university of faculty of science artificial intelligence
éi% / groningen / and engineering /

TRANSFERABILITY OF VISION TRANSFORMERS: THE KEY
TO SUCCESS ON SMALL ART CLASSIFICATION DATASETS?

Bachelor’s Project Thesis

V. Tonkes, s3617157, v.tonkes@student.rug.nl,
Supervisor: M. Sabatelli, PhD

Abstract: Convolutional Neural Networks (CNNs) have become the de facto standard in Com-
puter Vision, and played a major role in the advancement of this field. In recent years, however,
Vision-Transformer-based models (VTs) have been outperforming CNNs across the board. While
this is exciting, CNNs still have an advantage on small datasets, due to their so-called image-
specific inductive bias. Recent work suggests that transfer learning methods allow VT's to compete
with CNNs on some of these small datasets. This thesis investigates whether that also holds true
for art classification problems within the digital humanities. To this end, it compares popular
VTs and CNNs in terms of their off-the-shelf and fine-tuning transferability, when going from
ImageNet1K to target tasks provided by the Rijksmuseum Challenge dataset. The results show
that VTs possess superior off-the-shelf feature extraction capabilities here, and that in general,
transfer learning allows VTs to become an interesting alternative to consider within the digital

humanities.

1 Introduction

Since the introduction of AlexNet, roughly a decade
ago, Convolutional Neural Networks (CNNs) have
played an important role in Computer Vision (CV)
(Krizhevsky et al) 2012). Recently, however, a
new type of architecture, called Vision Transformer
(VT), gained state-of-the-art performance on com-
mon learning benchmarks, including the ImageNet
dataset (Deng et al. 2009)|H

Exciting as this may be, a plain VT is not likely
to become useful in circumstances with limited
training data and/or only consumer-grade hard-
ware available for learning. This is due to a limita-
tion inherent to the VT architecture, which will be
elaborated on in section Consequently, the cur-
rent paper investigates whether utilizing Transfer
Learning (TL) capabilities of VTs can help over-
come these limitations, and if this allows VTs to
become the preferred architecture in the aforemen-
tioned circumstances as well.

Before going into more detail, however, some

1At the time of writing, the VT CoCa is state of the
art, according to https://paperswithcode.com/sota/image
-classification-on-imagenet.

background information is needed. The remainder
of this section will first briefly describe CNNs and
VTs, and compare them to one another. What fol-
lows, is an explanation of TL, and why it might help
VTs in circumstances with limited data/compute
available. Finally, related work is discussed, and a
research question is proposed.

1.1 Convolutional Neural Networks

The modern CNN architecture is often attributed
to [LeCun et al.| (1998]), which describes how the
number of trainable weights per layer can be re-
duced in manners that are sensible for an image’s
topology (i.e. by restricting connections to a neu-
ron’s local receptive field, and by sharing weights).

CNNs are largely invariant to shifts and small
distortions of the input image. More important is
that they can be seen as automatic feature extrac-
tors. It is well established (e.g. LeCun et al. [1998;
Yosinski et al., 2014) that the first layers of a CNN
detect low-level features, such as edges and cor-
ners. These are combined in subsequent layers to
detect higher-order features. The final layer should
then give a representative summary of the input,

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet

such that, for example, a Multilayer Perceptron-
type (MLP-type) layer can extract all the informa-
tion it needs from it to perform the task at hand.

1.2 Vision Transformers

Architecture VTs were first introduced in[Doso-
vitskiy et al.| (2020), and are based on the encoder
stack of the Transformer architecture (Vaswani et
al., 2017)). This stack takes a sequence of vectors as
input, and is composed of alternating multi-headed
self-attention layers and position-wise MLP-type
layers — position-wise meaning the MLP’s input is
the size of a single position (constituent vector),
and is shared between all positions.

The self-attention mechanism plays a central role
in VTs, and is worth elaborating on. Each head
of a self-attention layer contains three learned pro-
jection matrices, which are used to produce key,
value, and query vectors for every position in the
input sequence. The output for a single position is
a weighted sum of all value vectors. Weights are
obtained by matching this position’s query with all
key vectorf?] As such, an attention head decides
itself how much of each position should be incorpo-
rated in subsequent representations.

The original Transformer architecture was de-
signed to solve problems in natural language pro-
cessing — a field it now dominates (Wolf et al.
2020). To make it work for CV applications, VT's
divide an image into square patches, which get
treated as tokens (words). Learned embeddings
convert these into a sequence of vectors, to which
1D positional embeddings are addecﬂ A learned
[class] vector gets prepended to the sequence, and
its representation at the end of the encoder stack is
the final output, which can then be used for classi-
fication, segmentation, etc.

CNNs versus VTs While CNNs reduce the
number of trainable weights by taking an image’s
topology into account, VTs do this by learning
themselves what information they should incorpo-
rate in successive representations of the input. As
such, they are not restricted to a local receptive

2In principle by taking the softmax over all query-key
inner products.

3Do mind that VTs have no built-in knowledge of an
image’s topology, as the architecture ignores the 2D layout.

field, but can potentially include information from
all over the previous layer.

Moreover, weight sharing applies as much to VT's
as it does to CNNs. In VTs, each position goes
through the same computational pipeline of be-
ing multiplied by 3 projection matrices, followed
by a weighted sum calculation, followed by being
fed through an MLP-type layelﬂ In CNNs these
pipelines take the form of convolution kernels.

A limitation of VT's While VTs are promising;
the fact that they are not specifically designed for
CV tasks makes that they lack a so-called image-
specific Inductive Bias, which CNNs do have. In-
tuitively this means a VT first has to learn what
an image is, before it can move on to the learn-
ing task at handﬂ The result is that they require
substantially more training data (and time) than
CNNs do.

It is for this reason the paper that first intro-
duced VTs (Dosovitskiy et al., [2020) mentions us-
ing pre-trained models rather than randomly ini-
tialized ones, as it allows general knowledge about
images to be carried over to the new task. This tech-
nique falls within the category of TL, which will be
covered next.

