
Multi-Modal Image and Text Processing Using a

Transformer for Sub-Figure Sequence Classification

with or without a convolutional pre-processor.
Bachelor’s Project Thesis

Filipe Laitenberger, s3894479, f.m.de.sousa.horta.osorio.laitenberger@student.rug.nl,

Supervisor: Prof. Dr. Lambert Schomaker

Abstract: Recent findings in deep learning research indicate that the successful Transformer
approach for text processing can also be used in the image domain, using Vision Transformers
(ViTs). Compared to the common convolutional paradigm, the images are tokenized in a surpris-
ingly primitive patch-wise fashion. This study introduces a multi-modal transformer architecture
for image and text processing with a single encoder. Two variations of a transformer-based model
were compared: a standard one, taking the raw, complete input image as input, and a variant
with a convolutional pre-processor. Both variants were tested on a task with multiple objects
combined in one image in a 2x2 grid alongside a text sequence. The model should decide whether
the text sequence describes the correct ’reading order’ of the objects shown in the image. Results
showed that a transformer with a convolution-based pre-processing layer performed significantly
better (about 96-98% accuracy) than the plain Transformer-based model (about 92% accuracy).
Apparently, the Transformer is supported by the learned feature maps, increasing the reliability
of the correlations needed for the sequentialization task. In turn, the results support the hypothe-
sis that ViTs are inferior to CNN architectures regarding training time and data set size required
for successful generalization. ViTs would need to overcome their inductive bias related to patch
extraction, which, in its pure form, lacks appropriate feature extraction within patches. Further
research could also examine whether the proposed hybrid architecture has advantages in more
sophisticated data sets such as Visual Genome and tasks such as Visual Question Answering.

1 Introduction

In deep learning, processing text has evolved
substantially in recent years. Contemporary re-
search used to focus mainly on Recurrent Neural
Networks (RNNs) [Rumelhart et al., 1985, Jordan,
1986] which can process input sequences of varying
lengths. Refined such models that aim to master
some of the shortcomings of traditional RNNs (e.g.,
the diminishing gradient problem) used to be state-
of-the-art in text processing. The most prominent
of these is the Long-Short-Term-Memory Network
(LSTM) [Hochreiter and Schmidhuber, 1997].
However, more recent research in the field has
shifted this focus to Attention mechanisms [Bah-
danau et al., 2014], which led to the introduction
of Transformer models [Vaswani et al., 2017].
The latter do not suffer from the shortcomings

predominant in RNNs, are computationally much
more efficient to train, and perform substantially
better on several tasks, including translation and
classification.

Likewise, image processing has adopted the
Convolutional Neural Network (CNN) [LeCun
et al., 1999] as its state-of-the-art, which uses
convolutional filters to detect features such as
edges. These network architectures significantly
outperform and require substantially fewer com-
putational resources to train than ordinary
Multi-Layer Perceptrons (MLPs) [Rosenblatt,
1960, Werbos, 1994]. Recently, research has been
conducted on pure attention-based models that
process images, namely the Vison Transformer
(ViT), reaching performances similar to CNNs in
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classification tasks on specific data sets. Instead of
computing attention between every pair of pixels,
the input image is split into non-overlapping
patches that are flattened and linearly projected
[Dosovitskiy et al., 2020].
However, one could hypothesize that there exist
some apparent downsides to the ViT approach.
Particularly, patch extraction complemented with
positional encoding resembles a built-in inductive
bias. By design, the model resorts to a specific way
of looking at its input, splitting it into fixed-size
regions, linearizing those, and giving them an
order [Dosovitskiy et al., 2020]. This mechanism
corresponds to how humans perceive by scanning
a scene from one side to the other [Salvucci and
Anderson, 1998, Noton and Stark, 1971, Reisberg,
2015]. However, the model might be limited at
this point as it cannot find an optimal way of
processing the input in a self-organizing way.
Hence, a significant part of the model depends on
the design choices of its creators. Another crucial
drawback might be that attention can only be
computed between patches, not within them. Thus,
for computing features within patches, the model
solely relies on a linear projection, which seems
to be far less than optimal. These disadvantages
seem to be reflected in ViT’s inability to generalize
well on small to medium-sized data sets. Instead,
the researchers who proposed the architecture
trained it on over 300 mil. images before it reached
performances comparable to CNNs [Dosovitskiy
et al., 2020].
Apart from that, research has been conducted
on multi-modality, i.e., simultaneously processing
different (e.g., textual and visual) information
formats. Present multi-modal neural networks
share a common characteristic: they are comprised
of multiple different modules for different modal-
ities, e.g., a transformer/LSTM module for text
processing and a CNN/transformer module for
image processing [Hu and Singh, 2021, Tsai et al.,
2019, Yu et al., 2019, Prakash et al., 2021, Huang
et al., 2020].
A research gap becomes apparent here. With the
intent of drawing connections between text tokens
and image parts, a multi-modal architecture might
benefit from the ability to perform self-attention
on the entire input using a shared Transformer
module. Apart from learning correlations within
the respective modality, it could learn what image

parts correlate with which textual tokens and
vice-versa. Aside from the downsides of image
patchization, feeding two modalities into one
Transformer would seem powerful here.
Henceforth, for the present research, a unified
Transformer model shall be proposed that takes
the current state-of-the-art further. Hence, it uses
one module to process two modalities, i.e., textual
and visual input.
On the other hand, it would seem that mere
patchization and linear projection of the un-
touched input image is not enough to extract
features properly. Instead, the latter would have
to be learned in a self-organizing way, before
the image is split into patches. A convolutional
pre-processor would be suitable here. Therefore,
the proposed model shall be tested in two condi-
tions, producing two variants of the architecture in
question. Specifically, as described above, a version
that solely relies on patchization and attention
for computing image features shall be contrasted
with a variant that contains the aforementioned
convolutional pre-processor. Through this, it shall
be evaluated whether convolution extracts features
more reliably than only linearly projecting patches
and performing self-attention on them. A priori,
it would seem that creating feature maps using
convolutional filters would enhance the input
fed into the Transformer. In comparison, mere
patchization of the image would risk an inability to
generalize as patches are only similarly embedded
without computing features or attention within
them. Comparison experiments will be conducted
on the MNIST [LeCun et al.] and Fashion MNIST
[Xiao et al., 2017] data sets featuring handwritten
digits and clothing items respectively. However,
a four-quadrant sub-figure classification task was
designed to make it more challenging and give
both approaches a chance to show their ability
to handle sequential image analysis. In both
conditions, a hyperparameter optimization search
shall be carried out so that the amount of effort is
comparable between the methods, making up for a
fair evaluation.

