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Abstract 
Purpose: 

Taste loss is a common side effect of head and neck cancer (HNC) radiotherapy treatment, and its 

prediction is important to increase the health and quality of life of survivors. This project aimed to 

improve the prediction of late taste loss at six months after treatment compared to previously 

developed logistic regression normal tissue complication probability (NTCP) models for patients 

undergoing radiation therapy for HNC by including a tongue mucosa structure in existing conventional 

NTCP models as well as developing a deep learning based NTCP model.  

Materials and Methods: 

Included patients with HNC were treated with radiotherapy between 2007 and 2022. The baseline 

model was derived from the NTCP model by Van den Bosch et al. with oral cavity mean dose, parotid 

gland mean dose and age as parameters of the logistic regression model. The new tongue mucosa 

structure was derived from the existing oral cavity structure and their mean dose performances in the 

logistic regression model were compared by performing a univariate analysis and model refit. A deep 

convolutional neural network (DCNN) and residual convolutional neural network (rCNN) were trained 

systematically using CT, organ segmentation and 3D dose distribution as input.   

Results: 

Of 949 included patients with HNC and available endpoint data, 26.5% (n = 252) patients reported 

moderate-severe taste loss at 6 months post treatment. A univariable analysis showed that the oral 

cavity mean dose was a more important predictor than the tongue mucosa mean dose, but that the 

tongue mucosa was still preferred over the parotid gland mean dose and age at treatment. The logistic 

regression model with the tongue mucosa mean dose (AUC: 0.717; calibration slope: 1.02) did not 

perform better than the reference model with oral cavity mean dose (AUC: 0.724; calibration slope: 

1.01). The DCNN (AUC: 0.682) and rCNN (AUC: 0.684) both performed worse than the reference model 

(AUC: 0.692) on the test set. 

Conclusion: 

This study presented two different NTCP models based on a new tongue mucosa structure and deep 

learning-based approach to predict taste loss in HNC patients at 6 months post treatment. No 

improvement to existing models was achieved and more work must be done to optimize the 

techniques used. 
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1. Introduction 
Head and neck cancer (HNC) is among the ten most common types of cancer worldwide (1, 2). HNC 

includes different cancer locations in the upper aerodigestive tract such as oral cavity, oropharynx and 

larynx (3). In 2019 more than 3100 patients were diagnosed with HNC in the Netherlands (4). 

Radiotherapy, either in combination with surgery or chemotherapy or stand-alone, is a pivotal 

treatment of HNC; with around 2000 patients treated with radiotherapy in the Netherlands yearly. In 

recent years, the number of relatively young HNC survivors is growing. More intensified treatment 

regimens like fractionation and intensity-modulated radiotherapy (IMRT) have been developed that 

resulted in improved overall survival (5–7). Furthermore, the incidence of human papilloma virus 

(HPV)-related tumours has increased, especially for HPV associated oropharyngeal cancer which have 

more favourable outcomes (8–10). Survivors may suffer from side effects years after treatment that 

gravely impact their quality of life (11, 12). This stresses the importance of preventing late radiation-

induced toxicities, which may persist or occur years after treatment. 

Patients undergoing radiotherapy treatment for head and neck cancer are likely to experience taste 

loss or taste alteration as a side effect (13, 14). Being able to taste has three main purposes: pleasure, 

defence, and sustenance. When deprived of this sense, malnutrition and gastrotomy tube 

dependency, as well as a general lower quality of life can be the consequence (13). Taste alteration 

has a huge impact on the patients quality of life and is among the 5 highest patient scored symptom 

scores (15) and shows a maximum around 6 months after treatment (15, 16). Predicting taste loss 

prior to treatment in HNC patients is important to increase the health and quality of life of survivors. 

Side effects and the general risk of radiation-induced toxicity are commonly predicted by normal tissue 

complication probability (NTCP) models. Their prediction can be used to choose treatment techniques 

or adjust treatment plans to achieve a more favourable outcome. Conventional NTCP models are for 

example used in current practice when comparing the radiation plans of photon and proton irradiation 

techniques. An NTCP model for all major HNC radiation therapy related toxicities was developed in 

recent years by Van den Bosch et al. (17). Their model for late taste loss at six months had an area 

under the curve (AUC) of 0.68 on their development cohort with parotid gland mean dose, oral cavity 

mean dose and age as predictors. However, the restriction to mean dose values of conventionally used 

organ at risk (OAR) structures does not allow the NTCP to sufficiently model the large variation 

between patients. 

A possible solution for more accurate prediction was introduced by Stieb et al. (18) suggesting that 

the dose given to the taste bud bearing tongue mucosa might be an alternative predictor to the oral 

cavity for late taste loss in HNC patients. Furthermore, in line with the current improvements and 

research in this field, the use of a deep learning model to achieve a toxicity prediction based on 3D 

voxel-wise distributions of dose as well as three dimensional CT images might allow for an NTCP model 

based on more detailed and less global predictions. 

This project aimed to improve the prediction of late taste loss at six months after treatment compared 

to previously developed logistic regression NTCP models for patients undergoing radiation therapy for 

HNC by including a tongue mucosa structure in existing conventional NTCP models as well as 

developing a deep learning based NTCP model.  
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2. Background 

2.1 Radiation therapy 
Radiation Therapy, next to chemotherapy or surgery, is one of the common treatment options for 

patients with cancer. It is based on the damaging effect that ionizing radiation has on tissue cells. The 

radiation causes DNA breaks to be induced that prohibit a cell from dividing successfully if not repaired 

in time. A cell that cannot divide successfully due to damaged DNA will die. Since cancerous cells divide 

very fast, they have a higher radiosensitivity than normal tissue and this effect can be utilized in 

radiotherapy.  

The prescribed radiation dose is given in smaller fractions over multiple days allowing the normal 

tissue to repair damaged parts of DNA while the faster dividing cancer cells die. Still, the dose given to 

normal tissue and especially radiosensitive OAR must be minimized as much as possible to avoid 

toxicities. Recent improvements in photon beam treatment techniques include volumetric modulated 

arc therapy (VMAT). Compared to conventional techniques with a single or a few beam angles, this 

newer method delivers the radiation dose continuously as the treatment machine rotates. This allows 

for closer target coverage while simultaneously improving the sparing of OARs (19). 

A treatment plan is created for each patient prior to radiotherapy. MRI and PET-CT images are used 

as guidance when the tumour volume and OARs are delineated on the planning CT. In a designated 

software, constraints can be given to all available structures. These constraints will for example often 

be a minimum dose to the target volume and a maximum dose to OAR. A computer algorithm, often 

a Monte Carlo Simulation, will determine the most optimal treatment plan based on the given 

constraints. The treatment plan can be accepted by the treating clinicians once all constraints are met.  

2.2 Deep learning models in medicine  
Deep learning is a fast-growing field of innovation and research that is being applied to all areas of our 

everyday life. It allows computational models with multiple processing layers to learn representations 

of data using the method of abstraction (20). From basic image classification tasks to autonomous 

driving, deep learning methods are able to deliver state-of-the-art performance. The medical field has 

picked up on the large potential in recent years and many research groups have focussed their interest 

on this topic. The publication by Egger et al. (21) summarizes the findings from all PubMed review 

articles published between 2017 and 2019 on deep learning in the medical field. It demonstrates the 

variety in applications and increased interest across all medical domains. The potential in the field of 

radiation oncology is specifically demonstrated by Boldrini et al. (22). They conclude that deep 

learning, when implemented in a hospital setting, may aid clinicians when predicting treatment 

outcomes and toxicities, as well as allowing for fast and robust segmentation. 

