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Abstract

This thesis contains geometric constructions of semi-stable ex-
tremal rational elliptic surfaces over the rational numbers and
a discussion of their torsion structure via examples. Moreover,
it includes blow-downs of the surfaces to their minimal models
in P2 and P1 × P1. The preliminaries cover topics in algebraic
geometry and number theory such as blowing up at a point, the
Mordell-Weil theorem and bad reduction on fibers of a rational
elliptic surface.
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1 Introduction

Elliptic curves are an important topic in number theory as they are famous for their use in the proof of Fermat’s last
theorem by Andrew Wiles. We find applications for elliptic curves in elliptic curve cryptography (ECC) and integer
factorization. The of study elliptic surfaces is an expansion of the theory on elliptic curves and helps us understand the
latter in the context of algebraic geometry. An elliptic curve (E,O) consist of a complete curve E of genus one together
with a point O. When an elliptic curve E is defined over a field k with characteristic other than 2 or 3 we write its
equation in Weierstrass normal form

E : y2 = x3 +Ax+B

so that 4A3 − 27B2 ̸= 0. A rational elliptic surface π : S → P1 can be defined in a similar manner, the elliptic surface S is
determined by a Weierstrass equation with coefficients A(t), B(t) in the function field k(t).

y2 = x3 +A(t)x+B(t). (1)

This defines an elliptic surface, a family of curves of which all but finitely many members are elliptic curves over k. The
family members are given by fibers π−1(t0) of the surface, where we take t0 ∈ P1(k). Singular fibers are the curves in the
family that have discriminant equal to zero. On the elliptic surface S the singular fibers are either reducible or irreducible.
We study the reducible fibers that are moreover semi-stable: they are the fibers that appear as nodal curves on the surface,
see Figure 1. Together with the elliptic surface we define the generic fiber εη, an elliptic curve over the function field
k(t) above the generic point η given by Equation (1). This description allow us to study rational elliptic surfaces in a
two-folded way, namely as an algebraic surfaces which contains a 1-dimensional family of elliptic curves, or as an elliptic
curve over the function field k(t).

Figure 1: Weierstrass model of an elliptic surface S over P1 with generic fiber εη above generic point η. The second curve
in the surface from the right to left is a nodal curve.

The preliminaries of this thesis include the basic definitions on varieties and morphisms in Chapter 2. In the next chapter
we define Weil divisors and discuss the self-intersection of a divisor on a surface. In Chapter 4 we discuss linear systems of
curves and Bézout’s theorem. For our construction of semi-stable fibers, we need theory on blowing up points on curves,
which is given in Chapter 5. We discuss the basic theory of elliptic curves in Chapter 6 together with the Mordell-Weil
theorem for a number field k. Naturally, the next chapter introduces elliptic surfaces. We focus on the study of extremal
rational elliptic surfaces in Chapter 8. Finally, in Chapter 9 we give our constructions of rational elliptic surfaces via
blow-ups of points in the plane.

The main goal of this bachelor thesis is to give explicit constructions of examples of extremal rational elliptic surfaces
with semi-stable fibers over Q or a quadratic extension and work out the blow-ups of base points that give rise to the
configurations of semi-stable reducible fibers in the Néron model of the surface. A similar construction can be found in the
bachelor thesis of Marit van Straaten, where explicit constructions of extremal rational elliptic surfaces with non-reduced
fibers are given.
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2 Preliminaries on algebraic varieties

The sources that were used for Chapter 2 are [8], [9], [18] and [22].

2.1 Algebraic varieties

2.1.1 Affine varieties

Consider any field k. Affine n-space An := kn consists of n-tuples (x1, x2, . . . , xn) with coordinates in k. We define
polynomials f ∈ k[x1, . . . , xn] modulo units, i.e. for two polynomials f, g on An we have f ∼ g if and only if g = λ · f
for λ ∈ k∗ a unit. Affine 2-space, also known as the affine plane, is the ambient space for plane curves: zero sets of
non-constant polynomials in k[x, y].

Definition 2.1 (Affine variety). Let T ⊂ k[x1, . . . , xn] be a set of polynomials. The zero set

Va(T ) = {P ∈ An : f(P ) = 0 for all f ∈ T},

is called a zero locus of T . A subset in An of this form is called an affine variety1.

Example 2.2. A polynomial f ∈ k[x, y] has zero set, or plane curve Va(f) = {P = (x, y) ∈ A2 : f(P ) = 0} associated
with it. The set of points in the plane curve depend on the choice of the field k. For example, Va(x

2 + y2 − 1) over the
field R has zero set

Va(x
2 + y2 − 1) :=

{(
x̃,

√
1− x̃2

)
∈ A2 : x̃ ∈ [−1, 1]

}
over A2. Note that points (x̃,

√
1− x̃2) with |x̃| > 1 or Im(x̃) ̸= 0 are only in the zero set if we define A2 over C, an

algebraic extension of R and the classic example of an algebraically closed field. p

Remark 2.3. For two polynomials f, g ∈ k[x1, . . . , xn] we have

Va(f) ∪ Va(g) = Va(fg) and Va(f) ∩ Va(g) = Va(f, g).

Definition 2.4 (The ideal of a set S ⊂ An). Let S ⊂ An, then

Ia(S) = {f ∈ k[x1, . . . , xn] : f(P ) = 0 for all P ∈ S}

is called the ideal of S.

2.1.2 Projective varieties

For k a field, we define projective n-space Pn as the set of all 1-dimensional linear subspaces of kn+1. We write

Pn = (kn+1 \ {0})/ ∼ .

Two non-zero points (x1, . . . xn+1) and (y1, . . . , yn+1) ∈ kn+1 in the same 1-dimensional linear subspace are equivalent
in the following sense: if there exists a scalar λ ∈ k∗ such that xi = λyi for all i we write (x1, . . . xn+1) ∼ (y1, . . . , yn+1).
The equivalence class of a point (x1, . . . xn+1) in Pn is commonly denoted by [x1 : · · · : xn+1].

Polynomials in projective n-space need to satisfy an extra constraint because they are generally not well-defined functions
in Pn. For example if n = 2 the polynomial F = x3 − y2 + z maps [1 : −1 : 0] to 0 and it maps [−1 : 1 : 0] to −2. However,
[1 : −1 : 0] = [−1 : 1 : 0] and thus it is ill-defined as a function on P2. However, if F satisfies

F ([λx, λy, λz]) = F (λ[x, y, z]) = λdF ([x, y, z]). (2)

for some d ∈ N, the zero locus is well-defined on P2, i.e. F (x0, y0, z0) = 0 if and only if F (λx0, λy0, λz0) = 0. A polynomial
F ∈ k[x, y, z] satisfying Equation (2) is called homogeneous of degree d. A projective variety is defined just like an
affine variety, only the set T ⊂ k[x1, . . . , xn+1] contains only homogeneous polynomials and the zero locus Vp(T ) ⊂ Pn.

1Depending on the literature, subsets of this form are known as affine algebraic sets and not affine algebraic varieties, see Chapter 1.1 in
Hartshorne [9].
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Definition 2.5 (Projective variety). Let T ⊂ k[x1, . . . , xn+1] be a set of homogeneous polynomials. The zero set

Vp(T ) = {P ∈ Pn : F (P ) = 0 for all F ∈ T},

is called a zero locus of T . A subset of this form in Pn is a projective variety.

Remark 2.6. For two homogeneous polynomials F,G ∈ k[x, y, z] we have

Vp(F ) ∪ Vp(G) = Vp(FG) and Vp(F ) ∩ Vp(G) = Vp(F,G).

Definition 2.7 (The ideal of a set S ⊂ Pn). Let S ⊂ Pn, then

Ip(S) = {F ∈ k[x1, . . . , xn+1] : F homogeneous and F (P ) = 0 for all P ∈ S}

is called the ideal of S.

2.1.3 The affine and infinite part of projective space

There exists a geometric interpretation of projective n-space given by the embedding of affine n-space. Consider the
map An ↪→ Pn defined by (x1, . . . , xn) 7→ [x1 : . . . : xn : 1]. The image of this mapping is the subset Un+1 = {[x1 : . . . :
xn+1] : xn+1 ̸= 0} of Pn. The remaining points are of the form [x1 : . . . : xn : 0] and the bijective mapping

Pn \ Un+1 → Pn−1, [x1 : . . . : xn : 0] 7→ [x1 : . . . : xn]

allows us to write it as Pn = An ∪ Pn−1. We call An the affine part and Pn−1 the infinite part of Pn.

2.1.4 Homogenization and dehomogenization of polynomials

Consider a polynomial f ∈ k[x1, . . . , xn] of degree d given by

f =
∑

i1+···+in≤d

ai1,...,inx
i1
1 · · ·xinn .

The homogenization fh of f in e.g. the (n+ 1)-th coordinate is then given by

fh =
∑

i1+···+in≤d

ai1,...,inx
i1
1 · · ·xinn · xd−(i1+···+in)

n+1 ,

such that fh is a homogeneous polynomial in k[x1, . . . , xn+1]. The reverse action of dehomogenization consists of taking
xn+1 = 1. For a homogeneous polynomial F ∈ k[x1, . . . , xn+1], the affine set of points and the set of points at infinity for
each coordinate xi are given by Vp(F ) ∩ A2 = Va(F (xi = 1)) and Vp(F (xi = 0)) respectively.

2.1.5 The local ring

Definition 2.8 (Local rings of A2 ). Let P ∈ A2 be a point and k a fixed ground field.

(a) The local ring of A2 at P is defined as the set of rational functions given by

OP := OP (A2) :=

{
f

g
: f, g ∈ k[x, y] with g(P ) ̸= 0

}
⊂ k(x, y).

(b) The local ring admits a well-defined ring homomorphism

OP → k,
f

g
7→ f(P )

g(P )

which we will call the evaluation map. Its kernel will be denoted by

IP := IP (A2) :=

{
f

g
: f, g ∈ k[x, y] with f(P ) = 0 and g(P ) ̸= 0

}
⊂ OP .
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This definition translates well to a definition of the local ring OP = OP (P2) of projective space P2, except we need to
make a few restrictions and change the maps appropriately. First of all we need f, g ∈ k[x, y] to be homogeneous and of
the same degree, because f/g has to be well-defined and thus we require that

f(λx, λy, λz)

g(λx, λy, λz)
=
λdf(x, y, z)

λdg(x, y, z)
=
f(x, y, z)

g(x, y, z)
.

Similarly to (b) in Definition 2.8 we define the evaluation map OP → k for projective space with kernel denoted IP (P2).
For any point P = [x0 : y0 : z0] in P2 there exists an isomorphism OP (A2) → OP (P2) given by homogenization in a
non-zero coordinate of P .

2.2 Intersection multiplicity and multiplicity of points inside varieties

2.2.1 Intersection multiplicity

Definition 2.9 (Intersection multiplicity of curves in A2). For a point P ∈ A2 and two polynomials f and g in k[x, y] we
define the intersection multiplicity of the curves defined by f and g at their point of intersection P to be

µP (f, g) := dimOP /⟨f, g⟩ ∈ N ∪ {∞},

where dim denotes the dimension as a vector space over k.

We would like to define intersection multiplicity for curve in the projective plane P2. Take homogeneous polynomials
F1, . . . , Fn in Op, that generate the ideal

⟨F1, . . . , Fn⟩ :=
{
a1
b1
F1 + · · ·+ an

bn
Fn : ai = 0 or ai, bi homogeneous with deg(aiFi) = deg bi for all i

}
in OP (P2). The isomorphism OP (A2) → OP (P2) given by homogenization in a non-zero coordinate of P , takes the ideal
⟨f, g⟩ to the ideal ⟨fh, gh⟩. Therefore, the intersection multiplicity is preserved under homogenization of curves. This
allows us to define intersection multiplicity for projective plane curves analogously to the definition for affine plane curves.
For a point P ∈ P2 and two homogeneous polynomials F and G in k[x, y, z] we define the intersection multiplicity of the
curves defined by F and G at their point of intersection P to be

µP (F,G) := dimOP /⟨F,G⟩ ∈ N ∪ {∞},

where dim denotes the dimension as a vector space over k.

Curves defined by polynomials f, g may intersect in more than one point. We denote the the total intersection multiplicity,
i.e. the sum of the intersection multiplicities of the curves at each point in their intersection, by∑

P∈f∩g

µP (f, g) = µf∩g(f, g).

Example 2.10. Consider the lines defined by y − x and 2y − 5x+ 3 in Q[x, y], they intersect at the point P = (1, 1).
Notice that the ideal ⟨y−x, 2y− 5x+3⟩O(1,1) = ⟨x− 1, y− 1⟩O(1,1) generates the kernel of the evaluation map IP . By the
First Isomorphism Theorem on the ring homomorphism in Definition 2.8 (b) we find that µP (y − x, 2y − 5x+ 3) = 1. p

2.2.2 Multiplicity of points

Definition 2.11 (Multiplicity of points in An). Let f ∈ k[x1, . . . , xn] be a polynomial and let fm denote the homogeneous
part of f of degree m ∈ N. The smallest m for which fm is zero is called the multiplicity mO(f) of f at the origin
O := (0, . . . , 0). For any point P = (a1, . . . , an) ∈ An we computemP (f) by first making a linear coordinate transformation
xi → xi − ai which translates P into the origin (0, . . . , 0). The multiplicity is preserved under coordinate transformations.

We define multiplicity of a point P = [a1 : . . . : an+1] in projective n-space Pn by making use of the isomorphism
OAn,P

∼= OPn,P given by (de)homogenization in a non-zero coordinate of P . If an affine or projective variety X = V (F )
contains the point P we call the point smooth in X if mP (F ) = 1 and singular otherwise.

