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Abstract

This paper proposes a novel method of utilising guide policies in Re-
inforcement Learning problems; Contextual Online Imitation Learning
(COIL). This paper will demonstrate that COIL has the potential to
solve Reinforcement Learning tasks better than both traditional Imita-
tion Learning, and also Deep Reinforcement Learning algorithms such as
Proximal Policy Optimisation (PPO). COIL can also effectively utilise
non-expert guide policies, making it more flexible than current methods
that integrate guide policies. This paper demonstrates that through using
COIL, guide policies that achieve good performance in sub-tasks can also
be used to help Reinforcement Learning agents looking to solve more com-
plex tasks. This is a significant improvement in flexibility over traditional
Imitation Learning methods. After discussing in depth some prerequisite
knowledge in Reinforcement Learning and Imitation Learning, this pa-
per will introduce the theory and motivation behind COIL, and will also
test the effectiveness of COIL in a self-driving car simulation and real-life
robot. In both applications, COIL gives stronger results than traditional
Imitation Learning, Deep Reinforcement Learning, and the also the guide
policy itself.
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This section provides a concise list describing the notation used throughout this
paper.
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||X||p The Lp norm of X.
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1 Introduction

“ If intelligence was a cake, unsupervised learning would be the cake,
supervised learning would be the icing on the cake, and reinforcement learning

would be the cherry on the cake. ”

- Yann LeCun

Reinforcement learning is a vast field spanning many applications from compu-
tational neuroscience to robotics. Research in Reinforcement Learning began in
the 1950s in the field of Optimal Control as a formal framework to define opti-
mization methods to derive control policies in continuous time control problems
[2–4]. Broadly speaking, Reinforcement Learning encapsulates the methodology
of training an agent to adopt a certain behaviour through interactions with a
dynamic environment. An example of this is an autonomous stock market trader
which learns the optimal trading strategy through repeated buying and selling
of stocks. Reinforcement Learning algorithms differ in how they use these past
interactions to create future strategies. As we will see in this paper, there are
many effective ways of achieving this goal.

The type of task that Reinforcement Learning is trying to solve is sequential
in nature, there is an often element of time involved. The standard setup be-
tween a Reinforcement Learning agent and its environment can be seen below
in Figure (1).

Figure 1: The standard setup for Reinforcement Learning given an agent and
environment. In each time step t ∈ [0, T ], the agent is provided with information
from the current state st, and then takes an action at within its environment.
The reward for that time step is then calculated via the reward function rt =
r(st, at).

In order to begin analysing Reinforcement Learning tasks in detail, a math-
ematical construction known as a Markov Decision Process (MDP) is used to
describe all of the important characteristics of the environment. Markov Deci-
sion Processes are important for Reinforcement Learning because they provide
a concrete mathematical framework for researchers to build environments for
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agents to execute policies upon. For self-driving cars, the MDP would have to
contain all of the information regarding the cars dynamics and the road that it
is driving upon.

Research on Markov Decision Processes began in the 1950s by Bellman’s
paper A Markovian decision process [3]. This paper established the core con-
cepts and structures surrounding Markov Decision Processes and allowed other
mathematicians to start working on the new idea. In 1960, a large body of work
on Markov Decision Processes was published by Howard in the book Dynamic
Programming and Markov Processes [2]. This book developed the theory ex-
tensively and introduced new methods to identify optimal strategies for MDPs,
such as value iteration and policy iteration. After these important initial devel-
opments, additional major works on MDPs were produced in the 1990s, such as
Dynamic programming and optimal control by Bertsekas [5] in 1995, Reinforce-
ment Learning by Sutton [6] in 1998, and Markov decision processes : discrete
stochastic dynamic programming by Puterman [7] in 1994. The theory in this
section will take inspiration from the initial methods described in Howards book,
and also tie together some of the significant concepts developed in the books by
Sutton, Bertsekas, and Puterman [5–7].

Following the establishment of Markov Decision Processes, many Reinforce-
ment Learning algorithms were developed in the 1980s, most notably, Q-learning
developed by Watkins in 1989 [8] and the REINFORCE algorithm developed by
Williams in 1987 [9]. These algorithms will be discussed in full in Section (2.2).
Following this, with the rise of neural networks and Deep Learning in the 21st
century, a host of new algorithms leveraging this new technology were created
in the 2010s and given the name Deep Reinforcement Learning. In particular,
Deep Q-Networks developed by Mnih et al. in 2013 [10], and trust-region meth-
ods such as TRPO and PPO were developed by Schulman et al. in 2015 and
2017 respectively [11, 12]. These Deep Reinforcement Learning algorithms will
be discussed at length in Section (2.3).

Following the discussion on classical and modern Reinforcement Learning
algorithms, in Section (2.4) the paradigm of Imitation Learning will be ex-
plored and three different Imitation Learning methods will be compared; Of-
fline Imitation Learning, DAgger, and Reward Function Coupling. Imitation
Learning is similar to Reinforcement Learning, however, instead of learning a
strategy through repeated interaction with an environment, a strategy is learned
through demonstrations from an ‘expert’ at the task called a guide policy. Imi-
tation Learning is therefore only applicable in the case where researchers have
access to such a guide policy. Research in Imitation Learning began in software
development in the paper Programming by Example by Halbert in 1984 [13].
It was soon picked up by Artificial Intelligence researchers and given the name
‘Imitation Learning’ and ‘Learning from Demonstration’ [14]. Since then, many
powerful Imitation Learning methods have been developed, some of which also
utilise the advances in Deep Learning [15]. The details of Imitation Learning
methods will be treated in Section (2.4).

Lastly, a novel method of utilising guide policies will be introduced in Sec-
tion (3) : Contextual Online Imitation Learning (COIL). In COIL, the actions
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of the guide policy are fed into the agent as an additional observation during
training. Within this section, the motivation behind COIL will be discussed
and different adaptations of the algorithm will be explored. In particular, the
biggest advantage of COIL is its flexibility regarding the types of guide policies
that can be effectively utilised. In traditional Imitation Learning methods, only
‘expert’ guide policies can be used, in COIL this is no longer the case. COIL
allows the agent to learn for itself through interaction with the environment the
optimal way in which to use the guide policy. Even if the guide policy is only
effective in some subset of states in the environment, COIL is capable of train-
ing the agent to ‘listen’ to the suggestions of the guide policy only in this set of
states and ‘reject’ the suggestions of the guide policy in all other states where
the guide policy is non-optimal, hence why it is named ‘Contextual’. This is a
significant methodological improvement over the current methods of Imitation
Learning. This will be discussed more in detail in Section (3.1).

