
topological analyses such as contouring (Suzuki &
Abe, 1985). The contour is then used to calculate

4

https://www.python.org
https://opencv.org
https://scikit-learn.org
https://github.com/NikolaiHerrmann/Anchor-Tracking

Figure 3.1: GUI showing how changing HSV
bounds can mask a specific color. The final lower
and upper bounds for the light blue box are:
[5, 183, 122] and [115, 255, 209]. The bottom image
is produced by a bitwise AND gate between the
original image and the mask.

(j, i) - image moments where i and j denote the
order as seen in Equation 3.1 (Rocha et al., 2002).

Mji =
∑
x

∑
y

(array(x, y) · xj · yi) (3.1)

Here x, y pairs are point coordinates and array

gives the corresponding pixel intensity, resulting in
a weighted average. From this we have the following
properties for binary images using the 0th and 1st

order moments:

area = M00, x̄ =
M10

M00
, ȳ =

M01

M00
(3.2)

where x̄ and ȳ denote the centroid coordinates of
the contour (Rocha et al., 2002). Area is the pixel
count of the object. This gives two core attributes
of a detected object: its position and size.

Occasionally, it may occur that OpenCV finds
multiple contours due to slight threshold inaccura-
cies; in those cases the contour with the maximum
area is chosen.

3.1.3 Object Materials

For the HSV color segmentation to be successfully
it is important for the objects to be uniform in color
and have matte surfaces to reduce specular high-
lights. The utilized objects were thus made out of
either paper, rough plastic or cork.

3.2 Matching Function

The general anchoring is the same for both imple-
mented approaches. Given a detected percept π, the
pseudocode presented in Procedure 3.1 will show
how to ground it.

The matching distance vals function, pre-
sented in Procedure 3.1, needs to compare the set
Φy to the set Φx. This is done by comparing cor-
responding attributes ϕattr

y and ϕattr
x individually.

Persson et al. (2019) illustrate this further by in-
troducing a matching distance value d for each at-
tribute:

dattrx,y (ϕattr
y , ϕattr

x) (3.3)

In other words, the task of the matching function
combines the matching distance values for each at-
tribute to make a binary classification of whether
Φx and Φy represent the same physical object. This

will be achieved by having a model f̂ estimate
whether there is match given K attributes:

f̂ : RK → R (3.4)

The models mentioned in section 1.1 have been
selected for their minimal hyperparameters to re-
duce additional complexity. However, which at-
tributes are utilized and how they are updated with
reacquire depend on the approach.

5

Procedure 3.1 Anchoring of percept πy. Symbols
subscript by y refer to an unknown object while
symbols subscripted with x belong to an existing an-
chor. k denotes a unique past time for an anchor, it
will always be less than t. Unless stated otherwise,
T is set to the default 0.5

Input: percept πy, set of all anchors A, time step
t and matching threshold T .

1: Φy ← extract attributes(πy) # features as set
2: lookup table← empty lookup table()
3: for all αt−k ∈ A do
4: Φx ← get attributes(αt−k)
5: features← matching distance vals(Φx,Φy)
6: prob← classifier predict(features)
7: if prob > T then
8: lookup table[αt−k]← p
9: end if

10: end for
11: if is empty(lookup table) then
12: acquire(A, Φy, t) # add
13: else
14: αt−k ← max(lookup table)
15: reacquire(αt−k,Φy, t) # update
16: end if

3.2.1 Approach 1: Framewise Anchoring

In this approach the system attempts to detect ob-
jects in every frame. If an object is found, Proce-
dure 3.1 is called with the detected object as the
input.

An object is identified by where it is located and
its exterior shape. The first two attributes, are thus,
position (ϕpos

y) and size (ϕsize
y), calculated using

Equations 3.1 and 3.2 respectively. Moreover, the
objects rotation (ϕrot

y) can be determined by find-
ing the smallest rotated rectangle as shown in Fig-
ure 3.2.