Definition 2.12 (Nonsingular affine variety). A variety is nonsingular or smooth if all its points are smooth.
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2.3 Zariski topology and irreducibility of varieties

Assume k to be algebraically closed unless stated otherwise.

Proposition 2.13. The union of two varieties is a variety. The intersection of any family of varieties is a variety. The
empty set and the ambient space (i.e. An or Pn) are varieties.

Proof. For the first two statement we refer back to Remarks 2.3 and 2.6. We can take an arbitrary set T of (homogeneous)
polynomials in k[x1, . . . , xn] to generate a variety. X = V (T ). The variety X can be expressed as an arbitrary intersection
of varieties, each generated by a polynomial in T . Notice that the empty set is a variety generated by a constant polynomial
in k∗, e.g. 1. The ambient space (i.e. An or Pn) is a variety generated by the zero polynomial 0. N

Definition 2.14 (Zariski topology). We define the Zariski topology on An and Pn by taking the open subsets to be the
complements of varieties.

To see why this is a topology, we refer to Proposition 2.13. Namely, the intersection of two open sets is open and the
union of any family of open sets is open. Furthermore, the empty set and the whole space are both open. Then the closed
subsets are the varieties with respect to this topology. Varieties in An or Pn are topological spaces with respect to the
Zariski subspace topology. An open subset in An or Pn is called a quasi-affine variety or a quasi-projective variety
respectively.

Definition 2.15 (Irreducibility of varieties). A nonempty subset Y of a topological space X with respect to the Zariski
topology is irreducible if it cannot be expressed as the union Y = Y1 ∪ Y2 of two proper subsets, both closed in Y . The
empty set is not considered irreducible.

Since we are mainly focused on the properties of curves, we use the following proposition more often. Let I(X) denote
either the affine or projective ideal of a variety X, defined as in Definitions 2.4 and 2.7.

Proposition 2.16. A variety X is irreducible if and only if I(X) is a prime ideal.

Proof. A proof can be found in [9, p. 4], Corollary I.4. N

Remark 2.17. For a polynomial f ∈ k[x1, . . . , xn] irreducible in k[x1, . . . , xn] a unique factorization domain, we find
that fn for any n ∈ N generates a prime ideal I(X) where X = V (fn). Then X is an irreducible variety.

Remark 2.18. Note that affine n-space An has ideal Ia(An) = ⟨0⟩ which is prime in the domain k[x1, . . . , xn]. By
Proposition 2.16 this implies An is irreducible as a variety. Analogously, Pn is irreducible as a variety.

Using the Zariski topology we define the dimension of a variety.

Definition 2.19 (Dimension of a variety). If X is a topological space, we define the dimension of X (denoted dimX)
to be the supremum of all integers n such that there exists a chain X0 ⊂ X1 ⊂ . . . ⊂ Xn of distinct irreducible closed
subsets of X. We define the dimension of a variety to be its dimension as a topological space.

Example 2.20. Consider the (irreducible) variety P2 as a topological space with respect to the Zariski topology. Take the
coordinates [t : u] in P1. We recognise that the point P = [1 : 0 : 0] is the zero set of the polynomials y and z homogeneous
in the polynomial ring k[x, y, z]. One way to see P is irreducible is by the fact that k[x, y, z]/⟨y, z⟩ is isomorphic with the
(principal ideal) domain k[x]. This implies ⟨y, z⟩ is a prime ideal in the ring k[x, y, z]. The point P lies on the projective
line L = [t : u : 0], the zero set of the irreducible homogeneous polynomial z. The line L lies in the ambient space P2. We
find the topological space P2 is at least of dimension 2, the line L at least of dimension 1 and the point P at least of
dimension 0. p

In general we find by Proposition 1.7 in [9, p. 6] that the dimensions of affine and projective n-space An and Pn are equal
to n. Thus in Example 2.20 the dimension of P2 is 2, the line has dimension 1 and the point dimension 0.

Definition 2.21 (Codimension of a subvariety). Let X be a subvariety of a variety Y . We define the codimension of X
in Y as

codim(X) := dim(Y )− dim(X).

Remark 2.22. A variety of dimension 2 is called an algebraic surface and a variety of dimension 1 inside an algebraic
surface is called an algebraic curve. We say that a curve has codimension 1.
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2.4 Morphisms and rational maps

We discuss maps between irreducible varieties for k an algebraically closed field.

Definition 2.23 (Affine coordinate ring). Let X be an irreducible affine variety over k[x1, . . . , xn] and Ia(X) the affine
ideal of X as a subset of An. We call

k[X] := k[x1, . . . , xn]/Ia(X)

the affine coordinate ring of X.

Since X is assumed to be irreducible, meaning Ia(X) is a prime ideal, we know k[X] must be an integral domain. Therefore,
we can define its quotient field.

Definition 2.24 (Affine function field). Let X be an irreducible affine variety.

(a) The quotient field

k(X) := Quot k[X] =

{
f

g
: f, g ∈ k[X] with g ̸= 0

}
of the coordinate ring is called the affine function field of X.

(b) A rational function ϕ ∈ k(X) is called regular at a point P ∈ X if it can be written as ϕ = f/g with f, g ∈ k[X] and
g(P ) ̸= 0. The regular functions at P form a subring of k(X) which we denote by

OP (X) :=

{
f

g
: f, g ∈ k[X] with g(P ) ̸= 0

}
⊂ k(X)

and which is called the local ring of X at P .

(c) There is a well-defined evaluation map

OP (X) → k,
f

g
7→ f(P )

g(P )

which we will simply write as ϕ 7→ ϕ(P ) for ϕ ∈ OP (X), and whose kernel is

IP (X) :=

{
f

g
: f, g ∈ k[X] with f(P ) = 0 and g(P ) ̸= 0

}
.

For a projective variety X we analogously define the homogeneous coordinate ring k[X] := k[x1, . . . , xn+1]/Ip(X)
with function field k(X). Here we restrict our choice of f, g ∈ k[x1, . . . , xn+1] to homogeneous polynomials of the same
degree. Note that if f is an irreducible curve with X = V (f) we sometimes denote k(f) := k(X).

Definition 2.25 (Rational map). Let X and Y ⊂ Pn be irreducible projective varieties. A rational map φ : X → Y
given by

φ = [ϕ1 : · · · : ϕn+1] ,

where ϕ1, . . . , ϕn+1 ∈ k (X) such that for every point P ∈ X at which ϕ1, . . . , ϕn+1 are all defined2,

φ(P ) = [ϕ1(P ) : · · · : ϕn+1(P )] ∈ Y.

Note that each ϕi is defined at all but finitely many points. Therefore, a rational map φ = [ϕ1 : · · · : ϕn+1] between
varieties is defined at all but finitely many points.

Definition 2.26 (Birational map). A birational map φ : X → Y is a rational map which admits an inverse, namely a
rational map ψ : Y → X such that ψ ◦ φ = idX and φ ◦ ψ = idY as rational maps. If there is a birational map from X to
Y , we say that X and Y are birationally equivalent, or simply birational.

Definition 2.27 (Morphism). A rational map

φ = [ϕ1 : · · · : ϕn+1] : X −→ Y

is regular (or defined) at P ∈ X if there exists a function G ∈ k (X) such that

2This includes that there exists an i so that ϕi(P ) ̸= 0.
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(a) each Gϕi is regular at P ;

(b) there is some i for which (Gϕi) (P ) ̸= 0.

If such a G exists, then we set
φ(P ) = [(Gϕ1) (P ) : · · · : (Gϕn+1) (P )] .

A rational map regular at every point P in X is called a morphism.

Two irreducible varieties X,Y are called isomorphic if there exists a morphism φ : X → Y which admits an inverse
morphism ψ : Y → X with ψ ◦ φ = idX and φ ◦ ψ = idY .

10



3 Preliminaries on Weil divisors

The definitions and results in Chapter 3 are based on [9] and [18].

3.1 Weil divisors

Definition 3.1 (Weil divisors). Let X be an irreducible variety. A finite collection of irreducible closed subvarieties
C1, . . . , Cr of codimension 1 in X with assigned integer multiplicities k1, . . . , kr defines a divisor on X. A divisor is a
formal sum

D = k1C1 + · · ·+ krCr. (3)

If all ki = 0, we write D = 0. If all ki ≥ 0 and some ki > 0 then we write D > 0; in this case D is said to be effective. An
irreducible codimension 1 subvariety Ci taken with multiplicity 1 is called a prime divisor. If all the ki ≠ 0 in Equation
(3) then the variety C1 ∪ · · · ∪ Cr is called the support of D and denoted by Supp D.

Definition 3.2 (Degree of a divisor). Let X be an irreducible variety and let D = k1C1 + · · ·+ krCr be a divisor on X.
The degree of D is given by

degD :=

r∑
i=1

ki.

The divisor of a rational function ϕ = f/g is given by

div(ϕ) :=
∑

µϕ∩C(ϕ,C)C

where we sum over all the irreducible closed subvarieties C. Since there are only finitely many such C with µϕ∩C(ϕ,C) ̸= 0,
div(ϕ) is well-defined, see [18, p. 149]. A divisor of the form div(φ) is called a principal divisor.

Divisors form a group under addition denoted DivX. Moreover, there exists a subgroup denoted Div0X consisting of all
D ∈ DivX such that degD = 0.

Definition 3.3 (Principal divisor and divisor class group). Let X be an irreducible variety.

(a) A divisor on X is called principal if it is the divisor of a non-zero rational function. The set of all principal divisors
will be denoted by

PrinX := {div(ϕ) : ϕ ∈ k(X)∗} .

It is a subgroup of DivX, and also of Div0X.

(b) The quotient group ClX := DivX/PrinX is called the divisor class group on X. Two divisors D1 and D2

defining the same element in ClX, i.e. with D1 − D2 = div ϕ for a rational function ϕ ∈ k(X)∗, are said to be
linearly equivalent, written D1 ∼ D2. Restricting to divisors of degree 0, we also set

Cl0X := Div0X/PrinX,

which is a subgroup of ClX.

Definition 3.4 (Néron-Severi group). Let X be a nonsingular projective variety of dimension at least 2 defined over an
algebraically closed field k, let ClX be the divisor class group of X and let Cl0X be the subgroup of divisors with degree
zero. The quotient group ClX/Cl0X is called the Néron–Severi group of X and is denoted by NS(X).

3.2 Divisors over a surface

In this section we let S be an irreducible projective variety of dimension 2 over k algebraically closed, also known as a
projective surface.

11



Divisors over a surface S over an algebraically closed field k are finite formal sums of curves. Namely, the irreducible
subvarieties Ci of codimension 1 are smooth algebraic curves when they are defined over P2 since they are of dimension 1
as topological spaces with respect to the Zariski topology. Note that all curves are divisors but the opposite does not hold
since a divisor is a formal sum of curves with the possibly negative coefficients. However, if a divisor is effective, i.e. a
formal sum of curves with non-negative coefficients, it is a curve. We define intersection multiplicity of effective divisors
over a surface as the formal sum of the intersection multiplicity of the curves in the sum, see Definition 2.9. By using the
notation −D for the inverse of a divisor D we can generalize the notion of intersection multiplicity for all divisors in DivS.
In order to compute with intersection multiplicity of divisors we state the following theorem from Hartshorne [9, p. 357].

Theorem 3.5. There is a unique pairing DivS ×DivS → Z, (D1, D2) 7→ D1.D2 for any two divisors D1, D2, such that
for D3 a third divisor

(1) if D1 and D2 are nonsingular curves meeting transversely, then D1.D2 = #(D1 ∩ D2), the number of points of
D1 ∩D2,

(2) it is symmetric: D1.D2 = D2.D1,

(3) it is additive: (D1 +D2) .D3 = D1.D3 +D2.D3, and

(4) it depends only on the linear equivalence classes: if D1 ∼ D2 then D1.D3 = D2.D3.

Proof. A proof can be found in [9, p. 358], Theorem 1.1. N

Due to property (4) in above theorem we often define a pairing ClS ×ClS → Z instead. That is, the pairing respects the
linear equivalence of divisors.

Remark 3.6. If D is a divisor on a surface S, we define its self-intersection D2 := D.D. The self-intersection of a
divisor D on S can not be calculated directly, but rather by using the linear equivalence of divisors in the divisor class
group ClS, see property (4) Theorem 3.5. That is, if D′ ∼ D for some D′ ∈ DivS, then D2 = D′.D.

Let X and Y be irreducible varieties on S. Consider a morphism φ : X → Y such that φ(X) is dense3 in Y and a divisor
D = k1C1 + · · ·+ krCr in ClY . The map φ∗ : ClY → ClX defined by

φ∗D =

r∑
i=1

ki · φ−1 (Ci)

is a group homomorphism: the mapping of divisors is linear over Z and for rational functions f on Y we have φ∗ div(f) =
div (f ◦ φ) ensuring it is well-defined. We call φ∗ the pullback of divisors, see [18, p. 152].

Definition 3.7 (Degree of a morphism). If φ : X → Y is a finite4 dominant morphism of irreducible varieties X and Y ,
we define the degree of φ to be the degree of the field extension [k(X) : k(Y )].

From this definition we derive that the degree of a map between surfaces X,Y is the number of points in the pre-image of
almost all points in Y , except for finitely many point called ramification points. For X,Y irreducible varieties and φ a
morphism of degree d we have

(φ∗D1.φ
∗D2) = d · (D1.D2) (4)

for any divisors D1, D2 in ClY .

