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Abstract: Explainable artificial intelligence (XAI) is the field that aims to make machine
learning models explainable, e.g. by developing explanation methods. The majority of research
on this topic is focused on classification problems, while real-world applications are often re-
gression problems, and explanation methods developed for classification cannot thoughtlessly be
applied to regression. In this Bachelor thesis three attribution-based explanation methods are
compared when applied to regression models. Two gradient-based explanation methods, Guided
Backpropagation (GBP) and Integrated Gradients (IG), and one model-agnostic method, Lo-
cal Interpretable Model-agnostic Explanations (LIME), were applied to two different regression
models, a wine quality prediction (WQP) model and an age prediction (AP) model. The expla-
nations were evaluated using the Deletion Area Under the Curve (DAUC) and Insertion Area
Under the Curve (IAUC) metrics and a user study was performed. The evaluations did not point
to one best-performing explanation method. For the WQP model IG performed best according
to the DAUC score, but not significantly. LIME performed best according to the IAUC score.
For the AP model GBP performed best according to the DAUC, LIME performed best according
to the IAUC score and IG received the most votes in the user study, although the differences in
votes were not significant.

1 Introduction

1.1 Context

Explainable artificial intelligence (XAI) is the field
concerned with making machine learning models in-
terpretable. A model is interpretable if users can
understand the reason why a model made a certain
prediction [Miller, 2019]. XAI can be achieved by
using intrinsically interpretable models or by ap-
plying post-hoc explanation methods to uninter-
pretable black box models [Ancona et al., 2019].
Within the literature the potential trade-off be-

tween interpretability and performance is discussed
[Rudin, 2018]. In some situations complex mod-
els achieve a higher performance than interpretable
models, due to their non-linearity. Tasks like im-
age processing are more suitable to be solved by a
black box model [Loyola-González, 2019]. On the
other hand, Rudin [2018] argues that there is no
significant difference between the performance of
black box models and interpretable models, given
that the training data is structured and meaningful.
Post-hoc explanation methods aim to explain black

box models and make it possible to get the per-
formance without losing interpretability [Lipton,
2016]. Furthermore Loyola-González [2019] argues
that it is not necessary for users to understand the
inner workings of machine learning models if they
are provided with an understandable explanation.

1.2 Motivation

XAI has several objectives: transparency, causal-
ity, privacy, fairness, trust, usability and reliability
[Fiok et al., 2022]. Explanation methods can pro-
vide transparency, fairness and trust.

Transparency Transparent models are able to
provide explanations for their decisions. Since 2018
it is required by the General Data Protection
Regulation (GDPR) that companies that use ma-
chine learning models to aid with decision making
provide algorithmic transparency [Wachter et al.,
2017].

Fairness Models can be biased against certain
populations if they are trained on biased data.
For example, Amazon discovered a hiring tool they
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were developing was biased against women [Dastin,
2018]. Explanation methods can help detect biases
in training data [Anders et al., 2022].

Trust Machine learning models are more likely
to be deployed and users are more likely to to take
action based on the model outcomes if they are
trusted to behave reasonably [Ribeiro et al., 2016].
According to Jacovi et al. [2021] a model should
reason in a way that is ”agreeable” in order to es-
tablish trust. By explaining models users can decide
if they trust the model based on how reasonable
they think the model is.

1.3 Problem statement

As Letzgus et al. [2021] observed, most research
on explanation methods is focused on explaining
classification models, while many real world appli-
cations of machine learning are regression models
(e.g. stock market prediction [Parmar et al., 2018],
signal processing applications [Sarwate and Chaud-
huri, 2013] and house price prediction [Madhuri
et al., 2019]). Explanation methods may assume or
are optimised for a categorical output of the un-
derlying model, which is why they should not be
applied to regression problems without considera-
tion [Letzgus et al., 2021].

1.4 Objectives

In this Bachelor thesis the performance of three
explanation methods applied to two different
regression models is evaluated and compared. The
regression models are a wine-quality prediction
(WQP) model trained on tabular data and an
age prediction (AP) model trained on image data.
The explanation methods are Guided Backprop-
agation (GBP), Integrated Gradients (IG) and
Local Interpretable Model-agnostic Explanations
(LIME). Figure 1.1 shows a schematic overview of
the comparisons.

The aim of this Bachelor thesis is formulated in
the following research question: How do different
explanation methods compare when applied
to regression models?

