
Convolutional Neural Network for off-line

writer identification based on line segments of

handwritten documents

Bachelor’s Project Thesis

Eniko Puspoki, s3961656, e.puspoki@student.rug.nl,

Supervisor: Maruf A. Dhali, MSc

Abstract: Identifying individuals based on their handwriting can be challenging, but it is an
essential step in document verification tasks. This is because everyone has their unique style
of writing, which means that there are no two people who have exactly the same handwriting.
However, when analyzing handwritten documents, the differences between writers can be hard
to notice, and the higher the number of writers, the more difficult this task is. For this reason,
utilizing computer technology in this field can be beneficial. In this thesis work, a low-cost
convolutional neural network is presented, which is trained on two different datasets containing
images of handwritten documents to identify writers with the classification of previously unseen
data. The two datasets used are the IAM English Handwriting Database and the Firemaker
image collection. The input to the model consists of patches of 113 x 113 pixels, cropped from
the text’s line segments. The model achieves an accuracy of 88.9% on the IAM images, and the
highest accuracy obtained on the Firemaker images is 58%. In the Firemaker image collection,
four different writing conditions were implemented when gathering the data, and the results
suggest that within-writer variability might play a role in writer identification.

1 Introduction

Handwriting is based on the behavior of a per-
son, it is a behavioral characteristic. It is mainly
dependent on the writing method taught at the
early stages of school, but also on personal pref-
erence, the copying of other styles from the people
around you, and on the amount of writing expe-
rience (Schomaker, 2022). There are no two peo-
ple who would be able to exhibit exactly the same
handwriting, and no one can write down a word
exactly the same way as they did the first time
(Rehman et al., 2019). Because of this, handwrit-
ing is a very strong indicator of people’s identity,
since everyone has their own unique style that does
not belong to anyone else. It can be used for proving
someone’s authenticity in forensic document verifi-
cation tasks, for example to detect frauds or verify
legal documents.
However, trying to analyse these documents only

with a human eye without the aid of a computerized
system can be very tiresome, therefore developing

these systems and this way incorporating technol-
ogy in handwriting analysis can significantly help
this field of science.

Computers and machine learning have become
more and more utilized for handwriting analysis.
The term used for this field is called writer recog-
nition, and it has two main components. One of
them is writer verification, where the task is to
compare a new handwriting sample with pre-stored
samples for authentication, and is a binary classifi-
cation problem. The other is writer identification -
which is the one that is attempted in this project -,
where the task is to find the correct writer from a
list of other registered writers based on the resem-
blance between their handwriting, and is a multino-
mial classification problem (Rehman et al., 2019).
A visual representation for these processes is visible
on Figure 1.

This project took on the challenge of identifying
writers based on line segments of handwritten doc-
uments independently of text. The data used in this

1



study were off-line - scanned images of the hand-
written texts - as opposed to on-line which also
includes information such as pressure, pen-angle
and where the writing is usually performed on a
tablet. The proposed model came from an already
existing convolutional neural network called Deep-
writer that managed to reach an accuracy as high as
99.01% on the IAM English Handwriting Database
on 301 writers (Xing & Qiao, 2016). Moreover, it
has also been tested with other datasets with the
number of writers ranging from 300 to 657, and the
accuracy was always above 93%. Deepwriter has
five convolutional layers and around five and a half
million parameters, which means that its usage is
quite computationally expensive. The reason why
in this project the model programmed is a simpli-
fied version of Deepwriter is that we wanted to find
out if it is possible to achieve a similar performance
but with a more efficient, less complex and there-
fore less computationally expensive model.