Additionally, in Section (3.3) an extension of COIL will be introduced, called
Dynamic COIL. In Dynamic COIL, a training schedule is proposed where after
the COIL agent has been trained, the guide policy itself is allowed to be fine-
tuned. This allows the guide policy to be slightly adjusted in order to maximise
the proficiency of the agent. It is conjectured that Dynamic COIL will be effec-
tive in multi-task Reinforcement Learning tasks. Furthermore, in Section (4),
COIL will be applied to a self-driving car simulation as well as a self-driving
robot, and it will be directly compared to both Imitation Learning methods
and modern Reinforcement Learning methods. It will be shown here that there
is strong evidence that COIL is an effective method of utilising guide policies
in Reinforcement Learning tasks. It will also be shown that there is evidence
that COIL is also robust to transfer learning. This will demonstrate that COIL
has great potential for solving Reinforcement Learning tasks in practice as it
gives researchers and engineers a method of utilising their guide policies even if
they are not experts in all states or all objectives. Following this, the potential
limitations of COIL will be discussed and also the possible avenues for future
research on this new method.

2 Theory & Methods

This section will bring together the relevant theoretical material across a range
of literature to give a coherent and clear overview of the field of Reinforcement
Learning. In order to do this in one consistent format, a significant amount
of notation had to be constructed and edited. Almost all of the theory in
this section has re-written theorems, proofs, and algorithms in order to make
the necessary clarifications and piece it all together. Furthermore, all diagrams,
figures, and pseudo-code in this section were designed specifically for this paper.
Before moving onto the Reinforcement Learning algorithms themselves, we must
first discuss the Markov Decision Process.
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2.1 Markov Decision Processes

This section will begin by defining the Markov Decision Process (MDP) in full,
before moving onto some elementary algorithms designed to find optimal strate-
gies for MDPs. In particular, Policy Iteration and Value Iteration are two highly
influential algorithms which will be treated at the end of this section.

2.1.1 Definition

In this section we will incrementally build up the full definition of the Markov
Decision Process from its constituent elements. First, we will mathematically
define the notion of a graph, then by introducing the necessary extensions to
the graph we will arrive at the Markov Decision Process, the mathematical con-
struction widely adopted to represent agents and environments in Reinforcement
Learning.

Definition 2.1. A graph is a pair G = (V,E) where V is a set of vertices and
E is a symmetric subset of V × V, containing the set of edges. E is symmetric
iff (x, y) ∈ E ⇐⇒ (y, x) ∈ E.

A directed graph is a graph where the edge set E no longer adheres to
the property of symmetry, therefore if (x, y) ∈ E, this does not directly imply
that (y, x) ∈ E. In general, the graphs that are used as the basis for Markov
Decision Processes are directed graphs, as a result the symmetric graph will
remain a special case for the remainder of this paper.

In Reinforcement Learning literature, the vertices in V are referred to as
states. To remain in line with the literature we will now refer to the set of
states as S, instead of V . Now that we have a graph, we can define a Markov
Process (or Markov chain) as a graph where a ‘walker’ is able to traverse the
graph through time. In this way we can define the initial state of the walker as
s0 ∈ S, and at each subsequent time step, the walker travels along an edge in E
from st to st+1. In general, at a state st the walker will have multiple potential
edges in E to choose from. In this case, the edge that is chosen is governed by a
function Tss′ that represents the transition probabilities of the Markov process.
Formally we have

Tss′ = P(st+1 = s′ | st = s) . (1)

Therefore, in the case where the walker has multiple choices, the resulting di-
rection will be chosen randomly according to this function Tss′ . It should be
noted that it is common in literature to represent the transition probabilities in
a matrix {T }i,j where the element (i, j) represents the probability of traveling
from vertex vi to vertex vj .

Markov Processes are named after the Russian mathematician Andrey Markov,
as they exhibit the Markov property. The Markov property indicates that when
an agent is in a state st, the probability distribution governing its next tran-
sition to state st+1 is independent to all of the states that the agent has been
in previous to state st. In this way we can call any system that maintains this
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property as Markovian. Formally, this property can be expressed as

P(st | st−1, . . . , s0) = P(st | st−1) (2)

As the name might suggest, Markov Decision Processes also exhibit the Markov
property.

Markov Decision Processes are an extension of Markov Processes where at
each time step t, the walker is able to take an action at within an action space
A which modifies the transition probabilities T acting upon the graph. In this
way the walker can express preferences between certain transitions in the graph.
The transition probabilities are therefore now also a function of the actions at
each time step at.

T ass′ = P(st+1 = s′|st = s, at = a) . (3)

In specific cases we will benefit from also using the notation T (s, a, s′) to denote
the transition probabilities. Now that decisions are able to be made, we will
from this point refer to the walker as the agent. This change in terminology
reflects that the agent is no longer traveling in random direction, but is able
to learn through exposure to its environment and make actions to influence its
trajectory in strategic ways.

The final important extension that we have to make is that each transition
from state s to state s′ is accompanied by a certain reward. This reward is
determined by a reward function Rass′ . We define Rass′ as the function

Rass′ : S2 ×A → [0, 1] (4)

and can be interpreted as the probability distribution over the reward collected
by the agent rt at time step t given that the agent began at s, took action a,
and ended up in state s′ in the following time step. In specific cases we will
benefit from also using the notation R(s, a, s′) to denote the reward function.

Now that all of the essential components are properly introduced we may
finally define the Markov Decision Processes as the collection (S,A, T ,R). Be-
fore we continue let’s look at a simple example. Imagine a toymaker involved
in the novelty toy business. Given any particular week he may be in one of
two states: He is in state 1 if the toy he is currently producing is success-
ful in the local area, and he is in state 2 if the toy fails and goes unnoticed
by potential buyers. We can summarise these two states in the state space
S := {Success : 1, Failure : 2}. When he is in state 1, he has a 50% chance of
remaining in state 1 and a 50% chance of transitioning into state 2. When he
is in state 2, he has a chance to experiment with new toys, and he returns to
state 1 with a 40% chance and remains where he is with 60% chance. Therefore
our transition probabilities can be expressed as

Ti,j =
[
0.5 0.5
0.4 0.6

]
.