2 Related Background

For brevity, basic Neural Networks, specifically
Multilayer Perceptrons and Convolutional Neural
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Networks, shall not be covered at this point.
The reader is directed toward appendix A and B
respectively for further details on these two topics.

Former research in text processing focused mainly
on recurrent neural networks (RNNs) [Rumelhart
et al., 1985, Jordan, 1986], which used to be
state of the art in machine translation and text
classification tasks such as sentiment analysis.
Here, the last state of the network is fed into
the network alongside the rest of the input. For
machine translation, models are often split into
encoders and decoders. This serves the purpose
that the encoder creates some internal abstract
representation of the word sequence, which is then
decoded into, e.g., a different language by the
decoder. Thus, the encoder can process one word
after another, taking its former output and the
next as input. Once the encoder has processed
all the words in the input sentence, the resulting
representation is fed into the decoder. The latter
creates one output word after the other, starting
with the encoded representation, and then takes
the last output word alongside the encoded repre-
sentation as input to produce the output sentence.

How words are represented in a numeric form
is crucial here, as different word representations
contain varying amounts of information and thus
play a role in the performance of a model. Word
embeddings have been adopted as the standard
here, as they are utilized in all state-of-the-art text
processing models.

2.1 Word Embeddings

Word embeddings were first researched on by Firth
[1957] and Bengio et al. [2000].
In such an embedding, a multi-dimensional hyper-
space is created into which words are mapped as
vectors. The aim here is to map words that occur in
similar contexts and frequency to similar positions
within the vector space so that words that are se-
mantically similar lie in similar positions. Hence,
this approach encodes more information than a
plain one-hot encoding, i.e., a vector the size of the
word corpus, where each component corresponds
with one word from the latter, containing only ze-
ros except for a one in the position that represents
the word at hand. Then the semantic similarity of

words can be computed using specific distance mea-
sures, e.g., cosine similarity, where the cosine of the
angle between the two-word vectors is calculated
[Singhal et al., 2001]. To create a word embedding,
a matrix Me is created, comprised of Nc columns
and Nd rows, where Nc is the number of words in
the vocabulary, and Nd is the number of dimensions
in the embedding. The matrix is used as an embed-
ding layer of a neural network [Rosenblatt, 1960,
Werbos, 1994], so that it can be trained alongside
the rest of it using the backpropagation algorithm
[Werbos, 1994, Bengio et al., 2000].
Henceforth, word embeddings play an essential
part in models that rely on encoding the meaning
of words into numerical representations. Amongst
these, attention-based networks, above all the
Transformer model, have recently gained popular-
ity.

2.2 The Transformer Architecture

Language modelling has been revolutionized
through the introduction of the Transformer ar-
chitecture, first proposed by Vaswani et al. [2017].
It is designed to have a non-recursive structure
that takes in a sequence of tokens, processing
the entire segment simultaneously. The original
model proposed by [Vaswani et al., 2017] contains
an encoder and a decoder for translation tasks.
Therefore, word tokens are embedded in a word
embedding to encode semantic similarity between
words [Firth, 1957, Bengio et al., 2000]. Secondly,
a positional encoding of the sentence is added to
the resulting vector, composed of learned or fixed
parameters that add information about the order
of words in the sentence.
As a result, a series of embedded tokens are fed
into the Transformer encoder, which creates an
abstract representation of the sequence that a
Transformer decoder can, in the end, decode.
The mechanism that sets this class of models
apart from other techniques and which allows
Transformers to process whole sequences at once
is called attention.

2.2.1 Attention

The Transformer model proposed by [Vaswani
et al., 2017] uses attention in three distinct
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ways: self-attention, encoder-decoder attention and
multi-head attention. Each of these variants relies
on computing semantic similarity between words
in the input sequence with each other or words
from the output sequence. With this, the target
is that the model eventually learns firstly which
words in the input sentence are essential to what
other words are in it, e.g., that in the sentence ”The
girl’s mother congratulated her”, the words ”girl”
and ”her” correlate in meaning. This type of atten-
tion is called self-attention. Secondly, the model is
supposed to learn how words in the input sequence
relate to words in the output sequence, e.g., that
between the sentences ”I love you” and ”Je t’aime”,
the words ”love” and ”aime” are strongly seman-
tically correlated. In turn, this second variant is
known as encoder-decoder attention. Lastly, multi-
head attention is used in both of the described at-
tention techniques. Here, multiple attention heads
are used alongside each other such that different
attention patterns can be learned for the same se-
quence.
To achieve this, three matrices Q, K and V are
created that denote the queries, keys and values.
Each column in Q corresponds with a word in the
input sequence for self-attention or the output se-
quence for encoder-decoder attention. In contrast,
the columns in K and V correspond with tokens
in the input sequence. Q, K and V are computed
using three learned matrices Wq, Wv and Wk to
project the input embedding linearly.
In the end, the attention vector is computed by
multiplying Q and K, scaling by 1√

dk
, i.e., the in-

verse of the square root of the number of dimensions
in K, taking the softmax, and lastly, multiply the
resulting matrix by V .

