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Abstract: 

Automatic segmentation of primary tumors in oropharyngeal cancer patients 

using PET/CT images and deep learning has the potential to improve 

radiation oncology workflows. However, 2D tumor segmentation using deep 

learning is a data imbalance problem and a method of PET and CT slice 

selection affects the convergence of the deep learning model. The aim of the 

current project was to find a way to select sequences to improve the 

performance of the existing deep learning segmentation model. To select the 

'right amount' of sequences without tumor in an unsupervised manner, 

clustering methods were explored. The trained clustering algorithms were 

used to group the training and validation data of the existing segmentation 

model in into clusters. The performance of the proposed method was 

assessed using the existing segmentation model. The promising results of the 

proposed data selection method were confirmed by improved metrics of the 

segmentation model (mean dice score coefficient, precision and recall).  
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1 Introduction 

1.1 Background 

Oropharyngeal cancer is one of the most common types of cancer 

around the world. Prior to the treatment, usually radiologists manually 

segment the tumor and the organs at risk (see Figure 1) on images such as 

CT, PET, and MRI. However, the surrounding normal tissue is very similar 

to the tumor in the head and neck area, which makes it more difficult to 

segment. Moreover, it is a very time-consuming task because the radiologists 

have to perform contouring in all three perpendicular cross-sections (axial, 

sagittal, coronal planes). Hence the automatic segmentation of primary 

tumors in oropharyngeal cancer is of great interest since it has the potential 

to improve radiation oncology workflow [1].  

Figure 1. Organs at risk for oropharyngeal cancer [2] 

Therefore, at the Department of Radiation Oncology of the University 

Medical Center Groningen (UMCG) a project was started for the 

development of a 2D deep learning model for automatic tumor segmentation 

on PET and CT images [3]. The proposed model trains on 2D slices extracted 

from PET and CT images of oropharyngeal cancer patients from the UMCG, 
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which are processed in the form of sequences. A sequence consists of three 

consecutive slices of concatenated PET-CT images.  The ‘golden standard’ 

of tumor contours, used in the model, are the manual tumor segmentations 

provided by the radiation oncologists. They are used as binary masks where 

pixel values of 1 correspond to tumor and 0 to not tumor. The original 3D 

volume of each image modality has a dimension of 144x144x144 pixels. 

Therefore, each sequence used for training is 432x144 pixels. 

Tumor segmentation is, as many medical imaging problems, a class 

imbalanced problem: in a 3D volume, far more slices not containing tumor 

(negative slices) are present than the ones containing tumor (positive slices). 

If all slices are considered for training, then the network will exhibit bias 

towards the majority (negative) class, so an appropriate selection is 

necessary. 

In addition, the area of the head and neck on PET images is also 

challenging for the model when trying to identify a tumor because of the 

presence of lymph nodes and the brain with similar brightness which gives 

rise to a high number of false positive results.  

In the paper [3] the segmentation model was trained on positive 

sequences (95% of the total training data)chosen by adding a constraint on 

the minimum percentage of tumor pixels present; and negative sequences 

(5%) which were randomly selected.  

The current project explores alternative ways to select negative 

sequences, dealing with the class imbalanced problem, using PET images 

information. 

1.2 Literature overview 

The field of slice selection to solve the class imbalance problem for 

2D automatic tumor segmentation has been surprisingly unattended until 

recently, as the majority of the literature on tumor segmentation performed 

https://synonyms.reverso.net/%D1%81%D0%B8%D0%BD%D0%BE%D0%BD%D0%B8%D0%BC%D1%8B/en/unattended
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slice selection setting a certain threshold value on pixels that corresponds to 

tumors or did not talk about the pre-processing step at all. In this section 

different methods for handling class imbalance problems are discussed.  

Class imbalance is one of the biggest challenges of the machine 

learning field. Imbalanced data sets degrade the performance of data mining 

and machine learning techniques as the overall accuracy and decision 

making are biased towards the majority class, which leads to misclassifying 

the minority class samples [4]. Hence, the class imbalance issue is an 

important topic for the researchers to tackle. 

Methods for handling class imbalance in machine learning can be 

grouped into three categories: data-level techniques, algorithm-level 

methods, and hybrid techniques [5]. 

In the data-level approaches the most common ones are oversampling 

and undersampling techniques. Authors of [12] performed classification of 

diabetic neuropathy according to MRI images. They applied 73 different 

oversampling techniques to the dataset in order to deal with class imbalance. 

Another representative example is [ 13]. In this paper the authors augmented 

the training examples based on the ratios of imbalanced classes to solve the 

imbalanced class problem for deep learning based breast cancer 

histopathological image classification. One-class classification (OCC) 

learning algorithms are also known as recognition-based undersampling 

methods dealing with class imbalance, which work by modeling the 

classifier on the representation of the minority class. In paper [14] the authors 

used neural networks and proceeded to learn only from the examples of 

minority class rather than trying to recognize the different patterns from 

examples of majority class and minority class. In [15] the authors described 

the OCC method. They improved the method by adding a calculation of 

image complexity and tested on four imbalanced datasets of medical images. 

In addition to the OCC method, also the cluster-based undersampling method 
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showed its potential. Authors in [16] used a cluster technique that aims to 

group objects that have similar characters into the same cluster. In the cluster 

method the first stage was to determine the best number of clusters (indicated 

with K). The cluster center of these cluster groups was used as a 

representation of all data that was used as a sample of the majority of classes. 

Samples in each cluster group were taken randomly and the remaining data 

was eliminated (undersampling). Furthermore, the majority class sample was 

combined with the minority class sample to form a new balanced training 

dataset. In [17] a cluster-based undersampling method was used to handle 

the data imbalance problem in breast cancer classification. K-means 

clustering algorithm and Boosted C5.0 were used to select the datasamples 

located near the tumor boundary. To evaluate the proposed classifier the 

performance of the proposed model was compared to the baseline 

approaches. The method from this article performed with less time and better 

results on statistical parameters as speceficity and sensitivity. 

There are several works dealing with the class imbalance problem 

using algorithm-level approaches [6,7,8,9]. In [6], for instance, authors 

proposed a new learning rule for Spiking neural networks (SNNs) to solve 

the medical image class imbalance problem. The rule is called an imbalanced 

reward-modulation spike-timing-dependent plasticity (R-STDP). They used 

an imbalanced reward coefficient for the R-STDP learning rule to set the 

reward from the minority class to be higher than that of the majority class, 

and this reward coefficient helped to set the class-dependent rewards 

according to the data statistic of the training dataset. The authors of [7] 

designed a new recurrent generative adversarial architecture called RNN-GAN 

to handle imbalance data problem in cardiac MRI image segmentation.They 

used mixed adversarial loss and categorical accuracy loss in their novel 

model. The proposed model improved semantic segmentation accuracy on 

the MRI images dataset. The performance of the model was assessed using 
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the dice score coefficient. In [8] the authors discussed a new conditional 

generative refinement network with three components: a generative, a 

discriminative, and a refinement network. The proposed method was able to 

mitigate the problem of data imbalance through ensemble learning for 

simultaneous liver and lesion segmentation, microscopic cell segmentation 

and brain tumor segmentation. The outcome was compared to the recent 

popular state-of-the-art methods such as patient-wise mini-batch 

normalization. To evaluate the proposed method, authors trained their 

network on the liver tumor segmentation dataset and compared the results 

according to the dice score.  Authors of [9] described novel algorithm-level 

technique based on the Offset Curves (OsC) loss. The OsC loss consists of 

three main fitting conditions: pixel-level segmentation, area around the 

boundaries (offset curves), and length of the offset curves. The loss was used 

to train the brain tumor segmentation and the vessel extraction models.The 

outcome of the designed model was evaluated with the help of dice score 

coefficient and other metrics and for the brain tumor segmentation the dice 

score coefficient was higher than for other state-of-the-art models using for 

example FCN architecture. 

A hybrid approach is also widely used for handling class imbalance. 