2.3 Outcome and toxicity prediction using deep learning 
Appelt et al. (23) gives an overview of ten published papers from recent years using deep learning 

methods for outcome prediction including 3D dose information. The discussed studies lay the 

groundwork for the technical application of convolutional neural networks-based models that input 

imaging and clinical data to predict oncologic outcomes following radiotherapy. Additionally, these 

could lead to a better understanding of spatial variation in radiosensitivity. Nevertheless, these studies 

are challenged by the small number of patient data available and the lack of external validation. Zhen 

et al. (24) published a study on utilizing a deep convolutional neural network (DCNN) to predict rectum 

toxicity in cervical cancer patients treated with radiotherapy. They achieved satisfactory prediction 

results using a transfer learning approach. With this approach, a pre-trained model that was 

developed on a large patient cohort is tuned to fit a new application. In this way the common issue 
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with limited patient data when training a DCNN from scratch can be overcome. Another study by 

Ibragimov et al. (25) developed a convolutional neural network (CNN) that recognized the importance 

of sparing certain normal tissue regions to avoid radiation-induced toxicity. Only CT images and dose 

distributions were given as input and no organ segmentations.  

The study most related to the research presented in this thesis was published by Men et al. (26) in 

2019. The authors trained a deep learning model for predicting xerostomia due to radiation therapy 

in head and neck cancer patients. The data of 784 patients treated with photon radiation therapy for 

squamous cell carcinoma was used, out of which 279 patients were categorized as toxicity cases and 

505 patients as non-toxicity cases. The planning CT, 3D dose distribution, and segmentation contours 

of the parotid and submandibular glands were used as input for a residual CNN. Better results than 

with their own logistic regression model were achieved. 

2.4 NTCP model 
To predict or estimate the risk of radiation-induced complication and toxicity, normal tissue 

complication probability (NTCP) models are often used. An NTCP model calculates the probability that 

a given dose of radiation will cause an organ or structure to experience complications. According to 

Van den Bosch et al. (17, 27) suitable NTCP models, that contain the most relevant OAR with reliable 

dose-response estimates, were lacking, leading to their own study on developing a comprehensive 

toxicity risk profiling for head and neck cancer. Because their NTCP model will be used as a comparison 

model for this research, I will briefly describe their methods and findings.  

The comprehensive individual toxicity risk (CITOR) profile consists of NTCP models for 22 common 

toxicities related to head and neck cancer treatment at 10 time points during and after treatment. 

Multiple individual models that predict the toxicity risk for each toxicity and each time point 

individually were developed and then combined to create a single output. Their goal was to accurately 

model dose-response relationships that can be used to individualize treatment optimization resulting 

in the lowest overall toxicity burden. In order to create the model initial candidate predictors were 

picked based on prior knowledge and clinical expertise. This was done per toxicity domain. Taste loss 

falls under the domain of salivary toxicity and the initial predictors picked were mean dose to parotid 

glands, submandibular glands, oral cavity and buccal mucosa, integral dose, age, neck irradiation, 

treatment modality, tumour site, baseline toxicity, volume of the parotid glands and volume of the 

submandibular glands. The predictor selection was then done by univariable analysis. The final 

parameters picked as inputs for the logistic regression model for taste toxicity at 6 months can be seen 

in Table 1.  

Logistic regression models are commonly used to predict a binary outcome given a set of input 

parameters. This is done according to Formula (1), where β0 is the intercept and βi is the regression 

coefficient multiplied by a predictor value xi. In the case of taste loss prediction in the Van den Bosch 

et al. study, the three parameters are age, parotid mean dose and oral cavity mean dose. Their 

regression coefficient values are shown in Table 1. More information on the materials and methods 

used can be found in the publications by Van den Bosch et al. (17, 27). 

 

𝑝 =  
1

1 + 𝑒(𝛽0+∑ 𝛽𝑖𝑥𝑖
𝑚
𝑖=1 ) 

 
(1) 
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Table 1: Regression coefficients used for the logistic regression model by Van den Bosch et al. with parotid mean dose, oral 
cavity mean dose and age as predictors. (a: ln(mean dose to both parotid glands); b: sqrt(mean dose to oral cavity)) 

 Regression coefficient 
Parotid mean dose (β1)a 0.3171 
Oral cavity mean dose (β2)b 0.1879 
Age (β3) 0.0238 
Intercept (β0) -4.5092 

 

2.5 DCNN 
Deep convolutional neural networks (DCNNs) are commonly used for pattern or object detection in 

video and image data. Most neural networks comprise of multiple layers performing different 

functions (28). Convolutional layers automatically extract features within the image by applying 

convolutional filters. The filter is moved over the image in every dimension, calculating the dot product 

of the filter elements with the corresponding image values in every step to create an activation map. 

Different filters are convolved with the input image to detect different features. Pooling layers are 

placed in between convolutional layers to reduce the spatial size of the network. This down sampling 

reduces the number of parameters as well as computational load and can help against overfitting. This 

is mostly done by average pooling or maximum pooling where either the average or the maximum 

value from a pool is saved while the others are dropped. (29) The last layers usually include a fully 

connected layer that is a complete connection between all individual activations from the layer before. 

2.6 rCNN 
Adding an indefinite number of layers to the previously described DCNN is not possible due to 

degradation issues as the accuracy gets saturated with increasing network depth. In a residual 

convolutional neural network (rCNN), layers are skipped when their effect on the model performance 

is zero or negative using skip connections. This keeps the network from decreased performance in 

deep layers (30). While this type of network was designed for very large numbers of layers it can work 

also for more shallow networks. 
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3. Materials and Methods 
In the following the material and methods applied in this research will be described. This section will 

be split up in a general overview of the patient cohort, methods used for the fitting of the logistic 

regression NTCP model and developing the NTCP with an alternative tongue mucosa structure, and 

the methods used for training and analysing the deep learning prediction model. 

3.1 Patient cohort 

Data collection 

Prospective data collection was performed for all patients irradiated for head and neck at the 

University Medical Center Groningen (UMCG) between 2007 and 2022, and the toxicity and clinical 

data was stored in the internal REDCAP system. The clinical data contained all available clinical 

variables as sex, age, tumour location and radiation strategy used, as well as patient and clinician 

scored toxicity records from during and after the treatment. For each patient in the cohort a planning 

CT was created prior to the treatment start. Clinicians of the UMCG delineated the target volume and 

neighbouring OAR on the planning CT, resulting in a set of structures combined in a structure file, 

referred to as RTSTRUCT. All RTSTRUCT files must at least contain the structures listed in Table 2 that 

are of interest to this and related projects. The dose plans were created in accordance with the Dutch 

treatment guidelines and the 3D dose volume file will in the following be referred to as RTDOSE. A 

correct match between the CT and RTSTRUCT, as well as between the CT and RTDOSE was checked 

using the Frame of Reference Unique Identifier (FoR UID) that must match for data within the same 

reference frame. For patients with missing structures, deep learning contouring (DLC) structures had 

to be used instead, where CT slices are used as the input to predict the RTSTRUCT. A visual check was 

performed on a few selected cranial and transversal CT slices per patient to determine bad artefacts 

created by metal fillings or implants.  

Table 2: Overview of relevant structures that must be part of the available RTSTRUCT set. “External” referrs to the entire 
region of the body included in the CT and therefore the radiation therapy planning. 