Combining both S and T , all of the information can be summarised as shown
below in Figure (2).
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Figure 2: Example of a Markov Process with two states. The transition proba-
bilities are denoted on the arrows between states.

To complete our MDP, we now need a reward function R and an action space
A. On a regular day, if the toymaker is in state 1 and remains in state 1, then
he makes $900 that week. Conversely, if he starts in state 1 and transfers to
state 2, he only makes $300. If the toymaker is in state 2 and then remains in
state 2 (an unfortunate scenario indeed), he loses $700. If he begins in state
2 and manages to get back to state 1, he makes $300. Therefore, our reward
function R is given by

Ri,j =
[
9 3
3 −7

]
.

We can now add these rewards to the graph to give a picture of everything we
know about the toymaker so far. This can be seen below in Figure (3).

Figure 3: Example of a Markov Process with two states. The transition proba-
bilities are denoted on the arrows between states. The rewards associated with
each step can be seen adjacent to the corresponding arrows.

Note that the rewards given in Figure (3) are those when the toymaker is making
toys on a ‘regular’ day. Now suppose that each week the toymaker has the
option of advertising his toys to the local area. This gives us an action space
of A = {No Advertising, Advertising}. If the toymaker decides to advertise in
a given week, he will have to spend extra money on making the advertisements
and distribution. However, the chance of having a successful toy next week is
greatly increased. This effect can be seen below in an updated T and R in
Figure (4).
It is clear from the above figure that advertising can be risky if it is unsuccessful
in producing a transition from state 2 to state 1, however, if may be worth it to
reduce the chance of multiple weeks in state 2. In each week, the toymaker gets
to make the choice whether he wants to be situated within the Markov Process
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Figure 4: Example of a Markov Decision Process with two states and two ac-
tions. The transition probabilities are denoted on the arrows between states.
The rewards associated with each step can be seen adjacent to the correspond-
ing arrows. These rewards and transition probabilities are dependent on the
action taken, which can be seen when comparing the left and right graphs.

on the left, or the Markov Process on the right. The reader here is encouraged
to have a think about what the optimal strategy might be for the toymaker i.e.
which strategy is the most profitable?

A strategy for a Markov Decision Process is called a policy and is denoted
π(a, s). A policy π(a, s) is a mapping from the state-action space A×S to [0, 1]
where π(a, s) represents the probability of taking the action a in state s. The
policy can either be deterministic or stochastic. An example of a deterministic
policy for the toymaker would be to advertise only when he is in state 2, formally
this would give us

π(a, s) =

{
No Advertising if s = 1

Advertising if s = 2

An example of a stochastic policy would be if the toymaker advertised with
probability 0.5 when in state 1 and advertised with probability 0.8 when in
state 2. This would be

π(a, s) =


Advertising with probability 50% if s = 1

No Advertising with probability 50% if s = 1

Advertising with probability 80% if s = 2

No Advertising with probability 20% if s = 2

The goal of Reinforcement Learning is to find the policy that maximises the
expected total reward of the MDP. Mathematically, we want to maximise

E

[ ∞∑
t=0

γtrt

]
(5)

14



where γ ∈ [0, 1] is a called the discount factor. The discount factor determines
how much the reinforcement learning agent will prioritise rewards in the im-
mediate future relative to those in the distant future. If γ = 0, the agent will
make its decision entirely based upon the reward it will get for its next action.
If γ = 1, the agent will evaluate each action based on the sum total of all of its
future rewards. In practice, a discount factor of approximately 0.99 yields good
results.

Given a policy π, we define a trajectory τ of length T as a sequence of
state-action pairs (st, at) for t = 1, . . . , T realised during the rollout of π in
the environment. Given an initial state distribution p(s0) we can calculate the
probability of realising a trajectory τ with policy π as

π(τ) = π (s0, a0, . . . , sT , aT ) = p (s0)

T∏
t=0

π (at, st) T atstst+1
. (6)

Additionally, we define the return of a trajectory τ of length T as

r(τ) = r0 + . . .+ rT =

T∑
t=0

rt (7)

and without loss of generality we can include the discount factor to get

r(τ) = r0 + γr1 + . . .+ γT rT =

T∑
t=0

γtrt . (8)

Furthermore, if an agent is currently at time t, we shall denote the future return
of the agent given it follows policy π as

Rt =

∞∑
k=0

rt+k+1 (9)

and with the discount factor we get

Rt =

∞∑
k=0

γkrt+k+1 . (10)

Therefore, the goal of Reinforcement Learning algorithms is to find the policy π
that maximises the expected future return for the agent. In the subsequent sec-
tions we will construct methods of finding optimal policies for arbitrary MDPs,
and in the process we will help our toymaker in finding his optimal policy.

2.1.2 Value Functions

An incredibly useful tool in Reinforcement Learning development are value func-
tions. Almost all Reinforcement Learning algorithms rely on estimating value
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functions in one way or another. Value functions attempt to evaluate how valu-
able certain states or state-action pairs are. Firstly, given a policy π(a, s) and
a state s we have the state-value function :

V π(s) = Eπ [Rt | st = s] = Eπ

[ ∞∑
k=0

γkrt+k+1 | st = s

]
(11)

which represents the total expected reward provided that the agent follows the
policy π(a, s) and begins at state s. Additionally, Eπ represents the expected
value under the assumption that the policy π(a, s) is currently being used. Intu-
itively, if our agent has access to an accurate state-value function then it could
take actions to increase the probability that it ends up in states with a high
expected total reward.