1.3 Transfer Learning

Given two Machine Learning (ML) problems, of
which one is called the source, and the other the
target task, Transfer Learning can be defined as
exploiting knowledge implied in the source task to
improve performance of an ML model on the tar-
get task. A formal definition is found on p. 56 of
Sabatelli| (2022]), but for the purposes of this pa-
per, the one above suffices.

In practice, many TL techniques exist. The ex-
ample given in section [1.2| can be described as fine-
tuning (FT). Here, a pre-trained model is used as a
starting point, and then trained on the target task
— possibly with different hyperparameters, and of-
ten with a new final layer that fits the task. |Yosin-
ski et al.|(2014)) studied transferability properties of
CNNs pre-trained on ImageNet, and suggested that

4Neglecting skip connections, normalization and multi-
headedness, as this is a comparison on an intuitive level.

5Recall, for example, that the architecture ignores the
2D layout of an image, and hence has to learn about this
through training.

FT results in improved performance and generaliz-
ability compared to training from scratch. More-
over, while transferability decreased as the source
and target task became more dissimilar, utilizing
TL still seemed to be preferred.

Another TL technique is called off-the-shelf
(OTS) learning. It is similar to FT, except that all
but the final layer is kept frozen during training.
Sharif Razavian et al. (2014)) found that features
extracted by a CNN pre-trained on ImageNet were
general enough for OTS learning to work. More
specifically, these OTS CNNs showed better per-
formance than the (fully trained non-CNN) state-
of-the-art at the time. Besides reducing computa-
tional cost of training, a benefit of OTS learning is
that it can prevent overfitting in cases where FT
would not (Yosinski et al., |2014).

1.4 Related work and the current
study

As mentioned, the paper that first introduced VTs
already demonstrated they benefit from TL (Doso-
vitskiy et al.; |2020), and more has been discovered
about VTs’ TL properties since then. Matsoukas
et al.| (2021)) investigated whether TL allowed VTs
to replace CNNs in Medical Imaging. This domain
is characterized by small datasets, so to overcome
the inductive bias problem described earlier, TL
is imperative. It was found that VTs benefit more
from FT than CNNs do, and that VTs pre-trained
on ImageNet perform on par with CNNs after this
type of TL.

What Matsoukas et al. did not investigate, is the
OTS performance of VTs. This was, however, done
by |Zhou et al.| (2021)), which found that VTs pre-
trained on ImageNet had worse OTS performance
than their CNN counterparts. An exception was the
Swin architecture, which was the best performing
model on all datasets, and uses (shifted-)window-
based self-attention methods, to make Transformers
better suited for CV tasks (Liu et al., [2021]).

Another ‘shortcoming’ of Matsoukas et al| is
that it merely examined whether VT's can use TL
to outperform CNNs in a domain that happens to
be characterized by limited-sized datasets, but that
it did not actively focus on the extent to which
VTs can be made useful in limited data/compute
environments. More related to this is [Touvron et
al. (2021)), which proposed transformer-specific

distillation-based learning techniques to make VTs
applicable for smaller datasets. This is not related
to FT or OTS learning, of course.

The current thesis will examine to what extent
TL techniques (both FT and OTS) allow VTs to
become the preferred architecture when resources
are limited, and attempts to find a methodology
that is recommended in these circumstances.
Several experiments will be performed, of which
results will be analyzed both quantitatively as well
as qualitatively.

Limited resources, in this case, primarily refers
to the amount of available training data. Datasets
should be so small that one can reasonably assume
they were hand labeled by a single person. In ad-
dition, it also refers to compute resources, which
should be restricted to consumer-grade hardware.
In practice, of course, the small datasets already
ensure that this restriction is met, because these
naturally allow such hardware to suffice for learn-
ing.

Furthermore, this thesis restricts itself to art clas-
sification tasks specifically. These tasks fit in well
with the described objectives, since the amount of
effort needed to create and digitize an art collec-
tion often makes for small datasets. Moreover, they
provide an interesting TL challenge, as knowledge
might have to be carried over from natural to non-
natural images.

To put all of this more formally, the following
research question is proposed:

To what extent (and in what manners)
does wutilizing TL allow VTs to perform
on par with CNNs on common art clas-
sification problems, when datasets contain
10,000 images or less?

2 Methods

Much of the experiments and analysis discussed be-
low, build upon the work done by [Sabatelli et al.
(2018). This paper investigated TL properties of
CNNs in the art classification domain. The main
focus was on a comparison between CNN architec-
tures pre-trained on ImageNet1K when they were
either used as OTS feature extractors, or fine-tuned
to the new task. It was suggested that fine-tuning
resulted in substantially better performance than

either training from scratch or using an OTS learn-
ing scheme.

2.1 Dataset

Similar to [Sabatelli et al., used models are pre-
trained on ImageNetlK, and the Rijksmuseum
Challenge dataset (Mensink & van Gemert, [2014) is
used for the target tasks. This dataset consists of a
large collection of digitized artworks, together with
xml-formatted metadata. The classification tasks
extracted from it are: (1) Type classification, where
the model has to distinguish between classes as
‘painting’, ‘sculpture’, ‘drawing’; etc.; (2) Material
classification, with classes as ‘paper’, ‘porcelain’,
‘silver’, etc.; and finally, (3) Artist classification,
where the model has to predict who the creator
is. Figure shows labeled examples for all three
tasks.

The full dataset contains 112,039 images, and al-
lows for multiple or zero labels per classification
task. Naturally, samples are excluded from a task
if they contain no labels for it. Samples contain-
ing more than one label are excluded as well, since
analysis showed that in all cases this is true for only
a small portion of the dataset.