Buccal mucosa left Parotid gland left 
Buccal mucosa right Parotid gland right 
Cervical oesophagus Pharyngeal constrictor muscle (PCM) inferior 
Cricopharyngeal muscle (Crico) Pharyngeal constrictor muscle (PCM) medior 
External  Pharyngeal constrictor muscle (PCM) superior 
Oral cavity Submandibular gland left 
Supraglottic larynx area Submandibular gland right 

 

Treatment 

All patients were treated according to the Dutch guidelines for head and neck cancer and in this case 

more specifically squamous cell carcinoma. Patients with stage I or II received accelerated 

radiotherapy under the age of 70 and conventional fractionated radiotherapy above the age of 70. For 

patients with advanced stages III and IV the treatment guideline advises conventional fractionated 

radiotherapy for patients above the age of 70, while younger patients were treated with concurrent 

platinum based chemoradiation. In case chemotherapy was not possible due to the general fitness of 

the patient, accelerated radiotherapy with or without weekly cetuximab was given. For conventional 

fractionated radiotherapy 33 or 35 fractions of 2.0 Gray were given five times per week and for 

accelerated radiotherapy 33 or 35 fractions of 2.0 Gray were given six times per week.  
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Eligibility criteria 

The inclusion criteria for patients used in this project include a minimum age of 18 years at the start 

of the radiotherapy treatment, squamous cell carcinoma (SCC) tumour histology, no previous surgery 

of the tumour or a neck dissection prior to the radiotherapy treatment. An exception was made for 

tonsillectomy. Furthermore, no previous irradiation of the head and neck region can be reported, 

patients have a M0 status and therefore no metastasis and they must have received treatment with 

curative intent. A complete-case analysis was chosen where only patients with available endpoint and 

baseline data were considered in the analysis. Week 1 was being used as baseline due to the multitude 

of missing week 0 scores.  

Endpoints 

The taste loss score is recorded based on a 4-point Likert scale with the patient reported items none 

(“helemaal niet”), mild (“een beetje”), moderate (“nogal”) and severe (“heel erg”) in the EORTC QLQ-

H&N35 questionnaire. These scores are recorded weekly during the treatment, as well as every 6 

months after the treatment for the first two years and afterwards yearly as part of the follow up 

procedure. In this project none-mild and moderate-severe were combined to allow for comparability 

with the Van den Bosch et al. study.   

Data organization 

The CT, RTSTRUCT and RTDOSE files were retrieved for all eligible patients. Mean dose and volume 

measures for all OAR were calculated with a MATLAB (version MATLAB R2018a) script using the 

available CT, RTSTRUCT and RTDOSE files. For structures located on two sides, like the parotid gland, 

combined structures were defined, and their mean dose and volume parameters calculated in 

addition to the individual single sides. Dose-volume histograms (DVHs), which are histograms relating 

radiation dose to tissue volume, were the base of the mean dose calculations. 

The data set was split into a training (70%), validation (15%), and test set (15%), by choosing a random 

seed under the condition of comparable event rates in all subsets. An appropriate seed is important 

to be able to reproduce network performance when training a neural network and ensure a 

comparable patient cohort in the training, validation, and test sets. The seed is the initialization state 

of a pseudo-random number generator determining the distribution of data into specified subsets. 

This means that the same seed used twice will generate the exact same random distribution of data 

in both cases.  

Performance measures 

All model performances were primarily evaluated and compared using the area under the curve (AUC). 

A higher AUC means that the model performs better at distinguishing between the positive and 

negative classes, so in this case with or without taste loss at 6 months. Additionally, R2 tests, Hosmer–

Lemeshow χ2 tests and the calibration and discrimination slopes were used as a measure of good fit. 

Calibration curves were also plotted to allow for an additional visual comparison.  

3.2 Reference NTCP model for taste loss 
The NTCP model for taste loss at 6 months, as detailed in the paper by Van den Bosch et al (17, 27), 

served as baseline model in the current study. The age at the start of the radiation therapy treatment 

as well as the mean dose to the parotid glands and the oral cavity were included in the logistic 

regression model according to Formula (2). Note that the logarithm of the parotid gland mean dose 

and the square root of the oral cavity mean dose were used.  
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𝑝 =  
1

1 + 𝑒(𝛽0+𝛽1𝑥1+𝛽2𝑥2+𝛽3𝑥3) 
 

(2) 

With: 

𝛽0 =  −4.5092  

𝛽1𝑥1 = 0.3171 × ln (𝑃𝑎𝑟𝑜𝑡𝑖𝑑 𝑚𝑒𝑎𝑛 𝑑𝑜𝑠𝑒) 

𝛽2𝑥2 = 0.1870 ×  √𝑂𝑟𝑎𝑙 𝑐𝑎𝑣𝑖𝑡𝑦 𝑚𝑒𝑎𝑛 𝑑𝑜𝑠𝑒 

𝛽3𝑥3 = 0.0238 ×  𝐴𝑔𝑒 

A performance evaluation on our patient cohort was performed using the coefficients of the Van den 

Bosch et al. model. For the training patient cohort, a refit of the reference model was created by 

calculating new predictor coefficients (β1 – β3 coefficient) as well as a new intercept (β0 coefficient). 

This represents the best possible fit in the training population used in this project. These coefficients 

were then applied to create a logistic regression model for the validation and test sets. 

3.3 NTCP model with tongue mucosa structure  
Stieb et al. (18) introduced a contouring guideline for the taste bud bearing tongue mucosa with the 

intention to allow for more precise analysis of the dose distribution within the oral cavity. In the 

available CT images the whole tongue as well as the taste bud bearing tongue mucosa were delineated 

using two different methods. The difference between the whole tongue delineation and the 

commonly used oral cavity contour (31) is an exclusion of the soft palate, uvula and air pockets that 

can exist due to the positioning of the tongue. Both methods for the contouring of the taste bud region 

aim to cover the upper surface of the tongue. Method A does this using an adaption/subtraction 

method with the whole tongue structure as a starting point, while method B uses a freehand 

approach. A thickness of 5 mm was used with both methods to make dosimetric analysis as well as 

potential imaging biomarker evaluation possible. 

This contouring guideline was approximated to evaluate the performance of an NTCP model using the 

mean dose to the taste bud bearing tongue mucosa instead of the entire oral cavity mean dose. 

However, since a manual delineation of the tongue mucosa structure in the entire patient cohort was 

not feasible for this project, it was derived from the oral cavity structure in MATLAB.  

All patients were divided in three subsets based on visual inspection of their CT images. The first subset 

contained all patients that showed strong metal artefacts in the region of the oral cavity, due to dental 

fillings or implants. The second subset contained patients that were either treated with an open 

mouth or had large air-filled gaps between the tongue and the palate caused by an unusual placement 

of the tongue. All other patients that did not fall into either of these two subsets were labelled 

“normal”. Depending on the subset a slightly different technique was used to create the structure of 

the taste bud bearing tongue mucosa, i.e., tongue mucosa structure. The techniques chosen aimed to 

make a conservative structure that includes the upper layer of the tongue while excluding the palate 

in all patients. 

Using the oral cavity structure as a starting point, the most cranial layer of voxels was removed for 

normal and artefact subsets and the three most cranial voxel layers were removed for the air gap 

subset. Air was filtered out by applying a Hounsfield thresholding with a lower cut-off at -500 HU and 

an upper at 500 HU. From the resulting tongue structure, the most cranial layer of four voxels 

thickness was selected as the taste bud bearing tongue mucosa for normal and air gap subsets. This 

equated to a thickness of 8 mm. For the artefact subset the most cranial layer of 8 voxels was selected 

with a thickness of 16 mm. The posterior quarter of the structure was then cut off to resemble the 
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length indicated by Stieb et al. (Figure 1). The corresponding mean dose and volume were calculated 

using the DVH. 

The tongue mucosa mean dose was compared to the originally used oral cavity mean dose, as well as 

the parotid gland mean dose and age in a univariable analysis. Furthermore, a refit of the reference 

model was performed using the tongue mucosa mean dose instead of the oral cavity mean dose to 

compare their performance. 

 

Figure 1: The three different sub-groups of patients with strong metal artefacts (left), normal tongue position (middle) and 
large airgap or open mouth (right) with the original oral cavity structure shown in green and the computed tongue mucosa 
structure in red. 