The second useful value function is the action-value function :

Qπ(s, a) = Eπ [Rt | st = s, at = a] = Eπ

[ ∞∑
k=0

γkrt+k+1 | st = s, at = a

]
(12)

which is similar to the state-value function but it predicts the total expected
reward for policy π(a, s) given that the agent is currently in state s and taking
action a. The action-value function can be seen as a specific case of the state-
value function where the action is fixed in advance. The two value functions
V π(s) and Qπ(a, s) are intrinsically tied to one another. Given either one of
them it is possible to construct the other using the following equations:

Vπ(s) =
∑
a

π(a, s) ·Qπ(s, a) (13)

and

Qπ(s, a) = Eπ [rt + γV π(st+1) | st = s, at = a] (14)

=
∑
s′

T ass′ (Rass′ + γVπ (s
′)) (15)

where this final equality is a result of the Law of the Unconscious Statistician
[16].

The action-value function Qπ is particularly useful because we can define a
policy π′ as always taking the action that provides the highest expected reward
according to Qπ. Therefore we have

π′(a, s) = argmax
a

Qπ(a, s) . (16)

Of course, the success of this policy is completely dependent on the accuracy
of Qπ. In practice, it might be very difficult to learn an accurate action-value
function.

A final value function which is useful is the advantagefunction which is
defined as

Aπ(a, s) = Qπ(a, s)− V π(s) . (17)
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The advantage function is used to determine the advantage gained by taking
action a in state s compared to the average. Therefore, we can say that if
Aπ(a, s) > 0 then taking the action a is better than average.

2.1.3 Bellman Equations and Optimal Policies

All of the value functions we have discussed are able to be reformulated into
Bellman equations, which implies they have a special self-consistency property.
The Bellman equations imply a recursive formulation of the value functions and
come from the idea that the value of your starting state could be seen as the
value you expect to get from starting from there plus the value you expect to
get from wherever you land from there on. The Bellman equation for V π(s) can
be derived as follows:

V π(s) = Eπ

[ ∞∑
k=0

γkrt+k+1 | st = s

]
(18)

= Eπ

[
rt+1 + γ

∞∑
k=0

γkrt+k+2 | st = s

]
(19)

=
∑
a

π(a, s)
∑
s′

T ass′

[
Rass′ + γEπ

[ ∞∑
k=0

γkrt+k+2 | st+1 = s′

]]
(20)

=
∑
a

π(a, s)
∑
s′

T ass′ [Rass′ + γV π (s′)] (21)

where the relationship between Equation (20) and Equation (21) holds because
the expected total reward at a state s is the same at time t as it is at time t+1,
as long as the MDP is not terminated in the near future.

We can also derive the Bellman equation for Qπ(a, s) as follows:

Qπ(a, s) = Eπ

[ ∞∑
k=0

γkrt+k+1 | st = s, at = a

]
(22)

= Eπ

[
rt+1 +

∞∑
k=0

γkrt+k+2 | st = s, at = a

]
(23)

=
∑
s′
T ass′

(
Rass′ + γ ·

∑
a′

π(a′, s′) · Eπ

[ ∞∑
k=0

γkrt+k+2 | st = s, at = a

])
(24)

=
∑
s′
T ass′

(
Rass′ + γ ·

∑
a′

π(a′, s′) ·Qπ(a′, s′)

)
(25)

and using Equation (13) we can also rewrite Equation (25) as

Qπ(a, s) =
∑
s′

T ass′ (Rass′ + γVπ (s
′)) . (26)
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Reformulating the value functions as Bellman equations allows us to exploit the
recurrence relation between subsequent time steps. The key point now is that
both V π and Qπ are fixed points of their own Bellman equations, which is an
important reason why the Value Iteration and Policy Iteration algorithm work.
We will cover these algorithms in the next section, but first we must discuss
optimal value functions.

In order to solve a Reinforcement Learning task, it is necessary to find a
policy that maximises the amount of reward attained by the agent in the en-
vironment. Using the value functions we can define a partial ordering over
policies. A policy π is defined to be better than or equal to a policy π′ if its
expected total reward is greater than or equal to that of π′ for all states s ∈ S.
This means that π ≥ π′ ⇐⇒ V π(s) ≥ V π′

(s) for all s ∈ S. There is always at
least one policy π∗ called the optimal policy that is better than or equal to all
other policies. It is possible that there may be more than one optimal policy,
however, we will denote all of the optimal policies by π∗. The optimal policy is
coupled by an optimal state-value function, denoted V ∗(s), and defined as

V ∗(s) = max
π

V π(s) for all s ∈ S . (27)

Optimal policies also have an optimal action-value function denoted Q∗(a, s),
and defined as

Q∗(a, s) = max
π

Qπ(a, s) for all s ∈ S and a ∈ A . (28)

Additionally, Q∗(a, s) and V ∗(s) have a straightforward relationship:

Q∗(a, s) = E [rt+1 + γV ∗ (st+1) | st = s, at = a] . (29)

If Q∗(a, s) is known then we can easily take the optimal policy π∗ as

π∗ = argmax
a

Q∗(a, s) (30)

or equivalently by using Equation (29)

π∗ = argmax
a
E [rt+1 + γV ∗ (st+1) | st = s, at = a] (31)

therefore, it follows that finding the optimal value functions is a sufficient condi-
tion for us to find the optimal policy π∗. A crucial step in finding these optimal
value functions for a given Markov Decision Process is finding their Bellman
equations.

The Bellman equations for V ∗(s) and Q∗(a, s) are named Bellman optimal-
ity equations. The intuition behind these equations comes from the idea that
the value of a state under the optimal policy must be equal to the expected
total reward for the best action from that state. We can derive the Bellman
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optimality equations as follows:

V ∗(s) = max
a∈A(s)

Qπ
∗
(a, s) (32)

= max
a
Eπ∗ [Rt | st = s, at = a] (33)

= max
a
Eπ∗

[ ∞∑
k=0

γkrt+k+1 | st = s, at = a

]
(34)

= max
a
Eπ∗

[
rt+1 + γ

∞∑
k=0

γkrt+k+2 | st = s, at = a

]
(35)

= max
a
Eπ∗ [rt+1 + γV ∗ (st+1) | st = s, at = a] (36)

= max
a

∑
s′

T ass′ [Rass′ + γV ∗ (s′)] , (37)

and for Q∗(a, s) we have

Q∗(a, s) = E
[
rt+1 + γmax

a′
Q∗ (a′, st+1) | st = s, at = a

]
(38)

=
∑
s′

T ass′
[
Rass′ + γmax

a′
Q∗(a′, s′)

]
(39)

where the optimal value functions are fixed points in these Bellman equations.
The next section on Policy Iteration and Value Iteration will demonstrate that
we can build algorithms that turn these Bellman equations into update rules
that successfully converge to the optimal value functions. As we have shown
in equations (30) and (31), with these resulting optimal value functions we
can construct the optimal policy π∗ of the Markov Decision Process, which in
practice is the ultimate goal for engineers aiming to build intelligent systems.