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

The result of this is a matrix with Ni columns,
with i being the input sequence length, and No

rows, with o being the output sequence length
for encoder-decoder attention and the input
sequence length for self-attention. In a trained
Transformer, this matrix will show the learned
semantic correlation between the tokens. Another
way of understanding this is that both sequences
that attention is computed between are multiplied
by attention weights, which, over the training,

learn how inputs correlate. Subsequently, the
two resulting projections are multiplied and fed
into the softmax function, creating a probability
distribution over the computed correlation. Lastly,
this distribution is multiplied with another linearly
projected version of the input vector, which creates
a matrix with attention values for each pair of
tokens in the two input vectors [Bahdanau et al.,
2014, Vaswani et al., 2017].

Using the attention mechanism, the results
obtained by [Vaswani et al., 2017] surpassed
the ones acquired with RNNs, namely in text
translation. At the same time, training went down
significantly for Transformer models as operations
are parallelizable to a far greater extent, such
that training on GPUs that can handle many
simultaneous calculations was much faster.

2.3 The Vision Transformer

The field of Computer Vision has adopted Convo-
lutional Neural Networks (CNNs) as its standard
for almost all image processing tasks [LeCun et al.,
1999]. These use convolution to process images,
sliding filters of a fixed size across an image to ex-
tract particular features such as colour and edges.
On the other hand, Dosovitskiy et al. [2020] pro-
posed a transformer model for image processing
(Vision Transformer, ViT), using pure attention
mechanisms to replace convolutions. To create an
embedding for the input images to be handed to
the transformer, they are split into non-overlapping
patches of size 16x16 pixels. Subsequently, the
patches are flattened and linearly projected. Lastly,
the input embedding is fed into a Transformer en-
coder, at the end of which is a Multi-Layer Percep-
tron (MLP) head [Rosenblatt, 1960, Werbos, 1994]
used to classify images, i.e., a traditional neural net-
work with fully connected layers.
The ViT shows comparable or better performance
over CNNs on several data sets. However, Doso-
vitskiy et al. [2020] pre-trained their model on a
non-public data set containing over 300mil. pic-
tures. Only after this pre-training step, the model
had generalized enough visual knowledge to per-
form comparably to CNNs.
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2.4 Contemporary Research in
Multi-Modal Processing

In a visual question-answering task, Hu and Singh
[2021] proposed a multi-modal model that takes
text and an image as input, with text as output.
While the text is processed using a standard trans-
former in this case, the image is first converted by
a convolutional network as the pre-processor. The
textual and visual embedding are adjoined and sent
to a final transformer in a multi-head output set-
ting. The researchers wanted to train the model on
different tasks for different output heads of the ver-
satile model. The model is able to do image classi-
fication, object detection, and VQA, among others.
Similar approaches have been taken by Tsai et al.
[2019], Yu et al. [2019], Huang et al. [2020], and
Prakash et al. [2021].
Hence, contemporary multi-modal networks never
use a single transformer encoder that two modali-
ties are presented to at the same time. This aspect
draws a clear gap in the current state of the re-
search.

2.5 Research Goal

Transformers have proven to be powerful in both
the textual and image domain [Vaswani et al.,
2017, Dosovitskiy et al., 2020]. Although there may
still be challenges regarding the inductive bias as-
sociated with patch extraction, performing cross-
attention between text and image patch tokens
could be potent in multi-modal processing. There-
fore, a sensible next step would be a multi-modal
architecture that takes as input text and an image,
processing those with a single Transformer module.
To see whether convolution is important for reli-
ably extracting image features, a pure Transformer-
based variant will be compared to a variant com-
plemented with a convolutional pre-processor.

3 Methods

3.1 Task design: four-quadrant se-
quence classification

To realize a mixed visual/sequential task, a choice
must be made regarding the primary target object,
and a solution for the sequential classification
task for a series of such objects needs to be

found. We choose to use the individual digits
from the MNIST [LeCun et al.] and clothes from
the Fashion MNIST [Xiao et al., 2017] data sets
as the aforementioned basic objects. For the
serialization of the tasks, the individual images
are pasted together in a single image with four
quadrants. The task for the system then is to
classify a sequence of objects in the regular reading
order, starting with the top left, then the top
right, followed by the bottom left, and finally, the
image in the bottom-right quadrant. The target
label for the output will either be consistent or
inconsistent with the object sequence. The task
is henceforth to decide whether the given image
sequence corresponds to the target text string of
four labels. Figure 3.1 shows a sample data point
for the task design using (images of) capital letters.

Furthermore, to help the network learn faster and
more reliably, alongside the two output units for the
true/false classification, one output unit is added
for each class (e.g., 10 for MNIST, creating 12 out-
put units in total). Hence, the eventual target will
contain a true/false assertion and a vector denot-
ing which classes the image contains. This dual-task
setup also allows checking whether the individual
object classification is working and thus aids in the
explainability.

Image Text Target

A B C D True

Table 3.1: A prototypical data point for the
task design. Left: an image made up of four
sub-figures (A,B,C and D). Middle: the out-
put sequence. Right: a target decision denoting
whether the image and text sequence logically
fit.

3.2 Data Sets

The proposed model will be trained and tested on
two data sets, composed of quadrant images derived
from the individual samples from MNIST and the
Fashion MNIST data set, i.e., 2x2 such sub-images
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are combined into a single image for training or
testing.

3.2.1 The MNIST Data Set

In order to train the model in question, the MNIST
data set [LeCun et al.] will be used, which contains
handwritten digits from zero to nine. The original
data set contains 60,000 training and 10,000 test
data points. Each data point contains a 28 × 28
pixel image of a handwritten digit and a label, pre-
cisely a number from zero to nine shown on the
image.
The data set will be pre-processed as shown in ta-
ble 3.1, creating four-quadrant images of handwrit-
ten digits together with a number sequence and a
true/false assertion. Table 3.2 shows a sample data
point from the pre-processed data set.

Image Numbers Target

1 0 7 3 True

9 1 3 4 False

Table 3.2: Two sample images and their cor-
responding number sequences and targets from
the pre-processed data set.