The process of answering the research question
is guided by the following sub questions:

1. How do different explanation methods of re-
gression tasks on tabular data compare?

2. How do different explanation methods of re-
gression tasks on image data compare?

1.5 Contributions

The contributions of this Bachelor thesis include
an exploratory analysis of explanation methods
applied to regression tasks. GBP, IG and LIME
were evaluated and compared through two different
quantitative evaluation methods and a user study.

2 State of the Art

2.1 Explanation method taxonomy

There are numerous explanation methods that can
be categorised based on different properties.

Model-agnostic methods do not use any internal
details of the model they explain. Model specific
methods do use model internals, and can therefore
only be applied to specific model classes [Molnar,
2022].

Global explanation methods explain the overall
decision strategy of models, while local explanation
methods only provide explanations for a single sam-
ple [Molnar, 2022].

Explanations can be presented in different forms,
e.g. in the form of a counterfactual explanation
[Wachter et al., 2017], a selection of features that
had an effect on the model prediction, a full descrip-
tion of the feature attributions [Molnar, 2022], or
in the form of an interpretable model that approx-
imates the complex model [Molnar, 2022].

2.2 Attribution-based methods

This Bachelor thesis focuses on local attribution-
based explanation methods. An attribution-based
explanation consists of a vector of attributions of
each input feature on the output.

Ri(x) = xi ·
δyi
δxi

(x) (2.1)

Equation 2.1 is a simplified description of an
attribution-based explanation [Ancona et al., 2019].
R is a vector containing the attributions of all the
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Figure 1.1: Overview of comparisons

input features x at instance i. Features with a high
attribution, also called a high saliency, had a large
effect on the model output. yi is the output of the
model at instance i. The explanation is equal to the
model gradient at xi, as the gradient is defined as
the partial derivative of the output with respect to
the independent variables.
In the case of image data the explanation can be

visualised in a saliency map, where the vector is
plotted as a heatmap over the original image, high-
lighting the pixels that had the greatest positive
effect on the model prediction.

2.3 Explaining regression models

As mentioned above, most of the research on
explanation methods is focused on classification
problems. Bennetot et al. [2021] and Linardatos
et al. [2021] provide flowcharts that help developers
choose what explanation method is best suitable for
their task. However, the distinction between classi-
fication and regression tasks is not made.
Explanation methods for regression models

should receive more attention because the problems
they are solving are inherently different from clas-
sification problems. Firstly, due of the difference in
output type the the decision boundary for classi-
fication problems is more clearly defined than for
regression problems, where ambiguities may occur.
This notion is especially relevant when develop-
ing counterfactual explanation methods [Spooner
et al., 2021].
Secondly, regression models can adhere to the

conservation property, meaning that the output of
the model can be expressed in the measurement
unit of the data, which is often not the case for
classification problems. It enhances interpretability
if explanation models adhere to this property of
conservation [Letzgus et al., 2021].
Finally, the explanation of a regression model

needs to be compared to some reference value
to contextualise the explanation. Letzgus et al.
[2021] give an illustrative example involving an
auction with two bidders. Bidder 1 bids €900,
bidder 2 bids €1100. An explanation of the
regression model predicting the final price based
on these two bidders needs to be formulated
around a reference value in order to make sense.
The question ”which of the two bidders had the
greatest influence over the final price?” is difficult
to answer. But formulate the question around a
reference value: ”which of the two bidders had the
greatest influence over the final price being higher
than €1000?”, and the answer becomes clear:
bidder 2. Current explanation methods often are
implemented around implicitly defined reference
values, and lack the possibility for the user to set
them.

3 Methods

3.1 Datasets

The WQP is trained on a white wine quality
dataset from Cortez et al. [2009], containing 11 in-
dependent variables describing properties of Por-
tuguese wines. These features represent the physio-
chemical properties which can determine the qual-
ity of a wine: fixed acidity, volatile acidity, citric
acid, residual sugar, chlorides, free sulfur dioxide,
total sulfur dioxide, density, pH, sulphates and al-
cohol.

The AP model is trained on an image age pre-
diction dataset from Frentescu [2020], containing
40.440 images of faces of people from the ages 20
to 50, divided into 33432 train images and 7008 test
images.
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3.2 Model architectures

3.2.1 Wine quality prediction model

The WQP model predicts the quality of wines, ex-
pressed as a value between 1 and 6, based on 11
descriptive properties called features. The architec-
ture consists of an input layer of 11 neurons, rep-
resenting the 11 features, followed by 2 hidden lay-
ers of 16 and 8 neurons respectively and an output
layer. The source code of the model can be found
in Appendix B. All layers are fully connected and
modified by the the rectified linear unit (Relu) ac-
tivation function. For the final layer the sigmoid
activation function is used. The network is trained
by minimizing the mean squared error (MSE) loss
function, using the Adam optimiser.