2.1.4 Policy Iteration

The Policy Iteration algorithm consists of two major parts, Policy evaluation
and Policy improvement. Policy evaluation takes the current policy π and out-
puts the corresponding value function V π(s). The idea is to begin with an
arbitrary guess for V π(s), and then we formulate an update rule using the Bell-
man equation derived in Section (2.1.3)

Vk+1(s) = Eπ [rt+1 + γVk (st+1) | st = s] (40)

=
∑
a

π(a, s)
∑
s′

T ass′ [Rass′ + γVk (s
′)] (41)

as the value function V π(s) is a fixed point of its Bellman equation this update
rule is guaranteed to converge if γ < 1. In the case that γ = 1, the value of
states can become infinite as the agent will equally weigh the reward from each
time step over a potentially infinite time scale. If the termination of the MDP
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is guaranteed then the condition that γ < 1 is no longer necessary.
Equipped with a sensible stopping criterion of subsequent estimations of the

value functions becoming very close i.e. | Vk+1(s)− Vk(s) |< ϵ, we arrive at the
Policy evaluation algorithm:

Algorithm 1 Policy Evaluation

Input : π
Initialize V (s) = 0, for all s ∈ S
While ∆ > ϵ :

∆← 0
For each s ∈ S :

v ← V (s)
V (s)←

∑
a π(a, s)

∑
s′ T ass′ [Rass′ + γV (s′)]

∆← max(∆, |v − V (s)|)
Output : V ≈ V π

Following Policy evaluation we have Policy improvement. Policy improvement
takes our newly found value function V π(s) and outputs an improved policy
π′ ≥ π. The motivation behind Policy improvement is to evaluate the expected
total reward at each state s ∈ S for each action a ∈ A, and in any case where
there exists an action a′ that provides a higher expected total reward than the
action taken in policy π, we modify the policy to take this ‘better’ action a′.
The steps to achieve this are:

• For each s ∈ S and a ∈ A, compute Qπ(s) using Equation (15)

• For each s ∈ S, set π′(s) = argmaxaQ
π(s)

• Output π′ ≥ π

This works because if for each state s ∈ S we have that

Qπ(s, π′(s)) ≥ V π(s) (42)

then the policy π′ must be at least as good as π i.e. for all states s ∈ S we have

V π
′
(s) ≥ V π(s) . (43)

We can summarise this within the following theorem

Theorem 2.1. Given a Markov Decision Process with policies π and π′ and
corresponding state-value functions V π(s) and V π

′
(s) then ∀s ∈ S,

Qπ(s, π′(s)) ≥ V π(s) =⇒ V π
′
(s) ≥ V π(s) (44)

We can prove this by starting with Equation (42) and iteratively applying
Equation (14) and Equation (42) :
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Proof.

V π(s) ≤ Qπ (s, π′(s))

= Eπ′ [rt+1 + γV π (st+1) | st = s]

≤ Eπ′ [rt+1 + γQπ (st+1, π
′ (st+1)) | st = s]

= Eπ′ [rt+1 + γEπ′ [rt+2 + γV π (st+2)) | st = s]

= Eπ′
[
rt+1 + γrt+2 + γ2V π (st+2) | st = s

}
≤ Eπ′

[
rt+1 + γrt+2 + γ2rt+3 + γ3V π (st+3) | st = s

]
...

≤ Eπ′
[
rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + · · · | st = s

]
= V π

′
(s)

Therefore, each application of Policy improvement guarantees that the resulting
policy π′ is at least as good as π. Furthermore, we can show that after Policy
improvement, if π = π′, then it follows that we must have achieved the optimal
policy i.e. π = π∗.

Theorem 2.2. Given a Markov Decision Process with policy π and π′ :=
argmaxaQ

π(a, s) then
π = π′ =⇒ π = π∗

where π∗ denotes the optimal policy of the Markov Decision Process

Proof. Suppose that after Policy improvement π = π′. This directly implies
that V π = V π

′
. By definition of π′ and Equation (14) we have

π′(s) = argmax
a

Qπ(a, s) (45)

= argmax
a
E [rt+1 + γV π (st+1) | st = s, at = a] (46)

From this we get that

V π
′
(s) = max

a
E [rt+1 + γV π (st+1) | st = s, at = a] (47)

and from our assumption that π = π′ we get

V π
′
(s) = max

a
E
[
rt+1 + γV π

′
(st+1) | st = s, at = a

]
(48)

= max
a

∑
s′

T ass′
[
Rass′ + γV π

′
(s′)
]

(49)

Here we notice that we have arrived at the Bellman equation for the optimal
value function V ∗(s) derived in Section (2.1.3). As V π also satisfies this Bellman
equation, it follows that V π(s) = V ∗(s), and consequently π = π∗.
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It has now been shown that Policy improvement is guaranteed to either improve
the currently policy, or tell us that we have already reached the optimal policy.

To summarise what we have discussed so far, Policy evaluation takes the
current policy π and outputs the corresponding value function V π(s), and Pol-
icy improvement takes our newly found value function V π(s) and and outputs
an improved policy π′ ≥ π. Therefore by continually applying Policy evalua-
tion and Policy improvement one after another, we will eventually arrive at the
optimal state value function V ∗(s) and also the optimal policy π∗. This pro-
cedure is called Policy Iteration, and is a very significant algorithm in the field
of Reinforcement Learning. The stopping criterion for this algorithm is when
Policy improvement indicates that it has found the optimal policy π∗. Figure
(5) below gives an illustration of the algorithm, and the pseudo-code for Policy
Iteration can also be seen in Algorithm (2).

Figure 5: Illustration of the Policy Iteration algorithm. The Policy Iteration
algorithm begins with a Markov Decision Process and initial policy π0, and
by continually applying Policy evaluation and Policy improvement, returns the
optimal policy π∗.