Figure 1: Writer identification and verification
systems (Adak et al., 2019)

2 Data

2.1 IAM

In this project there were two datasets used. The
first one is called the IAM English Handwrit-
ing Database, which contains scanned forms of
copied handwritten texts from 657 writers (Marti
& Bunke, 2002). The authors of the data have de-
veloped their own line segmentation method and
made the line segments available online, so the im-
ages did not require many preprocessing steps. But
since this experiment worked with the 50 most com-
mon writers, - and most common here means those
writers who have the highest number of samples
available - these 50 writers had to be separated. The
total number of line images from these 50 writers
was 4909. The images were split into train, valida-
tion and test sets, with ratios of 0.64, 0.16 and 0.2
respectively. Example line segments are visible on
Figure 2.

Figure 2: Example line segments from the IAM
dataset

2.2 Firemaker

The other dataset is called Firemaker, which is a
Dutch handwriting image collection (Schomaker &
Vuurpijl, 2000). In this case the participants had
to write in four different conditions during the data
gathering process. ”The conditions are: p1: copied,
natural style, p2: copied, UPPER case, p3: copied
and forged, i.e.,”try to write in a different style than
your natural style”, and 4 self generated, i.e., text
produced to describe a given cartoon.” (Schomaker
& Vuurpijl, 2000). Example images from the differ-
ent conditions can be seen on Figure 3. The image
collection contains 1000 scanned documents from
250 writers, therefore four documents in different
conditions per writer. Since the images contained
the full forms, they had to be preprocessed and line
segmentation had to be performed.

2



Figure 3: Example images from the Firemaker
dataset (conditions one-four respectively)

2.2.1 Preprocessing

First, the top and bottom of the images were
cropped to remove the labels containing the demo-
graphic data of the writers, leaving only the hand-
written text on the images, see Figure 4.

Figure 4: Removing the labels

The next step was to binarize the images
with Otsu’s automatic image thresholding method
(Bradski, 2000), which means that based on a cal-
culated threshold the pixels of the images were
changed to either black or white (foreground and
background).

Then the edges of the text were located in order to
remove as much of the excess white pixels as pos-
sible, an example is visible on Figure 5. After this,
the lines had to be separated from the text.

Figure 5: Edge detection on the binarized image

The line segmentation process started by count-
ing the number of black pixels in each row of
the images. The horizontal projection plane of the
counted pixel density can be seen on Figure 6.

Figure 6: Horizontal projection plane of the
pixel density

The number of curves on Figure 6 represents the
number of lines, and the lower points in the graph
are indicating the start and end points of the lines,
since that is where the least amount of black pixels
are. However, the graph in its current form con-
tains too many local minimums which would repre-
sent the separating points, so the graph had to be
smoothed out (Armstrong, 2019), see Figure 7.

Now we have the correct local minimums which
are representing the breaking points, which are vis-
ible on Figure 8.

After segmenting the images based on the found
points, another edge detection was done to remove
the excess white parts from the shorter lines, this
way the images were exactly the size of the lines,
see Figure 9.

3



Figure 7: Smoothed horizontal projection plane
of the pixel density

Figure 8: Local minimum points pinpointing the
start and end of the line segments

However, in a few cases the segments were not
containing the right, errorless information, because
for example there was an extra local minimum
point that produced a small segment of only white
pixels or a small segment containing only a few
black pixels. To handle these situations, images
where the percentage of white pixels was more than
95% were omitted, and images with a height smaller
than 40 (this value was found after experimenting
and checking the average height of the line seg-
ments) were also omitted. This method seemed to
produce good results, and the line segmentation
process was concluded.Preprocessing Firemaker

Figure 9: Produced line segments

Afterwards the next step was selecting the 50
most common writers to be used in this experi-
ment, which was done the same way as with the
IAM dataset, to end up with as much data as pos-
sible.
Then the line segments were divided into four
groups based on the conditions (one-four), and split
into train, validation and test sets. The ratios were
0.64, 0.16 and 0.2 respectively.
Since there was only four forms available per writer,
as the last step of the preprocessing, data aug-
mentation had to be done. The program that was
used for this is called imagemorph (Bulacu et al.,
2009), and it works by generating synthetic exam-
ples using random geometric distortions. Examples
for such distortions are visible on Figure 10. 10 aug-
mented samples were created for every image, this
way the number of samples per condition ended up
being around 3000-5000.
After all four of the train-validation-test groups
were augmented the images were converted back
to grayscale, and that concludes the preprocessing
of the Firemaker database.Preprocessing Firemaker