There are still many samples and classes left af-
ter doing the operations described above. Samples
are also unevenly distributed among classes, with
Cini-coefficients being as high as 0.9§°] To coun-
teract this, only the 30 most occurring classes are
selected, and a cap of 1000 instances per class is en-
forced by taking a random sample when this limit
is exceeded. Table 2.1l shows the result of these bal-
ancing and subsampling operations. The situation
prior is shown between brackets.

It is worth noting that [Sabatelli et al.| does not
perform these operations. They are performed here,
because the current study is interested in small
datasets specifically.

All datasets are split up into 80%, 10%, 10%
training, validating, and testing sets. For robust-
ness, five datasets are randomly generated per clas-
sification task, such that each experiment can be
run five times. The average sample overlap between
two of the five sets is shown in Table 2] as well.

6The Gini-coefficient is a measure of balance, with 0
meaning all classes have the same number of samples, and
1 meaning all samples belong to a single class. A uniform
distribution has coefficient %

Besides the tasks described above, Table
shows an experiment called Scaling. The goal of
this experiment is to see how the findings of this pa-
per hold up as dataset sizes are gradually shrunk.
It does this by taking the top 15 classes of type
classification, and scaling it 4 times by a factor

Y 1—10 ~ 0.56. The 5 datasets produced in this man-

ner are then respectively 100%, 56%, 32%, 18%,
and 10% the size of the dataset shown in Table[2.1]
Steps are taken to ensure that the distribution re-
mains the same. Finally, also here 5 datasets are
generated per scaling factor, leading to a total of
25 datasets. The same 80%, 10%, 10% split is used
for all.

2.2 Models

Eight different neural network architectures are
used, of which four are CNN-based and four VT-
based. When multiple versions are available (i.e.
‘base’, ‘small’, ‘tiny’), ‘base’/‘medium’ ones are
chosen.

To start off with CNNs, ResNet50 (He et al.,
2016)) and VGG19 (Simonyan & Zisserman) [2014)
are chosen, as these were the best performing
models in [Sabatelli et al|for respectively FT and
OTS learning. In addition, Matsoukas et al.| (2021])
used ResNet50 too, while Zhou et al (2021) used
ResNet101 and ResNet152. To also add some more
recent CNNs, ConvNext (Liu et al.,|2022) — a purely
CNN-based model inspired by VTs’ recent success
— and EfficientNetV2 (Tan & Le, 2021) are in-
cluded.

For VTs, versions with a 16x16 patch size are
chosen. The first model is the original VT (Dosovit-
skiy et al., [2020), which will be referred to as ViT.
Next, Swin (Liu et al) [2021) is considered, as it
showed promising performance in [Zhou et al.| The
final two are DeiT and BeiT. The small version of
DeiT was used inMatsoukas et al.|(2021)), because it
is similar in size to ResNet50, to which it was com-
pared. In this thesis, however, also a base-sized ver-
sion is chosen. This version does not include output
for distillation learning, so no advantage is taken of
that.

All VT-based models have a bit over 86 mil-
lion parameters. ConvNext is of similar size,
with 88.6 million parameters. ResNet50 and
EfficientNetV2 are smaller, with 25.6 and 13.6

Task # Samples # Classes Gini coefficient Sample overlap
Type classification 9607 (77628) 30 (801) 0.466 (0.974) 0.686

Material classification 7788 (96583) 30 (136) 0.563 (0.980) 0.798

Artist classification 6530 (38296) 30 (8592) 0.236 (0.676) 1

Scaling experiment 7926 (77628) 15 (801) 0.300 (0.974) -

Table 2.1: Overview of the used datasets. Values between brackets show the situation before
balancing operations were performed. ‘Sample overlap’ gives the average overlap between 2 of the
5 randomly generated sets per task (¢ and j where i # j).

type 1

material { %

artist {

|

Figure 2.1: Example images from the Rijksmuseum Challenge. Each row depicts a different task.

million, respectively, while VGG19 is the largest
model, with 143.7 million parameters.

2.3 Hyperparameters and data aug-
mentation

All images are resized to a 224 x 224 resolution.
This is achieved by first scaling them to the desired
size along the shortest axis (retaining aspect ratio),
and then taking a center crop along the longer axis.
In addition, all images are normalized to the RGB
mean and standard deviation of ImageNet1K.

For all models, the linear classification layer is re-
placed to fit the new task. Cross-entropy loss uses
the raw outputs of this layer (conform PyTorch doc-
umentation), together with one-hot encoded pre-
diction targets. An early stop occurs after 10 epochs
without improved loss on the validation set, and the
model with the lowest loss is benchmarked on the
testing set.

For OTS learning, the Adam optimizer (Kingma

2014)) is used with standard PyTorch param-
eters (1r=1e-3, 51 = 0.9, B2 = 0.999), and a batch

size of 256. For F'T, more is needed to achieve good
convergence, especially for VT-based architectures.
The learning scheme used here is partially inspired
by Matsoukas et al.| (2021) and [Zhou et al.| (2021)).
The Adam learning rate now starts off at le-4, and
is reduced by a factor 10 after 3 epochs without
improvement (i.e. patience=2); the batch size is re-
duced to 32; label smoothing of 0.1 is added to the
cross-entropy loss, and a dropout layer with p=0.2
is inserted before the classification layer. Finally, in-
put images are augmented with random horizontal
flips and rotations in a £10° range.

2.4 Hardware and software

All experiments are conducted on a single com-
pute node containing one 32 GB Nvidia V100 GPU.
These nodes are constituents of the Peregrine high-
performance computing cluster, belonging to the
University of Groningen’s Center for Information
Technology. The FT experiments take advantage of
the V100’s mixed precision acceleration. An excep-
tion is made for the type classification experiment,
as this one is also used to compare OTS learning

and FT in terms of time/accuracy trade-offs. Pre-
liminary findings suggested that using mixed preci-
sion does not affect performance for the aforemen-
tioned experiments, however.