The high-level idea behind Policy Iteration is that a better understanding
of the current policy proficiency allows for a more effective improvement of
the policy. For example, when studying a new topic or learning to play an
instrument - initially, you are unaware of what you do not know; this can make
it difficult to formulate a learning strategy. With practice, you eventually get a
good idea of what you currently know, and what other useful knowledge is out
there to be learned in the future. With this newfound knowledge of your ability
in the chosen topic, it is much easier to plan and improve the skill effectively.
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Algorithm 2 Policy Iteration

1. Initialization
V (s) ∈ R and π(s) ∈ A(s) arbitrarily for all s ∈ S

2. Policy Evaluation
While ∆ > ϵ :

∆← 0
For each s ∈ S :

v ← V (s)
V (s)←

∑
a π(s, a)

∑
s′ T ass′ [Rass′ + γV (s′)]

∆← max(∆, |v − V (s)|)

3. Policy Improvement
policy-stable ← true
For each s ∈ δ :

b← π(s)
π(s)← argmaxa

∑
s′ T ass′ [Rass′ + γV (s′)]

If b ̸= π(s), then policy-stable ← false
If policy-stable, then stop; else go to 2

Policy Iteration takes advantage of this idea to accelerate learning, by balancing
between learning what there is to know and improving the policy based on this
knowledge.

To complete our section on Markov Decision Processes, we will discuss a
special case of Policy Iteration, called Value Iteration, and then we will use this
algorithm to find the optimal policy for our toymaker example.
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2.1.5 Value Iteration

The motivation behind Value Iteration is that there is a trick we can use to im-
prove the efficiency of Policy Iteration. Within each iteration of Policy Iteration
we have to wait for convergence of the state-value function V π(s) within the Pol-
icy evaluation step. We can speed up Policy Iteration by making the stopping
criterion of the Policy evaluation step less strict. As a result, the Policy evalu-
ation stopping criterion triggers earlier, and although the approximation of the
state-value function V π(s) is slightly less accurate, a lot of time is saved. In con-
trast to the Policy evaluation step the Policy improvement step is not iterative,
it is a sequence of operations that only needs to happen once for each iteration
of Policy Iteration. Value Iteration takes this concept of having a less strict
Policy evaluation stopping criterion to the extreme, where only a single step of
Policy evaluation is permitted before moving straight onto Policy improvement.
In practice, Value Iteration is much more efficient at finding optimal policies
than regular Policy Iteration. Further to this change in the Policy evaluation
step, in Value Iteration it is possible to combine both the Policy evaluation step
and the Policy improvement step into one update rule. This can be seen in
pseudo-code in Algorithm (3).

Algorithm 3 Value Iteration

Initialize V arbitrarily, e.g., V (s) = 0, for all s ∈ S
While ∆ > ϵ :

∆← 0
For each s ∈ S :

v ← V (s)
V (s)← maxa

∑
s′ T ass′ [Rass′ + γV (s′)]

∆← max(∆, |v − V (s)|)
Output a deterministic policy, π, such that
π(s) = argmaxa

∑
s′ T ass′ [Rass′ + γV (s′)]

Now that we have introduced the Value Iteration algorithm, we can ap-
ply it to the toymaker example. The results of Value Iteration applied to
the toymaker example can be seen in Figure (6). The Value Iteration algo-
rithm was implemented in Python to create this figure, the code can be found
on Github at https://github.com/alex21347/Value_Iteration_Algorithm.
As one might suspect, the expected reward for the toymaker is greater if cur-
rently has a successful toy instead of an unsuccessful one. This can be see in the
graph as after convergence V π(1) > V π(2). The good news for the toymaker
is that regardless of whether his current toy is successful, he is expected to be
profitable in the long run. This can be seen as both V π(1) > 0 and V π(2) > 0.
Furthermore, we can now determine from this state-action function whether the
toymaker should advertise his toys to the local area.

Furthermore, using our state-value function values V π(s) and Equation (15)
we can also find the action-value function Qπ(a, s) for our toymaker. These
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Figure 6: The state-value function being trained via the Value Iteration al-
gorithm. Here we have two states from a simple toymaker example. After
approximately 80 iterations the state-value function converges.

values can be seen below in Table (1).

State
Action

No Advertising Advertising

Successful Toy (1) 41.37 42.21
Unsuccessful Toy (2) 31.42 32.26

Table 1: Action-value function Qπ(a, s) values for the toymaker example with
2 states and 2 actions, after convergence of the value iteration algorithm. The
optimal actions for each state are in bold.

From the values in Table (1) we can estimate that on average the toymaker
will make $84 more overall if he chooses to advertise ($4221 - $4137), regardless
of his current situation. Therefore, the optimal policy for the toymaker is to
always advertise his toys.

Now that we have discussed methods of finding optimal policies for Markov
Decision Processes, we will move onto more advanced methods of finding opti-
mal policies where less information is known about the environment.

25



2.2 Classical Reinforcement Learning

In contrast to the previous section, from this section onward we will discuss
methods of finding optimal policies where the transition probabilities T ass′ and
reward probabilitiesRass′ are not known beforehand, and thus information about
the environment must be learned through exploration. Learning an optimal
policy in this setting is a harder problem to solve as there is less information
available to take advantage of. There are two major categories of Reinforce-
ment Learning algorithms that are defined by their response to this particular
problem, model-free algorithms and model-based algorithms.

Model-based Reinforcement Learning algorithms aim to build a model of the
environment through repeated exploration. The transition probabilities T ass′ and
the reward function Rass′ can be estimated through this exploration. Starting
from from a state s0, at each subsequent time step we allow the agent to chose
random actions within the action space A. During this process, at each time
step t we can collect the samples (st, at, st+1) and the respective reward collected
Rt. After n steps, we can estimate the transition probabilities and rewards as

T̂n (s, a, s′) =
∑
t 1(s,a,s′) {s = st, a = at, s

′ = st+1}∑
t 1(s,a,s′) {s = st, a = at}

(50)

and

R̂n (s, a, s′) =
∑
t rt · 1(s,a,s′) {s = st, a = at, s

′ = st+1}∑
t 1(s,a,s′) {s = st, a = at, s′ = st+1}

(51)

Equation (50) is a result of the frequentist paradigm of statistics where the
probability of an event occurring is estimated as the number of times the event
occurred out of the total number of possible times it could occur. Similarly,
Equation (51) is simply estimating R (s, a, s′) by taking the mean reward expe-
rienced during exploration of the environment from going from state s to state
s′ via the action a. By the law of large numbers, as n goes to infinity T̂n and
R̂n will converge towards T ass′ and Rass′ respectively.