3.2.2 The Fashion MNIST Data Set

Additionally, the model will be trained and tested
on the Fashion MNIST data set [Xiao et al., 2017],
which contains 60,000 training and validation as
well as 10,000 test pictures of black and white fash-
ion products from the Zalando online store. Hence-
forth, all meta attributes of the data set are the
same as for the MNIST data set: the size, the im-
age dimensions, and the number of classes. On the
other hand, the only difference is that the images
show clothing items instead of handwritten digits.
All pre-processing steps for this data set shall be

identical to the ones employed for the MNIST data
set, such that four images are concatenated and
presented together with a true or false sequence
that the model will have to classify. Table 3.3 shows
a sample data point from the data set.

Image Numbers Target

Shoe Shirt
Shirt Jacket

False

Table 3.3: A sample datapoint from the pre-
processed Fashion MNIST data set, showing a
picture, its corresponding sequence of clothing
items, and the target.

3.3 Model Architecture

Figure 3.1 shows the model architecture proposed.
It orients itself closely at the work by Vaswani et al.
[2017] and Dosovitskiy et al. [2020].
At the beginning of the input stream, both modal-
ities are embedded using separate modules. On the
one hand, the text sequence is embedded using
a standard word embedding. On the other hand,
the image embedding differs between the convo-
lutional and non-convolutional conditions. In the
former, the image is first presented to a convo-
lutional pre-processor before being further pro-
cessed by a patch embedding layer. In the non-
convolutional condition, only the last step is per-
formed. The reader is referred to table C.1 for a
detailed listing of the input and output dimensions
within each layer of this visual processing stream.

3.3.1 Convolutional Pre-Processor

In the convolutional condition, the image is
fed through Nc convolutional layers with 3 × 3
sized kernels each, where the ith layer has 16i
channels (e.g., the first layer has 16 channels, the
second one has 32 channels, etc). The design of
this convolutional pre-processor is inspired by
the VGG-16 model developed by Simonyan and
Zisserman [2014], who employed layers of doubling
channel numbers. VGG-16 is a suitable candidate
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for a pre-processor as it is one of the more basic
CNNs that are relatively shallow compared to
other architectures, yet it still performs quite
well. Therefore, since it is even more simplified
in the current research, it does not add immense
complexity to the model. Hence, a fair comparison
between the two conditions is still possible.

3.3.2 Patch Embedding

Subsequently, the (convoluted) image is embedded
by partitioning it into non-overlapping patches of
4 × 4 pixels. After that, the resulting patches are
flattened, transforming the x, y and channel dimen-
sion into a single one. For the last step of the image
embedding, the resulting vectors are linearly pro-
jected.
The word and the patch embedding modules lin-
early project the tokens onto a latent space of the
same dimensionality. Usually, 512 or 768 is chosen
as the number of dimensions. However, the exact
number of dimensions will be a hyper-parameter
optimized for the model at hand (as described in
section 3.4.3).

3.3.3 Classic Transformer Input Stream

Subsequently, the embedded words, patches and a
learnable classification token are concatenated and
positional encoding is added, as done in the work
by Dosovitskiy et al. [2020].
The eventual sequence is fed through a standard
transformer encoder of Ne layers, at the end of
which the classification token is classified using a
feed-forward layer with exactly eleven output neu-
rons, one for the actual true/false classification, and
ten neurons for each class in the respective data
set. The latter aims to help the model develop an
understanding of the data set, its classes, and the
pictures. Lastly, a sigmoid activation is placed at
the end of the model.

3.3.4 Why Just a Single Encoder?

In other studies on multi-modal, researchers always
presented the two modalities to two separate en-
coders (as seen in section 2.4). This research gap is
closed in this study to check whether self-attention
proves to be powerful between modalities.

As seen in the work by [Vaswani et al., 2017], their
transformer model learns to pay attention to spe-
cific words within a sentence concerning words it
encounters. Specifically, when attention is calcu-
lated between two sentences, each word in the first
sentence attends to each word in the second one so
that the model can understand which words cor-
relate in meaning or importance to the current
task. The exact mechanism appeared in the re-
search published by [Dosovitskiy et al., 2020], where
different image parts were essential for processing
other image parts. The attention maps in their
study show how the model learns to pay attention
to some parts of the image, e.g., outlining the ex-
act boundaries of an airplane while not attending
to the rest.
Henceforth, the model architecture in question
should combine these two findings. Specifically, in
the self-attention layers, the model should learn
which parts of the text are essential for certain
parts of the image and vice versa. Therefore, it
should still maintain the ability to correlate words
with words and image parts with other images.
The current model design can achieve this as both
modalities are concatenated. The resulting atten-
tion matrix maps from each information token (im-
age and text) to every other token.

3.4 Training and Evaluation

3.4.1 Pre-Processing

The data set is split into a training set of 55, 000, a
validation set of 5, 000, and a test set of 10, 000 data
points. During training, the four-quadrant images
are sampled live from the full training set and the
true/false sequence labelling was also determined
live, per I/O pair. In particular, an image is com-
plemented with three additional randomly sampled
images from the data set. Furthermore, a false se-
quence is shown with a 50% likelihood. In such
cases, at least one of the four tokens is replaced
with a randomly sampled one from the remaining
classes. The same replacement procedure is done to
the other three numbers with a likelihood of 25%
each. To test whether all labels occur uniformly in
each quadrant, a distribution was computed dur-
ing the experiment runs, which can be seen in table
D.1.
In the end, this pre-processing step substantially
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Figure 3.1: The proposed model architecture. Both modalities are embedded, concatenated, com-
plemented with a class token and positional embedding, and fed into a transformer encoder. The
resulting output of the class token is used for the classification task. If the number of hidden units
in the visual pathway Nc is larger than zero (condition A), the left branch is a CNN with exactly
that many 3x3 kernels and 16i channels (16, 32, 48, ...). If the number of hidden units Nc equals
zero, no convolutions are used, and the model reduces to an end-to-end transformer with crude
input patches (4x4 pixels) from the input of 56x56 pixels (condition B). A detailed listing of the
input and output dimensions of each layer of the visual pre-processing stream can be found in
table C.1.

increases the number of unique data points. Four
images are taken out of a set of 60, 000 images,
and the corresponding text sequence can be true
or false. Additionally, in the false case there is
Nclasses − 1 = 9 possible values for each token. In
consequence, the resulting number of unique data
points in the set is 60, 0004 · (94 + 1) ≈ 8.5× 1022.
However, in the eventual experiment, only a frac-
tion of these data points will be shown, depending
on how long the experiment runs.