The model was trained for 250 epochs and
achieved a training error of 0.57 MSE and a val-
idation error of 0.55 MSE.

3.2.2 Age prediction model

The AP model predicts the age of people based on
an image of their face. The model is a residual neu-
ral network (Resnet) as originally proposed by He
et al. [2015]. A Resnet is a convolutional neural net-
work, but with so-called skip-connections, connect-
ing layers of the neural network skipping some lay-
ers in between. This avoids the problem of vanish-
ing gradients which occurs when the values of the
gradients go to zero and the network cannot learn
anymore. By adding skip-connections, the value of
a few layers back is added to the weights of the cur-
rent neuron, therefore the value is higher and does
not ”vanish” to zero.

The Resnet is based on an implementation from
Singh [2019], with 20 residual layers, adapted to
accommodate regression problems with a sigmoid
activation after the residual layers. A final lambda
layer was added to scale the model output. Ap-
pendix B contains the source code of the archi-
tecture. The parameters given were input shape =
(64, 64, 3) and depth = 20. The network is trained
by minimizing the coefficient of determination (R2)
loss function, using the Adam optimiser.

The model was trained for 250 epochs, with a
batch size of 32 and a learning rate of 1e-1 and
achieved a training error of 0.54R2 and a validation
error of 0.51R2.

3.3 Explanation methods

3.3.1 Guided Backpropagation

Guided Backpropagation [Simonyan et al., 2013] re-
sults in a saliency vector, describing the attribution
of each input feature on the output. This is achieved
by propagating backwards through the model, set-
ting all the negative gradients to zero using the
Relu activation function. Gradients represent the
rate of change of the target value with respect to
all the inputs, so by setting all the negative gradi-
ents to zero only the features with a positive effect
on the model output will be left. This results in an
explanation w as described in

w =
δSc

δI
| I0 (3.1)

where Sc is a first-order Taylor expansion of the
class score function Sc(I), the output of a classifi-
cation model for some class. I is the symbol for the
input data and I0 represents the specific sample.
w then represents the derivative of the class score
function with respect to I0, meaning that it is a
vector containing the attributions of the features
of sample I0.

3.3.2 Integrated Gradients

Integrated Gradients [Sundararajan et al., 2017]
aims to satisfy the Sensitivity and Implementation
Invariance axioms. The Sensitivity axiom requires
that if two inputs to the model that differ in one
feature and result in a different model prediction,
then this feature should be given a non-zero at-
tribution. It also requires that if the outcome of
the model does not depend on some feature, this
feature should be given a zero attribution. The Im-
plementation Invariance axiom requires that attri-
butions of two functionally equivalent networks are
always identical.

The method starts by generating a baseline in-
put x′, and a straight line path through the feature
space from the baseline input to the input x. Then
the integral of the gradients along that path is cal-
culated.

This process is described in the following for-
mula:

IGi(x) ::= (xi−x′
i)×

∫ 1

α=0

δF (x′ + α× (x− x′))

δxi
dα

(3.2)
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where F : Rn[0, 1] is the function of the to-be-
explained model and

δF (x)

δxi
(3.3)

represents the gradient of F (x) with respect to xi.
The fraction inside the integral therefore represents
the gradient of the variations of the inputs along the
path, perturbed by interpolation constant α. Fur-
thermore, (xi − x′

i) represents the distance of the
difference from the currently considered perturba-
tion to the baseline. Which means that the result
of the integral is scaled to the distance of the input
to the baseline, so gradients of inputs far from the
baseline weigh heavier than those close to it.
In practice the integral is approximated using

a Riemann sum (Equation 3.3.2), where m is the
number of steps in the Riemann integral approxi-
mation, and the feature perturbation constant k is
scaled.

IGi(x) ::= (xi−x′
i)×Σm

k=1

δF (x′ + k
m × (x− x′))

δxi
× 1

m
(3.4)

3.3.3 LIME

Local Interpretable Model-agnostic Explanations
(LIME) [Ribeiro et al., 2016] is model-agnostic,
meaning that it does not use any inner details of
the underlying model, making it fundamentally dif-
ferent from the previously described methods. The
aim of LIME is to generate an interpretable model
(e.g. a linear model) that locally approximates the
underlying complex model. LIME generates a cus-
tom dataset of inputs and outputs by perturbing
the sample data and collecting the model outputs
to train the interpretable model on. Formally the
explanation ξ of sample x by LIME is defined by
the following optimization formula:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (3.5)

where g is an interpretable model out of the class
of potentially interpretable models G. As not every
model of this class is actually readily interpretable,
Ω(g) represents a measure of complexity that is
added as a penalty for models that are too complex.