3That is, φ is a dominant morphism, see Hartshorne page 23 ex. 3.17.
4See Hartshorne page 84 for the definition of a finite morphism.
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4 Linear systems of curves

The definitions and results in Chapter 4 can be found in [7] and [8] in more detail.

4.1 Linear systems

We work in the projective plane P2.

Let F be a homogeneous polynomial in k[x, y, z] of the form

F =
∑

i+j≤d

ai,jx
iyjzd−(i+j),

where ai,j ∈ k not all zero. Using an inductive argument we know that F consists of at most (d+1)(d+2)/2 terms of degree
d. Let N := (d+ 1)(d+ 2)/2 and re-assign indices 1, . . . , N to the coefficients ai,j in lexicographical order. Notice that F
is determined by our choice of a1, . . . , aN up to units: choosing λa1, . . . , λaN for some λ ∈ k∗ also gives F . We obtain a
one-to-one correspondence between homogeneous polynomials F of degree d and projective points [a1 : a2 : . . . : aN ] in
projective N − 1 space, where N − 1 = (d+ 1)(d+ 2)/2− 1 = d(d+ 3)/2.

Consider the family of polynomials F of degree d that give rise to plane curves containing a point P . As we discussed
each polynomial of degree d relates directly to a point in Pd(d+3)/2. We argue that the family gives rise to an irreducible
variety in Pd(d+3)/2, because it generates a linear dependence between the coefficients a1, . . . , aN . As a result we can speak
about the dimension of the family of polynomials as the dimension of the irreducible variety of points in Pd(d+3)/2 with
respect to the Zariski topology. The restriction to a point in P2 reduces the dimension of the coefficients a1, . . . , aN of
polynomials in the family by one. Therefore, the family gives rise to a hyperplane in Pd(d+3)/2. The dimension of the
family of polynomials is then equal to d(d+ 3)− 1.

We generalize this construction to include more points in the curves that are generated. Let P1, . . . , Pn be distinct points
in P2, r1, . . . , rn nonnegative integers. We set

C (d; r1P1, . . . , rnPn) = { homogeneous polynomials F of degree d | mPi
(F ) ≥ ri, 1 ≤ i ≤ n} . (5)

Theorem 4.1. Let C be a family of homogeneous polynomials F given by (5). We have

(1) C (d; r1P1, . . . , rnPn) is a subvariety of Pd(d+3)/2 of dimension

dim C (d; r1P1, . . . , rnPn) ≥
d(d+ 3)

2
−
∑ ri (ri + 1)

2
,

(2) if d ≥ (
∑
ri)− 1 then equality holds.

Proof. For the proof see Theorem 1 in [7, p. 56]. N

4.2 Bézout’s theorem

For homogeneous polynomials F,G over an algebraically closed field there exists a direct correspondence between the
degrees of both homogeneous polynomials and the number of points in which the curves they define intersect, so-called
base points. The number of base points is independent of the curves and is solely determined by the degrees.

Theorem 4.2 (Bézout’s theorem). Let F and G be homogeneous polynomials without common factor over a field k not
necessarily algebraically closed. Then ∑

P∈F∩G

µP (F,G) ≤ degF · degG.

Moreover, equality holds if k is algebraically closed.
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Proof. A proof can be found in [8, p. 31], Corollary 4.6. N

Theorem 4.3 (Cayley-Bacharach). Given 8 points P1, . . . , P8 in the plane, no 4 collinear, and no 7 lying on a conic,
there is a uniquely determined point P9 such that every cubic through P1, . . . , P8 also passes through P9.

Proof. See the proof of Corollary 4.5 in [9, p. 400]. N

Example 4.4. Consider two homogeneous polynomials F (x, y, z) and G(x, y, z) of degree 3 without common irreducible
factor over an algebraically closed field k. By Bézout’s theorem, see Theorem 4.2, the intersection of the curves defined by
F,G contains exactly 9 base points. The base points P1, . . . , P9 may not all be distinct. Note that no 4 base points are
collinear and no 7 are on a conic, which can be seen directly from Bézout’s theorem. We know from Theorem 4.3 that the
family of curves generated by homogeneous polynomials of degree 3 which contains 8 base points also contains the 9th
base point. We derive from Theorem 4.1 that the dimension of the family with d = 3 through all 9 points must be at least
d(d+ 3)/2− 8 = 9− 8 = 1 if all base points are distinct, i.e. ri = 1. We construct a one-dimensional family of plane cubic
curves by taking P1 = [t : u] and tF (x, y, z) + uG(x, y, z) = 0. We call a 1-dimensional family of subvarieties a pencil.
Therefore, the construction is called the pencil of cubics. p
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5 Blow-up of a point

In Chapter 5 is inspired by constructions and results for the blow-up at a point as they are given in [7, p. 86] and [9, p.
28].

5.1 Introduction

Let F and G be two homogeneous polynomials in k[x, y, z] of degree 3 without common factor. We know from Bézout’s
theorem (see Theorem 4.2) that the cubic curves they define meet in exactly 9 points if k is algebraically closed. Consider
the map P2 → P1 defined by sending [x : y : z] 99K [F (x, y, z) : G(x, y, z)]. It is a rational map but not a morphism: the
mapping is not defined at the 9 base points of the curves of F and G. In order to resolve the 9 indeterminacy points we
create a set called the blow-up

S = { [x : y : z]× [t : u] : uF (x, y, z)− tG(x, y, z) = 0 } ⊂ P2 × P1.

Using the commutative diagram underneath with ε : S → P2 the blow-up map (we define it further on) and π a surjective
map on S, projection of the second factor outside the pre-image of ε of the base points. We aim to create a morphism for
points outside of the intersection sending [x : y : z] → [F (x, y, z) : G(x, y, z)] and separately sending the 9 base points to
exactly 9 lines.

S

P2 P1

ε π

[x:y:z]→[F (x,y,z):G(x,y,z)]

In the next example we describe for a specific curve the process of blowing up a point on the curve. For now we avoid the
technicalities of the construction, they are discussed further on this chapter.

Example 5.1. Consider the projective curve C : y2z = x3 + x2z which has one singular point [0 : 0 : 1]. We know from
Definition 2.11 that the singular point has multiplicity 2. We resolve it by replacing the point with a projective line
E. This projective line is isomorphic with P1 = [t : u]. We let the variable t function as a parameter for P1 by taking

t ∈ k if u ̸= 0 and t = ∞ if u = 0. Blowing up maps the curve C into a union C̃ ∪ E. The curve C̃ is induced by the
transformation of all nonsingular points on C. It intersects E at the points t = ±1, since the curve C has two different
tangent lines at [0 : 0 : 1] with slopes 1 and −1. The parameter t corresponds bijectively to the slope of the lines through
the singular point.

Figure 2: Blow-up of (0, 0) on the curve C : y2 = x3 + x2 on the affine plane z = 1.

p

15



5.2 Blow-up of a point

We provide a general construction of a blow-up of a point on the surface P2. Consider the point O = [0 : 0 : 1]. The
blow-up of the point O is given by the projective variety

S = {ty − ux = 0} ⊂ P2 × P1.

First let us define the morphism ε : S → P2 for points P = [a1 : a2 : a3] in P2 \ {O}. In S this gives ta2 = ua1. Since
P ̸= O, meaning either a1 ̸= 0 or a2 ̸= 0, this defines a unique point [t : u] in P1. We set t = a1 and u = a2. It follows
that P × [a1 : a2] ∈ S. The blow-up map ε at points distinct from O is defined by

ε([x : y : z]× [x : y]) = [x : y : z].

It is the composition of the injection of S in P2×P1 and projection onto the first factor shown in the commutative diagram
underneath. The inverse morphism ψ : P2 \ {O} → S is given by ψ(P ) = [a1 : a2 : a3]× [a1 : a2]. Therefore, P2 \ {O} is
isomorphic with S \ ε−1(O) and ε−1(P ) uniquely defines a point in S.

S P2 × P1

P2

ε

Next let us define ε for the point O. By filling out the first two coordinates of O in the equation ty − ux = 0 we observe
that [t : u] can be chosen completely freely in S. Thus we obtain an isomorphism between ε−1(O) and P1. We have

ε−1(O) = {O} × P1 ∼= P1.

Let us fix the point P = [a1 : a2 : a3] in P2 \{O}. We aim to show that the points on the projective line ε−1(O) correspond
to lines through the point O. A line through O and P is uniquely defined by the equation a2x− a1y = 0. Since either
a1 ̸= 0 or a2 ̸= 0, the line L is given by the parametrization [a1t : a2t : u] where we take [t : u] ∈ P1.

Then consider the line L′ = ε−1(L \ {O}) in S \ ε−1(O). It is given by

[a1t : a2t : u]× [a1 : a2]

where [t : u] ∈ P1 and t ̸= 0. Allowing for t = 0 gives us the closure L′ of L′ with respect to the projective line ε−1(O).
The line L′ meets the line ε−1(O) in the point [a1 : a2] in P1. We conclude that a point P ∈ P2 defines a unique line
which in its turn defines a unique point on the exceptional curve E with coordinates [a1 : a2]. Thus the lines trough O
correspond bijectively to points on E.

In order to blow up at a point Q = [b1 : b2 : b3] different from O we choose a non-zero coordinate and make a linear
coordinate change to send the other coordinates to zero. Normalizing with respect to the non-zero coordinate allows one
to use the construction for O with minor adaptations.

Definition 5.2. The blow-up of a surface S̃ in a smooth point P consists of a surface S together with a morphism
ε : S → S̃ such that

(a) ε−1({P}) = E is a smooth rational curve and

(b) ε gives an isomorphism when restricted to the open subsets S\ε−1({P}) and S̃\{P}.

The curve E is called the exceptional curve or exceptional divisor.
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Example 5.3 (A specific pencil of cubics). Consider the projective polynomials F = x3−8xz2−yz2 andG = y3−8yz2−xz2.
Since F,G are both of degree 3, we know from Bézout’s theorem, see Theorem 4.2, that there exists at least one point
P ∈ CP2 in the intersection of the curves they define. Moroever, Bézout’s theorem also tells us that the number of points
counting multiplicities must be equal to degF · degG = 9 since C is algebraically closed. The 9 base points P1, . . . , P9 in
this example are pairwise distinct and real, see Equation (6). Since they are pairwise distinct, each of them has multiplicity
equal to 1.

The blow-up of the points P1, . . . , P9 is given by

S = {uF (x, y, z)− tG(x, y, z) = 0} .

We define the morphism ε : S → P2 by ε ([x : y : z]× [F (x, y, z) : G(x, y, z)]) = [x : y : z] for all points outside of the
intersection. The base points Pi are sent to exceptional curves Ei respectively.

Figure 3: Base points of the dehomogenized cubic curves x3 − 8x− y = 0 and y3 − 8y − x = 0 in A2

P1 = [3 : 3 : 1]

P2 =

[√
4 +

√
15 :

(√
4 +

√
15

)3

− 8

√
4 +

√
15 : 1

]
P3 =

[√
7 : −

√
7 : 1

]
P4 =

[√
4−

√
15 :

(√
4−

√
15

)3

− 8

√
4−

√
15 : 1

]
P5 = [0 : 0 : 1] (6)

P6 =

[
−
√
4−

√
15 :

(
−
√
4−

√
15

)3

− 8

√
4−

√
15 : 1

]
P7 =

[
−
√
7 :

√
7 : 1

]
P8 =

[
−
√

4 +
√
15 :

(
−
√
4 +

√
15

)3

− 8

√
4 +

√
15 : 1

]
P9 = [−3 : −3 : 1]
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Note that all nine points have non-zero z-coordinate. We blow up at the points where F (x, y, z) = G(x, y, z) = 0. Each Pi

will be replaced with an Ei. The lines through each point Pi parameterize each exceptional curve Ei, which is isomorphic
with [t : u]. By setting u = 1 we can use t as a parameter. The curves F,G intersect each Ei at the point with parameter
value t equal to the slope of their tangents at Pi. Let us calculate the slope of the tangent lines by using implicit
differentiation.

∂F

∂x
= 3x2 − 8z2

∂F

∂y
= −z2

∂G

∂x
= −z2 ∂G

∂y
= 3y2 − 8z2

We find that the slope of the tangent lines at each Pi are given by

−∂F
∂x

/
∂F

∂y
(Pi) and − ∂G

∂x

/
∂G

∂y
(Pi)

for F and G respectively. In this specific example we find that if F has tangent line with slope λi at the point Pi, then G
has tangent line with slope 1/λi at the same point. As a result of blowing up the cubic curves are completely separated by
9 exceptional curves, see Figure 4. p

Figure 4: Blow-up of the pencil of cubics F = x3 − 8x− y and G = y3 − 8y − x in A2

Remark 5.4. From [18, p. 150] (see also for the proof) we know that the divisor class group Cl(P2) is isomorphic with Z.
Blowing up gives rise to a new divisor class in Cl. As a result the blow-up of P2 in the 9 base points of a pencil of cubics
S has divisor class ClS isomorphic with Z10.

5.3 The exceptional divisor

By blowing up a point we create a new line E isomorphic with P1 called the exceptional divisor. The curve E is a divisor
over a surface S̃. In this section we aim to prove E has self-intersection (−1), see Theorem 5.7. We use the following
lemma’s.

Lemma 5.5. For any divisor D on a nonsingular variety X, and any finite number of points P1, . . . , Pm ∈ X, there
exists a divisor D′ with D′ ∼ D such that Pi /∈ Supp (D′) for i = 1, . . . ,m.