Another distinct feature is if the object is mov-
ing by some external force. A simple way to detect
movement is by calculating the difference in posi-
tion. This can be achieved by maintaining a buffer
of past positions in order to get a position measured
n frames back; here, n was chosen to be 10 based
on small tests. The difference between the current
position p and an old position q can be seen as
a vector difference: k = p − q. The magnitude |k|

θ

Figure 3.2: The green bounding box shows the
minimum (rotated) sized rectangle while the red
bounding box indicates the minimum up-right
rectangle. θ is always calculated from the lowest
point parallel to the red bounding box and will
range from [0, 90].

can be calculated providing an indication of speed,
while the unit vector k̂ is used as a indicator of
direction. As a result, we add the attributes ϕmag

y

and ϕdir
y to Φy resulting in the set:

Φy = {ϕpos
y , ϕsize

y , ϕrot
y , ϕmag

y , ϕdir
y } (3.5)

In addition to selecting attributes, it must be
determined how the matching distance values are
calculated for each attribute. For the position at-
tribute the matching distance value is determined
by finding the Euclidean distance between the pre-
vious position ϕpos

x and the current position ϕpos
y :

dposx,y (ϕ
pos
y , ϕpos

x) = L2(ϕpos
y , ϕpos

x) (3.6)

Directions are matched by a dot product:

ddirx,y(ϕ
dir
y , ϕdir

x) = ϕdir
y · ϕdir

x (3.7)

For example, if the two vectors are parallel their
dot product is 1. The remaining attributes (area,
magnitude and rotation) are calculated by simply
taking an absolute difference:

dattrx,y (ϕattr
y , ϕattr

x) = abs(ϕattr
y − ϕattr

x) (3.8)

3.2.2 Approach 2: Anchor with Tracking

The idea behind the second approach is that in-
stead of anchoring moving objects by attempting

6

to quantify the motion through rotation, magni-
tude and direction attributes we track moving ob-
jects separately. To detect moving objects a KNN
background subtractor, which subtracts the current
frame from a past background frame (Zivkovic &
Van Der Heijden, 2006), is used. A difference of 20
frames was selected. This allows for a mask to be
calculated indicating the pixels of the objects in
motion as shown in Figure 3.3.

Current FrameOld Frame

Motion Mask

Pink GloveBlue Sand Mold

Figure 3.3: Background subtraction

With Procedure 3.2 it can be tested if a specific
contour, such as the blue sand mold or the pink
glove are in motion.

Procedure 3.2 Check if a contour mask is in mo-
tion. The variable motion thresh was set to 100.

1: test mask ← contour mask & motion mask
2: in motion ← (count nonzero(test mask) >

motion thresh)

If an object is in motion we prevent it from being
anchored and instead update the position attribute
of the anchor it was last grounded to. Additionally,
the position coordinates are inserted into a Kalman
filter. This is a simple strategy in order to make pre-
dictions about hidden objects. This filter was first

introduced by Kalman (1960) and allows for the es-
timation of linear systems. As a result, if an object
is not detected its position is predicted by the fil-
ter. Naturally if an object is off screen updating the
position has little benefit and those updates are ig-
nored. The implementation follows a standard 2D
tracking setup detailed by Sadli (2022). The follow-
ing parameters were applied:

Parameter Description Value

∆t period (1
FPS)

1
30

ux acceleration along x 1

uy acceleration along y 1

σa noise magnitude 5

σx SD of x measurement 1
1000

σy SD of y measurement 1
1000

Table 3.1: Kalman filter parameters, where SD
refers to standard deviation and FPS to frames
per second. Parameters are adapted from Sadli
(2022).

3.3 Data Collection

To train a model using supervised machine learning
labeled data is required. To do this, videos were cre-
ated showing colored objects being moved around
on a table by human hands. Each object had a
unique color ID. Procedure 3.1 can be adjusted,
as shown in Procedure 3.3, such that labeled data
can be generated.

Procedure 3.3 Readjustments of Procedure 3.1 to
collect data of correct matches.

Input: percept πy, set of all anchors A and time
step t

1: color y ← extract color(πy)
2: Φy ← extract attributes(πy)
3: for all αt−k ∈ A do
4: color x ← get color(αt−k)
5: Φx ← get attributes(αt−k)
6: features← matching distance vals(Φx,Φy)
7: target ← (color x == color y)
8: write to file(features, target) # save data
9: end for

10: update(A, Φy, color y, t) # acquire/re-acquire

7

Here update checks if Φy is already in A by com-
paring the colors of all anchors. If an anchor (α)
with colory is found, its attributes are updated to
Φy, otherwise a new anchor is created.