L represents the loss function of the interpretable
model, f represents the underlying model and πx

represents the neighbourhood of sample x. In sim-
pler terms, LIME finds the optimal interpretable
model in terms of the performance and complexity
in the proximity of the complex model.

3.4 Evaluation

Evaluating and comparing different explainability
methods is a difficult task because of the lack of a
ground truth explanation [Kindermans et al., 2019],
which is the true reason why a model gave a certain
output. To find it is the goal of explanation meth-
ods. However, ideally the generated explanations
are evaluated by comparing them to the ground
truth explanation. As this is not possible, other
methods have been developed to assess the qual-
ity of explanations. In this Bachelor thesis explana-
tions were evaluated using two different evaluation
metrics, and an additional qualitative evaluation
was done on the explanations of the AP model in
the form of a user study.

3.4.1 Quantitative evaluation

Deletion Area Under the Curve (DAUC) and Inser-
tion Area Under the Curve (IAUC) are two quan-
titative evaluation metrics developed by Petsiuk
et al. [2018].

DAUC step-wise removes the most salient fea-
tures, according to the explanation, from the in-
put and measures the change in model outcome.
A big increase in error indicates that the deleted
features were indeed important, and the explana-
tion method was correct in assigning them a high
saliency. Therefore a high area under the curve, in
other words a high DAUC score, indicates a good
explanation.

IAUC starts with a randomised version of the
input and adds the most salient features. As fea-
tures are added step-wise to the randomised input
the change in model outcome is measured. A big
decrease in error indicates that the added features
were indeed important, meaning that a low area
under the curve, in other words a low IAUC score,
indicates a good explanation.
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Figure 3.1: Example of a survey question

3.4.2 Qualitative evaluation

In order to determine how agreeable the explana-
tions are according to users, a user study in the
form of a survey was conducted on the explana-
tions of the AP model. The goal of the survey was
to determine which saliency map users most agree
with, which would indicate if the most salient pixels
according to the explanation method match with
the area on the image that people would look at to
determine the persons’ age.

The survey consisted of 10 questions, randomly
picked from a question pool of 474 questions. Each
question showed a reference image and two differ-
ent saliency maps, as can be seen in Figure 3.1.
The saliency maps displayed the results of two of
the explanation methods randomly. The question
also showed the actual age and the predicted age of
the person on the image. Participants were asked
to select the saliency map that they thought best
explained the predicted age.

Before the survey started, participants were in-
troduced to the basic idea behind black box mod-
els and explanation methods, and an example was

given on how to reason about saliency maps. This
introductory text can be found in Appendix C.

Finally, participants were asked to indicate if
they had experience working or studying in the field
of AI because the survey topic was domain-specific.
If the answers of the two groups would be different,
this might indicate that not all participants under-
stood what was asked of them due to a flaw in the
introductory text.

4 Results

In this section the results of the explanation meth-
ods are shown and evaluated. Section 4.1 displays
the results of the explanation methods. Sections
Section 4.2 and 4.3 evaluate the explanations of the
wine quality prediction (WQP) model and age pre-
diction (AP) model respectively.

4.1 Explanations

Figure 4.1 shows examples of WQP model explana-
tions. The three figures on the left display the dif-
ferent explanations of a low-error sample. The true
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Figure 4.1: Explanations generated by GBP, IG and LIME of the WQP model

quality of this sample was 2, the WQP model pre-
dicted it to be 2.3. The three figures on the right
display the different explanations of a high-error
sample. The true quality of this sample was 3, the
WQP model predicted it to be 1.4.

The size of the bars indicate the magnitude of
the effect of that feature on the model predic-
tion if all other features would remain constant.
The color and direction indicate whether this
effect was positive or negative. The colors indicate
an increase (green) or decrease (red) in model error.

Figure 4.2 shows examples of AP model explana-
tions. The figure on the left displays the different
explanations of a low-error sample. The true age of
the person on the image was 23, the AP model pre-
dicted it to be 18. The figure on the right displays

the different explanations of a high-error sample.
The true age of this person was 35, the AP model
predicted it to be 96.