In the paper [10], authors combined data-level and algorithm-level 

approaches in order to train the model for a deep learning oral cancer 

classifier. They augmented the training samples based on the ratios of 

imbalanced classes to oversample the dataset, then they randomly 

undersampled the dataset and trained the model using Convolutional Neural 

Network (CNN) classifier and Cross-Entropy (CE) loss metric as an 

algorithm-level approach. In the paper [11] the authors used a hybrid method 

for handling class imbalance of skin-disease classification. This method 

consists of the data level method of balanced mini-batch logic and a real-
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time image augmentation using the algorithm-level approach to design a new 

loss function. 

1.3 Aim and objectives 

The aim of the current project was to find a way to select sequences in 

order to improve the performance of the deep learning segmentation model 

of [3], which means more accurate automatic tumor segmentation. Since the 

model showed to be highly affected by PET intensity values, the first goal of 

this study will be using this image modality to perform undersampling 

clustering. To select the “right amount” of sequences without tumor in an 

unsupervised manner clustering methods were explored. Secondly, the 

different sequence selection methods were compared and discussed based on 

the improvement of the performance of the segmentation model. To achieve 

the aim of the project, the following objectives were identified: 

− Identify different relevant features describing PET images. 

− Analyze and compare clustering methods for data selection using 

only PET imaging. 

− Apply chosen methods of sequence selection to the training and the 

validation data of the segmentation model. 

− Discuss the differences in performance of the segmentation model 

when different sequence selection methods are used. 

Figure 1 shows the workflow planned to implement in the current 

project. 
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Figure 2. Undersampling clustering-based method used in current project. Image 

adopted from [16].  
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2 Materials and Methods 

The method used to achieve the aim of the thesis is cluster analysis. In 

the first part of this chapter, the data used for this project is described. In the 

second part, the different steps to perform cluster analysis are described, 

clustering techniques and sequence selection method are discussed. 

2.1 Data 

2.1.1 PET images. Clinical information 

Positron emission tomography (PET) is a procedure in nuclear 

medicine that measures metabolic activity of the cells in different body 

tissues. PET is a combination of nuclear medicine and biochemical analysis 

[18].  

PET imaging works by detecting two high-energy photons that 

coincide in time and are released by a radioisotope that emits positrons. PET 

imaging has unique characteristics for both very high sensitivity and precise 

determination of the in vivo concentration of the radiotracer due to the 

physics of the emission and the detection of the coinciding photons. PET 

imaging has become a popular clinical modality for oncology, 

cardiovascular, and neurological applications. PET scan radionuclides are 

created by attaching a radioactive atom to chemical substances that are 

naturally used by the organ or tissue during its metabolic process [19].  

PET scans produce exact, three-dimensional images of the interior of 

the human body. The images can clearly show the part of the body being 

investigated, including any abnormal areas, and can highlight how well 

certain areas of the body are functioning. A PET scan is a useful tool for 

diagnosing a number of diseases, including cancer. Head and neck cancer 

imaging is especially necessary for radiotherapy treatment planning. PET is 
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used because of its ability to assess tumor metabolic status. PET has 

outperformed CT and MRI in diagnosing and distinguishing recurrence from 

post-radiation effects and surgical scars in head and neck tumor sites. In 

addition, PET is superior to CT and MRI in the detection of cervical lymph 

node status in cases of head and neck cancer. However, PET is limited by a 

lack of anatomical markers and it  is difficult to find suspicious findings 

precisely because of the low amount of background tracer absorption [20].  

2.1.2 PET images. Imaging information 

To visualize PET scans one of the three perpendicular cross-section 

(axial, sagittal, coronal planes) is usually selected. Primary tumor regions 

present pixels with higher intensity compared to non cancerous tissues, 

however the metastatic lymph nodes and the brain show similar brightness 

as the tumor. Figure 3. shows an example of PET slice from one of the 

perpendicular cross-sections with bright pixels due to the brain activity. This 

causes difficulties in automatic tumor detection.  

A simple way to determine activity in PET imaging is the standardized 

uptake value (SUV). SUV measures the relative uptake in a region of 

interest. Its calculation depends on a precise knowledge of the injected dose 

quantity and time [21]. The intensity of normal tissues should be within the 

lower-to-middle portion of the dynamic range while the upper range are used 

to demonstrate the range of intensities that might exist in pathological 

processes characterized by high glycolytic activity [22].  

SUV is a dimensionless ratio that has traditionally been used by 

nuclear medicine professionals to differentiate between "normal" and 

"abnormal" levels of uptake. It is a semi-quantitative parameter defined as 

the ratio of activity per unit volume of a region of interest (ROI) to activity 

per unit whole body volume. It was intended to be a simplified method of 

quantifying uptake rather than true quantification via compartmental and 
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kinetic modeling. A SUV equal to 2.5 and higher is generally considered to 

be indicative of the malignant tissue or the tumor. However, there has been 

a wide range of SUV values reported for different similar diseases. It is 

important to say that a SUV around 2.5 can be measured in non-malignant 

regions. In other words, small tumors can also exhibit a maximum SUV of 

less than 2.5. The SUV was created to determine whether a region may be 

considered as ‘tumor‘ or ‘malignant‘ but may have limitation for determining 

the contours of a tumor [23].  

Figure.3. An example of PET slice with clear representation of the brain activity. 

 

2.1.3 Data description 

The data used for the current project is the same as in [3]. Imaging 

data was collected at the UMCG. For this project a total of 114 patients were 

used. PET, CT  and GTV (gross tumor volume) primary tumor delineations 

(GTVp), manually annotated by radiation oncologists, were provided as 

bounding boxes extracted around the oropharynx, with a dimension of 

144x144x144 pixels. Sequences of three consecutive slices were extracted 

from each volume, as described in [3], as the method is trained and validated 

on sequences.  
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For the current project only PET and GTV were used. As the model in 

[3] is trained on sequences, PET sequences were extracted. One sequence 

consists of three consecutive PET slices. Figure 4 shows an example of 

created sequences. 

Figure.4. Example of PET sequences used in the study. 

 

2.2  Cluster analysis 

Cluster analysis is a statistical method used to processed data. It 

organizes objects into groups or clusters based on their close association. 

Cluster analysis is concerned with data matrices in which the variables 

have not been partitioned beforehand into criterion versus predictor subsets. 

The objective of cluster analysis is to find similar groups of subjects, where 

“similarity” between each pair of subjects means some global measure over 

the whole set of characteristics [24]. 

Cluster analysis is an unsupervised learning algorithm. Contrary to 

many other statistical techniques, cluster analysis is frequently employed 

when no assumptions are made regarding the probable relationships among 

the data. Although it tells us where relationships and patterns in the data are, 

it doesn't explain what they might be or what do they mean. Unsupervised 

learning methods work well for data imbalance problems. There are several 
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steps needed to perform cluster analysis (Figure 5). Each step is described in 

detail below. 

Figure.5. Steps for cluster analysis. Image adapted from [25]. 

 

2.2.1 Features selection (extraction) 

To perform clustering analysis, features which could be representative 

of each data sample were investigated. Maximum, minimum, mean, standard 

deviation and mean entropy were calculated using pixel SUV values of PET 

sequences. In addition, a histogram analysis was performed and parameters 

such as kurtosis and skewness were also included.  

In the formulas below we will assum that a sequence is a matrix F with 

dimension 432x144 which has been flattened to a one dimension array f. The 

mean standardized uptake value (meanSUV) is the average value of FDG 

uptake activity in an area. The maximum standardized uptake value 

(maxSUV) represents the value of the pixel with the highest FDG uptake 

activity. The minimum standardized uptake value (minSUV), represents the 

value of the pixel pixel with the lowest FDG uptake activity[26]. The 

standard deviation (std) [27] measures how data is dispersed relative to its 

mean. It is calculated as the square root of its variance (1). 
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𝑠𝑡𝑑 =√∑ (𝑓𝑖
2

−𝑚𝑒𝑎𝑛𝑆𝑈𝑉2)𝑁
1

𝑁
   (1)  

N – number of pixels in the PET sequence, fi – an i-element of the array f. 