Lemma 5.6 (The proper transform). Let C be an effective divisor on P2, let P be a point of multiplicity m on C, and let
ε : S → P2 be the blow-up map with center P . Then ε∗ : Cl

(
P2

)
→ Cl (S) and

C̃ = ε∗C −mE.

Moreover C̃ is called the strict transform and ε∗C the proper transform.
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Theorem 5.7. Let E be the exceptional divisor of a blow-up map of a point P on P2. It has self-intersection (−1), i.e.

E2 = (−1).

Proof. Consider a curve C ⊂ P2 such that P ∈ C with multiplicity mP (C) = 1. We blow-up at the point P using the map
ε : S → P2. Take another curve C ′ such that C ∼ C ′ in the divisor class group of P2, and moreover P /∈ C ′. We know
such a curve C ′ exists by Lemma 5.5. Since ε as we defined it for blow-ups is a morphism, we find that ε∗C := C̃ +E is a
divisor. Rewriting gives C̃ = ε∗C − E, the strict transform. We know that ε is a map of degree 1 since P2 \ ε−1(P ) is

isomorphic with S \ {P}. Therefore, by Equation (4) we have (ε∗C)
2
= C2. We compute

1
(1)

= C̃ · E
(2)

= (ε∗C − E) · E
(3)

= (ε∗C · E)− E2
(4)

= −E2

which gives E2 = −1. Here equality (1) holds since P has multiplicity 1 in the intersection between C̃ and E. Equality (2)
holds by Lemma 5.6 and equality (3) is an expansion of the brackets using the additive property from Theorem 3.5. For
equality (4) recall C and C ′ are equivalent in the divisor class group of P2, and

C̃ = ε∗C − E and C̃ ′ =: ε∗C ′ − E = ε∗C ′

where the last equality holds since P /∈ C ′. The equivalence C ∼ C ′ implies there exists a rational function ϕ ∈ k(x, y, z)
such that C = C ′ + div(ϕ). Therefore,

ε∗C = ε∗C ′ + ε∗ div(ϕ) = ε∗C ′ + div (ϕ ◦ ε) .

We find that ε∗C ∼ ε∗C ′. However, C ′ does not contain P and thus ε∗C ′ and E do not intersect, i.e. ε∗C ′.E = 0. N

Corollary 5.8. Using the notation from earlier,

C̃2 = C2 −m2

whenever we blow up at a point P with multiplicity mP (C) = m.

Proof. We have from Lemma 5.6 that

C̃2 = (ε∗(C)−mE)
2

= (ε∗(C))
2 − 2mε∗(C) · E +m2E2

= C2 −m2.

Note that ε∗(C) ·E = 0 by the same argument we made in the proof of Proposition 5.7. Finally we derive (ε∗(C))
2
= C2

from Equation (4). Together with the fact that E2 = −1 this completes the argument. N

Example 5.9. Consider the projective curve C : zy2 = x3. It has a singularity of order 2 at P := [0 : 0 : 1] that we resolve
using the blow-up. Figure 5 displays the transformations in the plane z = 1, for now we assume z = 1. In the first blow-up
xu = ty we take t = 1 such that u parameterizes P1. This gives y2 = x3 and y = ux. Substituting y = ux we find that

u2x2 = x3

x2(u2 − x) = 0.

Then x = y = 0 and u arbitrary give an exceptional curve E1, u
2 = x and y = ux give the strict transform C̃1. The new

curve intersects the exceptional curve at u = 0 with intersection multiplicity 2. The strict transform is locally smooth
around the point u = 0. Since C̃1 and E1 are tangent at u = 0, after blowing up the strict transform C̃2 and E1 intersect
the new exceptional curve E2 in one point. In the third and last blow-up E1, E2 and the strict transform C̃3 are separated
and the intersection is resolved.

Figure 5: Blow-ups of the curve C : zy2 = x3 at [0 : 0 : 1] drawn in the plane z = 1.
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p

Remark 5.10. As we discussed in Remark 5.4, Cl(P2) is isomorphic with Z. As a result any two lines L,L′ are in the
same coset, meaning they are linearly equivalent denoted by L ∼ L′. By Bézout’s theorem, see Theorem 4.2, they intersect
in exactly one point. More generally, any two curves in Cl(P2) generated by polynomials of the same degree are linearly
equivalent. Then by Remark 3.6 we have L2 = 1. Similarly we have for a smooth conic D that D2 = 4 and for a smooth
cubic C we have C2 = 9 in P2, see [18, p. 150].
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6 Preliminaries on elliptic curves

The definitions and results in Chapter 6 can be found in more detail in [21] and [22].

6.1 Elliptic curves

6.1.1 Introduction

An elliptic curve over a field k given by (E,O) is a nonsingular cubic polynomial E in two variables together with
a point O. The genus of a nonsingular polynomial of degree d in two variables is given by (d− 1)(d− 2)/2. Hence an
equivalent definition of elliptic curve is that E is a nonsingular curve of genus one together with a point [18, p. 207].

Definition 6.1. An elliptic curve is a pair (E,O), where E is a nonsingular curve of genus one and O ∈ E. We often
leave the point O implicit in our notation.

6.1.2 The Weierstrass equation

Assume k to be a perfect field5. Every elliptic curve has associated to it a Weierstrass equation y2 + a1xy + a3y =
x3+a2x

2+a4x+a6. Namely can write any cubic polynomial in two variables to this form by making a change of variables.
On the condition that char

(
k̄
)
̸= 2, 3 we can further simplify the equation by substitution of y with 1

2 (y− a1x− a3). This
yields the extended Weierstrass form

y2 = 4x3 + b2x
2 + 2b4x+ b6

where b2 = a21 + 4a2, b4 = 2a4 + a1a3 and b6 = a23 + 4a6. Making yet another substitution given by

(x, y) 7−→
(
x− 3b2

36
,
y

108

)
eliminates the x2-term and gives us an equation of the form y2 = x3 − 27c4x − 54c6. We have c4 = b22 − 24b4 and
c6 = −b32 + 36b2b4 − 216b6. We baptize it the Weierstrass normal form [21, p. 42].

6.1.3 The discriminant

Consider a curve in Weierstrass normal form, E : y2 = x3 +Ax+B with A = −27c4 and B = −54c6, the discriminant
∆ is given by ∆ = −16

(
4A3 + 27B2

)
. It determines whether a curve given by a Weierstrass equation is singular. If it is

non-singular, the curve is an elliptic curve.

Proposition 6.2. A curve given by a Weierstrass equation satisfies:

1. It is nonsingular if and only if ∆ ̸= 0.

2. It has a node if and only if ∆ = 0 and c4 ̸= 0.

3. It has a cusp if and only if ∆ = 0 and c4 = 0.

In cases 2. and 3. there is only the one singular point.

Proof. A proof can be found in [21, p. 45], Proposition 1.4. N

5Every algebraic extension of a perfect field is separable (e.g. Q).
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6.1.4 Elliptic curves in the projective plane

Note that an elliptic curve (E,O) is a projective curve: it has affine part E and infinite part O in projective 2-space P2.
We obtain the homogeneous equation for the projective curve Eh by homogenizing the Weierstrass equation of E with a
third coordinate z. For an elliptic curve E in Weierstrass normal form y2 = x3 +Ax+B this gives

Eh : zy2 = x3 +Axz2 +Bz3.

We obtain the point at infinity by filling out z = 0 in Eh, this gives x3 = 0, a point of inflection. Thus in the case of
curves given by a Weierstrass equation we take O = [0 : 1 : 0].

6.1.5 Examples of curves corresponding to Weierstrass equations

Figure 6: C1 : y2 + 3xy + 5 = x3 − 7x2 + 3x Figure 7: C2 : y2 = x3 − 3x+ 3

Example 6.3. The Weierstrass equation C1 : y2 + 3xy + 5 = x3 − 7x2 + 3x gives us the elliptic curve in Figure 6. p

Example 6.4. Consider C2 : y2 = x3 − 3x+ 3, an elliptic curve in Weierstrass normal form. One can see in Figure 7 that
the graph is symmetric in the x-axis, which can also be seen from its equation. p

Figure 8: C3 : y2 = x3 Figure 9: C4 : y2 = x3 − 3x+ 2
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Example 6.5. Consider the curve C3 : y2 = x3 in Figure 8. The curve has a cusp at the origin (0, 0), a singularity. The
origin has two tangent lines, both with slope y = 0. The curve is singular and therefore not elliptic. p

Example 6.6. Consider the curve C4 : y2 = x3 − 3x+ 2 in Figure 9. The curve has a node at (1, 0), a singularity. Note
that the point (1, 0) where the curve intersects itself has two distinct tangent lines. The curve is singular and therefore
not elliptic. p

6.2 Group law

6.2.1 Introduction

Let E be an elliptic curve over the field k defined by the Weierstrass equation E : y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6.

Its set of k-rational points is given by

E(k) =
{
(x, y) ∈ k2 : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6
}
∪ {O}.

We claim E(k)is group with group law ⊕, we write (E(k),⊕,O). We define the group law ⊕ as follows (see [21, p. 51]).

Definition 6.7. Let P,Q be two distinct points on E(k). There exists a unique line L through P and Q. By Bézout’s
theorem, see Theorem 4.2, it intersects the curve E in precisely one more point6, which we call R ∈ E(k). Then draw
another line L′ through the points R and O, so that L′ intersects with E(k) in a point which we will call P ⊕Q.

Figure 10: Group law for two distinct points P,Q ∈ E(k) and the elliptic curve E drawn in red.

Consider a point P ∈ E(k) and the tangent line with E at the point P . By Bézout’s theorem, it intersects with E in a
third point, say Q ∈ E(k). Next we take another line L′ through Q and O and define their third intersection as the point
P ⊕ P = 2P .

Together with the group law ⊕ it can be proven that (E(k),⊕,O) is an abelian group. For the proof see Proposition 2.2
in [21, p. 51].

Definition 6.8 (Group structure E(k)). For all P,Q,R ∈ E(k) we see that (E(k),⊕,O) defines a group and O ∈ E(k)
and ⊕ is a map defined by (P,Q) 7→ P ⊕Q, satisfying

1. (associativity) P ⊕ (Q⊕R) = (P ⊕Q)⊕R,

2. (unit element) P ⊕O = P = O ⊕ P ,

6This point R is again in E(k) because E,L are a cubic and a line intersecting in P,Q both in E(k), therefore the third base point R must
also be in E(k).
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3. (inverses) P ⊕−P = O = −P ⊕ P ,

4. (commutativity) P ⊕Q = Q⊕ P .

In finitely many cases, adding an element in E(k) to itself, gives us its inverse. An inflection point P ∈ E(k) in the group
E(k) of an elliptic curve E is a point such that 2P = −P . We know from the Corollary in [7, p. 59] that an elliptic curve
has nine inflection points. We can find them by studying the Hessian H, the determinant of the matrix of second partial
derivatives of a polynomial.

Theorem 6.9. Let k be field with characteristic 0 and let F be a homogeneous polynomial of degree n, and assume F
contains no lines. We have

(1) P ∈ H ∩ F if and only if P is either an inflection or a multiple point of F ,

(2) µP (H,F ) = 1 if and only if P is an ordinary inflection point.

Proof. The outline of the proof can be found on page 59 in [7, p. 59]. N

Example 6.10. The elliptic curve E : y2 = x3 + 1 over the rationals has nine inflection points. Three inflection points
are P its additive inverse −P and the point O. The former two points are of order 3, i.e. ±3P = O. We find ±P using
Theorem 6.9. Consider the implicit function F (x, y) = y2 − x3 − 1 = 0, and compute its Hessian. The matrix has entries

∂2F

∂x2
= −6x

∂2F

∂x∂y
= 0

∂2F

∂y∂x
= 0

∂2F

∂y2
= 2

and thus the Hessian is given by H(x, y) = −12x. A point Q is an inflection point or a multiple point of F if Q ∈ H ∩ F ,
see Theorem 6.9. However, the curve E is nonsingular and thus Q must be an inflection point. Taking H(x, y) = 0 implies
±P have x-coordinate equal to 0. Since P ∈ F the points ±P have y-coordinate ±1 respectively. Then ±P = (0,±1).

Figure 11: E : y2 = x3 + 1 and two non-trivial inflection points ±P .

We check this result as follows. Let us compute 2P first. For the tangent at the point P we implicitly differentiate E and
obtain

∂y

∂x

∣∣∣∣
P

=
3 · 0
2 · 1

= 0.

This gives us the slope of the line L′ : y = 1 through P . We find all the intersection points of L′ with E by taking y = 1
in E which yields

1 = x3 + 1.

We obtain the unique solution P = (0, 1) and by Bézout it has multiplicity 3. Therefore, P is an inflection point. The line
L′ through P and O is given by x = 0 and intersects with E at the point −P . Then 2P = −P , i.e. 3P = O. p
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6.3 Mordell-Weil Theorem

In the previous section we saw that the set E(k) is an abelian group. In 1901 Henri Poincaré posed the question if it is
moroever a finitely generated group if k is an arbitrary number field (i.e. finite extension of Q). Louis Mordell showed
in 1922 that this is indeed the case for k = Q. In 1928, André Weil proved the result for arbitrary number fields. The
theorem they proved is called the Mordell-Weil theorem. Let E(k)tor be the set of points in E(k) with finite order.