All videos were recorded with a Aukey PC-LM1
1080p webcam sampled at 30 FPS and down-scaled
to a 640×480 resolution. This is OpenCV’s default
resolution and allows for efficient real time viewing
on basic hardware. During all videos dishwashing
gloves were worn, as shown in Figure 3.3. This pre-
vented any similarities in HSV bounds between the
skin of the manipulating hands and the objects.
Moving, stacking, disappearance were three dif-

ferent testing scenarios created in order to test the
robustness of the two anchoring systems.

• Moving was used to test basic functionality
as it included videos of objects being moved
around the environment with minimal occlu-
sion.

• Stacking targeted occlusion as objects were
piled on top of each other in various manners.

• Disappearance contained videos were ob-
jects where not visible for a few seconds. This
included videos of the Three-Card Monte game
and the Shell game.

3.4 Classifier Parameters

The KNN classifier was trained with k = 3. Odd
numbers of k are typical for binary classifiers and
low numbers are less computationally expensive.
A max depth of 10 was set for the decision tree
to prevent overfitting and to reduce computational
complexity. The implementations of Naive Bayes
and Logistic Regression provided by the scikit-learn
package require no parameters to be set.

3.5 Data Split

36 videos varying between 30 seconds to 1.5 min-
utes in length were made. Half of the videos were
used for training and the other half for testing. This
generous split was reasoned by the fact the clas-
sifiers had a lower number of input features. The
upcoming learning curves in section 4 will confirm
this. Both testing and training received 6 videos
from each of the scenarios introduced above.

3.6 Preprocessing

An important byproduct of Procedure 3.3 is that
as the set of anchors A grows, more observations
of where target is false will be saved. This results
in an imbalanced dataset with many more observa-
tions showing matching distance value thresholds
that do not match. A consequence of the classi-
fier being trained on a class imbalanced dataset is
that it may form a bias towards the majority class
(Kotsiantis et al., 2006). A simple solution is to ran-
domly undersample the majority class. Kotsiantis
et al. (2006) note that a major drawback of un-
dersampling is the loss of potentially useful data
which could improve the classifier. We neglect this
imperfection as our data is not scarce.

3.7 Evaluation

To evaluate our anchoring system, the output of
function classifier predict presented in Proce-
dure 3.1 needs to be monitored. As the set of an-
chors grows, a lot of true negatives (TN) will nat-
urally occur. However, it is more important that
the system picks exactly the right anchor (if an ac-
quire is possible), than declining the majority of in-
correct anchors. It is therefore unwise to take any
metric using TN such as accuracy. Instead we will
use precision and recall as performance metrics be-
ing defined as follows:

precision =
TP

TP + FP
, recall =

TP

TP + FN
(3.9)

Furthermore, since neither can be maximised si-
multaneously, the ”harmonic” mean of the two will
be used. This is encapsulated by the F1 score as
follows:

F1 score =
2× precision× recall

precision+ recall
(3.10)

4 Results and Discussion

4.1 Training

To verify whether enough data was collected, learn-
ing curves can be plotted as shown in Figures 4.1
and 4.2 for each approach respectively. This was

8

https://www.aukey.com/products/aukey-overview-full-hd-video-1080p-webcam
https://www.aukey.com/products/aukey-overview-full-hd-video-1080p-webcam
https://scikit-learn.org

25000 50000 75000 100000 125000

0.80

0.85

0.90

0.95

1.00

F1
 S

co
re

Naive Bayes

25000 50000 75000 100000 125000

KNN

25000 50000 75000 100000 125000

Logistic Regression

25000 50000 75000 100000 125000

Decision Tree

Training Data Size

Approach 1 Learning Curves

Training

Validation
(5 Folds)

Figure 4.1: Classifier learning curves with increasing number of observations for approach 1.

500 1000 1500

0.80

0.85

0.90

0.95

1.00

F1
 S

co
re

Naive Bayes

500 1000 1500

KNN

500 1000 1500

Logistic Regression

500 1000 1500

Decision Tree

Training Data Size

Approach 2 Learning Curves

Training

Validation
(5 Folds)

Figure 4.2: Classifier learning curves with increasing number of observations for approach 2.

done by training each classifier 5 times with in-
creasing amount of observations. For each training,
5-fold cross validation was applied.