The entropy was also considered as a relevant feature. It is a measure 

of randomness. Inhomogeneous textures have low entropy, whilst 

homogeneous textures have high entropy [28]. Entropy is calculated with the 

help of creation of the gray level co-occurence matrix(2) (see Figure 6): 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ∑ 𝑝(𝑖, 𝑗) 𝑛−1
𝑗=0

𝑛−1
𝑖=0  (2) [29] 

n – number of gray levels, p(i,j) – probability of two pixels separated by 

specified offset having intensities i and j. 

Figure 6. Representation of calculated entropy. 

 

Histogram analysis is also a way of further analyzing PET images and 

obtaining imaging biomarkers [30]. Therefore, skewness and kurtosis were 

calculated.  

Skewness describes how much the data distribution is asymmetrical 

from the normal distribution [28]. Skewness is calculated as adjusted Fisher-

Pearson coefficient of skewness(3)[31]: 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
√𝑁(𝑁−1)

𝑁−2

∑ (𝑓𝑖−𝑚𝑒𝑎𝑛𝑆𝑈𝑉)3/𝑁𝑁
𝑖=1

𝑠𝑡𝑑3  (3) 

N – number of pixels in the PET sequence, fi – an i-element of the array f 
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When the most values are concentrated on the left of the mean the 

skewness is positive. When the most values are concentrated on the right of 

the mean the skewness is negative (see Figure 7). If skewness is equal to 0, 

it is a symmetrical distribution around the mean [28]. 

Figure.7. Representation of negative skewness for one of the PET sequences. 

 

Kurtosis is a statistical measure that describes how much a 

distribution's tails differ from the tails of a normal distribution. It shows 

‘peakedness’ of a data distribution(4) [28].  

 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
∑ (𝑓𝑖−𝑚𝑒𝑎𝑛𝑆𝑈𝑉)4/𝑁𝑁

𝑖=1

𝑠𝑡𝑑4     (4) [31] 

N – number of pixels in the PET sequence, fi – an i-element of the array f 
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When the value for kurtosis is below 3, the data distribution is sharper 

than a normal distribution, with values concentrated around the mean and 

thicker tails (See Figure 8). When it has values above 3, the data distribution 

is flatter than a normal distribution with a wider peak, the probability for 

extreme values is less than for a normal distribution and the values are spread 

more widely around the mean. Kurtosis with a value equal to 3 shows a 

normal distribution of the data [28]. 

Figure.8. Representation of kurtosis with the high probability of extreme values 

from an example PET sequence. 

 

All the features described above were calculated in the programming 

language Python using the Peregrine high performance computing cluster of 

Center for Information Technology of the University of Groningen. The 

parameters like mean SUV, max SUV, min SUV, std and entropy were 

calculated with the help of the python library NumPy. Histogram analysis 

and its features as skewness and kurtosis were performed with the help of 

SciPy python library. For visualization of some features the python library 
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Matplotlib was used. After all the features were selected and calculated for 

all the sequences, a dataframe was created using Pandas python library. 

2.2.2 Clustering algorithm selection 

Two different clustering algorithms were selected for this study: K-

Means and Fuzzy C-means. Both methods are described in the next sections. 

2.2.3 K Means clustering 

The K-Means algorithm assigns data to the clusters by trying to 

separate data samples in n groups of equal variance and minimizing a 

criterion known as the inertia or Within-Cluster Sum-of-Squares (WCSS) 

[36]. This algorithm requires defining the number of clusters manually. It 

scales well to a large number of data samples and it has been used across a 

large range of applications in many different fields. It is very common among 

the applications in the medical imaging field. Figure 9 shows how the K-

means algorithm works. 
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Figure.9. K-means clustering algorithm. Image adopted from [32]. 

 

The distance used in this study was the ‘Euclidean Distance’ (5) and 

it is calculated between the cluster center and each data point within the 

cluster. Consequently the mean distance of all the data points within a cluster 

is calculated and centroids are formed [33]. The idea behind the K-means 
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clustering algorithm is to minimize the distance between cluster center and 

the data points. 

𝑑(𝑓, 𝑐) =  √∑ (𝑓𝑖 − 𝑐𝑖)2𝑛
𝑖=1   (5)  

n – number of features extracted from the PET sequence, f and c – 

coordinates of the data point and the cluster center in the multidimensional 

space, fi and ci – Euclidean vectors, starting from the origin of the 

multidimensional set of features (initial point). 

 

The number of clusters was chosen according to the elbow method. It 

uses the WCSS criterion for selecting the optimal number of clusters k [34]. 

It was calculated with the formula below (6): 

𝑊𝐶𝑆𝑆 =  ∑ ∑ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑𝑖, 𝐶𝑘
2) 

𝑑𝑛
𝑛=0

𝑘
𝑘=0  (6) 

C – cluster centroids, d – data points in a cluster, k – number of clusters, n – 

number of features extracted from the PET sequence. 

 

The ideal number of clusters k was chosen according to the plot 

showing the relation between WCSS and the number of clusters. The optimal 

k was selected where WCSS curve started to band and formed an ‘elbow‘ 

[35]. 

K-Means clustering is good to use in the medical imaging field 

because it is simple to implement, it is scalable and performs quickly with 

the huge datasets of medical images and has a good generalization of clusters 

for different shapes and sizes. However, this algorithm is sensitive to outliers 

and with the increasing number of dimensions its scalability decreases. Also, 

it is time consuming to choose the number of clusters k manually [35]. 
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2.2.4 Fuzzy C mean clustering 

Fuzzy C-means (FCM) is a method of clustering which allows one 

datasample to belong to two or more clusters: each data point has a degree 

of membership (probability) of belonging to each cluster [37]. Figure 10 

shows how the Fuzzy C-means algorithm works. This algorithm is based on 

the minimization of the objective function (7): 

𝐽 =  ∑ ∑ 𝜇𝑖𝑗
𝑚‖𝑓𝑗 − 𝑐𝑖‖

2𝑁
𝑗=1

𝐾
𝑖=1  (7) 

ci – cluster center, N – number of features extracted from the PET sequences, 

fj – position of the datapoint, K – number of clusters, m – fuzzification 

coefficient of the algorithm, 𝜇  - representative matrix for the membership 

of each element in each cluster 

The number of clusters was chosen according to the Elbow methos as 

for the K-means clustering. 

The cluster center matrix Vk is calculated as (8): 

𝑉𝑘 =  
∑ 𝜇(𝑖,𝑘)𝑚𝑓𝑖

𝑁
𝑖=1

∑ 𝜇(𝑖,𝑘)𝑚𝑁
𝑖=1

  (8) [38] 

𝜇 – representative matrix for the membership of each element in each cluster, 

m – fuzzification coefficient of the algorithm, N – number of features 

extracted from the PET sequences. 

The representative matrix for the membership of each element in each 

cluster 𝜇 is calculated with the formula (9): 

𝜇(𝑖, 𝑘) =  (∑ (
𝐷(𝑖,𝑘)

𝐷(𝑖,𝑗)
)

2

𝑚−1𝐶
𝑗=1 )−1  (9) [38] 

C – number of clusters, m – fuzzification coefficient of the algorithm, D – 

squared distance between the data point fi and the cluster center Vk. 
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Figure.10. Fuzzy C-means clustering algorithm. Image adopted from [36]. 

 

Fuzzy C-means clustering algorithm gives best results for overlapped 

data set and comparatively better then k-means algorithm. Unlike k-means 

where the data point must exclusively belong to one cluster centroid where 

the data point is classified, Fuzzy C-means allow the data point belongs to 
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several clusters. Another advantage is membership to each cluster center as 

a result of which data point may belong to more than one cluster center. 

However this algorithm is more time consuming than k-means 

clustering [37]. 