Theorem 6.11 (Mordell-Weil). Let E be an elliptic curve over a number field k. The group E(k) is of the form

E(k) ∼= E(k)tor ⊕ Zr

and the rank r a non-negative integer

The proof in ‘Arithmetic of elliptic curves’ by Joseph Silverman uses a height-function h which maps E(k) to [0,∞),
see [21, p. 239]. The height-function is used as an upper bound for a set of points in E(k). That is, in the proof of the
theorem a lemma is used which states: for every non-negative number M , the set

{P = (x, y) ∈ E(k) : h(P ) ≤M}

is finite. In the proof yet another result called the Descent theorem is used which gives inequality relations on the height
of points, see Theorem 3.1 in [21, p. 218]. By manipulating the inequalities and using a set of generators together with
torsion points in E(k) one arrives at the result.

In the case of number fields k the number of possible torsion groups is bounded by the degree of the extension over the
rationals, a fact which was proved by Merel in 1996 in the paper ‘Bornes pour la torsion des courbes elliptiques sur les
corps de nombre’. In particular there are only finitely many options for the structure of the subgroup of torsion points
E(Q)tor. This result is known as Mazur’s theorem, named after Barry Mazur, an American mathematician. It appeared
for the first time in 1978 in the paper ‘Modular curves and the Eisenstein ideal’, see Theorem 8 in [12, p. 35]. The proof
is far too difficult, but the theorem itself is relatively easy to understand.

Theorem 6.12 (Mazur). Let E/Q be an elliptic curve. Then the torsion subgroup Etor(Q) of E(Q) is isomorphic to one
of the following fifteen groups:

Z/NZ with 1 ≤ N ≤ 10 or N = 12,

Z/2Z× Z/2NZ with 1 ≤ N ≤ 4.

Further, each of these groups occurs as Etor(Q) for some elliptic curve E/Q.

6.4 Bad reduction

6.4.1 Introduction

Curves in Weierstrass form are singular if their discriminant is zero and nonsingular otherwise. In the case curve E over a
field k is nonsingular we classify the curve using the notion of valuation v.

Definition 6.13 (Discrete valuation). Let k be a field. We define a discrete valuation of a field k to be a surjective
function v : k∗ → Z such that, for every x, y ∈ k∗,

(1) v(x · y) = v(x) + v(y)

(2) v(x+ y) ≥ min{v(x), v(y)} if x ̸= −y.

Then v(1) = 0 and v
(
x−1

)
= −v(x). As a convention, we define v(0) := ∞.

We normalise the local parameter π with respect to a valuation V so that v(π) = 1. A valuation is in that regard
always defined with respect to a local parameter π and its dependence is denoted by a subscript vπ. Let us define
R = {x ∈ k : v(x) ≥ 0}, the discrete valuation ring (DVR) in k, see [1, p. 138]. From Definition 6.13 we derive that π is
necessarily irreducible. Moreover, any element x ∈ k has a unique factorization

x = n/d · πm,

where n, d are in their lowest terms and m an integer. Then v(x) = m.
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6.4.2 Minimal Weierstrass equation

Definition 6.14. Let E/k be an elliptic curve. A Weierstrass equation for E is called a minimal (Weierstrass) equation
for E at v if v(∆) is minimized subject to the condition that a1, a2, a3, a4, a6 ∈ R. This minimal value of v(∆) is called
the valuation of the minimal discriminant of E at v.

We discuss a method to minimize a Weierstrass equation such that it is minimal according to Definition 6.14. If ai ∈ R but
v(∆) ≥ 12 with respect to any local parameter, we make a substitution (x, y) 7→

(
u−2x, u−3y

)
where we take u divisible

by a sufficiently large power of π such that 0 ≤ v(∆) < 12. If, on the other side, v(∆) < 12 but not all ai ∈ R, we make
the reverse substitution with appropriate u such that 0 ≤ v(∆) < 12. Important to note is that every elliptic curve E/k
has a minimal Weierstrass equation and this equation is unique up to a change of coordinates [21, p. 186]. Therefore we
assume every general Weierstrass equation to be minimal unless stated otherwise.

6.4.3 Good and bad reduction

Define M = {x ∈ k : v(x) > 0}, the maximal ideal of R and π so that M = πR. Let us define reduction modulo π by
sending the coefficients of the Weierstrass equation E of an elliptic curve to their representations modulo π in R/πR. We
obtain the elliptic curve

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6

which is called the reduction of E/k modulo π. We moreover define Ẽns(k) as the set of nonsingular points: these are the
points with non-zero partial derivatives.

Definition 6.15. Let E/k be an elliptic curve, and let Ẽ be the reduction modulo M of a minimal Weierstrass equation
for E.

(a) E has good (or stable) reduction if Ẽ is nonsingular.

(b) E has multiplicative (or semi-stable) reduction if Ẽ has a node.

(c) E has additive (or unstable) reduction if Ẽ has a cusp.

In cases (b) and (c) we say that E has bad reduction. If E has multiplicative reduction, then the reduction is said to be
split if the slopes of the tangent lines at the node are in k, and otherwise it is said to be nonsplit.

Let K = R/M. The next proposition provides us with a method to deduce the type of reduction from the Weierstrass
equation of a curve.

Proposition 6.16. Let E/k be an elliptic curve given by a minimal Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let ∆ be the discriminant of this equation, and let c4 be the usual expression involving a1, . . . , a6 as described above.

(a) E has good reduction if and only if v(∆) = 0, i.e., ∆ ∈ R∗. In this case Ẽ/K is an elliptic curve.

(b) E has multiplicative reduction if and only if v(∆) > 0 and v (c4) = 0, i.e., ∆ ∈ M and c4 ∈ R∗. In this case Ẽns is
the multiplicative group,

Ẽns

(
K
) ∼= K

∗

(c) E has additive reduction if and only if v(∆) > 0 and v (c4) > 0, i.e., ∆, c4 ∈ M. In this case Ẽns is the additive
group,

Ẽns

(
K
) ∼= K

+
.

Proof. A proof can be found in [21, p. 196], Proposition 5.1. N
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Example 6.17. In this example we determine the reduction of the elliptic curve E : y2 = x3 + 2x2 + 3x+ 6 modulo 7. In
this specific case we take k = Q. Then

R = {x ∈ Q : v7(x) ≥ 0} =: Z7.

In order to check whether it has good or bad reduction we ensure the equation is minimal. Indeed all coefficients of E are
in Z7. Before we compute the determinant we bring E to Weierstrass normal form first. Using the earlier formulated
recipe, we find that E has Weierstrass normal form

y2 = x3 + 2160x+ 214272.

Then E has discriminant equal to ∆ = −20479168217088 = −218 · 313 · 72 and so v7(∆) = 2. We find that E is indeed
minimal with respect to v7. Now we can check whether the Weierstrass normal form of E has good or bad reduction.
Since c4 = −1/3 and thus v7(c4) = 0, we find that it has bad multiplicative reduction modulo 7. Reducing the Weierstrass
normal form of E modulo 7 gives

y2 = x3 − 3̄x+ 2̄

over K = Z7/7Z7. From Figure 9 we conclude that the curve is nodal. p
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7 Elliptic surfaces

7.1 Introduction

Assume k to be a number field unless we define geometric properties, in that case take k algebraically closed.

We study 1-dimensional families of elliptic curves in a geometric context. An elliptic curve is a variety of dimension 1 as
a topological space. Therefore, a 1-dimensional family of elliptic curves gives rise to a variety of dimension 2 called an
elliptic surface. What follows is based on [14] and [17] where the details can be found.

Definition 7.1 (Elliptic surface). Let C a smooth projective curve over k. An elliptic surface S over C is a smooth
projective surface S with an elliptic fibration over C, i.e. a surjective morphism

π : S → C,

such that

(a) almost all7 fibers are smooth elliptic curves,

(b) no fiber contains an exceptional curve with self-intersection −1.

Figure 12: Elliptic surface S over C with generic fiber εη above generic point η.

If we blow up a point in a fiber this gives rise to a (−1)-curve contained within the fiber. The resulting surface is no
longer elliptic due to condition (b) in Definition 7.1. Thus, there are no fibers on an elliptic surface containing exceptional
curves with self-intersection (−1). However, if we forget about the structure of the elliptic fibration π : S → C we can
expand the definition of an elliptic surface to surfaces over a smooth projective curve C where we allow for (−1)-curves in
the fibers of the surface. The model of the surface S which has no fibers that contain (−1)-curves and which respects the
elliptic fibration is called the relatively minimal model.

Definition 7.2 (Relatively minimal model of an elliptic surface). An elliptic surface π : S → C is relatively minimal if S
is smooth and there are no (−1)-curves in the fibers of π.

Suppose S is an elliptic surface which does not necessarily respect the structure of the fibration, i.e. is not necessarily
relatively minimal. By blowing down all (−1)-curves that occur within its fibers, we reach a relatively minimal model
of the surface. In the algebraic closure over which the surface is defined, a relatively minimal model is unique up to a
birational mapping.

7Except for finitely many.
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Proposition 7.3. Given an elliptic surface π : S → C, there is a unique smooth relatively minimal elliptic surface
π1 : S1 → C birational to π : S → C as elliptic surfaces over C.

Proof. A proof can be found in [13, p. 17], Corollary II.1.3. N

There are two conventions that we will adopt in this text:

(1) every elliptic surface has a section.

Definition 7.4 (Section of an elliptic surface). A section of an elliptic surface π : S → C is a morphism f : C → S such
that π ◦ f = idC .

(2) every elliptic surface S has a singular fibre. In particular, S is not isomorphic to a product Γ×C where Γ denotes a
nonsingular (elliptic) curve.

Due to condition (a) in Definition 7.1 and the adopted convention that each elliptic surface S has a singular fiber, we
know there exist finitely many points P ∈ C such that π−1(P ) defines a singular curve.

7.2 The generic fiber of an elliptic surface

The generic point η of the curve C is dense in C with respect to the Zariski topology. The generic point has all the
properties that are true for almost all points in C. For instance, we know all but finitely many fibers in the surface are
elliptic curves. Therefore, the fiber above the generic point is an elliptic curve over the function field of the base curve C,
denoted by k(C). It is called the generic fiber. More on the generic point can be found in [24]. Let εη be the generic
fiber above the generic point η of C as in Figure 12. The set of k(C)-rational points εη(k(C)) is an abelian group under
addition. The k(C)-rational points correspond directly to the group of sections on S, called the Mordell-Weil group
MW(S) of the surface S.

Proposition 7.5. Let π : S → C be an elliptic surface defined over k. Let εη be the generic fiber of the surface and
MW(S) the group of sections of the surface. Then there is a group isomorphism between the k(C)-rational points on εη
and the group of sections MW(S) of the surface.

Proof. A proof can be found in [20, p. 210], Proposition 3.10. N

For the elliptic surfaces we consider in this thesis, the Mordell-Weil theorem holds more generally for sections on an
elliptic surface, i.e. points on the elliptic curve εη over the function field k(C). We assume that the Mordell-Weil group
MW(S) of the surface S is finitely generated. Since εη(k(C)) and MW(S) are isomorphic this implies εη(k(C)) is finitely
generated. Consequently, we have the following definition.

Definition 7.6 (Generic rank of an elliptic surface). The generic rank of an elliptic surface is the rank of the generic
fiber given by

rank (εη(k(C))) = rank (εη(k(C))tor ⊕ Zr) = r.
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8 Extremal rational elliptic surfaces

8.1 Rational elliptic surface

Let us introduce rational elliptic surfaces by means of an example. The definitions and results stated in this section can
be found in [13] and [17].

Example 8.1. Let t parameterize P1 = [t : u]. Consider the pencil of cubics given by

F + tG = 0,

over an algebraically closed field k where F,G are homogeneous polynomials of degree 3 without common irreducible
component. The cubic curves defined by F and G meet in 9 base points. Note that the map sending [x : y : z] 7→
[F (x, y, z) : G(x, y, z)] is not defined at the base points. In order to resolve the indeterminacy we create the blow-up

S = {F (x, y, z) + tG(x, y, z) = 0} .

The set is a rational elliptic surface since it is birational with P2 by construction via the blow-up map ε.

S

P2 P1

ε π

[x:y:z]→[F (x,y,z):G(x,y,z)]

p

In Example 8.1 we state that the nine-fold blow up of a pencil of cubics over an algebraically closed field is a rational
elliptic surface (RES). We find that over an algebraically closed field the converse statement is true.

Theorem 8.2. Let π : S → P1 be an elliptic surface with section over k algebraically closed. Then the rational elliptic
surface S is isomorphic with the 9-fold blow-up of the plane P2 at the base points of a pencil of generically smooth cubic
curves which induces the fibration π.

Proof. A proof can be found in [13, p. 37], Lemma IV.1.2. N

Over an algebraically closed field k any rational elliptic surface is the blow-up of a pencil of cubics. As a result a RES is a
surface above the nonsingular curve P1. Moreover, every RES is in one-to-one correspondence with its generic fiber εη.
The latter is an elliptic curve over the function field k

(
P1

)
. We take t as a parameter of P1 so that k(P1) ∼= k(t). Then εη

admits a Weierstrass equation

εη : y2 = x3 +A(t)x+B(t),

where A(t), B(t) ∈ k(t). Using the valuation of primes (t− t0) in k[t] we can then minimize the Weierstrass equation with
respect to the discriminant ∆(εη(t)). In order for minimality of the Weierstrass equation to hold we need that v(c4) < 4 or
v(c6) < 6 for all t ∈ P1. After minimizing we choose a positive integer n such that deg(ai) ≤ n · i as a polynomial. Using
a second variable s we homogenize the ai so that ai(t, s) are homogeneous polynomials in two variables t, s of degree n · i.
Then the discriminant ∆(εη(t, s)) is of degree 12n. The integer n is equal to the arithmetic genus χ(S) of an elliptic
surface S, i.e. n = χ(S).