3.4.2 Loss Metric and Optimizer

Binary Cross Entropy with Logits is chosen as the
loss function, a standard metric for problems in
which binary patterns have to be learned [Good-
fellow et al., 2016]. This loss function combines a

sigmoid layer with Binary Cross Entropy. Because
the output the model is trained on has multiple bi-
nary patterns, i.e., a true/false assertion and multi-
ple classes present in the image, loss functions such
as Categorical Cross Entropy do not work here.
For a model output vector y and a target vector ŷ,
the formula for Binary Cross Entropy with Logits
is composed as follows:

L(y, ŷ) =

 l1
...
lN



ln = ŷn · log σ(yn) + (1− ŷn) · log(1− σ(yn))

with N being the number of components of the
output vector ŷ, yn being the nth component of
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the target vector, and ŷn being the nth component
of the output vector, i.e., 0 or 1. In addition, σ
refers to the sigmoid function, i.e., σ(z) = 1

1+e−z

with z being the input number.
Furthermore, the ADAM optimizer is used, which
is a variant of Stochastic Gradient Descent, con-
verging to minima much faster and being more
likely to find lower minima as it makes use of
momentum techniques [Kingma and Ba, 2014].

3.4.3 Experiment Setup

Using these ingredients, two experiments are set
up, one with a model that uses a convolutional pre-
processor for processing images and another one
that relies solely on transformer-based attention.
The model architecture, as well as the training,
validation, and test procedures, are implemented
using the PyTorch toolbox [Paszke et al., 2019].
Specifically, a validation scheme is employed where
the model is tested on the validation set after each
epoch to monitor the validation loss. Furthermore,
this allows for the training to be stopped using an
early stopping technique that quits the training
if the validation loss does not decrease for three
epochs.
Additionally, each experiment conducts a hyper-
parameter optimization, performing a random grid
search on sampled values for the dropout, learning
rate, the number of convolutional layers in the
pre-processor, the number of transformer encoder
layers, the embedding dimension of the word and
patch embeddings, and the number of attention
heads in the transformer encoder layers. Each
hyperparameter setting is run five times, and the
accuracy’s resulting mean and standard deviation
are calculated to account for differences due to the
random initialization of model parameters.
Both experiments are run on a single NVIDIA
V100 GPU node for a maximum of 54 days of
GPU time.
Lastly, to draw definitive conclusions about the
differences between the two conditions, two un-
paired t-tests [Student, 1908] will be conducted,
one for each experiment.

3.4.4 Accounting for Comparability

Henceforth, to sum up, it is made sure that the re-
sults of both experiments will be comparable for
two reasons.
Firstly, both models rely on splitting the input im-
age into patches of 4x4 and using the same embed-
ding dimension as a bottleneck. Consequently, the
convolutional pre-processor cannot already trans-
form the image patches into extensive feature vec-
tors because those vectors are split and projected
onto a smaller hyperspace.
Furthermore, both experiments are limited by a
maximum GPU time of 54 days so that no experi-
ment can optimize longer than the other.

4 Results

The goal of the current research was to propose
a novel model architecture that simultaneously
processes visual and textual data using a single
Transformer encoder. Furthermore, the model
was trained and tested on two data sets, i.e.,
the MNIST and the Fashion MNIST data set,
across two conditions, one where it contained
convolutional elements and one where it did not.
A custom task design was implemented in which
four images of the respective data set were shown
in a grid-like fashion, together with a sequence of
tokens. The model had to decide whether it was
correct or false regarding the reading order of the
objects in the figure.

In each experiment run, about 6.4mil. randomly
sampled unique data points were used to train the
proposed architecture before the early stopping
mechanism quit the training. Table 4.1 shows the
results attained in the experiments. On the MNIST
data set, when coupled with a convolutional back-
bone, the proposed architecture achieved a mean
accuracy of 71.15% with a standard deviation of
0.001%. On the same data set, without convolu-
tional elements, the model scored a mean accuracy
of 70.20% with a standard deviation of 0.007%.
In addition, on the Fashion MNIST data set and
combined with a convolutional backbone, the
model attained a mean accuracy of 71.03% with
a standard deviation of 0.001%. On the same
data set, without the convolutional backbone, the
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model scored a mean accuracy of 70.56% with a
standard deviation of 0.002%.

MNIST
Fashion
MNIST

Convolutional
Image

Embeddings

97.73
±0.5%

95.70
±0.3%

Disjoint
Image
Patch

Embeddings

92.14
±0.5%

92.39
±0.2%

Table 4.1: The accuracy obtained on the
True/False task for the two data sets. The rows
denote the two conditions: (1) where the image
embedding contained convolutional features and
(2) a disjoint image-patch sequence obtained
from four 28x28 pixel input images. The means
and standard deviations were computed over
five different runs each, and in each run, the
model was trained on about 6.4mil. randomly
generated unique image/sequence pairs.

To find out whether the differences across the
two conditions are statistically significant, two
unpaired two-sided t-tests were performed. For
the MNIST data set, there was a highly signif-
icant difference in the mean accuracy scores be-
tween the convolutional (M=97.73, SD=0.5 ) and
non-convolutional (M=92.14, SD=0.5 ) condition;
t(8)=17.6771, p < 0.0001. Additionally, for the
Fashion MNIST data set, there was a highly sig-
nificant difference in the mean accuracy between
the convolutional (M=95.70, SD=0.3 ) and non-
convolutional (M=92.39, SD=0.2 ) condition as
well; t(8)=20.5277, p < 0.0001.