 

2.2.5 Cluster validation 

After the implementation of both clustering algorithms they were 

validated according to the parameters that are useful for current methods. For 

K-Means clustering the representative measure is distance between cluster 

center and the closest data point. There were nine different model fitting 

provided with nine different combinations of features of PET sequences. 

Also there was an additional experiment conducted with the data 

normalization. Data was recorded into a comparison table. For the Fuzzy C-

means there was only one experiment conducted. The result was compared 

to the performance of K-Means clustering algorithm. Finally, the observation 

of findings and conclusions were made. 

 

2.2.6 Result interpretation  

In the current project there were two methods of the interpreting the 

results of clustering used: qualitative and quantitative.  

To perform a qualitative analysis, a scatter plot was created with the 

cluster division representation. Some of the sequences belonging to each 

cluster were picked and displayed, conclusions were made. The observations 

considered were as follows: whether the clusters were relevant, if there were 

any similarities between sequences belonging to a same cluster, if there were 

any significant differences between sequences belonging to different 

clusters. 
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For quantitative analysis we used metrics typically used for the 

different clustering algorithms. K-means clustering algorithm was applied to 

different sets of calculated features. To determine the best combination the 

distance between cluster center and the data point within the cluster was 

extracted and compared. The comparison table of all the distances was 

created. Finally, the performance of the K-means clustering algorithm and 

the Fuzzy C-means algorithm was discussed. 

2.2.7 Sequence selection and method evaluation 

To evaluate the quality of the different clustering methods, sequences 

were selected to train and validate the 2D model from [3]. All the PET 

features were calculated for the new training (124 patients) and validation 

(32 patients) sequences and were recorded into two dataframes. The best 

performing K-means clustering and Fuzzy C-means trained models were 

used to predict the clusters of the new data.  

For training the models all sequences containing tumor pixels for 2.5% 

or above of their area were included as positive sequences.. The new training 

and validation datasets had to include 80% of sequences with tumor and 20% 

without tumor. The 20% of negative sequences were selected considering an 

equal number of sequences from each assigned cluster. Finally, 80% of 

positive sequences and 20% of negative sequences were merged into one 

dataframe for further model training. Results were evaluated by metrics: 

train and validate loss functions, dice score coefficient, precision and recall.  
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3 Results 

In this section, results from some of the most promising clustering 

experiments were reported. In the first part the features extraction and dataset 

description is provided, also clustering algorithms performance is described. 

In the second part a report on slice selection is given. In the last part of this 

chapter the results from the experements on the automatic segmentation 

model were provided. 

3.1 Dataset description 

After all the features were selected and calculated, a dataframe was 

created using Pandas library (Table 1). It took around 63 hours to populate 

the dataframe with the extracted features from all the sequences. Each row 

corresponds to one of the 12922 extracted sequences. In the columns the ID 

of the corresponding patient, the number of the slice from which that 

sequence starts, and the seven calculated features were reported. 

Table 1. Dataframe containing the extracted features 
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To see if a correlation between the calculated features existed, a sub-

scatter plot was created (see Figure 11). There is a color division between 

sequences containing tumor and not containing tumor: blue – no tumor 

sequences, orange – tumor sequences.  

 

Figure.11. Sub-scatterplot of all extracted features from the PET sequences. 

 

3.2 K-Means clustering 

Nine experiments were conducted with nine different combinations of 

features extracted from PET sequences. In addition, one experiment was 

conducted using data normalization. First of all, to create clusters with the 

K-means clustering algorithm it the optimal number of clusters needed to be 

defined. The Elbow method was used nine times for each experiment. The 
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optimal number of clusters for all the models in the current project was 3, it 

is the point where the curve bands and starts to flatten. Figure 12 shows an 

example of the relation between WCSS and the number of clusters for the 

K-means clustering model trained on all the extracted features from the PET 

sequences.  

 

Figure 12. An example of the relation between WCSS and the number of clusters. 

 

After the optimal k was defined, the clusters were created. Figure 13 

shows the distribution of the sequences among the created clusters when 

using all the extracted features. It is visible that the clusters are not equal in 

the number of data points. 

Figure 13. The bar chart of the data distribution among the created clusters using the K-

means algorithm and all the extracted features. 
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In Table 2 a quantitative method to evaluate the performance of the K-

means clustering algorithm is reported. It contains nine different most 

relevant combinations of the extracted features for training the K-means 

clustering model. The evaluation of the performance of the clustering 

algorithm consists of the comparison of the distances between cluster 

centroids and sequences within the clusters on raw training data, on the 

normalized training data and on the training and validation data used for the 

deep learning segmentation model. 

 

Table 2. Comparison table of cluster distances, normalized clusters distances, 

segmentation training cluster distances and segmentation validation cluster distances 

Features 
used 

Number of 
clusters, k 

Distance Normalized 
clusters, 
distance 

Segmentation 
training, 
distance 

Segmentation 
validation, 

distance 

All 3 49616.71 55847.30 82814.74 20224.44 

MeanSUV, 
maxSUV 

3 36799.92 7413.95 10394.61 2792.89 

No std 3 47216.69 49401.25 72436.11 17903.22 

No 
skewness 

3 48498.25 49009.67 73865.10 17424.85 

Entropy, 
maxSUV 

3 38030.25 9932.85 53803.32 3595.24 

MeanSUV, 
kurtosis 

3 3019.80 8189.53 7851.42 2970.99 

No minSUV 3 49538.50 43054.67 75888.53 16063.85 

No std, 
meanSUV 

3 45279.09 42008.90 69513.03 15463.65 

Skewness, 
kurtosis 

3 2122.57 7912.12 5861.34 2864.53 

 

Normalization is an important pre-processing step of clustering. It 

helps to scale large and small values in the dataset so that each variable can 

have the same range. It can help to improve the efficiency of the clustering 

algorithm [39]. For this reason, the extracted features were first normalized 

and the clustering model was trained. The comparison table shows that for 

the combination of features as for example meanSUV and maxSUV after 
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normalization the distance was shorten. It is because the range of values 

between the two variables was quite different before normalization. 

Other K-means clustering models using normalized features were 

trained and the ones with the shortest distances used: all features, all features 

except std, meanSuv and maxSUV, skewness and kurtosis, entropy and 

maxSUV, and meanSUV and kurtosis. 

Afterall, the performance of the created K-means clustering models 

was tested on new patients used to train and validate the deep learning 

segmentation model. In Table 2 we can observe that the distance in training 

dataset became larger compare to the clustering on the initial dataset and in 

the validation dataset – smaller. 

It is difficult to visualize the clusters using all seven features at the 

same time in one multi-dimensional scatter plot. For this reason, few scatter 

plots were created using two different variables per time to visualize the 

created clusters. In this section there were two visualized results presented. 

Figure 13 shows the scatter plot of the created clusters using the entire set of 

extracted features visualized using meanSUV versus maxSUV. It is possible 

to see a clear division between the created clusters on the y axis. 

Figure 14. Scatter plot of meanSUV versus maxSUV showing the clusters created 

using the K-means clustering algorithm trained using all the extracted features. 
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To perform qualitative analysis few sequences were plotted for each 

created cluster. Figure 15 shows sequences belonging to each cluster (from 

1 to 3). The clusters from Figure 14 that are from bottom to top are in the 

order from left to right in Figure 15. 

 

 

 

 

 

 

Figure 15. Samples of sequences belonging to the created clusters using K-means 

clustering algorithm trained using all the extracted features. . Selection based on the 

meanSUV - maxSUV visualization.  

 

The visualization of the sequences showed to be consistent with the 

clusters. It is possible to distinguish the difference between pixel intensities 

in each cluster visually. Higher maxSUV values correspond to brighter areas 

on sequences.  

The visualization that was not showing a clear distinction between 

clusters was also reported. Figure 16 is a scatter plot of kurtosis versus 

entropy showing the same created clusters as before. The created clusters are 

overlapped in the figure. This is an issue of visualization as the clusters were 

created on more than these two features. 

1                                          2                                         3 
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Figure 16. Scatter plot of kurtosis versus entropy showing the clusters created using K-

means clustering algorithm trained using all the extracted features. 