In direct contract so this, model-free approaches aim to learn policies with-
out an explicit construction of a model, i.e. estimations of T ass′ and Rass′ are no
longer necessary. For the remainder of this section, we will discuss the classi-
cal model-free Reinforcement Learning algorithms: Q-learning, Policy Gradient
methods, and Actor-Critic methods.

2.2.1 Q-Learning

The first model-free Reinforcement Learning algorithm we will discuss is Q-
learning. Q-learning was first developed by Watkins in 1989 [8], and has since
become one of the most widely used Reinforcement Learning algorithms. The
core idea is to estimate the action-value function Qπ(a, s) though an exploration
of the environment.

The algorithm begins by setting Qπ(a, s) = 0 for all a ∈ A and s ∈ S. It is
common to represent each pair (a, s) in a table called a Q-table. After initial-
isation, we allow the agent to explore the environment step by step collecting
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samples of (st, at, st+1, rt). After each step we update the value of Qπ(at, st)
using the following update rule

Q(at, st) := Q(at, st) + α
(
rt + γmax

a
Q (at+1, st+1)−Q(at, st)

)
(52)

where α is the learning rate parameter and γ is the discount parameter discussed
in Section (2.1.1). This update rule is constructed using Equation (25) which
is the Bellman optimality equation for Qπ(a, s). To provide a clear overview
of the Q-learning algorithm, an illustration of the entire process can be seen in
Figure (7). In 1992, Watkins proved in the following theorem that given enough
time, Q-learning is guaranteed to converge [17].

Theorem 2.3. Given bounded rewards |rn| ≤ R, and learning rates 0 ≤ αn < 1
that satisfy

∞∑
i=1

αn =∞,
∞∑
i=1

|αn|2 <∞

then Qn(a, s)→ Q∗(a, s) as n→∞, ∀(a, s) ∈ S ×A, with probability 1.

Following the proof of this theorem in 1992, Q-learning became an impor-
tant and easy-to-use tool for the Reinforcement Learning practitioner looking
to solve Reinforcement Learning tasks. For brevity we will not recite the proof
in this paper. The curious reader is directed to Watkins’ 1992 paper for more
details [17].

The final detail which must be discussed is how the agent should explore
the environment and collect information. It has been shown that convergence is
guaranteed regardless of the way the agent explores the environment [4], how-
ever, a well chosen strategy can offer faster convergence. The most common
approach is called the ϵ-greedy strategy. In this approach, at each time step
the agent takes the action with the highest expected reward according to the
current Q(a, s) with probability (1−ϵ), and it takes a completely random action
with probability ϵ. This strategy aims to find a balance between maximising
reward (exploitation), and discovering new and potentially better policies (ex-
ploration). This balancing act is a common problem in Reinforcement Learning
and is known as the Exploration vs Exploitation dilemma.

Once the Q-learning algorithm is complete, the optimal policy is simply
given by always taking the action in the Q-table that has the highest value for
the current state. By definition of Qπ(a, s), this will give us the highest possible
expected total reward.

Q-learning has proved to be a effective algorithm as solving simple envi-
ronments, however, if the state space S becomes very large then it becomes
very difficult to adequately fill the corresponding Q-table. In Section (2.3.1) we
will discuss an adaption of the Q-learning algorithm that attempts to fix this
limitation. Before this, we will discuss another successful method in classical
Reinforcement Learning: Policy Gradients.
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Figure 7: Illustration of the Q-learning algorithm. We begin with an initialised
Q-table at the top indicating the state-value function Qπ(a, s) of each action
a ∈ A and state s ∈ S, and through a repeated 3 step procedure we update
our Q-table until we reach convergence. The output is an approximation of the
optimal state-value function Qπ(a, s).

a
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2.2.2 Policy Gradients

Policy Gradient methods begin with a parameterised policy πθ(a, s) with param-
eters θ := {θ1, . . . , θn}. These parameters could be anything from the weights
of a neural network, to the weights of a Logistic Regression model. Recall that
a policy is any function that takes the current state s as input, and outputs a
probability distribution over the actions a ∈ A. Given a policy with parameters
θ, we can define the optimal parameters for the policy as

θ⋆ = argmax
θ
Eπθ

[ ∞∑
t=0

rt

]
. (53)

Furthermore, we can define an evaluation metric J(θ) defined as

J(θ) = Eπθ

[ ∞∑
t=0

rt

]
(54)

which measures how effective πθ is at maximising reward in the environment.
Recall that given an initial state distribution p(s0) we can calculate the proba-
bility of realising a trajectory τ with policy πθ as

πθ(τ) = πθ (s0, a0, . . . , sT , aT ) = p (s0)

T∏
t=0

πθ (at, st) T atstst+1
. (55)

The problem is that in practice this formula cannot be directly calculated as we
do not know the transition probabilities T atstst+1

. An important methodological
trick behind Policy Gradient methods is to cleverly modify our estimation of
the gradient of the evaluation metric ∇θJ(θ) so that it doesn’t rely on unknown
variables such as T atstst+1

and Ratstst+1
. This way we are able to use only our

samples (st, at, st+1, rt) collected during rollout of the policy. Therefore, Policy
Gradient methods are extremely flexible as they only require the ability to roll-
out policies in the environment and collect information. This will soon become
more clear as we continue our investigation of this class of methods. Recall that
given a trajectory τ of length T , we define the return of this trajectory as

r(τ) = r(s0, a0, . . . , sT , aT ) =

T∑
t=0

rt . (56)

Using this and the definition of expectation we can rewrite Equation (54) as

J(θ) = Eπθ

[
T∑
t=0

rt

]
=

∫
πθ(τ)r(τ)dτ (57)

where here we are assuming a continuous state and action space. The discrete
case is analogous but instead of integrating over the possible trajectories we take
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the sum. For brevity, we continue with the continuous case. By the linearity of
the gradient operation we now have that