For approach 1 it can be clearly seen that enough
data was collected, as there is an almost perfect
convergence between the training and validation
lines while showing high F1 scores at around 0.97.
Approach 2 uses the same videos but does not do
frame-wise classification and hence has drastically
less observations in comparison. Yet, similar results
can be seen with slightly lower F1 scores just above
0.95 for the majority of classifiers. For KNN and the
Decision Tree, additional observations may yield
better performance.

4.2 Testing

For each classifier, a model was trained and then
evaluated on the three testing scenarios. This was
done by first calculating the average recall and pre-
cision per scenario (see Appendix A). From these,
an average F1 score was calculated which was then
averaged across approaches and testing scenarios.

Figure 4.4 shows a comparison of two approaches
illustrating that all classifiers perform better using
approach 2.

Approach 2’s improvements can also be inspected
visually as shown in Figure 4.3. It can be seen that
as the coaster is being pushed towards the top of the
table approach 1 classifies it as a new object three
times. Approach 2 in comparison simply tracks the
position maintaining the same ID.

Furthermore, in Figure 4.4 We see almost identi-
cal average performances for Decision Tree, Logistic

9

Figure 4.3: Comparing approaches 1 and 2 on a moving scenario video. Images depict hands from
three different frames, as the brown coaster is being moved from the bottom of the table to the
top.

0.00

KNN

Bayes

Log Reg

D-Tree

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Average F1 Score

Cl
as

sif
ie

r

Performance Comparison between Approaches
A1 A2

Figure 4.4: Showing classifier performance for
each approach where A1 and A2 denote ap-
proach 1 and 2 respectively. Error-bars show
± 1 SD.

Regression and Bayes between the two approaches.

4.2.1 Approach 1

Additionally, classifier performance can be evalu-
ated across the three testing scenarios as shown by
Figures 4.5 and 4.9.
In Figure 4.5 it can seen that for Approach 1 the

classifiers perform best in the moving scenario, all
reaching an F1 score higher than 0.90.
Stacking is much more difficult for the frame-

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Moving Stacking Disappearance
0.00

Testing Scenario

Av
er

ag
e

F1
 S

co
re

Approach 1 Classifier Performance Comparison

Bayes
KNN

Log Reg
D-Tree

Figure 4.5: Showing classifier performance for
approach 1. Error-bars show ± 1 SD.

wise classification; more errors occur pushing all
F1 scores below 0.85. Moreover, it was surprising to
see KNN drop below 0.75. Yet, these scores highly
fluctuate as shown by the large error-bars. Logistic
Regression, for example, has a standard deviation
of 0.10. Lastly disappearance preforms slightly bet-
ter compared to stacking with Naive Bayes and the
Decision Tree getting a score above 0.85 but still
below 0.90.

In Figure 4.5 there is a suggestion that Decision
Tree generally performs the best. To test the null

10

hypothesis of whether all classifiers perform equally
we follow the method presented by Demšar (2006)
and undergo a Friedman test; a non-parametric
repeated-measures ANOVA to compare classifiers
across the same data sets. Here a data set refers
to one of the 18 testing videos. For approach 1, a
Friedman test showed a significant difference be-
tween classifiers, χ2

F (3) = 26.2, p < 0.01. A post-
hoc test, shown in 4.1, reveals that only KNN per-
forms significantly worse compared to the other
three.

Bayes KNN Log Reg
KNN < 0.01 - -

Log Reg 1.00 0.021 -
D-Tree 0.891 < 0.01 0.407

Table 4.1: Showing p-values using Conover’s all-
pairs test with Bonferroni correction for ap-
proach 1. Significance is highlighted in gray.

Lastly, it should be checked which features are
contributing the most to a classification decision.
The scikit-learn package automatically calculates
feature importance for decision tree given its de-
fault hierarchical setup. This is done by calculating
the mean decrease in impurity (MDI) for a tree
(Pedregosa et al., 2011) as shown in Figure 4.6. A
higher value implies greater importance.