 

For the qualitative analysis few sequences were plotted for each 

created cluster to explore the results of the K-means clustering model 

visualized with two different features. Figure 17 shows sequences belonging 

to each cluster (from 1 to 3). The clusters from Figure 16 that are from left 

to right are in the same order in Figure 17.  

 

Figure 17. Samples of sequences belonging to the created clusters using K-

means clustering algorithm trained using all the extracted features. Selection based on 

the kurtosis-entropy visualization. 

 

 

 

1         2                                       3  
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3.3 Fuzzy C-means clustering 

The Fuzzy C-means algorithm using normalized features was aslo 

implemented. The number of clusters was defined using the same Elbow 

method as described in the previous section. The optimal nuber of clusters 

was 3, as well as for the K-means. Figure 18 shows the distribution of the 

sequences among the created clusters. The data was not equally distributed 

among clusters as well, however differently from the K-means.  

 

Figure 18. The bar chart of the data distribution among the created clusters with the 

Fuzzy C-means algorithm and all the extracted features. 

 

Figure 19 shows the scatter plot of the created clusters using the entire 

set of extracted features visualized using meanSUV versus maxSUV.   
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Figure 19.  Scatter plot of meanSUV versus maxSUV showing the clusters 

created using the Fuzzy C-means clustering algorithm trained using all the extracted 

features. 

 

The division between clusters in the scatterplot of meanSUV versus 

maxSUV for Fuzzy C-means and K-means is similar, however the cluster 

centers are slightly different (see Table 3).  

 

Table 3. Comparison of cluster centers in K-means and Fuzzy C-means algorithms 

 

For Fuzzy C-means clustering it is possible to assess the quality of the 

cluster division using the same sequences as in Figure 15. 
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3.4 Sequence selection 

A new set of patients was used to test the clustering models from the 

previous sections. The dataset contained 155 patients (124 in the training 

dataset and 31 in the validation dataset). All the features were extracted from 

the new PET sequences and recorded into two dataframes. The training 

dataset consisted of 17565 sequences containing and not containing tumors. 

The validation dataset had 4544 sequences. Sequences where tumor pixels 

were more than 2.5% of the entire sequence area were 1561 in the training 

dataset and in 702 in the validation dataset. Hence, the clustering methods 

for proper sequence selection from the negative class were tested on 16004 

sequences in the training dataset and on 3842 sequences in the validation 

one. To select the 20% of the negative class, an equal amount of sequences 

were selected from each cluster. 

Finally, 7 dataframes were created for the training s and 7 dataframes 

for the validation dataset (6 dataframes as a result of K-means clustering and 

1 as a result of Fuzzy C-means clustering). A total of 1951 sequences were 

used for training and 878 for validating. These numbers were created 

combining sequences containing tumors and sequences selected with the 

proposed methods. The dataframes included patient IDs and number of slices 

from which that sequence begins.  

3.5 Method evaluation 

After the new training and validation dataset were created as explained 

in the previous section, the model from [3] was trained and evaluated to 

assess the performance of the method proposed in the study. All models were 

trained on sequences extracted from 124 patients and validated on 31 

patients. Model 1 was used as benchmark. It was trained on sequences 

selected as explain in [3]. The data split was created selecting all sequences 

containing a percentage of tumor above 2.5%  (representing the 80% of the 
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entire dataset), a small percentage of sequences with tumor below 2.5% 

(15% of the entire dataset), a small percentage of sequences containing no 

tumor (5%). 

Training and validation loss functions for all models trained are 

reported in Figure 20 and Figure 21. From these images it is possible to say 

that the created models are more instable during training, most of the models 

have spikes during the entire training process. The validation loss function 

decreases for all newly created models. Most of the models have spikes in 

the validation loss function as well. In some models spikes become smaller 

with the time. 

Figure 20. Training loss function for all trained models. 

Figure 21. Validation loss function for all trained models. 
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During training on sequences precision, recall and mean dice 

coefficient are calculated on the validation set made of selected sequences 

(see Figures 22-24). The different models were trained for a maximum of 

150 epochs. The selected checkpoint was the one corresponding to the lowest 

value of validation loss after 100 epochs. Lastly, the selected checkpoint of 

each model was used to create predictions on all sequences contained in the 

144x144x144 pixels volumes [3]. Reconstructed predicted volumes were 

evaluated using precision, recall and mean dice score coefficient (DSC) at 

different probability thresholds (see Appendix 1). 

Figure 22. Validation mean dice score coefficient during training. 

Figure 23. Validatiom precision during training. 
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Figure 24. Validation recall during training. 

 

According to the recorded metrics, the best performing models 

compared to the reference model (Model 1) were Model 2 (K-means 

clustering was trained on all extracted features) with the mean DSC: 0.619, 

precision: 0.629 and recall: 0.959 and Model 8 (Fuzzy C-means was trained 

on all extracted features ) with the mean DSC:. 0.616, precision: 0.608 and 

recall: 0.949. The mean DSC of the Model 2 improved by 17.5%, precision 

was improved by 37.1% and the recall by 1.3%. In the Model 8 metrics were 

improved by 16..9%, 32.5% and 0.2% respectively. 
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4 Discussion 

In this project unlike in the work [3], the sequences for the 2D 

segmentation model were selected with the help of the undersampling 

clustering technique. Therefore, at the beginning of this chapter the methods 

used in this project were discussed and in the second section the results of 

the experiments and their evaluation. Also, an ethical considerations section 

was included at the end of this chapter. 

4.1 Methods 

Class imbalance is a quite challenging and widespread problem. 

Hence, exploring methods for its solution is an essential task. The choice of 

using undersampling clustering technique was made because it is easy to 

implement, quick in performance and showed promising results in the 

medical imaging field [16,17].  

The features that were extracted from the PET sequences showed 

different results in terms of division between tumor and not tumor sequences. 

It was visible that when using maxSUV as feature to visualize datapoints the 

division between tumor and not tumor sequences was quite clear and it was 

possible to assume that clusters could be created using this variable. Some 

of the extracted features showed overlapping tumor and not tumor 

sequences. After the clustering methods were implemented, we saw that 

some of the features were not useful to use for cluster formation. The scatter 

plot in Figure 11 also visually confirmed it. Moreover it was time 

comsuming to calculate all seven features for all the PET sequences, which 

can be considered as a limitations of the chosen methods. 

The outcome of the implemented K-means and Fuzzy C-means 

clustering was interesting. It is difficult to visualize the clusters using all 

seven features at the same time in one multi-dimensional scatter plot. 
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Therefore, the scatter plots were created using two features per time. There 

were few different combinations of features selected to vizualize the created 

clusters. In cases where overlapping clusters were observed, one possible 

alternative way to observe the clusters could have been using at least a three-

dimentional space. Comparing the sequences picked from every cluster 

(Figure 15) it was possible to see the difference between clusters as well as 

similarities in pixel intensities inside of the cluster. Since the clusters were 

visualized based on maxSUV, higher values showed pixels with higher 

intensity on the sequences. Comparing the distances between cluster center 

and the datapoint within the cluster some useless features were identified. 

We discarded cases where the distance in the experimements containing 

these features for clusters creation was the highest and the qualitative 

analysis was barely possible (for std and minSUV, for instance). The 

distances calculated for data points of the training and validation dataset used 

for the segmentation model became larger in the first case and lower in the 

second case compared to the clustering training data. One possible reason 

could be the difference in the amount of patients. More patients included to 

train the segmentation model means that the variability in this dataset is 

much higher. For the validation dataset the variability is lower because there 

are less patient in this dataset compare to the initial dataset. 

The Fuzzy C-means clustering method was not as detailed explored as 

the K-means one, because of the limited time on the current project. 

However, some interesting conclusions were still made. The visualization of 

the created clusters using the same features looked similar to the K-means. 