The colors of the saliency maps indicate the mag-
nitude of the positive effect of that pixel on the
model prediction if all other pixels would remain
constant. A yellow color indicates a high impor-
tance. In case of the low error example it can be
seen that GBP, IG and LIME highlight the shoul-
der, face and part of the background, and hair and
jawline respectively. For the high error example
GBP and IG highlight the face, while LIME focuses
on the forehead and ear.
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Figure 4.2: Explanations generated by GBP, IG and LIME of the AP model

4.2 Evaluation of WQP model expla-
nations

4.2.1 Evaluation individual sample

Figure A.1 shows error curves of DAUC and IAUC
applied to WQP model explanations of an individ-
ual data sample with true quality 3 and predicted
quality 1.98.

According to the DAUC curves all three meth-
ods do not perform ideally. The error decreases
rather than increases, as the most salient features
are deleted. According to the DAUC score LIME
provides the best explanation.

The IAUC curves show that the error decreases
as the first features are inserted. However, es-
pecially for LIME the error increases after that,
meaning that the quality prediction becomes
worse as more features are added to the sample.
According to the IAUC score IG provides the best
explanation.

4.2.2 Average evaluation

Figure A.2 shows the error curves for DAUC and
IAUC applied to the WQP model explanations, av-
eraged over multiple samples. The graphs show the
change in error as features are deleted/added (de-
pending on the evaluation method), averaged over
500 samples.

The DAUC curves show that the error increases
fast, as is expected to happen for good explana-
tions. According to the DAUC score IG best ex-
plains the underlying model. A one-way ANOVA
revealed that there is no statistically significant dif-
ference in DAUC scores between at least two meth-
ods (F (2, 1497) = 0.35, p = 0.70).

The IAUC curves show that the error increases
as more features are added to the sample. LIME is
the best method according to the IAUC score. A
one-way ANOVA revealed that there is a statisti-
cally significant difference in IAUC scores between
at least two methods (F (2, 1497) = 219.80, p =< 2·
10−16). Tukey’s HSD Test for multiple comparisons
found that the mean value of IAUC score is signif-
icantly different between IG and GBP (p = 0.50 ·
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10−3, 95% C.I. = 1.05, 4.52), between LIME and
GBP (p =< 0.01·10−3, 95% C.I. = −13.55,−10.08)
and between LIME and IG (p =< 0.01 · 10−3, 95%
C.I. = −16.33,−12.86).

4.3 Evaluation of AP model expla-
nations

4.3.1 Evaluation individual sample

Figure A.3 shows error curves of DAUC and IAUC
applied to the AP model explanations of an indi-
vidual data sample.
The DAUC curves initially increase for all three

explanation methods, indicating good explana-
tions, but after that the error fluctuates. According
to the DAUC score LIME provides the best expla-
nation.
The IAUC curves show that only for GBP the er-

ror decreases as the most salient pixels are inserted,
indicating a good explanation. However, according
to the IAUC score LIME provides the best expla-
nation.

4.3.2 Average evaluation

Figure A.4 shows the average curves of DAUC and
IAUC applied to the AP model explanations, aver-
aged over multiple samples. The graphs show the
change in error as features are deleted/added (de-
pending on the evaluation method), averaged over
500 samples.
The DAUC curves do not look as expected.

Instead of the error increasing as pixels are
deleted, the error decreases instead. According to
the DAUC score GBP performs best. A one-way
ANOVA revealed that there is a statistically signif-
icant difference in DAUC scores between at least
two methods (F (2, 1497) = 10.19, p = 4.04 · 10−5).
Tukey’s HSD Test for multiple comparisons found
that the mean value of DAUC scores is signif-
icantly different between LIME and GBP (p =
0.17 · 10−3, 95% C.I. = −130.10,−34.33), and be-
tween LIME and IG (p = 0.48 · 10−3, 95% C.I.
= −124.98,−29.22). There is no statistically signif-
icant difference between IG and GBP (p = 0.97).

The IAUC curves of GBP and IG also initially do
not show expected results as the error increases at
first, but then the error does go down when about
40% of the pixels are added. According to the IAUC

score LIME performs best. A one-way ANOVA re-
vealed that there is a statistically significant dif-
ference in IAUC scores between at least two meth-
ods (F (2, 1497) = 9.55, p = 7.58 · 10−5). Tukey’s
HSD Test for multiple comparisons found that the
mean value of IAUC scores is significantly differ-
ent between LIME and GBP (p = 0.25 · 10−3, 95%
C.I. = −107.65,−27.22) and between LIME and IG
(p = 0.91·10−3, 95% C.I. = −102.19,−21.75. There
is no statistically significant difference between IG
and GBP (p = 0.95).