 

3.4 Deep learning model 

Pre-processing for deep learning model 

For every patient where the FoR UID between the CT, RTDOSE and RTSTRUCT files matched, the dose 

and CT were registered to ensure a perfect overlay and saved as arrays. The relevant structures were 

extracted from the available RTSTRUCT files, and the resulting segmentation map was saved to a 

separate folder. A cropping region was defined to reduce all files to the same spatial dimensions by 

use of a bounding box. For the three spatial dimensions, the conditions for the centre of the bounding 

box placement were as follows: 

- Z centre: centre coordinate between the most upper voxel (with value > 0) in z-dimension in 

the segmentation map of the parotid glands and the lowest voxel (with value > 0) in z-

dimension in the segmentation map of the crico, thyroid and mandible. 

- Y centre: centre coordinate between the most upper and lowest voxel (with value > 0) in y-

dimension in the segmentation map of the parotid glands. 

- X centre: centre coordinate between the most upper and lowest voxel (with value > 0) in x-

dimension in the segmentation maps of the parotid and submandibular glands. 

The bounding box for this project was chosen to have the dimensions of 100 x 100 x 100 voxels at a 

spacing of 2 x 2 x 2 mm3 and the cropped arrays therefore had the same size. Other operations that 

were done if needed included spacing correction, value clipping in the CT images and transformations 

like resizing on all three components (CT, RTDOSE, segmentation map). Since the resulting arrays all 

had the same dimensions, they could be concatenated into a single NumPy array. 

Patients with a taste toxicity score of “None” and “Mild” at 6 months were appointed label “0” while 

patients with a taste toxicity score of “Moderate” and “Severe” were appointed label “1”. For each 

patient a set of 2D subplots of the CT, RTDOSE and segmentation map was created in order to be able 

to do visual checks for irregularities (Figure 2).  
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Figure 2: Overview plot created of the CT (top), dose (middle) and segmentation map (bottom) during the preprocessing step. 

 

Systematic training of deep learning model 

Multiple deep learning architectures were trained with systematically adjusted parameters. Train-

validation-test experiments were conducted to evaluate the performance of the trained networks 

with an initial focus on the AUC values of the validation and test set.  

The preferred network architectures were chosen based on short test runs on a subset of the patient 

cohort as well as literature (26) and a DCNN, as well as a rCNN were used. The order in which network 

training parameters were adjusted systematically was based on their degree of impact on a network. 

The default starting parameters used for both architectures can be seen in Table A2 (Appendix C), and 

all adjustments described in the following were done by only adjusting the parameter of interest while 

leaving all previously determined parameters the same.  

In an initial step different learning rate schedulers for the cosine scheduler-function were tested 

between the range of T0 = 2 and T0 = 40, where T0 refers to the number of epochs before starting a 

new scheduler iteration. This is demonstrated in Figure 3. The RMSprop and stochastic gradient 

descent (SGD) optimizer functions were tested in combination with this, and both are versions or 

adaptations of the commonly used gradient descent technique. They aim to minimize the loss function 

in steps whose size is defined by a learning rate. They were picked based on previous success in a 

related project on predicting xerostomia in the same patient cohort within the research group. The 

RMSprop optimizer can increase the model’s learning rate by restricting oscillations perpendicular to 

the gradient direction. It achieves this by dividing the learning rate by the moving average of squared 

gradients (32). The stochastic gradient descent (SGD) is an optimization of the traditional gradient 

descent where instead of all data points in the training set a single data point is used to calculate the 

updated model parameter, resulting in faster iterations (32).  

Batch sizes between batch = 2 and batch = 32 were tested; the batch size defines the number of data 

samples that are being passed through the neural network at the same time. Loss functions are used 

to measure the model’s prediction performance and it must be minimized as the model is being 

optimized. Four different loss functions were tested: cross-entropy, F1, L1 and ranking. The cross-

entropy loss function facilitates wrong predictions to be penalized according to a logarithmic scale, 

meaning that larger differences between the predicted and the true value are penalized more than 
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small differences. Furthermore, the F1 loss that minimizes the harmonic mean and the L1 loss function 

which minimizes the absolute error, or the sum of all the absolute differences between true and 

predicted values were tested. The ranking loss function utilizes metric learning to calculate differences 

between images. 

 

Figure 3: Demonstration of a cosine learning rate finder function with T0=16. The orange lines show the start and end of one 
cycle that is iterated after T0 epochs.  

 

After each set of tests, the best performing networks per architecture were chosen based on their 

AUC values and included in the following test. Networks that reached their best performance at less 

than 5 epochs were excluded, as well as networks showing clear signs of overfitting. As a final step 

age was added as an additional predictor in the last layer of both best performing networks to 

determine the added value.  

In addition to the previously described performance measures, attention maps were created using the 

Grad-CAM++ method by Chattopadhyay (33). These attention maps are human-interpretable visual 

explanations of the classification task where areas the neural network pays more and less attention 

to are made visible.  



 

17 
 

4. Results 

4.1 Patient cohort 
Many patients had not filled in all follow up questionnaires and 422 were excluded due to missing 

endpoint data at 1 week and 6 months. After all exclusion steps 949 patients were included to be used 

as part of this project (Appendix B, Figure A1; Table 3). There were no significant differences between 

the subsets for training, validation and testing regarding clinical parameters and average mean dose 

values. For 16 patients DLC structures were used instead of pre-existing RTSTRUCTS due to missing 

structures. An overview of relevant OAR dose parameters with the average mean dose calculated on 

the entire cohort and all sub-cohorts and their standard deviation can be seen in Table 4. 

The number of included patients treated yearly in the UMCG for HNC increased from 40 (33 male and 

7 female) in 2007 to 84 (64 male and 20 female) in 2020 (Figure 4). 76 patients treated in the second 

half of 2021 and the beginning of 2022 had not completed the follow up (FU) trajectory enough to be 

able to be included for this project. The distribution of endpoint data in this patient cohort showed 

26.5 % of patients experiencing moderate – severe taste loss at 6 months compared to 4.3 % at week 

1 (Figure 5). 
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Table 3: Patient, tumour and treatment characteristics for the entire patient cohort in comparison to the training, validation 
and test sub-cohorts. 

 
All  Training 

 
Validation 

 
Test 

 
p-value 

n 949  664 
 

143 
 

142 
 

 

Sex (%)   
      

0.32 

   Male 711 (74.9) 494 (74.4) 114 (79.7) 103 (72.5)  

   Female 238 (25.1) 170 (25.6) 29 (20.3) 39 (27.5)  

Age (SD) 64 (9.8) 63.6 (10.0) 64.3 (9.0) 64.5 (10.8) 0.56 

Technique (%)   
      

0.61 

   3D-CRT 69 (7.3) 42 (6.3) 14 (9.8) 13 (9.2)  

   IMRT 426 (44.9) 303 (45.6) 59 (41.3) 64 (45.1)  

   IMPT 133 (14) 90 (13.6) 24 (16.8) 19 (13.4)  

   VMAT 321 (33.8) 229 (34.5) 46 (32.2) 46 (32.4)  

Loctum (%)   
      

0.53 

   Other 4 (0.4) 3 (0.5) 1 (0.7) 0 (0)  

   Hypopharynx 79 (8.3) 57 (8.6) 11 (7.7) 11 (7.7)  

   Larynx 416 (43.8) 294 (44.3) 55 (38.5) 67 (47.2)  

   Nasopharynx 38 (4) 26 (3.9) 8 (5.6) 4 (2.8)  

   Nasal cavity 7 (0.7) 4 (0.6) 0 (0) 3 (2.1)  

   Oral Cavity 46 (4.8) 33 (5) 9 (6.3) 4 (2.8)  

   Oropharynx 359 (37.8) 247 (37.2) 59 (41.3) 53 (37.3)  

P16 (%)   
      