Definition 8.3 (Arithmetic genus). Let (X,OX) be a projective scheme of dimension r over a field k = k̄. We define the
arithmetic genus χ(X) by

χ(X) = (−1)r (χe (OX)− 1) ,

where χe is the Euler characteristic.

An elliptic surface is an example of a projective scheme of dimension r = 2. For more context, see Exercise III.5.3 in [9,
p. 230]. We know from [17, p. 39] that a rational elliptic surface S has arithmetic genus equal to χ(S) = 1.
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Proposition 8.4. For any P ∈ εη(k(t)) on the generic fiber, we have P 2 = −χ(S) as a section.

Proof. A proof can be found in [17, p. 27], Corollary 6.9. For the adjunction formula mentioned in the proof, see [9, p.
361] Proposition 1.5. N

Therefore, in the case of rational elliptic surfaces with section, all sections P ∈ εη(k(t)) have self-intersection −1. The
final blow-up of the base points in the pencil of cubics gives rise to sections on the surface.

8.2 Bad reduction of rational elliptic surfaces over the function field Q(t).

Consider the rational elliptic surface S over the curve P1 defined by εη : y2 = x3 + A(t)x + B(t) with coefficients
A(t), B(t) ∈ Q[t] so that ∆(εη) ̸= 0. Our goal is to determine for which t0 ∈ P1(Q) this elliptic curve8 has good or bad
reduction, i.e. for which value t0 of the parameter t the surface has singular fibers. Note that the ideals (t − t0)Q[t]
where t0 ∈ Q are maximal in Q[t] because Q[t] is a principle ideal domain and (t− t0) an irreducible element in Q[t]. The
valuation vt−t0 in Q(t)

vt−t0 (n/d · (t− t0)
m) = m, (7)

where n and d are coprime integers, gives rise to Q[t] a discrete valuation ring with local parameter t− t0. Minimizing
the discriminant ∆ of the equation with respect to this valuation gives us the unique minimal Weierstrass equation
over Q(t). To determine for which t0 the elliptic curve εη has good or bad reduction we reduce the coefficients of its
Weierstrass equation modulo (t− t0). If m ≥ 1 at t = t0 after minimizing the discriminant, it has bad reduction at the
fiber π−1(t0) =: Et0 . We often say εη has bad reduction at t− t0 instead, i.e. we take t− t0 = 0.

Example 8.5. Take the surface S defined by εη : y2 = x3 + (t− 1)x+ t2 − 1 over P1. By computing the discriminant we
find that the Weierstrass equation is minimal and minimized with respect to any valuation vt−t0 for some t0 ∈ Q. Namely,

∆ (εη) = −16
(
4(t− 1)3 + 27(t+ 1)2(t− 1)2

)
.

In the cases t0 = ±1 we have vt−t0(∆) < 12. Since vt−1(∆) > 0 and vt−1(c4) = vt−1(48(t− 1)) = 1 the elliptic curve εη
has bad reduction at t = 1. Therefore, the surface S must have a singular fiber at t = 1. Reducing modulo (t− 1) yields
E1 : y2 = x3. Note that for any other (t− t0) the fiber Et0 has good reduction since vt−t0(∆) = 0.

Let us compute the reduction at t = ∞. We make the coordinate change t = 1/s and send s3y 7→ y and s2x 7→ x. This
yields the Weierstrass equation corresponding to the fiber in the surface S at t = ∞ given by

E∞ : y2 = x3 + (s3 − s4)x+ s4 − s6.

We only look at the reduction for s. Since ∆(E∞) = −16(4(s3 − s4)3 +27(s4 − s6)2)s3 we find that E∞ has bad reduction
at s. p

8We consider εη as an elliptic curve over the function field Q(t).

31



8.3 Kodaira fiber types

The singular fibers on complex surfaces were first classified by Kunihiko Kodaira in the years 1960 − 63, see [10]. In
1975 John Tate developed an algorithm for determining the singular fibers over a perfect field, see [23]. We discuss the
classification of singular fibers using a part of Tate’s algorithm for RES. Figure 13 provides a table with all the possible
fiber types. Singular fibers are either reducible or irreducible. The irreducible fibers of an elliptic surface that are nodal or
cuspidal9 rational curves with self-intersection 0. All other types are reducible fibers, i.e. they have multiple irreducible
components, and each component in a reducible fiber is a smooth rational curve with self-intersection −2, see [17, p. 11].

Figure 13: Kodaira fiber types and the number of irreducible components of each type. The lines in thick print have
multiplicity higher than one. The exact multiplicity of these components can be found in [17, p. 13].

In this bachelor project we focus explicitly on the semi-stable fibers, a subset of the singular fibers that have Kodaira
type In where n ≥ 1. To determine the semi-stable fibers of a rational elliptic surface we follow part of Tate’s algorithm.
Consider a RES π : S → P1 with a singular fiber at10 t. We bring its equation to Weierstrass normal form

y2 = x3 + c4(t)x+ c6(t)

where c4(t), c6(t) ∈ k[t]. Recall the determinant of the Weierstrass equation in normal form given by

1728∆ = c4(t)
3 − c6(t)

2 (8)

If the fiber is singular and in Weierstrass normal form, a singularity exists at (x0, 0). We know from Proposition 6.2 that
only one such singular point exists meaning the y-coordinate is necessarily zero, since Weierstrass normal form admits
a symmetry in the y-coordinate of points in the curve. From here we make an important case distinction. Let vt be a
valuation with respect to the local parameter t, i.e. let t0 = 0.

Let y2 = x3 + c4(t)x+ c6(t) define an elliptic surface over P1. Suppose there is a singular fiber at t− t0. If vt−t0(c4) = 0,
i.e. t− t0 ∤ c4, the singular fiber is called multiplicative or semi-stable, and otherwise additive.

9The Kodaira types of these fibers are I1 and II, as can be seen from Figure 13
10In case the singular fiber is situated at (t− t0) or 1/t we first make the substitution t 7→ t− t0 or t 7→ 1/t respectively.

32



In extended Weierstrass form, the equation corresponding to a surface with semi-stable fibers always describes a nodal
curve. Suppose vt(∆) = n. We blow-up base points of the pencil to resolve the singularity that exists at t and consequently
create n− 1 exceptional curves. As can be seen from the final blow-up, the singular fiber at t is of Kodaira type In. Let us
consider the case n > 1. Although the fiber itself is defined over the field k as a whole, its irreducible components might
not be. Let y2 = ax2 with a2 ∈ k denote the slope(s) of the tangent lines of the Weierstrass equation at (0, 0). Let u be
the parameter of P1 = [t : u]. The first blow-up resolves the node and the exceptional curve intersects the strict transform
at u = ±

√
a. If n > 1 we continue blowing up to a second exceptional curve. The exceptional curves are conjugate over

k(
√
a)/k if and only if

√
a /∈ k. If

√
a ∈ k we refer to it as split reduction and otherwise as nonsplit reduction.

The final blow-up of the pencil gives rise to the Maximal Disjoint Configuration of a singular fiber (of type) In. If
n > 1, it contains exactly n irreducible components of multiplicity m = 1 and self-intersection −2. That is, the components
are irreducible over the lowest extension of k where they are defined separately and no more singular point exists within
this model.

Example 8.6. Let k = Q. We determine the Kodaira fiber types in the elliptic surface Et : y
2 = x3 +(t− 1)2x2 + t2x+ t3

over P1. We find that the normal form of above Weierstrass equation11 is already minimal and minimized with respect to
any valuation vt−t0 for some t0 ∈ Q. Namely, for the extended Weierstrass equation we have

∆ (Et) = −16t3
(
4t6 − 25t5 + 46t4 − 19t3 + 46t2 − 25t+ 4

)
(9)

where all factors are irreducible in Q. In the case t0 = 0 we find vt(∆) < 12. Since vt(∆) = 3 > 0 and

vt(c4) = vt(−432t4 + 1728t3 − 1296t2 + 1728t− 432) = 0

we find that Et has bad multiplicative reduction at t = 0. Our computation vt(∆) = 3 determines the singular fiber at
t = 0 is of Kodaira type I3. The irreducible factor of order 6 in the determinant ∆ (Et), see Equation (9), admits 6 distinct
roots in an extension of Q. This gives exactly 6 fibers of type I1 in the extension. Lastly, we compute the reduction at
t = ∞. We make the coordinate change t = 1/s and send s3y 7→ y and s2x 7→ x. This gives a Weierstrass over Q(s).

Es : y
2 = x3 + (1− s)2x2 + s2x+ s3

We only look at the reduction for s = 1/t = 0. Notice that the equation for the fiber at 1/t = 0 is completely analogous to
the equation for the fiber at t = 0. Then the singular fiber at 1/t = 0 is multiplicative and of Kodaira type I3. p

8.4 Extremal rational elliptic surface

8.4.1 Introduction

Let us start by defining the set R = {t ∈ P1 : π−1(t) is singular and reducible} and let mt denote the number of irreducible
components of π−1(t) over k. The rank of the Néron-Severi group NS(S) for an elliptic surface S is bounded from above12,
see [17, p. 42]. In case the surface S is rational, the rank attains this bound and is called maximal.

Definition 8.7. A rational elliptic surface π : S → P1 with section is called extremal if rankNS(S) = 2+
∑

t∈R (mt − 1)
is maximal and εη(k(t)) is finite

13.

Consider an extremal rational elliptic surface S with generic fiber εη. Since the group of k(t)-rational points of the generic
fiber is finite, the one-to-one correspondence with the sections of the surface implies the number of sections of the surface
must be finite. We know from Proposition 8.4 that sections on an elliptic surface have self-intersection −1 and correspond
to exceptional curves in the final blow-up of a pencil of cubics. The total blow-up of the pencil gives rise to a finite number
of components naturally. Thus only a finite number of components can have self-intersection less than zero. This line of
reasoning leads us to the following proposition.

Proposition 8.8. Let S be a rational elliptic surface. Then the following are equivalent:

(a) S is extremal.

11Given by y2 = x3 + (−432t4 + 1728t3 − 1296t2 + 1728t− 432)x+ (345t6 − 20736t5 + 36288t4 + 8640t3 + 36288t2 − 20736t+ 3456).
12The Picard number ρ(S) is equal to the rank of the Néron-Severi group.
13That is, rank (εη(k(t))) = 0.
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(b) The number of representations of S as a blow-up of P2 is finite.

(c) The number of smooth rational curves C with C2 < 0 is finite.

(d) The number of reduced irreducible curves C with C2 < 0 is finite

Proof. A proof can be found in [13, p. 75], Proposition VIII.1.2. N

8.4.2 The Shioda-Tate formula

In this thesis we are interested in constructions of extremal rational elliptic surfaces with semi-stable singular fibers.

Any elliptic surface π : S → C adhere to the Shioda-Tate formula which relates the rank of the Néron-Severi group NS(S)
and the rank of the Mordell-Weil group MW(S) with the number of components mt in each singular fiber Et ∈ R of the
surface. The aim is to find conditions on (the number of components of) fibers in extremal RES using the Shioda-Tate
formula. Since the surface of interest is extremal we know that the rank of MW(S) is zero. Thus, it remains to determine
the rank of NS(S).

For any elliptic surface we know from [17, p. 23], Theorem 6.2 that the Néron-Severi group is finitely generated and
torsion-free. This implies NS(S) is isomorphic with Zn for a surface S and n a positive integer. Recall from Theorem 8.2
and Remark 5.4 that given a RES π : S → P1 over an algebraically closed field, its divisor class group Cl(S) is isomorphic
with Z10. In the case of extremal RES the rank of the Néron-Severi group NS(S) and the divisor class group Cl(S)
coincide. Therefore, NS(S) has rank equal to 10.

Theorem 8.9 (Shioda-Tate formula). Let S be an elliptic surface with section. Then

rankNS(S) = 2 +
∑
t∈R

(mt − 1) + rankMW(S).

Proof. A proof can be found in [19, p. 216], Proposition 2.3. N

Let π : S → P1 be an extremal RES. Then rankNS(S) = 10 and rankMW(S) = 0 which implies 8 =
∑

t∈R (mt − 1).
Unfortunately it is not possible to further determine the number of components in each singular fiber, because we have no
information on the number of fibers except for the fact that there is a finite number of them. By using theory beyond the
scope of this thesis it can be proven that there are at least 4 fibers for extremal RES with only semi-stable fibers.

Theorem 8.10. Let π : S → P1 be a non-trivial semi-stable fibration. Then π admits at least 4 singular fibers.

Proof. The proof uses the result of Theorem 8.9 and can be found in [4, p.103], where it is a proof for the theorem on
page 100. N

Therefore, in the case of extremal RES with exclusively semi-stable fibers, at least 4 such fibers are on the surface.
Since every RES is the blow-up of a pencil in nine base points if k = k̄, the semi-stable fibers are of Kodaira type In
with 1 ≤ n ≤ 9 an integer. This can also be seen from the equality 8 =

∑
t∈R (mt − 1) and the fact that the number

of irreducible components mt of a fiber of type In is equal to n. The constraints that we need in order to determine
exactly which configurations can occur are not complete, but in order to complete them we go beyond the scope of this
bachelor project. For more information on the constraints, see [17, p. 43]. In total 6 configurations of extremal RES with
semi-stable fibers exist that all admit exactly 4 singular fibers, they are given by

I9, 3I1 2I4, 2I2

4I3 I6, I3, I2, I1

I8, I2, 2I1 2I5, 2I1.

The extremal RES with singular fibers of above Kodaira types are unique up to up to isomorphism or coordinate change
and have a Mordell-Weil group that is pre-determined.
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Theorem 8.11. For any possible configuration of semi-stable fibers over an algebraically closed field k, there exists a
unique extremal rational elliptic surface with pre-determined Mordell-Weil group.