Moreover, Figures 4.1a-4.1d show the loss and ac-
curacy curves of the four best performing models
just mentioned.

5 Discussion

This study tested a novel unified Transformer
model that processes images and text with a sin-
gle encoder module in two conditions. In the first
condition, the model processed images using a con-
volutional pre-processor. In the other condition, the
entire model relied on Transformer-based atten-
tion, leaving out convolutional elements. The model
was further trained and tested on two data sets:
the MNIST data set of handwritten digits and the
Fashion MNIST data set that features clothing im-
ages categorized into ten classes. Both data sets
were modified such that datapoints contained four
concatenated images and a true or false correspond-
ing text sequence so that the model could learn to
discriminate true from false image sequence pairs
in regards to the reading order of the objects in the
figure.
The results showed that the convolution-based
model performed significantly better than the non-
convolutional model in both experiments. Namely,
the accuracy score was 5.5% higher for the MNIST
data set (97.73% vs. 92.14%) and 3.3% higher for
the Fashion MNIST data set (95.70% vs. 92.39%).

5.1 Interpretation of Results

The convolutional condition’s accuracy scores were
slightly yet significantly higher than those obtained
in the non-convolutional condition (about 3-6%).
These results show that both architectures can per-
form similarly well in a setting with simple images,
such as one-channeled images of handwritten digits
between zero and nine.
On the other hand, the significant differences in
accuracy give evidence for the hypothesis that
convolution-based pre-processing aids image pro-
cessing in Transformer-based models. It can be ar-
gued that convolutional networks, using a stride
of 1 pixel in the horizontal and vertical direction,
present less of an inductive bias than a visual trans-
former where a chosen ’reading order’ and patch
size are imposed on a given image. Not that this
should be problematic: Human-eye movements also
scan pictures in a stereotypical manner, attending
to points of fixation in a particular order [Salvucci
and Anderson, 1998, Noton and Stark, 1971, Reis-
berg, 2015].
Only when considering fields of high correlation
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(a) Data set: MNIST
Condition: convolutional

(b) Data set: Fashion MNIST
Condition: convolutional

(c) Data set: MNIST
Condition: non-convolutional

(d) Data set: Fashion MNIST
Condition: non-convolutional

Figure 4.1: The loss/accuracy curves of the best performing model trained on each data set and
condition.

over a (potentially long) patch sequence do trans-
formers lack an inductive bias, making them very
suitable for learning various sequential tasks. ViTs,
on the other hand, rely on splitting images into
non-overlapping patches. This is necessary because
performing attention between every pair of pix-
els in an image would be computationally infea-
sible due to quadratic time and space complexity.
Thus, ViTs cannot correlate pixels within patches
but only between patches. A potential downside of
this is that, e.g., an image patch showing a chair
would have a different encoding than one where
the chair is shifted to the right by just one pixel.
In contrast, CNNs process each pixel, correlating it
with only the pixels surrounding it. Furthermore,
when breaking down images into non-overlapping
patches, the image is likely broken in essential re-

gions. For example, an MNIST image of the num-
ber ”4” could be broken at the point where the lines
cross so that the digit is not clear from the result-
ing representation anymore.
As a consequence of the three mentioned prob-
lems, ViTs need to be trained on a considerably
higher amount of data to enable them to general-
ize. Firstly, they take longer to understand that in
images, pixels around a pixel matter much more
than pixels on the other side of the picture. Sec-
ondly, it takes a lot longer for the model to learn a
patch embedding that maps similar objects to very
close points in the latent space, even if they are
shifted by a number of pixels. These problems and
the resulting implication are also why Dosovitskiy
et al. [2020] trained their ViT on a data set con-
taining over 300 million images. At the same time,

11



CNNs can achieve similar performance on consid-
erably smaller data sets [Chollet, 2017, Krizhevsky
et al., 2012, Szegedy et al., 2014]. In this study, im-
age patches had a size of 4x4 black and white pixels,
which made it easier for the model to learn to em-
bed patches properly, but with complex three chan-
nelled images and 16x16 pixel patches, the amount
of data and training time needed would have been a
lot higher. CNNs do not have this problem, which
is a tremendous advantage as smaller companies
and research institutions cannot satisfy the require-
ments to successfully train a ViT on such a large
amount of data.
In the early days of neural-network-based computer
vision, researchers found that CNNs do a much bet-
ter job at extracting features from an image than
regular fully connected MLPs [LeCun et al., 1998].
In the same way, using a fully-connected dense layer
to map image patches into some latent space that
encodes features may just not be optimal. The re-
sults of this study show that ViTs still possess a
fundamental design flaw that they would need to
overcome to leave behind the aforementioned prob-
lems and become a true competitor to CNNs.

5.2 Strengths, Limitations, and
Prospect on Further Research

The current study proposes the first-ever model
architecture that processes image and text si-
multaneously using a single Transformer encoder.
Consequently, the strength of this work is that it
takes the most recent status quo further, combin-
ing findings from very influential papers [Vaswani
et al., 2017, Dosovitskiy et al., 2020] to create a
new, more general Transformer architecture.
Furthermore, this study clears up the myth that
ViTs are a more general, superior architecture
compared to CNNs [Dosovitskiy et al., 2020, Bai
et al., 2021, Han et al., 2022]. There are some
obvious challenges associated with the processing
stream of ViT. Only if these shortcomings were
overcome would it offer a suitable and possibly
more general alternative to convolution.