4.4 Results user study

57 respondents filled in the survey, of which 32 had
no experience working or studying in the field of AI
and 21 had a little or a lot of experience.

Figure 4.3 shows the vote counts of respondents
without AI experience. IG received the most votes
(203), followed by LIME (186) and GBP (171). A
chi-square test of independence was performed and
showed no significant differences between the vote
counts: χ2(2, N = 1) = 0.8, p = 0.66.

Figure 4.4 shows the vote counts of respondents
with AI experience. IG received the most votes
(141), followed by GBP (133) and LIME (126). A
chi-square test of independence was performed and
showed no significant differences between the vote
counts: χ2(2, N = 1) = 2.7, p = 0.25.

Figure 4.5 shows the results of the two groups
together.

Overall IG received the most votes (344), fol-
lowed by LIME (312) and GBP (304). However a
chi-square test of independence showed no signifi-
cant difference between the vote counts: χ2(2, N =
1) = 2.8, p = 0.25.
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Figure 4.3: Vote counts from respondents with-
out AI experience
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Figure 4.4: Vote counts from respondents with
little or a lot of AI experience
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Figure 4.5: Total vote counts

5 Discussion

5.1 Summary of results

Table 5.1 shows a summary of the results of the
average evaluation. The first two columns specify
the model and the evaluation method. The third
column is split into three and displays the high-
est scoring explanation methods from left to right,
left being the highest scoring. The last column in-
dicates whether the difference between the best ex-
planation methods and the others was significant.

For the WQPmodel IG performed best according
to the DAUC score, but not significantly. LIME
performed best according to the IAUC score.

For the AP model GBP performed based accord-
ing to the DAUC, LIME performed best according
to the IAUC score and IG received the most votes
in the user study, although the differences in votes
were not significant.

The analyses done in this Bachelor thesis did
not point to one favourite explanation model, but
LIME performed best in two comparisons with sig-
nificant differences. The fact that this method is

model-agnostic and can therefore be applied to any
model [Molnar, 2022] might have had an influence
on this outcome. It would be interesting to com-
pare the results of LIME with other model-agnostic
methods like SHAP [Lundberg and Lee, 2017].

A notable result that can be pointed out is that
the error on the averaged DAUC graphs (Figure
A.4) of the AP model explanations decreases to the
same low error when 100% of the pixels are deleted
from the sample. This would mean that the model
predicts the age of an all-black image very well,
which is questionable.

5.2 Influencing factors

As discussed in the introduction, most research on
explanation methods is done on classification prob-
lems, which is why most methods are designed or
optimised for classification models. This research
can be seen as an exploratory analysis of GBP,
IG and LIME applied to regression models. It is
difficult to say if the application of these methods
was successful, as there are a variety of factors that
could have influenced the results.

5.2.1 Data type

Figure A.4 shows that all DAUC curves and two out
of three IAUC curves display unexpected results,
indicating low-quality explanations. This may sug-
gest that all three explanation methods perform
poorly when applied to a regression model trained
on image data.

Bennetot et al. [2021] provide a schematic
overview of what explanation method to use for dif-
ferent data types. For explaining a model trained
on tabular data they suggest to use SHAP while
for image data they suggest to use Grad-CAM.
SHAP is model-agnostic, just like LIME, and can
be seen as the improved version of LIME. Perhaps
SHAP would be able to explain regression mod-
els better than LIME. Grad-CAM is a gradient-
based method, just like GBP and IG. However
Grad-CAM is developed for classification models
[Selvaraju et al., 2016], and is therefore not appli-
cable to regression problems. These examples sug-
gest ideas for future research on explanation meth-
ods for regression models that keep the underlying
datatype in mind.
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Model Evaluation method Explanation method Significant difference?

WQP
DAUC IG LIME GBP No
IAUC LIME GBP IG Yes

AP
DAUC GBP IG LIME Yes
IAUC LIME IG GBP Yes
User study IG LIME GBP No

Table 5.1: Overview results of the average evaluation, displaying the model type, the evaluation
method, the explanation methods ordered by evaluation score (best scoring on the left) and an
indication of significance