Proof. A proof can be found in [14, p. 550], Theorem 5.4. N

The full torsion structure of the Mordell-Weil group for extremal RES generated by a pencil of cubics defined over the
rationals in general is well-known. A list with configurations and the corresponding torsion of the Mordell-Weil group can
be found in [16], see ‘The list’ on pages 7− 14. We give the full torsion of the Mordell-Weil group for semi-stable extremal
RES, over a finite extension over the rationals where all the sections of the RES are defined, see Table 1. That is, although
the pencil of cubics is defined over the rationals, the sections in the Mordell-Weil group are generally not defined over the
rationals. In the next chapter we discuss examples of semi-stable extremal RES and their torsion over the rationals.

Fibration Torsion
I9, 3I1 Z/3Z

I8, I2, 2I1 Z/4Z
I6, I3, I2, I1 Z/6Z
2I5, 2I1 Z/5Z
2I4, 2I2 Z/4Z× Z/2Z
4I3 Z/3Z× Z/3Z

Table 1: All extremal RES with semi-stable fibers only and their full torsion.
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9 Explicit examples of semi-stable extremal rational elliptic surfaces

9.1 Introduction

In this section we work out examples of extremal rational elliptic surfaces with semi-stable fibers from Beauville’s ‘The
stable families of elliptic curves over P1 with four singular fibers’ [5] and some of our own examples. We work out the
blow-up of the examples to a Maximal Disjoint Configuration (MDC), such that all components are irreducible over Q
and MDC defined over Q as a whole.

The blow-up of the fibers is shown separately each time, but in reality all fibers are connected via the sections that are
shown in red in the final blow-up. In every step we blow-up at most once in every base point. The black lines denote
the original irreducible components and the blue lines the components obtained through the blow-up map. Red lines
denote the curves with self-intersection −1, all other components have self-intersection −2. The fibers as a whole have
self-intersection 0.

We choose to work out the reducible fibers only since they provide a more interesting case. All irreducible singular fibers
are of type I1, nodal curves with base points outside the singular point and of order 1. The self-intersection of a cubic is
9 and thus the nine times blow up provides us a curve with self-intersection 0, see Corollary 5.8. For the same reason
nonsingular fibers in a RES have self-intersection 0.

9.2 Pencil of cubics with fibers I93I1

The example corresponding to the fibers I93I1 given in [5] is given by the pencil

S1 : x2y + y2z + z2x+ txyz = 0

where t parameterizes P1. The base points of this pencil are given by p0 = [0 : 1 : 0], p1 = [1 : 0 : 0] and p2 = [0 : 0 : 1] all
with multiplicity 3. Since these are all rational points, the blow-ups of the pencil are defined over Q as a whole14. The
surface S1 has bad places at 1/t, t− 1 and t2 − 3t+ 9. Only one of the fibers is reducible i.e. has Kodaira type In with
n > 1. The reducible fiber is the blow-up at t = ∞. The final blow up or MDC contains 3 sections defined over Q, see
Figure 14. This corresponds to full torsion of the Mordell-Weil group MW(S1) over Q, which is Z/3Z, see 1.

Figure 14: The fiber I9 at 1/t on S1 and drawn over Q. We blow up from left to right, the rightmost picture gives us the
MDC of the pencil.

9.3 Pencil of cubics with fibers 2I42I2

The example corresponding to the fibers 2I42I2 given in [5] is given by the pencil

S2 : x(x2 + z2 + 2yz) + t(x+ y)(x− y)z = 0.

The base points of this pencil are given by p0 = [0 : 1 : 0] with multiplicity 3 and p1 = [1 : −1 : 1], p2 = [−1 : −1 : 1],
p3 = [0 : 0 : 1] all with multiplicity 2. Therefore all blow-ups of the pencil are defined over Q as a whole. The surface
S2 has singular fibers at 1/t, t, t − 1 and t+ 1 that are of Kodaira fiber type I4, I4, I2 and I2 respectively. All of the

14A line is uniquely defined by two points. If the points are both rational, the line is defined over the rationals.
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fibers are reducible and the I2 fibers are very similar, therefore we only draw one of them. The MDC contains 4 sections
defined over Q, see Figure 15. However, this does not correspond to full torsion: from Table 1 we learn that MW(S2)
has torsion group Z/4Z× Z/2Z and thus if the pencil of cubics given in [5] has full torsion Mordell-Weil group over the
rationals, exactly 8 sections exist. From the group structure of the sections, see [11, p. 4], we derive that the example has
full torsion Mordell-Weil group over the rationals. Hence, exactly four sections are ‘hiding’ somewhere in the surface.

Figure 15: The fibers I4, I4 and I2 at 1/t, t and t+ 1 or t− 1 respectively, on S2 and drawn over Q.

The first three ‘hidden’ section are all lines, each of them defined by two points in the set {p0, p1, p2}. The fourth section
is a conic passing through p0, p1, p2 with multiplicity 1 and through p3 with multiplicity 2. The equations of the lines and
conic are necessarily irreducible and given by

y + z = 0, x+ z = 0, x− z = 0, x2 + yz = 0.

For the drawn blow-ups of the hidden sections, see Appendix A.

9.4 Pencil of cubics with fibers 4I3

The example in [5] is a pencil of cubics known as the Hesse pencil, see [3]. The equation for this pencil is given by

S3 : x3 + y3 + z3 + txyz = 0.

There are nine base points of order 1 on this pencil. The base points of this pencil are given by

p0 = [0, 1,−1] p1 = [0, 1,−ζ] p2 =
[
0, 1,−ζ2

]
p3 = [1, 0,−1] p4 =

[
1, 0,−ζ2

]
p5 = [1, 0,−ζ] (10)

p6 = [1,−1, 0] p7 = [1,−ζ, 0] p8 =
[
1,−ζ2, 0

]
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where ζ = (−1 +
√
−3)/2. The base points are not defined over Q, but rather over a quadratic extension15 Q(

√
−3). The

surface S3 has singular fibers at 1/t, t+ 3, t+ 3ζ and t+ 3ζ2 all corresponding to Kodaira fiber types I3. In total this
gives 4 triangles and 12 edges. The edges are given by the following equations.

E∞ : xyz = 0

E−3 : (x+ y + z)
(
x+ ζy + ζ2z

) (
x+ ζ2y + ζz

)
= 0

E−3ζ : (x+ ζy + z)
(
x+ ζ2y + ζ2z

)
(x+ y + ζz) = 0

E−3ζ2 :
(
x+ ζ2y + z

)
(x+ ζy + ζz)

(
x+ y + ζ2z

)
= 0.

Note that the non-trivial element of the Galois group Gal(Q(
√
−3)/Q), which is given by σ(

√
−3) = −

√
−3, permutes

two of the edges in E−3 and it permutes all components of the triangles E−3ζ , E−3ζ2
16. All intersections are preserved

under the permutations. In the triangles, every edge contains exactly three base points, the distribution of these points
for every fiber is as follows. For E∞ each row in Equation (10) corresponds to the base points on an edge, for E−3 each
column, for E−3ζ each diagonal pointing north-east and for E−3ζ2 each diagonal pointing north-west.

The MDC of the pencil of cubics (see Figure 16) contains 9 sections and this corresponds well with the full torsion of
MW(S3) over Q(

√
−3), which is given by Z/3Z×Z/3Z. The torsion of the Mordell-Weil group over the rationals is Z/3Z,

and these are the sections defined over Q corresponding to the points p0, p3, p6.

Figure 16: The fiber I3 at 1/t, t+ 3, t+ 3ζ or t+ 3ζ2 on S3 and drawn over Q(
√
−3).

The Hesse pencil is the only example in [5] where the base points, and for that matter the sections, are not defined over Q.
This raises the question if there exists an example of a pencil with all base points defined over Q that gives rise to a 4I3
configuration. We argue there is no such pencil using the following theorem.

Theorem 9.1 (Specialization theorem). Let π : S → P1 be a non-isotrivial17 rational elliptic surface defined over Q. Then
for all but finitely many t ∈ P1(Q), the fiber Et is a non-singular elliptic curve, and there is a specialization homomorphism

σt : εη (Q(t)) → Et(Q)

mapping the group of sections defined over Q to the group of rational points on the fiber. The specialization map σt is
injective for all but finitely many t ∈ P1(Q).

Proof. For the proof, see [15]. N

From Mazur’s theorem, see Theorem 6.12, we argue that there exist no elliptic curves E/Q where E(Q) is of rank zero
and has full torsion group Z/3Z × Z/3Z over the rationals. We argue by contraposition using Theorem 9.1. We view
generic torsion of an elliptic fiber as the torsion of the Q(t)-rational points of the generic fiber as an elliptic curve over
Q(t). Note that σt is a group homomorphism with respect to the abelian structure of torsion points. Thus, by injectivity
of the map if no elliptic curves with rank zero and Z/3Z× Z/3Z-torsion exist over Q in the image of σt, we can not find
an extremal RES with generic torsion Z/3Z× Z/3Z over the function field Q(t).

The relation between the generic fiber and nonsingular fibers on the surface in Theorem 9.1 provides us with a relation
between the rank of the generic fiber and the rank of rational points of the nonsingular fibers as elliptic curves over Q.

15Eisenstein’s criterion shows x2 + 3 is irreducible over Q, ±
√
−3 are its roots which give rise to the quadratic field extension Q

(√
−3

)
.

16Using Equation (11) and Figure 20 in the next chapter, we denote the permutations by C−3
1 ↔ C−3

2 and C−3ζ
i ↔ C−3ζ2

i .
17Not isomorphic to a constant curve over a finite extension of Q.
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Due to the injectivity of σt for all but finitely many t, we find that the rank of nonsingular fibers Et(Q) as elliptic curves
over the rationals, is greater or equal than the generic rank r of the surface. In other words, the generic rank is bounded
from above by the rank of nonsingular fibers in the surface. Therefore, whenever an elliptic curve is of rank 0 and appears
as a nonsingular fiber in a RES, the surface must be extremal.

Example 9.2. We use ‘The L-functions and modular forms database’ with URL http://www.lmfdb.org to give us an
elliptic curve over the rationals with rank 0. This yields the cubic curve in P2 defined by F (x, y, z) = y2z + yz2 − x3 −
x2z+769xz2 − 8470z3 18. Using the construction in [2, p. 2] we construct a Hesse pencil F + tH = 0 where H(F ) denotes
the Hessian of F . From the matrix

∂2F

∂x2
= −6x− 2z

∂2F

∂x∂y
= 0

∂2F

∂x∂z
= −2x+ 1538

∂2F

∂y∂x
= 0

∂2F

∂y2
= 2z

∂2F

∂y∂z
= 2y + 2z

∂2F

∂z∂x
= −2x+ 1538

∂2F

∂z∂y
= 2y + 2z

∂2F

∂z2
= 2y + 1538x− 50820z

we compute the Hessian, which is given by

H(F ) = −18464x2z + 24xy2 + 24xyz + 616016xz2 + 8y2z + 8yz2 − 4527600z3.

The pencil of cubics S : F + tH = 0 generates a semi-stable extremal RES with configuration 4I3. The point [0 : 1 : 0] is
the only base point defined over the rationals. As a result the zero section O is the only section defined over Q, meaning
the torsion group MW(S) over the rationals is trivial. p

9.5 Pencil of cubics with fibers I6I3I2I1

The example corresponding to the fibers I6I3I2I1 given in [5] is given by the pencil

S4 : (x+ y)(x+ z)(y + z) + txyz = 0.

The base points of this pencil are p0 = [0 : 1 : 0], p1 = [0 : 0 : 1] and p2 = [1 : 0 : 0] with order 2 and p3 = [0 : −1 : 1],
p4 = [−1 : 1 : 0] and p5 = [−1 : 0 : 1] with order 1. The base points are all defined over Q and thus the MDC of the pencil
must defined over the rationals. The surface S4 has singular fibers at 1/t, t, t− 1 and t+ 8 that are of Kodaira fiber type
I6, I3, I2 and I1 respectively. The MDC contains 6 sections over the rationals, see Figure 17, which corresponds to full
torsion of the Mordell-Weil group MW(S4) over Q, given by Z/6Z.

18This is 19.a1 in the data base.
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Figure 17: The fibers I6, I3 and I2 at 1/t, t and t− 1 respectively, on S4 and drawn over Q.

9.6 Pencil of cubics with fibers I8I22I1

The example corresponding to the fibers I8I22I1 given in [5] is given by the pencil

S5 : (x+ y)(xy − z2) + txyz = 0.

The base points of this pencil are p0 = [0 : 1 : 0], p1 = [1 : 0 : 0] with order 3, p2 = [0 : 0 : 1] with order 2 and
p3 = [−1 : 1 : 0] with order 1. The base points are all defined over Q and so are the blow-ups of the pencil. The surface S5

has singular fibers at 1/t, t and t2 + 16 that are of Kodaira fiber type I8, I2, and 2I1 respectively. We only draw the first
two types. The MDC contains 4 sections over Q (see Figure 18) which corresponds to full torsion of the Mordell-Weil
group MW(S4) over the rationals, given by Z/4Z.
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Figure 18: The fibers I8 and I2 at 1/t and t respectively, on S5 and drawn over Q.

9.7 Pencil of cubics with fibers 2I52I1

The example corresponding to the fibers 2I52I1 given in [5] is given by the pencil

S6 : x(x− z)(y − z) + t(x− y)yz = 0.