Nevertheless, the MNIST and Fashion MNIST data
sets remain highly limited since images are one-
channeled and only show a single object. Addition-
ally, both data sets have only ten classes. The re-
sults of this work cannot be fully generalized to all

kinds of images, as real-world images would con-
tain multiple objects and sophisticated color infor-
mation. However, as the goal of this study was a
proof-of-concept of a multi-modal transformer ar-
chitecture, training and testing the proposed archi-
tecture on more elaborate data sets is left for future
studies.
Therefore, the next step for further research would
be to test the model proposed in this paper on more
extensive and complex data sets. In particular, the
Coco [Lin et al., 2015] and Visual Genome [Kr-
ishna et al., 2017] would serve as promising can-
didates here. In the former, data points contain an
image and multiple correlated captions so that the
model could be trained to distinguish between true
and false captions, as in this study. On the other
hand, in the Visual Genome data set, datapoints
contain an image and associated question-answer
pairs. Hence, the model could be trained to answer
questions based on the images. Based on the results
of this research, a possible hypothesis here would be
that the convolutional variant will again perform
better. Furthermore, as the images in these data
sets are a lot more complex than in the MNIST and
Fashion MNIST data sets, it could also be hypoth-
esized that the difference in accuracy between the
convolutional and non-convolutional settings will
be even higher than in this study.
In addition, it is likely that, as in the research by
Dosovitskiy et al. [2020], the data sets needed have
to be a lot larger for the non-convolutional archi-
tecture to succeed in generalizing knowledge.
Moreover, further research could conduct experi-
ments on similar architectures that consider even
more modalities. For example, the findings of this
study could be used to produce a reinforcement
learning agent that perceives auditory, visual, and
haptic information and processes it using a single
Transformer module. The generality of the atten-
tion mechanism could thus potentially allow other
models to learn any task and process any informa-
tion, bringing us one step further towards general
intelligence.
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Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL
http://papers.neurips.cc/paper/9015

-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf.

Aditya Prakash, Kashyap Chitta, and Andreas
Geiger. Multi-modal fusion transformer for end-
to-end autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7077–7087, 2021.

Daniel Reisberg. Cognition: Exploring the science
of the mind: Sixth international student edition.
WW Norton & Company, 2015.

Frank Rosenblatt. Perceptron simulation experi-
ments. Proceedings of the IRE, 48(3):301–309,
1960.

David E Rumelhart, Geoffrey E Hinton, and
Ronald J Williams. Learning internal represen-
tations by error propagation. Technical report,
California Univ San Diego La Jolla Inst for Cog-
nitive Science, 1985.

Dario D Salvucci and John R Anderson. Tracing
eye movement protocols with cognitive process
models. In Proceedings of the twentieth annual
conference of the cognitive science society, pages
923–928. Routledge, 1998.

Karen Simonyan and Andrew Zisserman. Very
deep convolutional networks for large-scale im-
age recognition. arXiv preprint arXiv:1409.1556,
2014.

Amit Singhal et al. Modern information retrieval:
A brief overview. IEEE Data Eng. Bull., 24(4):
35–43, 2001.

Student. The probable error of a mean. Biometrika,
pages 1–25, 1908.

Christian Szegedy, Wei Liu, Yangqing Jia,
Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Van-
houcke, and Andrew Rabinovich. Go-
ing deeper with convolutions, 2014. URL
https://arxiv.org/abs/1409.4842.

Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu
Liang, J Zico Kolter, Louis-Philippe Morency,
and Ruslan Salakhutdinov. Multimodal trans-
former for unaligned multimodal language se-
quences. In Proceedings of the conference. As-
sociation for Computational Linguistics. Meet-
ing, volume 2019, page 6558. NIH Public Access,
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Lukasz Kaiser, and Illia Polosukhin. Attention is
all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

Paul John Werbos. The roots of backpropagation:
from ordered derivatives to neural networks and
political forecasting, volume 1. John Wiley &
Sons, 1994.

Han Xiao, Kashif Rasul, and Roland Voll-
graf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algo-
rithms. CoRR, abs/1708.07747, 2017. URL
http://arxiv.org/abs/1708.07747.

Jun Yu, Jing Li, Zhou Yu, and Qingming Huang.
Multimodal transformer with multi-view visual
representation for image captioning. IEEE trans-
actions on circuits and systems for video technol-
ogy, 30(12):4467–4480, 2019.

14



A Multi-Layer Perceptrons

The multilayer perceptron (MLP) was first pro-
posed by Rosenblatt [1960] and later developed
further by Werbos [1994]. Being the first so-called
Neural Network (NN) and thereby one of the most
influential and famous models in supervised learn-
ing, it can be used as a universal function approxi-
mator. It is constructed of multiple connected lay-
ers that are in turn composed of so-called neu-
rons. In particular, neurons take numbers as in-
put and compute a weighted sum of those before
adding a bias and applying an activation function,
specifically a non-linearity. Classically, the sigmoid-
function s(z) = 1

1+e−z , with z being the input num-
ber, is used as this non-linearity. However, other
functions with different advantageous properties
have been proposed, e.g., the rectifier linear unit
function, ReLU(x) = max(0, z) with z being the
input number [Agarap, 2018]. In the case of the
classic MLP, also denoted as the Fully-connected
Feed Forward Neural Network, the neurons present
in one layer all connect to every neuron in the next
layer, as pictured in figure A.1.

Figure A.1: A schematic of a Fully-connected
Feed Forward Neural Network.

The mathematical mechanics just described can
thus also be imagined as each branch connecting
from one neuron to the next having an associated
connection strength or weight multiplied by each
number that passes through that path. Each node
or neuron in the network takes all the incoming
weighted numbers, sums them up, and applies the
non-linearity. After that, the neuron passes the

resulting output through each connecting path
that branches off it. Figure A.2 graphically depicts
this mechanism.

Figure A.2: A schematic of the workings in an
artificial neuron. Weights are denoted as wi, the
bias as b, Σ refers to the summation operation,
and σ represents the non-linearity.