0.75 

   Negative 217 (22.9) 150 (22.6) 37 (25.9) 30 (21.1)  

   Not determined 563 (59.3) 400 (60.2) 78 (54.5) 85 (59.9)  

   Positive 169 (17.8) 114 (17.2) 28 (19.6) 27 (19)  

Modality (%)   
      

0.52 

   Accelerated RT 306 (32.2) 214 (32.2) 45 (31.5) 47 (33.1)  

   Cetuximab 40 (4.2) 34 (5.1) 3 (2.1) 3 (2.1)  

   Chemoradiation 343 (36.1) 238 (35.8) 51 (35.7) 54 (38)  

   Conventional   RT 260 (27.4) 178 (26.8) 44 (30.8) 38 (26.8)  

Taste loss week 1 (%)   
      

0.9 

   None 768 (80.9) 542 (81.6) 110 (76.9) 116 (81.7)  

   Mild 141 (14.9) 95 (14.3) 26 (18.2) 20 (14.1)  

   Moderate 29 (3.1) 19 (2.9) 5 (3.5) 5 (3.5)  

   Severe 11 (1.2) 8 (1.2) 2 (1.4) 1 (0.7)  

Taste loss 6 months (%)   
      

0.61 

   None 442 (46.6) 322 (48.5) 57 (39.9) 63 (44.4)  

   Mild 255 (26.9) 173 (26.1) 43 (30.1) 39 (27.5)  

   Moderate 170 (17.9) 112 (16.9) 31 (21.7) 27 (19)  

   Severe 82 (8.6) 57 (8.6) 12 (8.4) 13 (9.2)  

T Stage (%)   
      

0.87 

   Tis – T2 455 (47.9) 324 (48.8) 64 (44.8) 67 (47.2)  

   T3 – T4 493 (51.9) 339 (51.1) 79 (55.2) 75 (52.8)  

   Tx 1 (0.1) 1 (0.2) 0 (0) 0 (0)  

N Stage (%)   
      

0.93 

   N0 445 (46.9) 312 (47) 64 (44.8) 69 (48.6)  

   N+ 503 (53) 351 (52.9) 79 (55.2) 73 (51.4)  

   Nx 1 (0.1) 1 (0.2) 0 (0) 0 (0)  

Neck irradiation (%)   
      

0.19 

   No 191 (20.1) 141 (21.2) 20 (14) 30 (21.1)  

   Bilateral 724 (76.3) 502 (75.6) 118 (82.5) 104 (73.2)  

   Unilateral 34 (3.6) 21 (3.2) 5 (3.5) 8 (5.6)  

Contrast (%) 559 (59) 384 (58) 80 (56) 95 (67)  

Artefact (%) 199 (21) 134 (20) 29 (20) 36 (25)  
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Table 4: Dose parameters for the entire patient cohort in comparison to the training, validation and test sub-cohorts. 

Structure All  Training  Validation  Test  p-value 

Parotid (SD)          

   Parotid left 21.2 (15.5) 20.8 (15.6) 22.7 (15.1) 21.4 (15.8) 0.40 

   Parotid right 22.3 (15.8) 21.9 (15.7) 24.5 (16.1) 21.6 (16.2) 0.18 

   Combined 21.7 (14.7) 21.4 (14.7) 23.6 (14.1) 21.6 (15.2) 0.26 

Submandibular (SD)          

   Submandibular left 44.8 (23.0) 44.4 (23.4) 47.66 (21.1) 44.2 (23.0) 0.29 

   Submandibular right 45.7 (23.3) 45.4 (23.7) 48.6 (21.6) 44.6 (23.2) 0.27 

   Combined 45.4 (22.0) 45.0 (22.5) 48.2 (19.7) 44.8 (21.8) 0.26 

PCM (SD)          

   PCM medior 44.5 (20.5) 43.9 (21.0) 46.5 (19.4) 45.6 (19.2) 0.29 

   PCM superior 39.2 (23.2) 38.6 (23.4) 42.8 (21.0) 38.4 (23.8) 0.13 

   PCM inferior 48.4 (17.0) 47.8 (17.4) 48.9 (16.2) 50.5 (15.5) 0.22 

   Combined 43.2 (16.0) 42.6 (16.4) 45.9 (13.7) 43.2 (16.1) 0.08 

Crico (SD) 40.1 (16.3) 39.5 (16.7) 40.9 (14.9) 42.1 (15.3) 0.20 

Supraglottic (SD) 50.2 (16.3) 49.8 (16.5) 50.6 (16.7) 51.7 (14.4) 0.44 

Oral Cavity (SD) 31.7 (21.4) 31.2 (21.5) 34.6 (20.6) 31.4 (21.8) 0.22 

Buccal mucosa (SD)          

   Buccal mucosa left 25.3 (21.1) 24.8 (21.0) 28.2 (20.8) 25.0 (22.0) 0.23 

   Buccal mucosa right 26.4 (21.9) 25.9 (21.9) 29.7 (22.2) 25.5 (21.7) 0.15 

   Combined 26.0 (20.1) 25.4 (19.9) 29.1 (19.9) 25.4 (20.6) 0.14 

Oesophagus (SD) 28.2 (18.7) 27.5 (18.9) 29.7 (17.6) 29.6 (18.4) 0.26 

External (SD) 10.1 (5.8) 10.0 (5.9) 10.5 (5.3) 10.3 (6.2) 0.66 

 

 

Figure 4: Number of patients treated with radiation therapy for HNC at the UMCG each year. 
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Figure 5: Distribution of endpoint data of this cohort in percent, with most patients experiencing taset loss symptoms at 6 
months. 

 

4.2 Baseline NTCP model 
The results of the performance evaluation using the coefficients from the NTCP of Van den Bosch et 

al. model on the training set yielded an AUC of 0.723 (95% CI: 0.682 – 0.766) and a calibration slope 

of 1.17 (Table 5, Figure 6). The refit performed on the training set led to an increased AUC of 0.724 

(95% CI: 0.683 – 0.766) and a calibration slope of 1.01. The refit coefficients obtained from the refit of 

the training set (Table 6) applied to the validation and test subsets resulted in a logistic regression 

model with AUC performances of 0.706 (95% CI: 0.621 – 0.791) and 0.692 (95% CI: 0.595 – 0.788) and 

calibration slopes of 1.11 and 0.88 respectively.  

 
Table 5: The reference model performance on the training set and the refit performance on the training, validation and test 
subsets. 

 Performance evaluation 
Van den Bosch et al. 

Refit 

 Training Set Training Set Validation Set Test Set 
R2 0.114 0.117 0.121 0.097 
AUC (95% CI) 0.723  

(0.682 – 0.764) 
0.724  
(0.683 – 0.766) 

0.706  
(0.621 – 0.791) 

0.692  
(0.595 – 0.788) 

HL test χ2 (p-value) 3.93 (0.86) 5.13 (0.74) 5.83 (0.67) 11.69 (0.17) 
Calibration slope (intercept) 1.17 (-0.04) 1.00 (-0.00) 1.11 (-0.02) 0.88 (0.05) 
Discrimination slope 0.097 0.117 0.102 0.103 
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Figure 6: Calibration plots of the logistic regression models. Top left: Plot of the performance evaluation using the Van den 
Bosch et al. coefficients on the training set. Top right: Plot of the refit performed on the training set resulting in a new set of 
coefficients. Bottom left: Plot of the refit model applied to the validation set. Bottom right: Plot of the refit model appplied to 
the test set. 