The base points of this pencil are p0 = [1 : 0 : 1] with order 1 and p1 = [0 : 1 : 0], p2 = [1 : 0 : 0], p3 = [0 : 0 : 1]
p4 = [1 : 1 : 1] with order 2. The base points are all defined over Q and therefore the blow-up of the pencil is defined over
the rationals. The surface S6 has singular fibers at 1/t, t and t2 − 11t− 1 that are of Kodaira fiber type I5, I5, and 2I1
respectively. The MDC contains 5 sections, see Figure 19 over Q which corresponds to full torsion of the Mordell-Weil
group MW(S6) over the rationals given by Z/5Z.

Figure 19: The fiber I5 at 1/t or t on S6 and drawn over Q.

We give an example of a pencil of cubics that defines an extremal RES with configuration 2I52I2 and trivial torsion over
Q.

Example 9.3. Consider the pencil of cubics defined over Q and given by

S : x(y2 + x2 − 2xz + z2) + tz(y2 + x2 + 2xz + z2).

The base points of this pencil are p0 = [0 : 1 : 0] with order 1 and p1 = [0 : 1 : i], p2 = [0 : −1 : i], p3 = [i : 1 : 0]
p4 = [i : −1 : 0] with order 2, defined over the quadratic extension Q(i). The surface S has singular fibers at 1/t, t and
t2−11t−1 that are of Kodaira fiber type I5, I5, and 2I1 respectively. Of all sections only the zero section O is defined over
the rationals meaning the torsion of the Mordell-Weil group MW(S) is trivial over the rationals. The non-trivial element
of the Galois group Gal(Q(i)/Q) given by σ(i) = −i permutes four of the components in each 5-gon. Using Equation (11)
and Figure 20 in the next chapter, we denote the permutations for each 5-gon by C1 ↔ C4 and C2 ↔ C3. p
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10 Description of the minimal models of semi-stable extremal rational
elliptic surfaces

10.1 Introduction

Every rational elliptic surface over a field k is isomorphic to the blow-up in nine base points of a pencil of cubics if k is
algebraically closed. In this chapter we discuss the reverse process of blowing up base points in pencils that are defined
over the rationals. We know from Castelnuovo’s criterion, see Theorem 10.1, that (−1)-curves isomorphic with P1 on
a rational elliptic surface are exceptional curves of blow-ups in points on the surface. Therefore, such (−1)-curves can
always be contracted.

Theorem 10.1 (Castelnuovo). If Y is a curve on a surface S, with Y ∼= P1 and Y 2 = −1, then there exists a morphism

φ : S → S̃ to a (nonsingular projective) surface S̃, and a point P ∈ S̃, such that S is isomorphic via φ to the blow-up of S̃
with center P , and Y is the exceptional curve.

Proof. See Theorem 5.7 in [9, p. 414] for the proof. N

Reversing the process of blowing up base points in a pencil is done by blowing down all possible (−1)-curves. We reach
the minimal model of an elliptic surface with respect the field Q, if no blow-down of (−1)-curves can be made over the
field. However, the rationals are not algebraically closed and the conjugacies that exist between components restricts
the number of ways we can blow down. If two (−1)-curves are conjugate in a surface, they can only be blow down if
they do not intersect, since blowing down only one of the curves decreases the self-intersection of the other. We can only
blow down (−1)-curves and so this scenario causes the whole model to not be defined over Q. If two (−1)-curves are
conjugate and do not intersect, they are blown down simultaneously for the same reason. This can be done since they do
not intersect.

In this chapter we look at minimal models of pencils in P2 and P1 × P1. The minimal model of a surface is useful to us
since more is known about projective 2 and 1× 1-space than about the surface the MDC of the pencil is defined over. In
the case of extremal rational elliptic surfaces, Proposition 8.8 tells us there are a finite number of possibilities to blow
down an MDC to the minimal model of an extremal RES. In this section we work out the contractions given on pages
9− 10 in the paper ‘Fields of definition of elliptic fibrations on covers of certain extremal rational elliptic surfaces’ by
Victoria Cantoral-Farfán et al [6]. It is our aim to explain and construct the proof of the following proposition with the
help of figures.

Proposition 10.2. Let S be a semi-stable extremal rational elliptic surface defined over k and m the order of the
Mordell-Weil group. Then the following hold.

(i) If m is odd and S has a unique reducible fiber then S admits a contraction over k to P1 × P1.

(ii) If m is odd and S has at least two reducible fibers then S admits a contraction over k to P2.

(iii) If m is even then S admits a contraction over k to P1 × P1.

Proof. See proof of Proposition 4.7 in [6, p. 8-10]. N

In the contractions we consider the irreducible components. Separately the components are not necessarily defined over
the rationals but rather over a finite extension. Recall components are conjugate when the reduction of the nodal curve in
Weierstrass form is non-split. As a result the blow-down of (−1)-curves needs to satisfy the following restrictions. Galois
actions preserve intersection of components and when we blow-down a component not defined over Q, we also need to
blow-down its conjugate component. As a rule we choose O so that it is defined over the smallest field extension of Q. We
label the irreducible components of a MDC fiber of type In in clockwise direction C0, C1, . . . , Cn−1 such that

(O.C0) = 1 C2
i = −2 (Ci.Cj) = 1 if and only if |i− j| = 1. (11)

42



Figure 20: Labelling irreducible components of an MDC of type In.

For each semi-stable surface we show the contraction on sections of the bad fiber In such that n is the highest integer
occurring in the Kodaira types of the surface. The first blow-down always concerns the sections since they are the only
curves with self-intersection −1 in the MDC. Note that contracting often affects the components in other bad fibers on
the surface and we take this into account in our text. In order to keep the figures comprehensible we link colors to the
self-intersection of curves.

Blue lines have self-intersection −2, red lines −1, green lines 0 and black lines 1. Moreover, dashed red lines are exceptional
curves that we blow-down each transformation.

10.2 Blow-down for the configuration I93I1

First we contract all sections simultaneously, see Figure 21. This can be done since all sections are disjoint. The only
(−1)-curves this yields are the images of C0, C3 and C6. We point out that the images of C3, C6 may be conjugate. In the
second blow-down we contract all three (−1)-curves. In the third blow-down there are two possibilities depending on
where the components are defined separately. If they are all defined over the rationals we contract the images of C1, C4

and C7. We obtain a bad fiber of three curves with self-intersection 1 in the minimal model, this gives P2. However, the
images of Ci and C9−i can be conjugate and so we propose blowing down the images of C2, C7 instead. We reach four
curves with self intersection 0, this gives a pencil in P1 × P1, see Figure 21. Since I93I1 has torsion equal to Z/3Z and a
unique reducible fiber, this is in accordance with Proposition 10.2.

Figure 21: The contractions on the fiber of type I9.

The other bad places 3I1 are nodal curves with self-intersection 0. After contracting the sections and all other images of
components that obtain self-intersection −1, the images of the nodal curves have self-intersection 8. This does not make
sense for an irreducible cubic in P2, but this is possible for the space P1 × P1.

10.3 Blow-down for the configuration 2I42I2

We contract all eight sections simultaneously in the fiber I4, this give us a pencil in P1 × P1. Since the fibers of type I4
both intersect all sections once, the contractions are analogous. Since 2I42I2 has torsion equal to Z/4Z× Z/2Z, this is in
line with Proposition 10.2. For the bad fiber I2 we find that contracting all sections gives two curves intersecting in two
points, both with self-intersection 2. No other contractions can be made.
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Figure 22: The contractions on a fiber of type I4.

10.4 Blow-down for the configuration 4I3

Contracting all sections gives a P2 in all bad fibers, namely three lines with self-intersection 1. This is in accordance with
Proposition 10.2.

Figure 23: The contractions on a fiber of type I3.

10.5 Blow-down for the configuration I6I3I2I1

First we contract all sections in the bad fiber I6. The images of all Ci obtain self-intersection −1. Again, if no conjugate
components exist we can contract the images of C0, C2 and C4 to a pencil in P2 over the rationals, see Figure 24. However,
if at least one component is not defined over the rationals separately, we contract the images of C0 and C3. Namely, the
possible conjugacies that can occur are between Ci and C6−i. We obtain a pencil in P1 × P1. Since I6I3I2I1 has torsion
equal to Z/6Z, this is in accordance with Proposition 10.2.

Figure 24: The contractions on the fiber of type I6.

To verify the contractions for all reducible bad fibers we use the MDC in Figure 25. First of all we look at the contractions
on the bad fiber of type I3. Contracting yields one curve with self-intersection 0 and two with self-intersection 1. For the
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bad fiber I2 this yields two components with self-intersection 2 and for I1 it yields a curve with self-intersection 8. Note
that the minimal models of these contractions exist in P1 × P1 but not in P2.

Figure 25: The complete MDC intersection pattern of the sections with the reducible fibers I6, I3 and I2.

10.6 Blow-down for the configuration I8I22I1

Again we contract all sections. As a result the images of C0, C2, C4 and C6 have self-intersection −1 after the first
blow-down. If no conjugate components exist we can contract the images of C1, C3, C6 (or equivalently the images of
C2, C5, C7) to a pencil in P2. In case we do not know, possible conjugacies that can occur are between Ci and C8−i. We
contract C2 and C6 which are possibly conjugate. This gives four lines with self-intersection 0 intersecting in four points
in P1 × P1, see Figure 26. Since I8I22I1 has torsion equal to Z/4Z, this is in accordance with Proposition 10.2.

Figure 26: The contractions on the fiber of type I8.

To verify the contractions for all reducible bad fibers we use the MDC in Figure 27. In the bad fiber I2 the contractions
yield two curves intersecting in two places both with self-intersection 2. For the 2I1 this yields two curves both with
self-intersection 8.
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Figure 27: The complete MDC intersection pattern of the sections with the reducible fibers I8 and I2.

10.7 Blow-down for the configuration 2I52I1

First we contract all sections. The images of Ci after the first blow-down have self-intersection −1 as a result. The
possible conjugacies that can occur are between Ci and C5−i. Next we contract the components C1, C4 (or equivalently
the components C2, C3) in both I5. We claim that this yields three lines with self-intersection 1 intersecting in three
points. This gives a pencil in P2. Note that this is not straightforward from Figure 28. Therefore, we add a figure with
the drawing of both I5 and the sections between them, see Figure 29. Since 2I52I1 has torsion equal to Z/5Z and two
reducible fibers, this is in accordance with Proposition 10.2.

Figure 28: The contractions on a fiber of type I5.

We draw two bad fibers simultaneously in MDC, both with components in blue and sections in red. Note that the
components do not intersect outside their fiber, only the sections do. The bad fibers of type I1 have self-intersection 0.
After contracting nine times (five sections and four components, two in each I5) have self-intersection 9, satisfying Remark
5.10.
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Figure 29: The complete MDC intersection pattern of the sections with the reducible fibers I6, I3 and I2.

Remark 10.3. The converse implications in Proposition 10.2 are not always true. As we discussed in the cases I93I1,
I8I22I1 and I6I3I2I1, if all reduction is split we can find contractions to both P2 and P1 × P1.

47



11 Discussion

In Chapter 9 of this thesis one finds the geometric constructions of semi-stable extremal rational elliptic curves in [5] via
examples. In this chapter we generate the Maximal Disjoint Configuration (MDC) of a pencil in P2 over the rationals, by
blowing up the base points of a specific pencil of cubics. Studying specific pencils of cubics is of a general importance,
since two distinct pencils in P2 with the same configuration of Kodaira fiber types have an isomorphic MDC. As a result,
the minimal models of the pencils have the same number of base points including multiplicity in P2. The figures therefore
describe the blow-up in the base points of any pencil of cubics with the same configuration of semi-stable fibers.

In the same chapter we moreover discuss the torsion of the Mordell-Weil group in each example. We find by Mazur’s
Theorem, see Theorem 6.12, that the only surface where there exists no example with full torsion defined over Q, is 4I3.
For this configuration we use the Specialization Theorem, see Theorem 9.1, and the vast amount of knowledge that exists
on elliptic curves, to generate another example of a pencil with trivial torsion over the rationals, see Example 9.2. In
Chapter 10 one can find the blow-downs of all semi-stable extremal rational elliptic curves in MDC to a minimal model of
the surface in P2 or P1 × P1. In the chapter we work out the constructions given in the proof of Proposition 4.7 in [6], see
Proposition 10.2, with the help of figures.

Suggestions for further research include studying and developing a computation method to rewrite an elliptic curve with
Weierstrass normal form y2 = x3 +A(t)x+B(t) to a pencil of cubics F + tG = 0. The method of reduction for Weierstrass
normal form is well-known and this would enable us to construct rational elliptic surfaces with specific reduction and
torsion over the rationals. Moreover, the structure of the pencil of cubics allows us to study the conjugacy of components
in case the reduction is nonsplit. We aim to construct examples where the Mordell-Weil group of semi-stable extremal
rational elliptic surfaces is defined over a number field.

48



A Blow-ups of hidden sections 2I42I2

Underneath you find for each ‘hidden’ section in the pencil given by S2 : x(x2 + z2 + 2yz) + t(x + y)(x − y)z = 0 the
blow-ups of each singular fiber. The pencil has fibers of Kodaira type 2I42I2. Depending on the section we draw the
fibers of type I2 at t± 1 only once or twice. In case they are drawn only once for a section, the way the sections intersect
the components of the fiber are analogous for both I2 fibers.

Figure 30: The section y + z = 0 drawn in green.
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Figure 31: The section x+ z = 0 drawn in green.

50



Figure 32: The section x− z = 0 drawn in green.
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Figure 33: The section x2 + yz = 0 drawn in green.
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