The PyTorch machine learning framework is used
(Paszke et al.| [2019)), and many pre-trained models
are taken from its Torchvision library. Exceptions
are EfficientNetV2, Swin, DeiT, and BeiT, which
are taken from the Timm libraryﬂ

Finally, all source code and data will be made
available on GitHutf]

3 Experiments

This section focuses on the results obtained from
the conducted experiments. These will first briefly
be presented in section After that, section [3.2
will discuss them in more detail, and see how they
compare to earlier studies.

3.1 Results

Results are presented in the form of tables and line
plots. The former of these reports final testing per-
formance, whereas the latter mostly visualizes val-
idation accuracy during training.

To give a more precise description: tables show
average testing performance over the 5 trials per
experiment, with standard deviation (s) as a sub-
script. Besides accuracy, also balanced accuracy is
reported. This measure is defined as the average
recall over all classes, such that it penalizes errors
on less occurring classes more than plain accuracy
would. Lastly, green shaded cells mark best perfor-
mance, while yellow and red mark second best and
worst performance, respectively.

For line plots, shaded regions correspond to the
standard error of the mean (s -+ /N, where N =
5). In cases where they show average validation ac-
curacy, plots end when an early stop occurred for
the first of 5 trials. To easily distinguish VT's from
CNNs, VTs are plotted with continuous lines, and
CNNs with dashed ones.

3.1.1 Off-the-shelf learning

Table shows the testing performance of OTS-
trained models on the 3 classification tasks, while
Figure [3.1] shows corresponding validation accura-
cies. Performance on the testing set is comparable
among all tasks in terms of rankings. Other ob-
servations are consistent as well, such as ConvNext
taking the most epochs to converge.

VTs perform very much on par with CNNs, if
not slightly better. The best-performing model, for
instance, is the Swin VT, which shows the highest
testing performance without exception. Moreover,
all VT's except BeiT are positioned relatively high
in the rankings. This is also reflected in their com-
bined average accuracies being higher than those
of CNNs. To give Type classification as an exam-
ple: here VTs as a group achieve an 86.5% mean
accuracy, while this is 85.5% for CNNs.

Finally, when comparing the 3 classification tasks
to one another, it can be observed that the highest
overall accuracies are achieved for Artist classifica-
tion, and the lowest ones for Material classification.
For balanced accuracy, the differences are more ex-
treme, as this measure also falls behind plain accu-
racy the most for Material classification, and the
least for Artist classification.

3.1.2 Fine-tuning

Once again, Table shows testing performance,
while Figure shows validation accuracies.
Results are less favorable for VT's than they were
after OTS learning in section [3.1.1] At the same
time, it can still be said that VTs perform on par
with CNNs. The Swin VT shows the best overall
testing accuracy here as well, but the ConvNext
CNN is not far behind, and outperforms Swin in
terms of balanced accuracy. Also noteworthy is the
ResNet50 CNN, which is ranked higher here than
it was for OTS learning, and now shows the second
best testing performance for Artist classification.
VTs and CNNs grouped are much more evenly
matched. To again take Type classification as an ex-
ample: the mean testing accuracy of all VT's com-
bined is 91.2% on this task, while it is 91.3% for
CNNs. Recall that section [3.1.1| reported a differ-

"https://timm.fast.ai/.
8https://github.com/IndoorAdventurer/
ViTTransferLearningForArtClassification.

https://timm.fast.ai/
https://github.com/IndoorAdventurer/ViTTransferLearningForArtClassification
https://github.com/IndoorAdventurer/ViTTransferLearningForArtClassification

swin_b ~—— beit b 16 —— deit_b_16

-== vggl9

—==- resnet50 efficientnetv2_m —== convnext_b

,,,,,,

— vt-based
—-=-=- cnn-based

0 10 20 30 40 50 0 10 20
Type (epochs)

Material (epochs)

10 20 30 40 50 60 70 80 90
Artist (epochs)

30 40 50 0

Figure 3.1: Average validation accuracy when training with an off-the-shelf learning scheme. It
can be observed that the Swin VT achieves the highest performance overall, but that the ConvNext
CNN is a close second. More general, VTs perform on par with CNNs, if not slightly better.

Model Type Material Artist
Accuracy Bal. accuracy Accuracy Bal. accuracy Accuracy Bal. accuracy

vit_b_16 86.06% +1.00% 84.13% 1157 81.78% 1o45% 07-38% 11377 84.80% 10.40% 81.42% 10.42%
swin_b 8943% +0.93% 8747% +1.02% 8587% +0.35% 7119% +1.60% 9040% +0.65% 8864% +0.78%
beit_b_16 8226% +0.72% 7775% +0.27% 7687% +0.96% 6016% +1.56% 7970% +0.69% 7535% +1.09%
deit,b,lﬁ 8818% +0.66% 8536% +0.54% 8280%) +1.12% 6646% +1.03% 8813% +0.76% 8562% +0.87%
Vgg19 8393% +0.72% 8335% +0.81% 7687% +0.44% 6139% +1.47% 82.01% +0.66% 7810% +0.77%
resnet50 8551% +0.64% 8233% +1.85% 8099% +0.82% 6551% +0.93% 8771% +1.06% 8512% +1.34%

eff. netv2_m
convnext_b

83.41% +0.76%
89.19% +0.64%

82.05% +1.25%
86.95% +1.38%

75.96% 11.24%
84.14% +0.92%

59.15% 11.24%
69.10% +1.05%

78.62% +1.07%
90.13% +0.94%

73.92% +0.96%
87.84% +1.07%

Table 3.1: Testing performance after off-the-shelf learning. Results are similar to validation accu-
racy shown in Figure with Swin and ConvNext showing the respective best and second best

performance in all cases.

ence of 1% in favor of VTs here, with an accuracy
of 86.5% for VTs, and 85.5% for CNNs.