Data augmentation 
with imagemorph

Figure 10: Data augmentation with imagemorph

3 The model

As mentioned before, the model used in this exper-
iment was a simplified version of Deepwriter. The
main difference is that the presented network is less
complex, since it has only three convolutional lay-
ers as opposed to Deepwriter which has five. The
ordering and the parameters of the layers were set
similarly to Deepwriter. The structure of the net-
work is visible on Table 1. The last fully connected
layer was a vector of length 50, which is the number
of writers. It was followed by the Softmax activa-
tion function to end up with the prediction proba-
bilities of each writer’s likeliness of being the cor-

4



Table 1: Network structure of the model

Conv1, filters=32, kernel=(5, 5), strides=(2, 2)
Activation, ReLU

MP, pool=(2, 2), strides=(2, 2)
Conv2, filters=64, kernel=(3, 3), strides=(1, 1)

Activation, ReLU
MP, pool=(2, 2), strides=(2, 2)

Conv3, filters=128, kernel=(3, 3), strides=(1, 1)
Activation, ReLU

MP, pool=(2, 2), strides=(2, 2)
Flatten

Dropout, value = 0.5
Dense, units = 512
Activation, ReLU

Dropout, value = 0.5
Dense, units = 256
Activation, ReLU

Dropout, value = 0.5
Dense (output layer), units = 50

Activation, Softmax

rect one. The model was compiled with Categorical
crossentropy loss and the Adam optimizer.

As discussed earlier, the input images were line
segments, but before feeding them to the network
there was an additional step. The creators of Deep-
writer decided to augment the data by resizing
the shorter side of the images to 113 with origi-
nal aspect ratio and then randomly cropping out
113 × 113 big image patches from the resized line
segment images. Keeping the original aspect ratio
turned out to be very important, as it contains in-
formation about the handwriting attributes of the
writers, and the identification accuracy decreased
significantly when the input images were distorted
(Xing & Qiao, 2016). The same procedure was im-
plemented with the line segment images used in this
project, example inputs to the model can be seen
on Figure 11.

Figure 11: 113 × 113 image patches (the input
images)

Deepwriter has a multi-stream structure, which
means that they used two adjacent image patches
as input, taking into account the spatial relation-
ships between these image patches. By using only
one image as input we do lose some information
that could help determine the correct writer, but
this way we can eliminate the expense of storing
the spatial relationships.

Deepwriter used a batch size of 256, but since
the proposed model is simpler it was set to 16, and
other implementations of Deepwriter also reported
to have used this value (Dwivedi, 2018; Reddy,
2018; Castillo, 2018). Since the creators of Deep-
writer do not specify the number of epochs or it-
erations per epoch, it was calculated based on the
number of training images and the batch size, this
way the number of iterations per epoch was 3268.
The size of the validation steps was calculated sim-
ilarly, which ended up being 842. Concerning the
number of epochs, at first the training was run for
15 epochs, but at some point the model did not
improve anymore and that was always around the
10th epoch, therefore the experiments were run for
10 epochs. The differences between the accuracies
and losses per epoch are visible on Table 3 and Ta-
ble 4 in Appendix A.

4 Results

4.1 Results on IAM

A five-fold cross validation was performed on the
IAM images, and the model achieved an accuracy
of 88.9% on 50 writers, with a standard deviation
of 0.0075. These results were very close to other
simpler implementations of Deepwriter where the
researchers have reported an accuracy of 81-94%
with the IAM dataset (Dwivedi, 2018; Reddy, 2018;
Castillo, 2018).

Figure 12: Loss and accuracy of the model on
the IAM images

5



Figure 13: Learning curves from five-fold cross
validation on the IAM images

Figure 13 displays the learning curves during the
cross validation steps, the curves are following al-
most exactly the same path, therefore we can state
that the model was actually learning the handwrit-
ing patterns of the writers.