The equation of a single neuron is hence comprised
as follows:

z(x⃗) = σ(w⃗ · x⃗ + b)

where x⃗ is the input vector, w⃗ is the weight vec-
tor, b is the bias and σ is the non-linear activation
function.
MLPs are inspired by the mechanics of the brain, in
which neurons receive input from connecting neu-
rons and fire if a certain threshold is reached. In
an MLP, the connection strength between neurons
is modelled as the weights w, the threshold is rep-
resented as the bias b, and the non-linearity σ is
used to model the firing behaviour. However, train-
ing the network would not be directly possible with
discrete firing behaviour. Therefore, an activation
function with a continuous derivative is used so
that the backpropagation algorithm can be used,
which relies on computing the gradient of the net-
work function.

A.1 The Backpropagation Algo-
rithm

To train an MLP, Werbos [1994] describes that a
loss function L is computed between the model out-
put and the desired output, for instance, the mean
squared error (MSE):

LMSE(Yi, Ŷi) =
1

n

n∑
i=0

(Yi − Ŷi)
2
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where n is the number of points in the data vector,
Yi is the target value of a data point, and Ŷi is the
model’s estimation.
Subsequently, the Backpropagation algorithm is
utilized, computing the gradient of this loss-
function ∇L, hence the vector of partial derivatives
of the loss function with respect to the weights and
biases. Subsequently, gradient descent is applied so
that the cost function converges to a local mini-
mum, creating an optimal model. Thereby, all the
weights are updated based on the gradient:

w⃗ ← w⃗ − α∇L

where w⃗ is the vector of weights and biases in the
model, α is the learning rate (a hyperparameter)
and ∇L is the gradient of the loss function L in
relation to the weights w and biases b of the net-
work.

B Convolutional Neural Net-
works

Convolutional Neural Networks (CNNs) were pio-
neered by [LeCun et al., 1998] (1998) as a different
way of processing information in an NN that is tai-
lored to visual data. In pictures, pixels at one edge
often do not semantically correlate with the ones
on the other, as they can be part of very different
objects captured in the same image. Instead, the
area surrounding a particular pixel is much more
meaningful to what it refers to. Henceforth, [Le-
Cun et al., 1998] utilized this insight, resorting to
the convolution operation to encode the correlation
of pixels to nearby other pixels.
An n-dimensional discrete signal, e.g., an audio sig-
nal or an image, can be convoluted using a filter
of the same dimensionality but smaller (or equal)
size. For the case of an image, the filter is slid
along it, and the dot product between the pixels
it covers and itself is computed. As a result, a new,
smaller image is created that contains information
about the correlation between neighbouring pixels,
as shown in figure B.1.

Figure B.1: A depiction of a two dimensional
convolution. The dark grey area represents a
3x3 filter that slides over the pixels, comput-
ing the dot product between the overlaid area
and the filter and assigning it as a pixel to the
resulting image.

Convolutions can extract various features from
images, including edges and colour. [LeCun et al.,
1998] made use of convolutional filters instead of
fully connected neurons in their NN to let the first
layers of their network extract, e.g., edges, while
the later layers combined these edges into shapes
so that the network could, in the end, recognize
objects. In that case, the numbers associated with
the filters denoted the weights that the network
learned.
The researchers combined these convolutional
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layers with pooling layers, which reduce the di-
mensionality of an image by taking the maximum,
minimum or average value out of each n × n
(e.g., 2 × 2) patch, summarizing the information
in small regions of the feature map. Thence, the
number of weights needed to learn features and
thus be able to recognize objects in images was
drastically reduced in comparison to using regular
fully connected neural networks, as convolutional
filters have tremendously fewer weights than fully
connected layers and pooling layers dramatically
reduce the number of weights again.
Nevertheless, compared to fully connected MLPs,
[LeCun et al., 1998] still achieved much higher
accuracy on, e.g., the MNIST data set that
contains handwritten digits. Being much easier to
train and performant than regular NNs, CNNs
were quickly adopted as the state-of-the-art in
image processing. Many variants of the original
structure have been proposed to achieve even
higher accuracy, including AlexNet [Krizhevsky
et al., 2012], ResNet [He et al., 2016] and Xception
[Chollet, 2017].
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C Output Dimensions within Visual Pre-Processing Stream

Pattern Example: no convolution
Example: 4 conv.

layers

Original 1× 56× 56 1× 56× 56 1× 56× 56

Conv. Layers

max(1, 16Nc)
×

56(56− 2Nc)
×

56(56− 2Nc)

16× 54× 54
32× 52× 52
48× 50× 50
64× 48× 48

Patcherize ( 56−2Nc

4 )2 ×max(1, 16Nc)× 4× 4 196× 1× 4× 4 144× 64× 4× 4

Flatten ( 56−2Nc

4 )2 × 16max(1, 16Nc) 196× 16 144× 1024

Lin. Proj. ( 56−2Nc

4 )2 ×De 196×De 144×De

Table C.1: The respective output dimensions of each layer in the image pre-processing stream
of the network, together with two examples, one without any convolution, and another one with
four convolutional layers. Nc indicates the number of convolutional layers, while De denotes the
embedding dimension. The dimensions shown in the last row depict the length of the sequence
that will be concatenated with the embedded text sequence, together with the size of each token
vector.
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D Distributions of Class Labels within Quadrants

Class Label Q1 Q2 Q3 Q4
0 2.47% 2.45% 2.44% 2.46%
1 2.82% 2.80% 2.82% 2.84%
2 2.46% 2.47% 2.50% 2.48%
3 2.52% 2.58% 2.58% 2.56%
4 2.46% 2.45% 2.43% 2.43%
5 2.26% 2.29% 2.26% 2.24%
6 2.49% 2.46% 2.46% 2.47%
7 2.61% 2.62% 2.59% 2.60%
8 2.45% 2.42% 2.45% 2.42%
9 2.46% 2.46% 2.47% 2.49%

Table D.1: The distributions of each class within the four quadrants of the generated figure for
the MNIST and Fashion MNIST data sets.
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