 

Table 6: Coefficients of the original Van den Bosch et al. model and the refit coefficients used for the baseline model of this 
patient cohort. (a: ln(mean dose to both parotid glands); b: sqrt(mean dose to oral cavity)) 

Model Predictors Van den Bosch et al. model 
coefficients 

Refit model 
coefficients 

Intercept -4.5092 -5.4862 
Parotid glands a 0.3171 0.2042 
Oral cavity b 0.1870 0.3272 
Age 0.0238 0.0318 

 

4.3 NTCP model with tongue mucosa structure 
There was a strong correlation (Pearson coefficient = 0.94, p = 2.2 x10-16) between the tongue mucosa 

mean dose and the oral cavity mean dose (Appendix B, Figure A2) with on average lower mean dose 

values in the tongue mucosa than in the oral cavity. The univariable analysis showed best performance 

for the oral cavity mean dose in terms of the Akaike information criterion (AIC) and the Bayesian 

information criterion (BIC) followed by the tongue mucosa mean dose, parotid mean dose and age 

(Table 7). When comparing oral cavity mean dose and tongue mucosa mean dose, the oral cavity mean 

dose had superior performance across all measures. It showed a higher AUC of 0.697 (Tongue mucosa: 

0.690); notably, the oral cavity had a larger coefficient of 0.016 (Tongue mucosa: 0.013), which was 
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met with a higher odds ratio of 1.037 (Tongue mucosa: 1.030), indicating that the oral cavity mean 

dose has a larger influence on the prediction of the logistic regression model. The age parameter was 

not significant in the univariable analysis and had little effect on the logistic regression model with an 

odds-ratio of 1.006 (0.991 – 1.021). 

The refit of the logistic regression model performed on the training set with the oral cavity mean dose 

yielded an AUC of 0.724 and calibration slope of 1.01 (Table 8). When refit with the tongue mucosa 

mean dose, the logistic regression model had an AUC of 0.717 and calibration slope of 1.02. All logistic 

regression coefficients changed as a result of exchanging the oral cavity mean dose with the tongue 

mucosa mean dose (Table 9). A larger coefficient of 0.327 was observed for the oral cavity mean dose 

compared to the tongue mucosa mean dose coefficient of 0.188. The similarity in calibration slope 

and intercept can be seen in Figure 7. 

 
Table 7: Univariable analysis results sorted by p-value. 

 P - value AUC Nagelkerke R2 OR (95% CI) AIC BIC Coefficient 
Oral Cavity 
mean dose 

<0.0001 0.697 0.137 1.037 (1.029-1.045) 1008.9 1018.7 0.016 

Tongue mucosa 
mean dose 

<0.0001 0.690 0.107 1.030 (1.023 – 1.038) 1030.4 1040.2 0.013 

Parotid  
mean dose 

<0.0001 0.669 0.091 1.041 (1.030 – 1.053) 1041.2 1050.9 0.017 

Age 0.428 0.514 0.001 1.006 (0.991 -1.021) 1101.9 1111.6 0.003 

 
Table 8: Logistic regression model performance with the oral cavity mean dose and tongue mucosa mean dose in comparison. 

 Refit with  
oral cavity mean dose 

Refit with  
tongue mucosa mean dose 

R2 0.117 0.109 
AUC (95% CI) 0.724 (0.683-0.766) 0.717 (0.676 – 0.758) 
HL test χ2 (p-value) 5.14 (0.74) 2.54 (0.96) 
Calibration slope (intercept) 1.01 (-0.00) 1.02 (-0.00) 
Discrimination slope 0.117 0.110 

 
Table 9: Logistic regression coefficients resulting from the refit with the oral cavity mean dose and the tongue mucosa mean 
dose in comparison.  (a: ln(mean dose to both parotid glands); b: sqrt(mean dose to oral cavity); c: sqrt(mean dose to tongue 
mucosa)) 

Model Predictors Refit coefficients  
with oral cavity mean dose  

Refit coefficients  
with tongue mucosa mean dose  

Intercept -5.4862 -4.9554 
Parotid glands a 0.2042 0.4052 
Oral cavity b 0.3272  
Tongue mucosa c  0.1876 
Age 0.0318 0.0293 
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Figure 7: Calibration plots of the logistic regression models using the oral cavity mean dose (left) and the tongue mucosa 
mean dose (right) to perform the refit. 

 

4.4 Deep learning model 
The systematic adjustment of network parameters seen in Tables 10 to 12 lead to one best performing 

network for each of the two architectures used. The best performing DCNN yielded a validation AUC 

of 0.719 and the test on an independent subset from the same overall patient cohort gave an AUC of 

0.682 (Table 13). It used a factor three higher label weights on the taste loss group during training in 

comparison to the no taste loss group. Further details about the model can be found in appendix C. 

The best performing rCNN had a validation AUC of 0.698 and a test AUC of 0.684 (Table 13). The 

addition of age in the last layer of the networks led to overfitting issues in both cases and was 

therefore removed again.  

Additionally, the calibration plots can be seen in Figure 8 with calibration slopes of 0.71 and 0.63 for 

the DCNN and rCNN respectively. Both calibration and discrimination slopes of the neural networks 

show worse performance than the logistic regression baseline model. 
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Table 10: Systematic adjustment of network parameters: Testing the optimizer functions RMSProp and SGD with different 
learning rate scheduler times between T0 = 8 and T0 = 40. For every combination the AUCs are given for the training, validation 
and test set, as well as the number of epochs at which the maximum performance was reached. Red markings indicate failed 
training, yellow markings indicate overfitting tendencies and green boxes indicate the best performing networks that were 
taken to the next round of systematic parameter adjustment.  

 

 T0 = 8 T0 = 16 T0 = 32 T0 = 40 

 

AUC Train. Val. Test Train. Val. Test Train. Val. Test Train. Val Test 

D
C

N
N

 

RMSProp 0.963 0.731 0.64 0.875 0.719 0.682 0.885 0.717 0.676 0.883 0.723 0.668 

 Epoch 325 Epoch 132 Epoch 139 Epoch 139 

SGD 0.828 0.703 0.682 0.804 0.689 0.686 0.807 0.685 0.714 0.943 0.711 0.659 

 Epoch 18 Epoch 6 Epoch 2 Epoch 93 

rC
N

N
 

RMSProp 0.862 0.661 0.617 0.867 0.687 0.665 0.866 0.667 0.628 0.907 0.682 0.647 

 
Epoch 1 Epoch 1 Epoch 1 Epoch 2 

SGD 0.789 0.693 0.675 0.776 0.683 0.679 0.739 0.69 0.666 0.744 0.699 0.66 

 
Epoch 222 Epoch 188 Epoch 108 Epoch 96 

 
Table 11: Systematic adjustment of network parameters: Testing batch sizes between Batch = 4 and Batch = 32. For every 
combination the AUCs are given for the training, validation and test set, as well as the number of epochs at which the 
maximum performance was reached. Red markings indicate failed training, yellow markings indicate overfitting tendencies 
and green boxes indicate the best performing networks that were taken to the next round of systematic parameter 
adjustment. 

  Batch = 4 Batch = 8 Batch = 16 Batch = 32 

Train. Val. Test Train. Val. Test Train. Val. Test Train. Val. Test 

D
C

N
N

, 

T0
 = 1

6
 

0.902 0.736 0.68 0.875 0.719 0.682 0.919 0.703 0.67 0.912 0.702 0.669 

Epoch 25 Epoch 132 Epoch 117 Epoch 67 

rC
N

N
, 

T0
 = 4

0
 

0.782 0.619 0.654 0.744 0.699 0.66 0.724 0.687 0.63 0.668 0.596 0.524 

Epoch 4 Epoch 96 Epoch 41 Epoch 128 
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Table 12: Systematic adjustment of network parameters: Testing the loss functions CE, F1, L1 and Ranking. For every 
combination the AUCs are given for the training, validation and test set, as well as the number of epochs at which the 
maximum performance was reached. Red markings indicate failed training, yellow markings indicate overfitting tendencies 
and green boxes indicate the best performing networks that were used for the evaluation.  