4.2 Results on Firemaker

The results on the Firemaker images did not turn
out to be as good as the results on the IAM images.
The model was tested on the different conditions
separately as well as the conditions together. The
best accuracy that the model achieved was 58%
both on the first condition, and on the first and
fourth condition combined. Interestingly, in the sec-
ond condition where people had to copy a text in
uppercase, the model was not learning at all. The

Figure 14: Curves from condition one

two graphs on Figure 14 are the curves from condi-
tion 1, and it is visible that the model did not learn
that much between the first and last epoch com-
pared to experiments with the IAM images, but it
did slowly improve over time. The accuracy of the
model was also checked before the data augmenta-
tion with imagemorph, which for the different con-
ditions were between 26-28%, thus data augmenta-
tion significantly improved the performance of the
model.

Table 2: Results on the Firemaker images

Condition accuracy
1 58%
2 2%
3 45%
4 54%
all 2%
1,4 58%
1,3,4 50%

5 Conclusions

The differences in performance between the condi-
tions suggest that within writer variability - noise
in an individual’s writing - played a role in the clas-
sification. In the second condition, where the par-
ticipants had to write in uppercase, the model did
not manage to learn the writing attributes of the
writers. This means that the variability of the letter
shapes introduced so much noise to the individuals’
handwriting that the model could not acquire the
true handwriting habits of the writers. And if we
look at the results when trying different conditions
together, condition one and four produced the best
results. In both of these conditions the task was
to write in natural style, therefore the noise in the
handwriting was little, making it possible for the
model to learn the unique handwriting styles.

To solve the mentioned within writer shape vari-
ability problem, an on-line recognition algorithm
could be used (Schomaker, 2022). But that would
require such samples which would have to be taken
by a pen-based computer system in order to capture
all relevant information about the writing habits of
the writers, allowing the model to find handwriting
features less sensitive to within writer variability
and more sensitive to between writer variability.

Additionally, a cleaner line segmentation method
may produce better results. Although the described
method seemed to work fine, after manually go-
ing over the images, in some cases it did cut off
parts of letters that were large enough to be in the
lines above or under them. Examples for such oc-
currences are visible on Figure 15.

A possible way to improve this could be that after
locating the start and end points of the segments
from the horizontal projections of the pixel density,
the A* path planning algorithm could be used to

6



Figure 15: Examples of overlapping and stripped
line segments

find a path through the lines that does not cut off
or leave out parts of letters. An implementation of
such process is visible on Figure 16. This could po-
tentially prevent the top and bottom of the letters
from being cut, this way improving the quality of
the line segments.

Figure 16: Example application of the A* path
planning algorithm for line segmentation (Sur-
inta et al., 2014)

Overall the objective of this project was to cre-
ate a system that can identify writers based on
off-line handwritten documents independently from
text, moreover the goal was to achieve similar re-
sults to Deepwriter but in a less computationally
expensive way. Although the model performed well
on the IAM dataset, in its current state it is not
a generalized model. Testing with more datasets
and a cleaner line segmentation method could re-
veal more information about the usefulness of this
model in automated handwriting analysis, and po-
tentially answer the question whether it is possible
to identify writers with a simple, low computational
cost model.

References

Adak, C., Chaudhuri, B. B., & Blumenstein, M.

(2019). An empirical study on writer identifica-
tion and verification from intra-variable individ-
ual handwriting. IEEE Access, 7 , 24738-24758.
doi: 10.1109/ACCESS.2019.2899908

Armstrong, I. (2019, 08). Handwrit-
ten text recognition. Retrieved from
https://github.com/IrinaArmstrong/

HandwrittenTextRecognition

Bradski, G. (2000). The OpenCV Library. Dr.
Dobb’s Journal of Software Tools.