Po
sit

io
n

M
ag

ni
tu

de

Di
re

ct
io

n

Ar
ea

Ro
ta

tio
n

Feature

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
De

cr
ea

se
 in

 Im
pu

rit
y

Feature Importances

Figure 4.6: Showing feature importances for De-
cision Tree.

We see the highest decrease with the position at-
tribute followed by area. This is expected, as no
match should be made for objects far apart. Mag-
nitude and direction in comparison are extremely

low. To check whether they actually improve the
model, models would have to re-trained, holding
out both these variables and one at a time.

4.2.2 Approach 2

For approach 2 we observe higher F1 scores for each
scenario, as shown in Figure 4.9, compared to ap-
proach 1.

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Moving Stacking Disappearance
0.00

Testing Scenario

Av
er

ag
e

F1
 S

co
re

Approach 2 Classifier Performance Comparison

Bayes
KNN

Log Reg
D-Tree

Figure 4.9: Showing classifier performance for
approach 2. Error-bars show ± 1 SD.

For example, Bayes and Logistic Regression in-
crease by 0.03 in both the moving and stacking sce-
narios. For the disappearance scenario all classifiers
drastically improve, with Logistic Regression rising
by 0.10. The anchoring system still has the most
trouble with stacking.

A Friedman test for approach 2 also showed a sig-
nificant difference, χ2

F (3) = 18.6, p < 0.01. A post-
hoc test again reveals that KNN has significantly
lower performance compared to Naive Bayes and
Logistic Regression as shown in Table 4.2.

Bayes KNN Log Reg
KNN 0.019 - -

Log Reg 1.00 < 0.01 -
D-Tree 1.00 0.074 0.817

Table 4.2: Showing p-values using Conover’s all-
pairs test with Bonferroni correction for ap-
proach 2. Significance is highlighted in gray.

11

t 0.00
 t 0.01
 t 0.02

t 0.16
 t 0.17
 t 0.18

Time skip (shuffling)

Figure 4.7: Showing a test example where the shell game is played. t is in seconds.

Figure 4.8: A yellow paper box is pushed underneath a green box from right to left. Circles indicate
the presence of the track function.

Interestingly, Decision Tree just falls short of a
significant p-value (< 0.05) indicating that it is not
the best classifier as in approach 1. Logistic Regres-
sion instead shows the highest performance.

5 Conclusion

This project aimed to answer: how accurately can a
classifier be learned to maintain anchors of physical

objects and which classifier does this best?. The bar
chart shown in Figure 4.4 suggest that there are
two accurate anchoring systems with the highest
average F1 score obtained by Decision Tree (0.901)
for approach 1 and Logistic Regression (0.947) for
approach 2.

These scores are in line with those obtained by
Persson et al. (2019) who achieved an average F1

score of 0.938 for their best model; Support Vec-
tor Machine (SVM). Despite, their being small ob-

12

served differences between classifiers, our results
show no evidence for this difference to be signifi-
cant between Naive Bayes, Logistic Regression and
Decision Tree. A post-hoc test revealed that KNN
was significantly worse for both approaches. A sim-
ilar minor discrepancy can be seen with the results
of Persson et al. (2019) who present almost identi-
cal performance between a Multi Layer Perceptron
(MLP), SVM and KNN (3 neighbours) but slightly
lower results for Naive Bayes. KNN’s lower perfor-
mance, is most likely due to k = 3 being too low.
This could be fixed by more rigours hyperparame-
ter tuning. Generally, it can be concluded that any
standard binary classifier will work for bottom-up
anchoring, however, to achieve peak performance
additional tests are needed.
Comparing approaches, Figure 4.4 clearly illus-

trates that approach 1 is inferior. The reason for
this is that attributes can drastically fluctuate
within a very short time frame. This is mainly in-
duced by occlusion. Figure 4.3 shows how the de-
tected contour changes as the hand moves upwards.
Since all attributes are extracted from the contour,
slight changes, can trigger large differences in cer-
tain attributes between time steps. This shortcom-
ing was successfully solved by approach 2 where po-
sition is tracked externally and sensitive attributes
such as area and direction are not used during those
time steps.
It is important to note that the F1 scores, pre-