The distribution of the data among the created clusters was different, but not 

equall es well. When the clustering models were fitted to the newly created 

training set for sequence selection, the distribution of the data among clusters 

was quite equal.  
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4.2 Results 

To evaluate the performance of the chosen method, the model from 

[3] was trained on the datasets created using cluster analysis. The results 

were promising. Looking at the training and validation loss functions (Figure 

20-21) is is possible to say that the network was learning (descending 

curves), even though during training the models are more instable than the 

reference one. In the valitation loss function the reference model stabilized 

after 20 epochs, however, for the models that used the new splits of the data 

the function is decreasing and for some models the function stabilized (the 

existing spikes either become lower or disappear).  Perhaps, if the models 

were trained with more epochs, the performance would be even better and 

more stable. Regarding the DSC, precision, and recall graphs (Figure 22-24), 

the newly created models have higher values compared to the baseline 

model. We can see that the precision is more stable than the recall for all the 

models. Finally, the most promising models were Model 2 and Model 8.  All 

used metrics were improved compared to baseline Model 1. Also, the curve 

for the plotted validation mean DSC, precision and recall during training had 

higher values on the y axis. Model 8 looked more stable than Model 2 as it 

contained fewer unwanted spikes. It could mean that Fuzzy C-means method 

performed well. 

4.3 Ethical considerations 

It is important to do research considering all possible ethical aspects. 

In the Netherlands the number of patients having head and neck cancer 

increased by 55% in the last years [40]. Moreover, the head and neck region 

contains a lot of important organs and complex structures that are important 

not to be dagamaged while cancer treatment. Hence, it is important to 

segment the tumor area from PET/CT scans for treatment, so the 2D 

automatic tumor segmentation model [3] needs to be improved. To do so, 
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sequences for training have to be selected correctly. A more accurate 

automatic segmentation model could be a good support for radiologists in 

their workflow. 

The anonymity of patient data is well maintained in current project. 

All patients used in this study gave informed consent before their data was 

used. PET/CT scans involved in the research consist of protected and 

anonymized data of patients in special identification codes [41]. The 

implemented code was made with the consideration of data security and 

protection. 

It is important from an ethical perspective to make sure that the results 

are correct and real. All used sources of information are either cited or 

mentioned in the project to avoid plagiarism.  
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5 Conclusions and future work 

In the current project the undersampling clustering-based method for 

sequence selection was explored. It showed promising results and has a 

potential for further work.  

Seven features describing PET imaging were selected in order to 

create clusters of sequences. The dataframe containing the features was 

created. Two clustering algorithms were used in the study: K-means and 

Fuzzy C-means. The trained clustering algorithms were used to group the 

training and the validation data of the segmentation model in [3] into 

clusters. The performance of the proposed method was assessed using the 

segmentation model. It was trained and validated on a reference dataset first 

and on different sets of sequences selected with the proposed methods. The 

final results were finally compared and discussed. 

Since the model trained on a dataset created using the Fuzzy C-means 

clustering showed the best results, it can be further studied. Also, training for 

more epochs could be tried to see if the performance of any of the created 

models could be improved. 
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Appendix 2: Python code. Features extraction and creating clusters with 

the help of K-Means and Fuzzy-C means algorithms 

 

!pip install monai==0.7.0 --user 

!pip install "git+https://github.com/Project-

MONAI/MONAI#egg=monai[nibabel,ignite,tqdm]" --user 

!pip install matplotlib --user 

!pip install --user scikit-learn 

!pip install --user seaborn 

!pip install --user fuzzy-c-means 

 

import glob 

import argparse 

import random 

import os 

import random 

import json 

import sys 

 

sys.dont_write_bytecode = True 

import random 

from PIL import Image 

import matplotlib.pyplot as plt 

from matplotlib import cm 

import tempfile 

import nibabel as nib 

import SimpleITK as sitk 

import numpy as np 

import pandas as pd 

 

from scipy.stats import kurtosis 

from scipy.stats import skew 

 

import seaborn as sns 

from sklearn.cluster import KMeans 

from sklearn.model_selection import train_test_split 

 

import monai 

from monai.config import print_config 

from monai.utils import first 

from monai.config import KeysCollection 

from monai.data import Dataset, ArrayDataset, create_test_image_3d,

 DataLoader, CacheDataset 

from monai.transforms import ( 

    Transform, 

    MapTransform, 
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    Randomizable, 

    AddChannel, 

    AddChanneld, 

    Compose, 

    LoadImage, 

    LoadImaged, 

    Lambda, 

    Lambdad, 

    RandSpatialCrop, 

    RandSpatialCropd, 

    ThresholdIntensityd, 

    NormalizeIntensityd, 

    ScaleIntensityd, 

    ConcatItemsd, 

    RandFlipd, 

    ToTensor, 

    ToTensord, 

    Orientation,  

    Rotate, 

    Resize, 

    CenterSpatialCrop, 

) 

print_config() 

 

class Resized_mine(MapTransform): 

     

    def __init__(self, keys, spatial_size=(144,144,144)): 

         

        super().__init__(keys) 

        self.spatial_size = spatial_size 

        self.resizer = CenterSpatialCrop(self.spatial_size) 

         

    def resize(self, img): 

         

        if np.shape(img)!=self.spatial_size: 

            return img[:144,:144,:144] #self.resizer(img)  

        else: 

            return img 

              

 

    def __call__(self, dictionary): 

         

        dictionary = dict(dictionary) 

         

        for key in self.keys: 

            dictionary[key] = self.resize(dictionary[key])  

         

        return dictionary 
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def dataset_prep(lists): 

    dataset_train=[] 

    for lista in lists: 

        dataset_train.append( 

        {'ct':lista[1], 

        'pet':lista[2], 

        'gtv':lista[3], 

        'slice':lista[4], 

        'ID':lista[0]  

    }) 

    return dataset_train 

         

class Create_sequences(MapTransform): 

     

    def __init__(self, keys, seq = 3, plane = "x"): 

         

        super().__init__(keys) 

        self.sequences = seq 

        self.plane=plane 

        #self.modality=modality 

         

    def slicing(self, img, starting): 

         

        indx=starting 

        sequence=[] 

         

        for i in range(indx, indx+self.sequences): 

             

            if self.plane=="x": 

                ima = np.rot90(img[:,:,i],3) 

            elif self.plane=="y": 

                ima = np.rot90(img[:,i,:]) 

            elif self.plane=="z": 

                ima = np.rot90(img[i,:,:]) 

             

            sequence.append(ima) 

         

        return np.hstack(sequence)     

 

    def __call__(self, dictionary): 

         

        dictionary = dict(dictionary) 

        starting = dictionary["slice"] 

         

        for key in self.keys: 

            dictionary[key] = self.slicing(dictionary[key],starting

) #self.create_sequence. 
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        return dictionary 

         

def initialize_transform(images_keys, plane_, ct_norm="z_norm", pet

_norm="z_norm", test=False): 

     

    normalize_ct={ 

        "z_norm": NormalizeIntensityd(("ct"), subtrahend=None, divi

sor=None, nonzero=False, channel_wise=False, allow_missing_keys=Fal

se), 

        "min_max_norm": NormalizeIntensityd(("ct"), subtrahend=None

, divisor=None, nonzero=False, channel_wise=False, allow_missing_ke

ys=False) 

    } 

    normalize_pet={ 

        "z_norm": NormalizeIntensityd(("pet"), subtrahend=None, div

isor=None, nonzero=False, channel_wise=False, allow_missing_keys=Fa

lse), 

        "min_max_norm": NormalizeIntensityd(("pet"), subtrahend=Non

e, divisor=None, nonzero=False, channel_wise=False, allow_missing_k

eys=False) 

    } 

     

    load_seq=[ 

        LoadImaged(keys=images_keys), 

        Resized_mine(keys=images_keys, spatial_size=(144,144,144)), 

    ] 

     

    #if test==False: 

        #load_seq.append(RandFlipd(keys=images_keys, prob=0.5, spat

ial_axis=2)) 

     

    pre_processing_ct=[ 

        ThresholdIntensityd(("ct"), threshold=-

1024, above=True, cval=-1024, allow_missing_keys=False), 

        ThresholdIntensityd(("ct"), threshold=1024, above=False, cv

al=1024, allow_missing_keys=False), 

    ] 

 

    pre_processing_pet=[ 

        ThresholdIntensityd(("pet"), threshold=0, above=True, cval=

0.0, allow_missing_keys=False) 

    ] 

     

    try: 

        pre_processing_ct.append(normalize_ct[ct_norm]) 

    except KeyError: 

        "CT normalization technique not available!" 