Bulacu, M., Brink, A., Zant, T., & Schomaker, L.
(2009, 01). Recognition of handwritten numerical
fields in a large single-writer historical collection.
In (p. 808-812). 10th International Conference
on Document Analysis and Recognition. doi: 10
.1109/ICDAR.2009.8

Castillo, D. (2018, 11). Iam writer recogni-
tion. Retrieved from https://github.com/

diegocasmo/iam writer recognition

Dwivedi, P. (2018, 01). English deep writer.
Retrieved from https://github.com/

priya-dwivedi/Deep-Learning/tree/master/

handwriting recognition

Marti, U.-V., & Bunke, H. (2002, 11). The iam-
database: An english sentence database for offline
handwriting recognition. International Journal
on Document Analysis and Recognition, 5 , 39-
46. doi: 10.1007/s100320200071

Reddy, T. (2018, 06). Offline handwriting recogni-
tion using cnn. Retrieved from https://github

.com/TejasReddy9/handwriting cnn

Rehman, A., Naz, S., & Razzak, M. (2019, 04).
Writer identification using machine learning ap-
proaches: A comprehensive review. Multime-
dia Tools and Applications, 78 . doi: 10.1007/
s11042-018-6577-1

Schomaker, L. (2022, 06). Handling within-writer
variability and between-writer variation in the
recognition of on-line handwriting. *.

Schomaker, L., & Vuurpijl, L. (2000, Jan). Fire-
maker image collection for benchmarking foren-
sic writer identification using image-based pat-
tern recognition. Zenodo. doi: 10.5281/zenodo
.1194612

7

https://github.com/IrinaArmstrong/HandwrittenTextRecognition
https://github.com/IrinaArmstrong/HandwrittenTextRecognition
https://github.com/diegocasmo/iam_writer_recognition
https://github.com/diegocasmo/iam_writer_recognition
https://github.com/priya-dwivedi/Deep-Learning/tree/master/handwriting_recognition
https://github.com/priya-dwivedi/Deep-Learning/tree/master/handwriting_recognition
https://github.com/priya-dwivedi/Deep-Learning/tree/master/handwriting_recognition
https://github.com/TejasReddy9/handwriting_cnn
https://github.com/TejasReddy9/handwriting_cnn


Surinta, O., Holtkamp, M., Karaaba, M., Oosten,
J.-P., Schomaker, L., & Wiering, M. (2014,
05). A* path planning for line segmentation of
handwritten documents. In (Vol. 2014). doi:
10.1109/ICFHR.2014.37

Xing, L., & Qiao, Y. (2016, 10). Deepwriter:
A multi-stream deep cnn for text-independent
writer identification. In (p. 584-589). doi: 10
.1109/ICFHR.2016.0112

8



A Appendix

Table 3: Accuracy of the model on the IAM
dataset for 50 writers

Epochs val acc val acc diff
1 0.7507 -
2 0.8395 0.0888
3 0.8661 0.0266
4 0.8721 0.0060
5 0.8727 0.0006
6 0.8816 0.0089
7 0.8889 0.0073
8 0.8922 0.0033
9 0.8971 0.0049
10 0.8975 0.0004
11 0.8851 -0.0124
12 0.9011 0.0160
13 0.8948 -0.0063
14 0.8992 0.0044
15 0.9015 0.0023

Table 4: Loss of the model on the IAM dataset
for 50 writers

Epochs val loss val loss diff
1 0.7955 -
2 0.5127 -0.2828
3 0.4387 -0.0740
4 0.4218 -0.0169
5 0.4258 0.0040
6 0.4012 -0.0246
7 0.3741 -0.0271
8 0.3669 -0.0072
9 0.3496 -0.0173
10 0.3588 0.0092
11 0.3998 0.0410
12 0.3468 -0.0530
13 0.3637 0.0169
14 0.3464 -0.0173
15 0.3377 -0.0087

9


	Introduction
	Data
	IAM
	Firemaker
	Preprocessing


	The model
	Results
	Results on IAM
	Results on Firemaker

	Conclusions
	Appendix