sented when comparing approaches, are averages;
Figures 4.5 and 4.9 showed us that approach per-
formance varies with different scenarios. Approach
2 can anchor objects that disappeared as long as
their motion follows a linear system of motion, i.e
gravity (see Figure 4.8). The Kalman filter brings
no advantage when it comes to stationary disap-
pearing objects such as the small ball in the Shell
game (see Figure 4.7. This is the primary reason
why approach 2 doesn’t reach F1 scores above 0.95
for disappearance.
When it comes to stacking both approaches per-

form inadequately with F1 scores below 0.90. Ap-
proach 2, however, is better as it doesn’t anchor
stationary objects. When an object is slowing while
covered by another object, approach 1 will always
fails as the attributes will change too fast. By de-
sign approach 2 should avoid these pitfalls. How-
ever, in practice we found that the background sub-
traction is occasionally faulty. For example, shad-

ows from moving object can make a stationary ob-
ject change in brightness and thus results in a mo-
tion detection. This highlights the true difficulty in
designing an anchoring system: because it depends
on supplementary systems, imperfections may ac-
cumulate. To overcome this limitation, a system us-
ing semantic relations is required (Persson et al.,
2019). For example, if a cup in the Shell game
covers a ball, the ball didn’t disappear, but rather
needs to be bound to the covering cup.

Nonetheless, we were able to build a work-
ing anchoring system. Our system is extremely
lightweight and easy to train. Unlike the work pre-
sented by Persson et al. (2019) our approach does
not depend on a CNN or manual labeling of objects
for training.

The domains of surveillance and tracking can
greatly benefit from anchoring systems (Coradeschi
& Saffiotti, 2000). For example, take the task of
building a self-driving taxi that receives the follow-
ing speech command: ”follow the blue truck that is
now turning right”. The goal is not to just follow
any car but a blue one which is branded as a truck
and is located on the right side of an intersection.
Of course a secondary system would be needed to
extract the description words using speech analysis.
Aside from this, anchoring systems provide a great
solution to bridge raw perceptional data, which we
humans can not manipulate well, to an abstraction
representation that is more applicable to us. A ma-
jor benefit of anchoring system is the ability of an-
chors to update regularly. For instance, if a system
needs to follow a car which gets muddy from dirt,
traditional object recognition systems will fail as
they might think the car changed color. The inher-
ent dynamicity of anchoring system can cope with
this.

Future work should build on our implementation
by incorporating spatial semantic relations into our
system. These could be range from hard-coded rules
to an advanced inference model. Of course addi-
tional attributes can always be investigated. Time,
for example, is an attribute of interest that was
not examined. Furthermore, the system’s efficiency
could be improved by deleting old anchors which
are no longer relevant and by excluding features
that are not necessary for a classification decision.

13

References

Bhowmik, T. K. (2015). Naive bayes vs logistic
regression: theory, implementation and experi-
mental validation. Inteligencia Artificial. Revista
Iberoamericana de Inteligencia Artificial , 18 (56),
14–30.

Bradski, G. (2000). The OpenCV Library. Dr.
Dobb’s Journal of Software Tools.

Bredeche, N., Chevaleyre, Y., Zucker, J.-D., Dro-
goul, A., & Sabah, G. (2003). A meta-learning
approach to ground symbols from visual per-
cepts. Robotics and Autonomous Systems, 43 (2-
3), 149–162.

Coradeschi, S., Loutfi, A., & Wrede, B. (2013).
A short review of symbol grounding in robotic
and intelligent systems. KI-Künstliche Intelli-
genz , 27 (2), 129–136.

Coradeschi, S., & Saffiotti, A. (2000). Anchoring
symbols to sensor data: preliminary report. In
AAAI/IAAI (pp. 129–135).

Coradeschi, S., & Saffiotti, A. (2003). An intro-
duction to the anchoring problem. Robotics and
autonomous systems, 43 (2-3), 85–96.

Demšar, J. (2006). Statistical comparisons of clas-
sifiers over multiple data sets. The Journal of
Machine learning research, 7 , 1–30.

Elfring, J., van den Dries, S., Van De Molengraft,
M., & Steinbuch, M. (2013). Semantic world
modeling using probabilistic multiple hypothesis
anchoring. Robotics and Autonomous Systems,
61 (2), 95–105.