         

    try: 
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        pre_processing_pet.append(normalize_pet[pet_norm]) 

    except KeyError: 

        "PET normalization technique not available!" 

         

    sequence_prep=[ 

        Create_sequences(keys=images_keys, plane=plane_), 

        AddChanneld(keys=images_keys),  

        ConcatItemsd(keys=["ct","pet"], name="input"), 

        ToTensord(keys=["input", "gtv"]) 

    ] 

     

    train_tranforms = Compose(load_seq+pre_processing_ct+sequence_p

rep) #pre_processing_pet 

     

    return train_tranforms 

 

def initialize_transform_norm(images_keys, plane_, ct_norm="z_norm"

, pet_norm="min_max_norm", test=False): 

     

     

    normalize_pet={ 

        "z_norm": NormalizeIntensityd(("pet"), subtrahend=None, div

isor=None, nonzero=False, channel_wise=False, allow_missing_keys=Fa

lse), 

        "min_max_norm": ScaleIntensityd(("pet"), minv=0.0, maxv=1.0

, allow_missing_keys=False) 

    } 

     

    load_seq=[ 

        LoadImaged(keys=images_keys), 

        Resized_mine(keys=images_keys, spatial_size=(144,144,144)), 

    ] 

     

    #if test==False: 

        #load_seq.append(RandFlipd(keys=images_keys, prob=0.5, spat

ial_axis=2)) 

     

    pre_processing_ct=[ 

        ThresholdIntensityd(("ct"), threshold=-

1024, above=True, cval=-1024, allow_missing_keys=False), 

        ThresholdIntensityd(("ct"), threshold=1024, above=False, cv

al=1024, allow_missing_keys=False), 

    ] 

 

    pre_processing_pet=[ 

        ThresholdIntensityd(("pet"), threshold=0, above=True, cval=

0.0, allow_missing_keys=False) 

    ] 
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   # try: 

       # pre_processing_ct.append(normalize_ct[ct_norm]) 

   # except KeyError: 

      #  "CT normalization technique not available!" 

         

    try: 

        print('Normalization added') 

        pre_processing_pet.append(normalize_pet[pet_norm]) 

    except KeyError: 

        "PET normalization technique not available!" 

         

    sequence_prep=[ 

        Create_sequences(keys=images_keys, plane=plane_), 

        AddChanneld(keys=images_keys),  

        ConcatItemsd(keys=["ct","pet"], name="input"), 

        ToTensord(keys=["input", "gtv"]) 

    ] 

     

    train_tranforms = Compose(load_seq+pre_processing_pet+sequence_

prep) #pre_processing_pet 

     

    return train_tranforms 

 

 

 

def read_split_file(path): 

 

    with open(path, 'r') as inf: 

        dict_from_file = eval(inf.read()) 

         

    return dict_from_file 

 

#### Main 

 

split_data = read_split_file('/data/s4880641/model_test/1/image_spl

it_new.json') 

random.seed(100) 

 

train_list = dataset_prep(split_data['training']) 

validate_list = dataset_prep(split_data['validate']) 

          

image_keys=('ct', 'pet', 'gtv') 

 

train_tranforms_m = initialize_transform(image_keys, 'x', ct_norm="

z_norm", pet_norm="z_norm", test=False) 

 

train_ds_m = Dataset(data=train_list, transform=train_tranforms_m) 
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train_loader_m = DataLoader(train_ds_m, batch_size=1, shuffle=True,

 num_workers=0, pin_memory=True) 

im_train_m=(train_ds[5]["pet"]) 

im_train_id =(train_ds[5]["ID"]) 

im_train_slice =(train_ds[5]["slice"]) 

 

%matplotlib inline 

plt.imshow(im_train[0]) 

 

 

def plot_hist(pet, name): 

     

    plt.hist(pet, bins=15) 

    plt.show() 

    #plt.savefig('/data/s4880641/histogram/'+name+'_hist.png') 

     

def entropy(signal): 

        ''' 

        function returns entropy of a signal 

        signal must be a 1-D numpy array 

        ''' 

        lensig=signal.size 

        symset=list(set(signal)) 

        numsym=len(symset) 

        propab=[np.size(signal[signal==i])/(1.0*lensig) for i in sy

mset] 

        ent=np.sum([p*np.log2(1.0/p) for p in propab]) 

        return ent 

 

def en(im_arr): 

    #im_arr = im_train[0] 

    im = Image.fromarray(np.uint8(cm.plasma(im_arr)*255)) #entropy 

    #plt.imshow(im) 

    greyIm=im.convert('L') 

    greyIm = np.array(greyIm) 

 

    N=5 

    S=greyIm.shape 

    E=np.array(greyIm) 

    for row in range(S[0]): 

            for col in range(S[1]): 

                    Lx=np.max([0,col-N]) 

                    Ux=np.min([S[1],col+N]) 

                    Ly=np.max([0,row-N]) 

                    Uy=np.min([S[0],row+N]) 

                    region=greyIm[Ly:Uy,Lx:Ux].flatten() 

                    E[row,col]=entropy(region) 
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    return np.mean(E) 

 

im_arr = im_train[0] 

im = Image.fromarray(np.uint8(cm.plasma(im_arr)*255)) #entropy 

#plt.imshow(im) 

greyIm=im.convert('L') 

greyIm = np.array(greyIm) 

 

N=5 

S=greyIm.shape 

E=np.array(greyIm) 

for row in range(S[0]): 

        for col in range(S[1]): 

                Lx=np.max([0,col-N]) 

                Ux=np.min([S[1],col+N]) 

                Ly=np.max([0,row-N]) 

                Uy=np.min([S[0],row+N]) 

                region=greyIm[Ly:Uy,Lx:Ux].flatten() 

                E[row,col]=entropy(region) 

 

%matplotlib inline                 

plt.figure(figsize=(20,10))                 

plt.subplot(1,3,1) 

plt.imshow(im) 

 

plt.subplot(1,3,2) 

plt.imshow(greyIm, cmap=plt.cm.gray) 

 

plt.subplot(1,3,3) 

plt.imshow(E, cmap=plt.cm.jet) 

plt.xlabel('Entropy') # in 10x10 neighbourhood 

 

plt.colorbar(fraction=0.046, pad=0.08) 

 

plt.show() 

 

##Creating Dataframe with extracted features 

 

i=0 

df = pd.DataFrame(columns = ["ID", "slice", "meanSUV", "maxSUV", "m

inSUV", "std", "skewness", "kurtosis", "entropy"]) 

 

for image in train_ds_m: 

    #i=i+1 

    pet = image["pet"][0]    

    id_ = image["ID"] 

    slice_ = image["slice"] 
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    maxv = np.max(pet) 

    mean = np.mean(pet) 

     

    minv = np.min(pet) 

    std = np.std(pet) 

    sk = np.mean(skew(pet)) 

    kurt = np.mean(kurtosis(pet)) 

    entropy_mean = en(pet) 

     

    df= df.append({'ID': id_, 'slice': slice_, 'maxSUV': maxv, 'min

SUV': minv, 'meanSUV': mean, 'std': std, 'skewness': sk, 'kurtosis'

:kurt, 'entropy':entropy_mean}, ignore_index=True)      

 

df.to_csv('/data/s4880641/dataframe/table_f.csv', index = False, he

ader=True) 

 

#Data representation 

 

df = pd.read_csv('/data/s4880641/dataframe/table_final.csv') 

df_analysis=df.drop(['ID','slice'], axis=1) 

df_analysis.to_csv('/data/s4880641/dataframe/table_work.csv', index

 = False, header=True) 

df_analysis 

 