More generally, it can be observed that FT
leads to substantially better performance than OTS
learning, and that models are now much closer to-
gether. The difference between the highest and low-
est testing accuracy, for example, is at most 3.8%
after FT, while it was between 7.2% and 11.8% af-
ter OTS learning. In addition, the worst testing ac-
curacy after F'T is most often still higher than the
best accuracy after OTS learning. The only excep-
tion is Material classification, where the worst FT
model (BeiT) has an accuracy of 85.74%, and the
best OTS one (Swin) has 85.87%.

Lastly, note that the highest overall perfor-
mances are again achieved on the Artist classi-
fication task, while the lowest ones are reported
for Material classification. The difference between
plain and balanced accuracy is also again the

largest for Material classification, and lowest for
Artist classification.

3.1.3 Scaling

Figure |3.3| shows how testing accuracy decreases
when smaller portions of the full dataset are taken
(see section . The x-axes show a logarithmic
scale, where each successive value is roughly 56%
the size of its predecessor.

For both OTS learning as FT, findings done in
sections and seem to hold up as dataset
sizes are shrunk. It is not true, for example, that
at some point CNNs start to outperform VTs. In
addition, Swin and ConvNext remain some of the
best-performing models throughout.

Lastly, when going from largest to smallest
dataset, the mean accuracy of all models taken to-
gether drops with 9.1% for OTS learning. For FT

— vit_b_16 swin_b ~—— beit b 16 —— deit_b_16 -==- vggl9 —==- resnet50 efficientnetv2_m —== convnext_b
1.00
|Z 0.951 e —
“ -
PR . o A i IR N S—— S /2 i s L
i
>
o
£ 0.85 4
3
o
o
©
.S 0.80 1
®
k=l
o <
3075 — vt-based
—-=-=- cnn-based
0.70 T T T T T T T T T T T T
0 5 10 15 0 5 10 15 20 25 0 5 10 15 20 25

Type (epochs)

Material (epochs)

Artist (epochs)

Figure 3.2: Average validation accuracy when fine-tuning models on the target task. Overall, per-
formance is higher compared to off-the-shelf learning in Figure [3.1}, while the differences between
models are also smaller here. The Swin VT and ConvNext CNN remain the best performing models,

while in general, results are less favorable for VTs than they were after off-the-shelf learning.

Bal. accuracy

Artist
Accuracy

Bal. accuracy

Model Type Material
Accuracy Bal. accuracy Accuracy
vit_b_16 90.11% +0.35% | 87.40% +0.20% 87.42% 10.45%
swin_b 9217% +0.98% 89.71% +1.03% 8935% +0.68%
beit_b_16 9081% 40.41% 8795% 4+0.69% 8574% +0.37%
deit_b_16 91.78% 4061 89.22% 1000 87.85% 4110%
veggl9 90.54% Lo.37% | 87.05% £1.03% | 85.74% 11.40%
resnet50 91.78% 40.44% 88.24% 4+0.59% 88.69% 40.99%

eff. netv2_m
convnext_b

90.87% 4o.67%
92.15% 40.40%

88.34% +1.37%
89.82% +1.18%

87.55% +115%
88.79% +1.07%

73.46% +1.44%
T7.16% +2.98%
72.12% +1.38%
74.42% +1.99%
72.43% +3.03%
T7.97% +0.95%
75.31% +1.60%
78.40% +1.26%

92.05% +0.44%
95.05% +0.47%
91.27% 11 13%
93.37% 41.15%
92.20% +0.40%
94.72% +0.74%
92.65% Lo 542
94.60% +0.54%

89.77% +0.38%
93.94% ~o.81%
88.83% +1 63%
91.67% +1.55%
90.18% +0.72%
93.41% +1.05%
90.84% +0.51%
93.13% +0.61%

Table 3.2: Testing performance after fine-tuning. Results are again similar to validation accuracy
in Figure Compared to Table it is striking that the ConvNext CNN now often takes the
lead with respect to balanced accuracy, and that the ResNet50 CINN often takes second place.

this is 9.2%, which is very similar. This, then, does
not suggest that at some point OTS learning be-
comes preferred due to overfitting problems for F'T.

3.2 Discussion

While most results have now been presented, it is
still important to discuss them in more detail, as
this leads to a more complete interpretation. This
subsection attempts to provide such a discussion,
by answering questions one might have at this mo-
ment. It will first address some of the aforemen-
tioned experiments individually, but will conclude
with more general remarks. Topics will include:
comparisons with earlier studies, potential short-
comings, and hypotheses that might explain certain
observations.

3.2.1 Off-the-shelf learning

How do these results compare to related
studies? Of all related work mentioned in section
Zhou et al.|(2021]) was the only one that exam-
ined VTs” OTS learning properties. It reported the
best OTS learning performance for the Swin VT,
which is much in line with the results in Table B.1l

Besides Swin, |Zhou et al.| also included ViT and
ResNet101 in its comparisons (among others), and
consistently found that ResNet101 outperformed
ViT. The current study, on the other hand, uses
ResNet50, which performs worse than ViT on all
tasks except Artist classification. Running the same
experiments with ResNet101 does, however, lead to
similar findings as [Zhou et all On Type classifica-
tion, for example, it achieves a mean testing ac-

curacy of 86.21%(£0.70%), which is indeed slightly

— vit_b_16 swin_b ~—— beit b 16 —— deit_b_16

0.95

-==- vgglo

—=- resnet50 efficientnetv2_m —==- convnext_b

0.90

Test accuracy (X s+ VN)

0.85 1

0.80 1

0.751

0.70

—— vt-based
—--- cnn-based

3554 1995 1113
Off the shelf (training set size)

6336

624 6336

3554 1995 1113 624

Fine-tuning (training set size)

Figure 3.3: Testing accuracy as datasets gradually become smaller. The x-axes show a logarithmic
scale, with the smallest value being roughly 10% the size of the largest one. Observations done in
sections and appear to hold up well as the training set is shrunk.

higher than ViT’s 86.06% shown in Table[3.1] Mind
that these differences are slight compared to the
89.43% accuracy achieved by Swin here, so replac-
ing ResNet50 with ResNet101 would not have af-
fected the overall observations that much.