Kalman, R. E. (1960). A new approach to lin-
ear filtering and prediction problems. Transac-
tions of the ASME–Journal of Basic Engineer-
ing , 82 (Series D), 35–45.

Kotsiantis, S., Kanellopoulos, D., & Pintelas, P.
(2006). Handling imbalanced datasets: A review.
GESTS International Transactions on Computer
Science and Engineering , 30 (1), 25–36.

Metropolitan Police Department. (n.d.). Three-
card monte. DC.gov. Retrieved from https://

mpdc.dc.gov/page/three-card-monte

Mohanapriya, M., & Lekha, J. (2018). Compar-
ative study between decision tree and knn of
data mining classification technique. In Jour-
nal of physics: Conference series (Vol. 1142,
p. 012011).

Pedregosa, F., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Grisel, O., . . . Duches-
nay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12 , 2825–2830.

Persson, A., Dos Martires, P. Z., De Raedt, L., &
Loutfi, A. (2019). Semantic relational object
tracking. IEEE Transactions on Cognitive and
Developmental Systems, 12 (1), 84–97.

Persson, A., Längkvist, M., & Loutfi, A. (2017).
Learning actions to improve the perceptual an-
choring of objects. Frontiers in Robotics and AI ,
3 , 76.

Redmon, J., & Farhadi, A. (2018). Yolov3: An
incremental improvement. arXiv .

Rocha, L., Velho, L., & Carvalho, P. C. P. (2002).
Image moments-based structuring and tracking
of objects. In Proceedings. xv brazilian sympo-
sium on computer graphics and image processing
(pp. 99–105).

Sadli, R. (2022, Jan). Object tracking: 2-D object
tracking using kalman filter in python. Retrieved
from https://machinelearningspace.com/2d

-object-tracking-using-kalman-filter/

Saffiotti, A. (1994). Pick-up what? In Current
trends in AI planning.

Sebastian, P., Voon, Y. V., & Comley, R. (2008).
The effect of colour space on tracking robust-
ness. In 2008 3rd ieee conference on industrial
electronics and applications (pp. 2512–2516).

Suzuki, S., & Abe, K. (1985). Topological struc-
tural analysis of digitized binary images by bor-
der following. Computer vision, graphics, and
image processing , 30 (1), 32–46.

Zivkovic, Z., & Van Der Heijden, F. (2006). Effi-
cient adaptive density estimation per image pixel
for the task of background subtraction. Pattern
recognition letters, 27 (7), 773–780.

14

https://mpdc.dc.gov/page/three-card-monte
https://mpdc.dc.gov/page/three-card-monte
https://machinelearningspace.com/2d-object-tracking-using-kalman-filter/
https://machinelearningspace.com/2d-object-tracking-using-kalman-filter/

A Appendix

Approach 1 Approach 2
Moving Stacking Disappearance Moving Stacking Disappearance

Bayes
P 0.944 0.749 0.789 1.00 0.826 0.978
R 0.985 0.974 0.982 0.983 0.937 0.957
F1 0.964 0.839 0.871 0.991 0.867 0.947

KNN
P 0.874 0.590 0.719 0.943 0.630 0.873
R 0.988 0.982 0.988 0.934 0.900 0.963
F1 0.923 0.730 0.825 0.935 0.730 0.912

Log Reg
P 0.937 0.750 0.754 1.00 0.831 0.950
R 0.990 0.981 0.989 0.985 0.949 0.975
F1 0.962 0.841 0.850 0.992 0.878 0.960

D-Tree
P 0.959 0.739 0.805 0.986 0.847 0.934
R 0.990 0.984 0.988 0.959 0.949 0.946
F1 0.974 0.836 0.883 0.972 0.891 0.937

Table A.1: Showing average precision (P), recall
(R) and F1 score (F1) rounded to 3 s.f.

15

	Introduction
	Our Approach

	Framework Specification
	Methods
	Color Segmentation
	Color Space
	Contours
	Object Materials

	Matching Function
	Approach 1: Framewise Anchoring
	Approach 2: Anchor with Tracking

	Data Collection
	Classifier Parameters
	Data Split
	Preprocessing
	Evaluation

	Results and Discussion
	Training
	Testing
	Approach 1
	Approach 2

	Conclusion
	Appendix