 
CE F1 L1 Ranking 

Train. Val. Test Train. Val. Test Train. Val. Test Train. Val. Test 

D
C

N
N

, 

B
atch

 8
 

0.875 0.719 0.682 0.742 0.698 0.674 0.443 0.665 0.664 0.719 0.654 0.693 

Epoch 132 Epoch 2 Epoch 39 Epoch 34 

rC
N

N
, 

B
atch

 8
 

0.744 0.699 0.66 0.726 0.698 0.684 0.626 0.626 0.581 0.636 0.66 0.623 

Epoch 96 Epoch 42 Epoch 131 Epoch 94 

 
Table 13: DCNN and RCNN model performance on the test set compared to the logistic regression baseline model performance 
on the test set. 

 Baseline Test DCNN Test RCNN Test 
R2 0.097 0.078 0.086 
AUC (95% CI) 0.692 (0.595 – 0.788) 0.682 (0.591 – 0.773) 0.684 (0.585 – 0.784) 
HL test X2 (p-value) 11.69 (0.17) 33.41 (5.21 x10-05) 46.21 (2.17 x10-07) 
Calibration slope (intercept) 0.88 (0.05) 0.71 (-0.06) 0.63 (0.14) 
Discrimination slope 0.103 0.114 0.141 

 

 

Figure 8: Calibration slopes of the DCNN model (left) and the rCNN model (right) when applied to the test set. 

 

Visual analysis of the attention maps of the DCNN showed correlations between the highest dose 

depositions and the highest network attentions for 80% of patients in the test set. In contrast, only 

25% of patients of the test set showed this strong correlation between dose and attention for the 

rCNN. The RTSTRUCTs seem to have a stronger influence for the rCNN with 75% of the patients 

showing strong correlation to either only the RTSTRUCTS or a mixture between dose and RTSTRUCT. 

A set of multiple attention maps for both networks can be seen in Appendix B (Figures A3 – A5). 
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5. Discussion 
In this project, two methods were used to try and improve the NTCP model predicting late taste loss 

at six months post radiotherapy treatment by introducing a new structure of the tongue mucosa and 

using neural networks to create a new prediction model. While the performance of both methods was 

comparable to the original performance of the reference logistic regression model, neither performed 

better than the reference model.  

Taste loss as a toxicity is not researched extensively and the exact reason for taste loss due to radiation 

therapy is complex. Main factors may be the disappearance of taste buds and dysfunction of the 

salivary glands (14). Saliva plays an important role in how we taste and perceive taste, making a 

connection between damage to salivary glands and side effects like xerostomia (dry mouth syndrome) 

likely. Saliva is responsible for the transport of taste substances to taste receptors and acts as a solvent 

for the taste substances in foods and drinks. It also acts as a protective layer to the taste receptors 

from damage by dryness or bacterial infection. A reduction in salivary secretion may therefore also 

decrease taste sensitivity (34). A smaller study has found potential reduction in symptom burden when 

treated with intensity modulated proton therapy (IMPT) instead of IMRT (15). Another source found 

no significance between oral cavity mean or maximum dose and the overall taste sensation in their 

cohort (35) in contrast to the predictors chosen by the Van den Bosch et al. model mentioned earlier. 

The number of comprehensive studies done on the influence of radiotherapy on taste loss and taste 

alteration is very limited, especially studies using larger patient cohorts.  

The approach of replacing the entire oral cavity by a smaller structure that only encompasses the taste 

bud bearing tongue mucosa seemed promising but ended up not performing better in the logistic 

regression model predicting late taste toxicity at six months. The structures created were based on 

the technique described by Stieb et al. (18), but in this project the manual delineation was replaced 

by programmed estimation due to time constraints. In the future a smaller sub-cohort should be 

chosen for a more detailed comparison between the manual delineations and the derived structures 

used in this project. Furthermore, the focus of this method was placed on the taste buds and while 

they undoubtedly have an impact on a patient’s ability to taste, their fast regeneration and turnover 

(36) might mean that this structure could yield better results in models for acute toxicity. 

The deep learning approach has not been tested to its full potential yet. More combinations of 

parameters and architectures can be tried to improve the performance. The analysis of the attention 

maps allowed for a comparison of focus between the two neural network architectures used. While 

the DCNN showed mainly correlations with the high dose regions, the rCNN seemed more balanced 

and placed attention on low dose regions as well. This was the case especially in the RTSTRUCT regions 

like the parotid glands and oral cavity. A more in-depth analysis of the activation maps will give insight 

into what the focus of the neural network was more precisely and what a future version needs to 

improve upon.  

One of the larger issues in this part of the project was the low event rate in all sub-cohorts with none 

of them containing more than 30% of patients with moderate-severe taste loss. When the network 

was trained without any adjustments or alterations, it would see less patients with symptoms and 

therefore adjusting hyperparameters based on the larger group of patients without symptoms. This 

can cause bias in the model as well as biased results. To counteract this effect, label weights were 

adjusted for the DCNN, giving more weight to data with an event. This could not be implemented for 

the rCNN as of yet but might improve the rCNN’s performance in our patient cohort. 

The comparability of the input data is important to assure that the network does not get distracted by 

irrelevant features in the data. In this case a problem might have been caused by the inconsistency of 
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CT images. The planning CT was used as an input for all patients, however 59% of the CTs used 

contained contrast, while the other 41% did not. 89% of patients predicted as true positives by both 

networks had a contrast CT as their planning CT (Appendix A, Table A1). On top of that, 100% of 

patients predicted as false positives by both networks had a contrast CT as their planning CT. Further 

testing of the network should be done with either only contrast CT images or only no contrast CT 

images, in order to be able to eliminate the possible bias introduced by using a mixture of both. 

While a complete-case analysis was chosen for this project, this might be a disadvantage for our 

outcome. More data is better when training a neural network that should work as robustly as possible 

and by excluding patients where the endpoint was missing at six months or week one, 30% of the 

available data had to be excluded. Multiple imputation is a method often used to impute missing data 

based on available data points of the entire data set. This technique was used in the Van den Bosch et 

al. study and might be applicable in this case as well. However, this must be done with great caution 

as over or underestimation of the patients’ symptoms must be avoided. 

An additional analysis of association between taste loss and different predictors was done in different 

forms to improve our understanding of their relatedness. A correlation map containing clinical and 

treatment parameters, as well as OAR mean dose is shown in Figure 9. A strong correlation between 

the mean dose values could be seen in dark blue and a strong negative correlation between the mean 

dose values and the treatment year. The second was due to the improvements in OAR sparing with 

new radiotherapy techniques in recent years. However, no noticeably strong correlation between 

toxicity at week one or six months can be determined from this correlation matrix, stressing the 

importance of projects like this that try and improve the understanding of the mechanisms behind 

taste loss in HNC patients.  

Based on the reference model predictors further analysis was done on the behaviour of oral cavity 

and parotid mean dose in this patient cohort. In the scatter plot (Figure 10) more red data points, 

representing patients experiencing late taste loss, can be seen towards the larger mean dose values 

for both parotid glands and oral cavity, showing the correlation between higher dose values in those 

structures and taste loss symptoms at 6 months. As Figure 11 demonstrates, there were higher mean 

dose values associated with patients experiencing taste loss at six months for both predictors. This 

effect is stronger for the oral cavity mean dose than for the parotid mean dose. In both parotid gland 

mean dose and oral cavity mean dose box plots that show the effect of higher mean doses in patients 

with late taste loss toxicity, a big gap can be seen between ‘none’ and ‘mild’. This indicates that there 

might be an added benefit to evaluating only ‘none’ as no taste loss and all three categories of ‘mild’, 

‘moderate’ and ‘severe’ as late taste loss.  
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Figure 9: Correlation between clinical and dose parameters as well as taste loss (Toxicity week 1 and month 6) with dark blue 
representing a stong correlation and dark red representing a strong negative correlation. White represents no correlation.  