# Visualizing the correlation of the data and identifying variables

 for further analysis 

g = sns.PairGrid(df_analysis, hue = "tumor_no tumor") 

g.map(sns.scatterplot) 

g.add_legend() 

 

#K-Means clustering 

 

df_fin=df_analysis.dropna() 

data =df_fin[~df_fin.isin([np.nan, np.inf, -np.inf]).any(1)] 

data.to_csv('/data/s4880641/dataframe/data.csv', index = False, hea

der=True) 

 

X = pd.DataFrame(data).to_numpy() 

 

# Determine optimal cluster number with elbow method 

wcss = [] 

 

for i in range(1, 11): 

    model = KMeans(n_clusters = i,      

                    init = 'k-means++',  

                    max_iter = 300,   

                    n_init = 10,   
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                    random_state = 0)    

    model.fit(data)                               

    wcss.append(model.inertia_) 

     

# Show Elbow plot 

plt.plot(range(1, 11), wcss) 

plt.title('Elbow Method')                                 

plt.xlabel('Number of clusters')                         

plt.ylabel('Within Cluster Sum of Squares (WCSS)')       

 

boolMarker = data["tumor_no tumor"].to_numpy() 

 

#Model for k-means clustering predicting 

kmeans = KMeans(n_clusters=3, init="k-

means++", max_iter=50000, n_init=10, random_state=0) 

pred_y = kmeans.fit_predict(data) 

 

#Visualization of K-means clustering using two features 

 

def split(arr,colorArr,cond): 

    return [arr[cond], arr[~cond], colorArr[cond], colorArr[~cond]] 

 

[data1, data2, color1, color2] = split(X,kmeans.labels_,boolMarker=

=1) 

%matplotlib inline 

plt.scatter(data1[:,1],data1[:,6],c=color1, marker="+", alpha=0.4) 

plt.scatter(data2[:,1],data2[:,6],c=color2,marker="d", alpha=0.7) 

plt.scatter(kmeans.cluster_centers_[:,1],kmeans.cluster_centers_[:,

6],s=100,c='red',marker="+") 

plt.title("K means clustering") #title 

plt.xlabel("Maximum SUV") #x label 

plt.ylabel("entropy") #y label 

plt.legend(["Tumor" , "NoTumor"], loc= 'upper right') 

plt.show() 

 

kmeans.cluster_centers_[:,0] 

kmeans.cluster_centers_[:,1] 

kmeans.inertia_ 

sns.countplot(pred_y) 

 

#FUZZY C MEANS CLUSTERING 

 

from fcmeans import FCM 

 

fcm = FCM(n_clusters=3) 

fcm.fit(X) 
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# outputs 

fcm_centers = fcm.centers 

fcm_labels = fcm.predict(X) 

 

# plot result 

boolMarker = data["tumor_no tumor"].to_numpy() 

 

def split(arr,colorArr,cond): 

    return [arr[cond], arr[~cond], colorArr[cond], colorArr[~cond]] 

 

[data1, data2, color1, color2] = split(X,fcm_labels,boolMarker==1) 

%matplotlib inline 

plt.scatter(data1[:,0],data1[:,1],c=color1, marker="+", alpha=0.4) 

plt.scatter(data2[:,0],data2[:,1],c=color2,marker="d", alpha=0.7) 

plt.scatter(fcm_centers[:,0],fcm_centers[:,1],s=100,c='red',marker=

"+") 

plt.title("Fuzzy-c means means clustering") #title 

plt.xlabel("clusters") #x label 

plt.ylabel("Maximum SUV") #y label 

plt.legend(["Tumor" , "NoTumor"], loc= 'upper right') 

plt.show() 
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Appendix 3: Python code. Sequence selection algorithm. Training and 

validation datasets (with the help of K-means clustering according to all 

features) 

import random 

random.seed(100) 

 

dfa = pd.read_csv('/data/s4880641/split/training_data.csv') 

dfa=dfa.dropna() 

data = pd.read_csv('/data/s4880641/dataframe/data.csv') 

 

 

X = pd.DataFrame(data).to_numpy() 

Y=whiten(X) 

model = KMeans(n_clusters=3, init="k-

means++", max_iter=50000, n_init=10, random_state=0) 

model.fit(Y) 

 

dat=dfa.drop(['ID','slice'], axis=1) 

 

y=whiten(dat) 

pred_y = model.fit_predict(y) 

 

model.labels_ 

dfa['cluster']=model.labels_ 

dfa.to_csv('/data/s4880641/dataframe/table_clust.csv', index = Fals

e, header=True) 

 

dfc = pd.read_csv('/data/s4880641/dataframe/table_clust3.csv') 

 

%matplotlib inline 

sns.countplot(pred_y) 

 

#Identifying amount of tumor/no tumor sequences in the dataset and 

calculating 20% of the dataset 

dfa['tumor'].value_counts() 

n= 1561/4 

 

#Clusters are assigned to the data 

 

df1_tumor=dfc[dfc['tumor']==1] 

df1_notumor=dfc[dfc['tumor']==0] 

 

df0 = df1_notumor[df1_notumor['cluster']==0] 

df1 = df1_notumor[df1_notumor['cluster']==1] 

df2 = df1_notumor[df1_notumor['cluster']==2] 
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#Selecting equal amount of sequences from each cluster within 20% 

 

d0 = df0.sample(n=130) 

d1 = df1.sample(n=130) 

d2 = df2.sample(n=130) 

 

#Final training dataframe 

pieces=[df1_tumor,d0,d1,d2] 

result = pd.concat(pieces) 

result=result.drop(['meanSUV','maxSUV','minSUV','std', 'skewness','

kurtosis','entropy','tumor','cluster' ], axis=1) 

result.to_csv('/data/s4880641/dataframe/table_training_all.csv', in

dex = False, header=True) 

result 

 

dfa = pd.read_csv('/data/s4880641/split/validate_data.csv') 

dfa=dfa.dropna() 

data = pd.read_csv('/data/s4880641/dataframe/data.csv') 

 

import random 

random.seed(100) 

 

X = pd.DataFrame(data).to_numpy() 

Y=whiten(X) 

model = KMeans(n_clusters=3, init="k-

means++", max_iter=50000, n_init=10, random_state=0) 

model.fit(Y) 

 

dat=dfa.drop(['ID','slice'], axis=1) 

 

y=whiten(dat) 

pred_y = model.fit_predict(y) 

 

model.labels_ 

dfa['cluster']=model.labels_ 

dfa.to_csv('/data/s4880641/dataframe/table_clust.csv', index = Fals

e, header=True) 

 

dfc = pd.read_csv('/data/s4880641/dataframe/table_clust3.csv') 

 

%matplotlib inline 

sns.countplot(pred_y) 

 

#Identifying amount of tumor/no tumor sequences in the dataset and 

calculating 20% of the dataset 

dfa['tumor'].value_counts() 

n= 702/4 
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#Clusters are assigned to the data 

 

df1_tumor=dfc[dfc['tumor']==1] 

df1_notumor=dfc[dfc['tumor']==0] 

 

df0 = df1_notumor[df1_notumor['cluster']==0] 

df1 = df1_notumor[df1_notumor['cluster']==1] 

df2 = df1_notumor[df1_notumor['cluster']==2] 

 

#Selecting equal amount of sequences from each cluster within 20% 

 

d0 = df0.sample(n=59) 

d1 = df1.sample(n=58) 

d2 = df2.sample(n=59) 

 

#Final training dataframe 

pieces=[df1_tumor,d0,d1,d2] 

result = pd.concat(pieces) 

result=result.drop(['meanSUV','maxSUV','minSUV','std', 'skewness','

kurtosis','entropy','tumor','cluster' ], axis=1) 

result.to_csv('/data/s4880641/dataframe/table_validate_all.csv', in

dex = False, header=True) 

result 

 

 