5.2.2 Evaluation metrics

The quality of the DAUC and IAUC evaluation
metrics is a topic of discussion in the literature.
Gomez et al. [2022] argue that DAUC and IAUC
are not the best options for evaluating explanations
of CNN models. DAUC and IAUC only look at
the ranking of saliency values, and not at the ac-
tual values themselves. This is problematic because
it is possible to change the saliency values while
keeping the same rank. The saliency map will look
vastly different, while the DAUC and IAUC scores
remain the same. Gomez et al. [2022] suggest two
other methods, that use two different properties of
the saliency methods ignored by DAUC and IAUC:
sparsity and calibration. Sparsity is a term describ-
ing the focus of the saliency maps. Saliency maps
that highlight specific parts of the image are eas-
ier to interpret for humans, and could therefore be
considered better explanations. Calibration would
be visible in the saliency map by the luminosity
of that pixel, representing the importance of that
pixel on the class score. This is not taken into ac-
count in the DAUC and IAUC scores. The evalua-
tion methods that Gomez et al. [2022] suggest are
the Sparcity Metric, Deletion Correlation (DC) and
Insertion Correlation (IC). It would be useful to in-
vestigate the results of these evaluations in future
research.

5.2.3 Model quality

Both regression models considered in this Bache-
lor thesis did not achieve a high performance since
the validation error was 0.55 MSE for the WQP
model and 0.51R2 for the AP model. The model
quality might have had an effect on the explana-
tions, as according to Letzgus et al. [2021] post-hoc
explanation methods assume the underlying model

is the best performing model for that task. Future
research could apply GP, IG and LIME to high-
performing models to see if model quality had an
effect of the results found here.

5.3 Future research

As discussed above, interesting factors to consider
in future research are other model-agnostic ex-
planation methods, data type, evaluation metrics
and regression models with better performance.
Furthermore, as was discussed in the introduction
there is a debate in the literature between inter-
pretable models and black box models. Another in-
teresting path of future research is to extend the
comparison to interpretable models as well.

This Bachelor thesis focused on local attribution-
based explanation methods. It can be argued that
these methods therefore produce somewhat limited
explanations [Letzgus et al., 2021]. Global expla-
nation methods might more closely approach the
ground truth explanation, which is why one can
argue that instead more focus should go towards
global explanation methods. Guidotti et al. [2019]
describe a global explanation method consisting of
several local approximations (similar to the expla-
nations generated by LIME) combined to form a
global approximation of the global decision func-
tion. Guidotti et al. [2019] developed a two-step
approach: the local step that will generate all the lo-
cal explanations, and the local-to-global step, which
will combine different local explanations based on
similarity to form the global explanation. However,
a situation in which a black box model is explained
using a black box explanation method should be
avoided. The notion of similarity used in the local-
to-global step is a mathematical description of sim-
ilarity, which is quite abstract.
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Khakzar et al. [2022] observed that different
attribution-based explanation methods applied to
the same model can point to different salient fea-
tures, which is what happened in this Bachelor the-
sis as well. They suggest to do additional experi-
ments to test if provided explanations are in agree-
ment with certain axioms. These axioms are formal-
isations of desirable properties that an attribution-
based explanation method should have. As an ex-
ample, one of the axioms is the Null-player axiom,
similar to the Sensitivity Axiom as discussed in Sec-
tion 3.3.2. Future research could perform the exper-
iments suggested by Khakzar et al. [2022] on the
results of the explanation methods discussed here.
Finally, other interesting directions of future re-

search could be to compare post-hoc explanations
of black box models to the results of inherently in-
terpretable models, for example a decision tree, and
to develop new explanation methods tailored to re-
gression problems.

6 Conclusions

The question that this Bachelor thesis aimed to
answer was: How do different explanation methods
compare when applied to regression models?

The process of answering the research question
is guided by the following subquestions:

1. How do different explanation methods of re-
gression tasks on tabular data compare?

2. How do different explanation methods of re-
gression tasks on image data compare?

Two regression models were implemented, a wine
quality prediction (WQP) model trained on tabular
data and an age prediction (AP) model trained on
image data.
To these models three different local attribution-

based explanation methods were applied and the
results of those were evaluated and compared.
The explanation methods used were Guided Back-
propagation (GBP), Integrated Gradients (IG) and
Local Interpretable Model-agnostic Explanations
(LIME), all falling under the category of local
attribution-based methods. The results of the ex-
planation methods were evaluated using the Dele-
tion Area Under the Curve (DAUC) and Insertion

Area Under the Curve (IAUC) evaluation metrics,
and an additional qualitative evaluation was done
on the AP model explanations in the form of a user
study.

The results of the quantitative evaluation meth-
ods were displayed for explanations of individual
data samples, and averaged over the explanations
of 500 data samples.