Finally, because VGG19 was specifically selected
for its good OTS performance in [Sabatelli et al.
(2018), it is interesting that this model is outper-
formed by ResNet50 (which that paper also in-
cluded) in Table VGG19 is the largest model
of all, so this discrepancy could be an indication
that the smaller datasets used in the current study
are too small for VGG19. Additionally, it might also
be attributable to the smaller number of classes
used here: VGG19 has the largest final layer, con-
taining 4096 inputs. While in [Sabatelli et al. this
might have provided the expressive power needed
to differentiate between a few hundred classes after
just OTS learning, here it likely causes overfitting
before good convergence is reached.

Why do VTs perform so well here? While
results are in line with previous studies, it was still
surprising to see that VT's showed such good OTS
learning performance in section It suggests
that these transformer-based architectures are able
to give a very complete, high-level encoding of the
input image. For CNNss this is commonly thought to
be true, as they are often described as hierarchical
feature extractors that build successively higher-

level feature maps from lower-level ones (see sec-
tion . If the same is true for VTs, is not well
understood at this moment. Or at least to the best
of the author’s knowledge, that is.

A hint of an answer can, however, be found when
plotting activation of successively deeper attention
layers, as is done in Figure While earlier lay-
ers retain much spatial information, later ones show
more sporadic activation patterns. This is what one
might expect from a hierarchical feature extractor:
the random pixels lighting up might, for example,
correspond to specific, high-level properties of the
input. Nevertheless, it should be emphasized that
no strong conclusions should be drawn from these
images, and that more research with respect to ex-
plainability is desired.

3.2.2 Fine-tuning

How do these results compare to related
studies? That the Swin VT performs well af-
ter FT, is again consistent with [Zhou et al.
(2021). In that paper, however, ViT outperforms
the ResNet101 and ResNet152 CNNs. This differs
from the results in Table where ViT does not
perform well overall, and even shows the worst test-
ing accuracy on Type classification, with 90.11%.
ResNet50 achieves 91.78% accuracy here, and test-
ing the same ResNet101 and ResNet152 versions
that |Zhou et al. used does not change much, as this

layer 12s layer 13n layer 21
L - L 4 L]
L]

[]

Figure 3.4: Attention layers of successively deeper transformer blocks. One can recognize the
input image in earlier layers, while for later ones, activation seems sporadic. For DeiT, attention
with respect to the class-token is plotted. Swin, on the other hand, does not have a class-token,
so average overall attention is used instead. In addition, the window-shifting operations of this
architecture are counteracted.

leads to 91.96% (£ 0.59%) and 91.94% (£ 0.25) ac-
curacy, respectively.

Results are also less favorable for VT's compared
to|Matsoukas et al.| (2021)). In that paper, the ‘tiny’
version of DeiT outperforms ResNet50, while in Ta-
ble [3.2] this same ResNet50 performs slightly better
than the ‘base’ version of DeiT. Going ‘tiny’ also
does not help: on Type classification, for instance,
‘tiny’ DeiT gets 90.44% (£ 0.93%), which is even
worse than ‘base’ DeiT’s 91.78% in Table

These slight performance differences could be at-
tributable to the different datasets used. In that
case, it seems, VTs have certain strengths that
those other datasets take more advantage of. Alter-
natively, it could be that hyperparameters and reg-
ularisation still leave room for improvement. The
reason for thinking this, is that preliminary exper-
iments suggested that VTs benefit more from reg-
ularisation than CNNs do.

Finally, it was observed that ResNet50 appears
to flourish with FT, sometimes even beating Conv-
Next in the rankings. This is consistent with
[Sabatelli et al.| (2018), where it was the best FT
model overall.

Why are results less favorable for VTs after
FT than after OTS learning? VTs and CNNs
are much closer together after FT in Table [3.2] than
after OTS learning in Table It is as if OTS
learning already unlocks much of VTs’ potential,
while CNNs need an FT learning scheme for this.
Supporting ‘evidence’ might be visible in Figure
It plots saliency maps for one CNN (ConvNext),
and two VTs (DeiT and Swin). It is interesting that
ConvNext shows much bigger differences between
the OTS and FT plots. In Figure[3.5a], for example,

]
- 7

layer 13= layer 21

layer 12x

i
)
@l

A LI |
'

it learns to just look at the picture frame after FT.
In Figure it learns to look more at the center,
which allows it to correctly classify the input as a
dish instead of a plate. These bigger differences for
ConvNext align well with observations made earlier,
as they suggest that there is still much improve-
ment possible after just OTS learning for CNNs.
The images in Figure [3.5] are representative ex-
amples, and show observations that could have
been made from other images too. How representa-
tive the 3 models are for all 8 is debatable, and was
not tested. In general, a big disclaimer should be
added to these results, because some hand waving
is involved. Importantly, 3 different salience map-

ping techniques were used: GradCam (Selvaraju et

2017) was implemented for ConvNext, while
Attention Rollout (Abnar & Zuidema, [2020) was

implemented for DeiT. This already makes the
comparison somewhat unfair, and it becomes even
worse when Swin is added, for which a self-invented
method was used. This method is similar to Grad-
Cam, but instead of multiplying average CNN
channel gradients with said channel’s activation,
it directly multiplies activation with corresponding
gradients in the output of one of the later trans-
former blocksﬂ Despite this, saliency maps were
included, as they are interesting nonetheless.

3.2.3 Overall

Why does Artist classification show the
best overall performance? This might seem
counter-intuitive: one would think that it is much

9For the full implementation of all techniques, one is
referred to the source code on:
https://github.com/IndoorAdventurer/
ViTTransferLearningForArtClassification.