 

  

Figure 10: Scatter plot showing the relationship between parotid mean dose and oral cavity mean dose where patients 
experiencing taste loss at 6 months are shown in red. The linear fit with a sloe of 0.57 and an intercept of 3.50 is shown in 
blue. 
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Figure 11: Box plots showing the average mean dose and the 25th – 75th percentile per toxicity score at 6 months post 
treatment for the oral cavity (left) and the parotid glands (right). 
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6. Conclusion 
This study aimed to improve existing NTCP models to yield better prediction performance for late 

taste loss at 6 months post radiation therapy to improve overall quality of life. The inclusion of the 

tongue mucosa structure in NTCP models as a replacement of the oral cavity did not yield better 

performance than the reference model and a closer look must be taken at the accuracy of the derived 

structures. The neural network trained in this study has still a lot of potential for improvement. Many 

points that need addressing were discussed and should be included in future work. Overall, taste loss 

in HNC patients after radiotherapy treatment is a complex toxicity that must receive more research 

attention to be modelled and predicted more accurately.  
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Ethics Paragraph 
Taste alteration is a commonly experienced side effect of radiotherapy treatment for HNC and has a 

huge impact on patients’ lives by causing malnutrition, tube feeding and a drastic decrease in quality 

of life. A successful implementation of a reliable normal tissue complication probability (NTCP) model 

for the prediction of HNC radiotherapy related side effects like taste loss will cause an increase in 

quality of life for the growing number of HNC survivors. For this to be achieved currently available 

NTCP models must be improved upon to account for the large variability in patients treated.  

Since one of the proposed solutions uses artificial intelligence (AI) in the form of a trained neural 

network to predict the patient’s toxicity outcome, the implications of implementing AI in the medical 

field must be addressed. The European ‘Ethics Guidelines for Trustworthy AI’ (37) lists a set of key 

requirements needed to be met to classify as trustworthy AI. According to the guidelines, ‘Human 

agency and oversight’ needs to be maintained and for this project specifically, a human oversight over 

changes in patient characteristics and data acquisition that might affect the prediction outcome, as 

well as clinicians’ agency to report non-conformance to predicted results must be ensured. Reliability 

and reproducibility fall under the requirement of ‘Technical robustness and safety’. For the application 

in our research this means that firstly, the model created by AI must be tested and externally validated 

on a wide set of patient data, but also secondly, that the use conditions are clearly defined and 

communicated. What kind of patient characteristic, imaging manufacturer or imaging setting are 

allowed as inputs to the neural network needs to be very clear to the user. This is one of the biggest 

challenges in a field like the medical one, where research driven innovation changes clinical protocols 

and the technology used constantly. Publication by Morley et al. (38) and Naik et al. (39) emphasis the 

complexity of the wide variety of ethical issues that come with the introduction of AI into the medical 

field. The coming years will bring many new rules and regulations as well as general ethical assessment 

for medically used AI. 

In conclusion, a prediction model developed by AI can be safe to use and have a positive impact on 

the quality of life of many HNC survivors. However, proper validation and human supervision during 

the implementation have to be ensured to allow for a reliable model. 
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Appendix A: Additional Tables  

 
Table A1: Additional performance measures for the reference, DCNN and rCNN models. The limit is the value above which a 
prediction probability will be interpreted as an event. The true negative (TN), false negative (FN), false positive (FP) and true 
positive (TP) values are given in absolute patient numbers as well as in percentage based on the entire test set. 

 Limit F1 Sensitivity Specificity TN FN FP TP 

Reference 0,1 0.47 0.9 0.24 24 (17%) 4 (3%) 78 (55%) 36 (25%) 

0,2 0.54 0.8 0.55 56 (39%) 8 (6%) 46 (32%) 32 (23%) 

0,5 0.31 0.2 0.96 98 (69%) 32 (23%) 4 (3%) 8 (6%) 

DCNN 0,1 0.44 1 0 0 (0%) 0 (0%) 102 (72%) 40 (28%) 

0,2 0.47 1 0.11 11 (8%) 0 (0%) 91 (64%) 40 (28%) 

0,5 0.48 0.68 0.55 56 (39%) 13 (9%) 46 (32%) 27 (19%) 

rCNN 0,1 0.50 0.7 0.58 59 (42%) 12 (8%) 43 (30%) 28 (20%) 

0,2 0.51 0.6 0.70 71 (50%) 16 (11%) 31 (22%) 24 (17%) 

0,5 0.34 0.25 0.91 93 (65%) 30 (21%) 9 (6%) 10 (7%) 
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Appendix B: Additional Figures 

 

Figure A1: Patient inclusion diagram of patients suitable for this project. General exclusion criteria as well as missing endpoint 
data due to not completed follow up (FU) or missing symptom data are listed. 
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Figure A2: Scatter plot showing the relation between the tongue mucosa mean dose and the oral cavity mean dose, where 
patients experiencing taste loss at 6 months are shown in red. The linear fit with a slope of 0.94 and an intercept of -4.62 is 
shown in blue. 

 

 

Figure A3: Attention map of DCNN showing high correlation between high dose regions and higher attention. From the top: 
Overlay of attention map on CT with RTSTRUCTs delineated in red; CT with RTSTRUCTs delineated in red; Attention map where 
red corresponds to higher correlation; Dose distribution where red corresponds to higher dose regions; binary RTSTRUCT mask 
with structures shown in white. 



 

38 
 

 

Figure A4: Attention map of rCNN showing high correlation between RTSTRUCT and higher attention. From the top: Overlay 
of attention map on CT with RTSTRUCTs delineated in red; CT with RTSTRUCTs delineated in red; Attention map where red 
corresponds to higher correlation; Dose distribution where red corresponds to higher dose regions; binary RTSTRUCT mask 
with structures shown in white. 

 

 

Figure A5: Attention map of rCNN showing high correlation between RTSTRUCT and higher attention as well as high dose 
region and higher attention. From the top: Overlay of attention map on CT with RTSTRUCTs delineated in red; CT with 
RTSTRUCTs delineated in red; Attention map where red corresponds to higher correlation; Dose distribution where red 
corresponds to higher dose regions; binary RTSTRUCT mask with structures shown in white. 
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Appendix C: Network Information 
 

Table A2: Relevant starting network parameters before the systematic adjustment for both architectures.  

 DCNN rCNN 
Input channels 3 3 
Filters [8, 8, 16, 16] [8, 8, 16, 16] 
Kernel sizes [7, 5, 4, 3] [7, 5, 4, 3] 
Stride length 2 2 
Optimizer function Varied in first step Varied in first step 
Loss function Cross entropy Cross entropy 
Label weights [1, 3] [1, 1] 
Learning rate scheduler Cosine Cosine 
T0 Varied in first step Varied in first step 
Maximum epochs 1000 1000 
Batch size 8 8 
Patience 35 35 
Validation interval 1 1 

 
Table A3: Final network parameters after the systematic adjustment of the best performing version of each architecture. 

 DCNN rCNN 
Input channels 3 3 
Filters [8, 8, 16, 16] [8, 8, 16, 16] 
Kernel sizes [7, 5, 4, 3] [7, 5, 4, 3] 
Stride length 2 2 
Optimizer function RMSProp SGD 
Loss function Cross-entropy F1 
Label weights [1, 3] [1, 1] 
Learning rate scheduler Cosine Cosine 
Learning rate 3.76 e-06 7.56 e-04 
T0 16 40 
Maximum epochs 1000 1000 
Batch size 8 8 
Early stopping (epochs) 35 35 
Validation interval (epochs) 1 1 
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Figure A6: Schematic of the final DCNN network architecture. 

 

  

Figure A7: Schematic of the final rCNN network architecture. 