These analyses allowed the research question to
be answered. In the case of the WQP model IG per-
formed best according to the DAUC score, although
not significantly, and LIME performed best accord-
ing to the IAUC score. In the case of the AP model,
GBP performed best according to the DAUC score
and LIME performed best according to the IAUC
score. Additionally, according to the user study IG
performed best, however the difference between the
number of votes was not significant.

Future research could go into applying and eval-
uating different existing explanation methods to re-
gression problems, using different evaluation met-
rics, testing explanation methods on models with
higher performance, global explanation methods
or developing experiments to scientifically evalu-
ate explanations. Furthermore, post-hoc explana-
tions could be compared to inherently interpretable
models and new explanation methods could be de-
veloped especially for regression models.

The results of this Bachelor thesis could help re-
duce the focus on classification problems and give
some attention to regression problems in XAI.
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A Results quantitative evaluations

A.1 Evaluation of WQP model explanations
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Figure A.1: DAUC and IAUC applied to three different WQP model explanations of an individual
sample with true quality 3 and predicted quality 1.98
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Figure A.2: Average curves of the DAUC and IAUC evaluation methods of GBP, IG and LIME
explanation methods applied to the WQP model
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A.2 Evaluation of AP model explanations
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Figure A.3: DAUC and IAUC applied to three different explanations of the AP model of an
individual sample with true age 40 and predicted age 42.63
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Figure A.4: Average curves of the DAUC and IAUC evaluation methods of GBP, IG and LIME
explanation methods applied to the AP model

18



B Model architectures

B.1 MLP - Wine quality prediction model

1 def custom_layer(tensor):

2 return tensor * 6

3

4 inputs = tf.keras.Input(shape =( num_features ,))

5 x = tf.keras.layers.Dense (16, activation=’relu ’)(inputs)

6 x = tf.keras.layers.Dense(8, activation=’relu ’)(x)

7 outputs = tf.keras.layers.Dense(1, activation=’sigmoid ’)(x)

8 outputs = tf.keras.layers.Lambda(custom_layer)(outputs)

B.2 Resnet - Age prediction model

1 def resnet_layer(inputs , num_filters =16, kernel_size =3, strides=1, activation=’relu ’,

batch_normalization=True , conv_first=True):

2

3 conv = Conv2D(num_filters , kernel_size=kernel_size , strides=strides , padding=’same ’)

4

5 x = inputs

6 if conv_first:

7 x = conv(x)

8 if batch_normalization:

9 x = BatchNormalization ()(x)

10 if activation is not None:

11 x = Activation(activation)(x)

12 else:

13 if batch_normalization:

14 x = BatchNormalization ()(x)

15 if activation is not None:

16 x = Activation(activation)(x)

17 x = conv(x)

18 return x

19

20 def custom_layer(tensor):

21 return tensor * 100

22

23 def resnet_v1(input_shape , depth):

24

25 if (depth - 2) % 6 != 0:

26 raise ValueError(’depth should be 6n+2 (eg 20, 32, 44 in [a]) ’)

27 # Start model definition.

28 num_filters = 16

29 num_res_blocks = int(( depth - 2) / 6) # 3

30

31 inputs = Input(shape=input_shape)

32 x = resnet_layer(inputs=inputs)

33

34 # Instantiate the stack of residual units

35 for stack in range (3):

36 for res_block in range(num_res_blocks):

37 strides = 1

38 if stack > 0 and res_block == 0: # first layer but not first stack

39 strides = 2 # downsample

40 y = resnet_layer(inputs=x,num_filters=num_filters ,strides=strides)

41 y = resnet_layer(inputs=y,num_filters=num_filters ,activation=None)

42 if stack > 0 and res_block == 0: # first layer but not first stack

43 # linear projection residual shortcut connection to match

44 # changed dims

19



45 x = resnet_layer(inputs=x,num_filters=num_filters ,kernel_size =1,strides=

strides ,activation=None ,batch_normalization=False)

46 x = keras.layers.add([x, y])

47 x = Activation(’relu ’)(x)

48 x = Dropout(rate =0.25)(x)

49 num_filters *= 2

50

51 # v1 does not use BN after last shortcut connection -ReLU

52 x = AveragePooling2D(pool_size =8)(x)

53 y = Flatten ()(x)

54 outputs = Dense(1, activation=’sigmoid ’)(y)

55 outputs = keras.layers.Lambda(custom_layer , name=" lambda_layer ")(outputs)

56

57 # Instantiate model.

58 model = Model(inputs=inputs , outputs=outputs)

59 return model
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C Introductory text user study
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