10

https://github.com/IndoorAdventurer/ViTTransferLearningForArtClassification
https://github.com/IndoorAdventurer/ViTTransferLearningForArtClassification

convnext deit swin

(a) Picture

convnext deit swin

(b) Dish

Figure 3.5: Saliency maps for ConvNext, DeiT, and Swin after both off-the-shelf learning (OTS), and
fine-tuning (FT). ConvNext appears to benefit more when training the whole model instead of the
last layer, because it shows the biggest differences between OTS learning and FT. In the case of
Figure [3.5b] this even makes the difference between correct and incorrect classification.

easier to determine if something is a painting or
a sculpture, than determining who the creator is.
However, because only the top 30 classes are used,
this is not necessarily true.

Figure shows example images for all tasks.
On the one hand, it shows much heterogeneity for
the Artist classification task, with artists working
in very different styles and mediums. On the other
hand, it also shows difficulties for the other tasks:
Material classification, which seems to be the most
challenging task, shows examples of both big differ-
ences within classes (note how the two instances of
porcelain are very different), and small differences
between classes (note how the porcelain plate is
similar to the faience plate).

Then there is the problem of balance. It was men-
tioned earlier that balanced accuracy falls behind
plain accuracy the most for Material classification,
and the least for Artist classification. At the same
time, Table[2.1]shows that it is also Material classi-
fication which is the least balanced (Gini-coefficient
of 0.563), while it is Artist classification that is
the most balanced (coefficient 0.236). This suggests
that balance has a positive effect on testing accu-
racy, from which Artist classification, in that case,
benefits the most.

The same hyperparameters are used for all
models. Is this fair? The final learning scheme
was chosen after extensive hyperparameter opti-
mization, and was partially inspired by related

work. It is possible that doing this for each model
individually would have resulted in slightly higher
performances. This paper, however, does not aim
to get the best possible performance, but instead
wants to see how models compare to one another.
It is unlikely that individually tuning each model
would have changed overall findings.

A small asterisk to be made here, is that VTs
might benefit more from better regularisation than
CNNs (see section [3.2.2)). Still, final accuracy
should not be the only concern, because ease of
use (i.e. effort needed to find the right hyperpa-
rameters) will also determine to what degree VTs
are a valuable alternative to CNNs. Moreover, the
main finding of this paper seems to be that VT's are
able to perform on par with CNNs. Slightly better
performance for VTs would not exactly hurt this
finding.

To what extent are the chosen models repre-
sentative of all VTs and CNNs? Most mod-
els were selected because of their mention in re-
lated work. Notable exceptions are ConvNext and
EfficientNetV2, which were selected because they
are equally recent as the used VTs. Many of these
models are popular/common, but one can’t say
that they are a representative sample. The ques-
tion, of course, also is not how VTs and CNNs as
a group compare to one another. Instead, the ques-
tion is if the VT landscape as a whole has some-
thing to offer that could be an interesting alterna-

11

tive to common CNNs.

It is also interesting to wonder if, for example,
‘tiny’- or ‘medium’-sized version should have been
used instead of ‘base’ versions. All available ‘tiny’
models were tested as well, and results have been
reported where appropriate (e.g. section .
Overall, however, these results did not suggest that
using ‘tiny’ versions would have made much of a dif-
ference for the rankings: ‘tiny’ Swin and ConvNext,
for example, remained superior under that circum-
stance.

4 '
0.92 1
() (|
¢ ¢ o
% 0.90 | ‘
>
§ 0.88 1 4
3
|9
1)
©
20.86 *®
Z []
Q
[t
0.84 A 0. ® off-the-shelf vt
® off-the-shelf cnn
® ® fine-tuned vt
0.82 ® fine-tuned cnn

20 40 60 80 100 120 140

Seconds per epoch (x =)

Figure 3.6: Time/accuracy trade-offs for VTs
and CNNs either off-the-shelf or fine-tuned.
Fine-tuned CNNs seem to make the best trade-
off here, with one even appearing left above all
off-the-shelf VTs. The best overall performance
is achieved by a fine-tuned VT.

What can be concluded from the results pre-
sented? After OTS learning, results are slightly
better for VT's, while after FT, results are almost
the same for CNNs and VTs. With that said, it
seems, VTs are very much able to perform on par
with CNNs on the described art classification prob-
lems. Especially Swin and DeiT showed promising
performance, and together with ConvNext, might
be interesting models to consider.

Of course, final accuracy is not the full story,
since time/accuracy trade-offs, for example, can

also determine which model is preferred. Figure|3.6
plots the Type classification accuracies of Tables
and against training time per epoch. To-
tal training time was not chosen instead, as this
measure depends much more on selected hyperpa-
rameters.

The best overall performing model is a fine-tuned
VT (Swin). At the same time, it is perhaps a CNN
that shows the best time/accuracy trade-offs, be-
cause it performs better than any OTS-trained
model, while still taking less time per epoch than
any OTS-trained VT. The particular CNN this con-
cerns, is ResNet50. Recall that this model only
had 25.6 million parameters, while most VT's had
around 86 million.

All “tiny’ VTs are around the same size as
ResNet50, and using these would have changed the
situation completely. As such, taking Figure
with a grain of salt would be appropriate.

Still, it seemed fitting to conclude with this fig-
ure, as it neatly summarises all the main findings
done in this section.

4 Conclusion

Seeing which is better, VT's or CNNs, has never
been the goal of this paper. The underlying archi-
tecture is somewhat irrelevant, as one should al-
ways pick (or create) the model that fits the task
best — regardless of whether it is a VT, or CNN.
What this paper, then, was interested in, is whether
VTs can become a valuable alternative to CNNs
under circumstances in which:

e small datasets are used: specifically, small
enough to have been hand-labeled by one per-
son;

e only consumer-grade hardware is available.

In other words: this paper was interested in the
type of machine learning one could try at home,
and wanted to know if VTs could be made useful
for it.

To that end, it tried to utilize transfer learn-
ing methods, as these might help overcome prob-
lems that arise from VTs’ lack of an inductive
bias. More concretely, models pre-trained on Im-
ageNet1K were either used as off-the-shelf feature
extractors, or fine-tuned to new tasks. These tasks

12

were all taken from the Rijksmuseum Challenge
dataset (Mensink & van Gemert, 2014), and fall
within the domain of art classification.

The results demonstrated that VTs are very well
able to perform on par with CNNs here. Especially
the Swin VT showed promising results, and might
be worth considering for future learning problems.

ConvNext was a close second in the rankings. It is
interesting that this best performing CNN was in-
spired by VTs, while the best performing VT, Swin,
took inspiration from CNNs. It shows the kind of
cross-fertilization that moves the field forward, but
also hints at something bigger that would be nice
to conclude with.

No matter what happens. No matter if VTs,
CNNs, a hybrid architecture, or even something
completely different rains supreme in the coming
years; it is great that VTs came about. It shakes
things up, and forces researchers to look at prob-
lems from a different perspective. Perhaps that,
then, will be VTS’ greatest contribution of all.

Acknowledgements

The author would like to thank the Center for In-
formation Technology of the University of Gronin-
gen for their support and for providing access to
the Peregrine high-performance computing cluster.
He would also like to thank dr. M. Sabatelli for his
guidance during this project.

References

Abnar, S., & Zuidema, W. (2020). Quantifying
attention flow in transformers. arXiv preprint
arXw:2005.00928 .

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., &
Fei-Fei, L. (2009). Imagenet: A large-scale hierar-
chical image database. In 2009 IEEE conference
on computer vision and pattern recognition (pp.
248-255).

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weis-
senborn, D., Zhai, X., Unterthiner, T., ... others
(2020). An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv
preprint arXiw:2010.11929.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep
residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vi-
sion and pattern recognition (pp. 770-778).

Kingma, D. P., & Ba, J. (2014). Adam: A method
for stochastic optimization. arXiv preprint
arXiw:1412.6980.

Krizhevsky, A., Sutskever, 1., & Hinton, G. E.
(2012). Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural
Information Processing Systems (Vol. 25). Cur-
ran Associates, Inc.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P.
(1998). Gradient-based learning applied to doc-
ument recognition. In Proceedings of the IEEE
(Vol. 86, pp. 2278-2324).

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang,
Z., ... Guo, B. (2021). Swin transformer: Hi-
erarchical vision transformer using shifted win-
dows. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (pp.

10012-10022).

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Dar-
rell, T., & Xie, S. (2022). A ConvNet for the
2020s. arXiv preprint arXiw:2201.03545.

Matsoukas, C., Haslum, J. F., Soderberg, M., &
Smith, K. (2021). Is it time to replace cnns with
transformers for medical images? arXiv preprint
arXiw:2108.09038.

Mensink, T., & van Gemert, J. (2014). The Ri-
jksmuseum Challenge: Museum-Centered Visual
Recognition. In ACM International Conference
on Multimedia Retrieval (ICMR).

Paszke, A., Gross, S., Massa, F., Lerer, A., Brad-
bury, J., Chanan, G., ... Chintala, S. (2019). Py-
Torch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural
Information Processing Systems 32 (pp. 8024—
8035). Curran Associates, Inc.

Sabatelli, M. (2022). Contributions to deep transfer
learning: from supervised to reinforcement learn-
ing (Unpublished doctoral dissertation). Univer-
site de Liege, Liege, Belgique.

13

Sabatelli, M., Kestemont, M., Daelemans, W., & Zhou, H.-Y., Lu, C., Yang, S., & Yu, Y. (2021).

Geurts, P. (2018). Deep transfer learning for art
classification problems. In Proceedings of the Fu-
ropean Conference on Computer Vision (ECCV)
Workshops.

Selvaraju, R. R., Cogswell, M., Das, A., Vedan-
tam, R., Parikh, D., & Batra, D. (2017). Grad-
cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the

IEEE international conference on computer vi-
sion (pp. 618-626).

Sharif Razavian, A., Azizpour, H., Sullivan, J., &
Carlsson, S. (2014). CNN features off-the-shelf:
an astounding baseline for recognition. In Pro-
ceedings of the IEEE conference on computer vi-

sion and pattern recognition workshops (pp. 806—
813).

Simonyan, K., & Zisserman, A. (2014). Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Tan, M., & Le, Q. (2021). Efficientnetv2: Smaller
models and faster training. In International Con-
ference on Machine Learning (pp. 10096-10106).

Touvron, H., Cord, M., Douze, M., Massa, F.,
Sablayrolles, A., & Jégou, H. (2021). Train-
ing data-efficient image transformers & distilla-
tion through attention. In International Confer-
ence on Machine Learning (Vol. 139, pp. 10347—
10357).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jomes, L., Gomez, A. N., ... Polosukhin,
I. (2017). Attention is all you need. In Ad-
vances in Neural Information Processing Systems
(Vol. 30). Curran Associates, Inc.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., De-
langue, C., Moi, A., ... others (2020). Trans-
formers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 conference
on empirical methods in natural language pro-
cessing: system demonstrations (pp. 38-45).

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H.
(2014). How transferable are features in deep
neural networks? In Advances in Neural Infor-
mation Processing Systems (Vol. 27). Curran As-
sociates, Inc.

Convnets vs. transformers: Whose visual repre-
sentations are more transferable? In Proceedings
of the IEEE/CVF International Conference on
Computer Vision (pp. 2230-2238).

14

	Introduction
	Convolutional Neural Networks
	Vision Transformers
	Transfer Learning
	Related work and the current study

	Methods
	Dataset
	Models
	Hyperparameters and data augmentation
	Hardware and software

	Experiments
	Results
	Off-the-shelf learning
	Fine-tuning
	Scaling

	Discussion
	Off-the-shelf learning
	Fine-tuning
	Overall

	Conclusion