∇θJ(θ) = ∇
∫
πθ(τ)r(τ)dτ =

∫
∇πθ(τ)r(τ)dτ (58)

Here we will now utilise a useful property of the logarithm:

∇πθ(τ) = πθ(τ)
∇πθ(τ)
πθ(τ)

= πθ(τ)∇ log πθ(τ) (59)

therefore,

∇θJ(θ) =
∫
∇πθ(τ)r(τ)dτ =

∫
πθ(τ)∇ log πθ(τ)r(τ)dτ (60)

and by using the definition of expectation again we have

∇θJ(θ) = Eπθ(τ) [∇ log πθ(τ)r(τ)] . (61)

This leaves us with the final problem of evaluating this new expectation. To do
this we begin with Equation (55) and take the logarithm of both sides

log πθ(τ) = log p (s0) +

T∑
t=0

log πθ (at, st) + log T atstst+1
(62)

and by taking the gradient of both sides we get

∇θ log πθ(τ) = ∇θ

[
log p (s0) +

T∑
t=0

log πθ (at, st) + log T atstst+1

]
(63)

= ∇θ log p (s0) +∇θ
T∑
t=0

log πθ (at, st) +∇θ log T atstst+1
(64)

= ∇θ
T∑
t=0

log πθ (at, st) (65)

as only the second term of Equation (64) depends on θ. Subbing this result into
Equation (61) and using the definition of r(τ) we arrive at

∇θJ(θ) = Eτ

[(
T∑
t=0

∇θ log πθ (at, st)

)(
T∑
t=0

γtrt

)]
(66)

where we have now also included the discount parameter γ of the MDP with-
out loss of generality. With this final formulation, ∇θJ(θ) can be estimated
simply by running multiple runs of the policy and averaging over the samples
collected. This is because each element of Equation (66) is available to us during
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training; we have successfully eliminated our reliance on the unknown transition
probabilities T atstst+1

. If we run the policy πθ for N times, this gives

∇θJ(θ) ≈
1

N

N∑
i=0

(
T∑
t=0

∇θ log πθ (ai,t, si,t)

)(
T∑
t=0

γtri,t

)
(67)

With this final equation we can estimate∇θJ(θ) using only samples (st, at, st+1, rt).
This is extremely convenient as we can now formulate a gradient ascent update
rule

θk+1 ← θk + α∇θJ(θk) (68)

which aims to improve the policy πθ over time with respect to our evaluation
metric J(θ). In this update rule, α is called the learning rate and indicates
the step-size in the parameter space between subsequent iterations. This is the
main idea of the original Policy Gradient algorithm invented by Williams in
1987, named REINFORCE [9]. The pseudo-code for REINFORCE can be seen
below in Algorithm (4).

Algorithm 4 REINFORCE Algorithm

Initialise policy πθ randomly
While |θk − θk−1| > ϵ :

Use πθ for N trajectories and collect samples (st, at, st+1, rt)
Estimate gradient with

∇θJ(θ) ≈
1

N

N∑
i=0

(
T∑
t=0

∇θ log πθ (ai,t, si,t)

)(
T∑
t=0

γtri,t

)

Update policy : θk+1 ← θk + α∇θJ(θk)
Output improved policy πθ

As with all gradient ascent/descent methods, the problem exists that the policy
πθ could converge to a local maximum instead of the global maximum. In gen-
eral, the techniques used in optimisation theory to overcome this problem can
also be used in this context.

REINFORCE can also be modified to improve performance in many ways.
In particular, there exists better estimates for ∇θJ(θ) than the one that we have
derived in this section. These more sophisticated methods will be explored in
the next section on Actor-Critic Methods, where we combine the Policy Gradi-
ent method with value-function based methods such as Q-learning. For more
information on Policy Gradient methods the reader would benefit from Bax-
ter and Bartlett’s 1999 book on Direct Gradient-based Reinforcement Learning
[18, 19].
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2.2.3 Actor-Critic Methods

Actor-Critic methods combine the Policy Gradient methodology with value-
function estimation. In literature, Reinforcement Learning algorithms are often
categorised as either value-based (e.g. Q-learning) which is centered around es-
timating value-functions, or policy-based (e.g. REINFORCE) which directly op-
timises the policy using gradient ascent. Actor-Critic methods are both policy-
based and value-based simultaneously. This is because Actor-Critic methods
approximate the gradient of the evaluation metric ∇θJ(θ) using the value-
functions we defined in Section (2.1.2).

Recall that for REINFORCE, we approximate ∇θJ(θ) using

∇θJ(θ) = Eπθ(τ) [∇θ log πθ(τ)r(τ)] (69)

≈ 1

N

N∑
i=0

(
T∑
t=0

∇θ log πθ (ai,t, si,t)

)(
T∑
t=0

γtri,t

)
. (70)

The first insight we can use to improve this estimate is that within the environ-
ment there is causality. So far we have not utilised the fact that we are working
with a sequential decision process that evolves through time linearly. Specifi-
cally, Equation (70) does not take into account that future actions cannot effect
past rewards. Using this fact that only future rewards can be effected by the
current state and action, we arrive at the better estimate:

∇θJ(θ) ≈
1

N

N∑
i=0

T∑
t=0

∇θ log πθ (ai,t, si,t)

(
T∑
t′=t

γt
′
ri,t′

)
(71)

which can be shown to be an unbiased estimator for∇θJ(θ) with a lower variance
than Equation (70). Intuitively, once can imagine an estimator that depends on
strictly less random variables (as rt′ for t′ < t are no longer used) would have
less random noise in practice. For brevity, we will not cover the proof of this in
this paper.

By definition, we have

Qπ(at, st) = E

[
T∑
t′=t

γt
′
ri,t′

]
(72)

which means we can rewrite Equation (71) as

∇θJ(θ) ≈
1

N

N∑
i=0

T∑
t=0

∇θ log πθ (ai,t, si,t) Q̂π(at, st) (73)

where

Q̂π(at, st) =

T∑
t′=t

γt
′
ri,t′ . (74)
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This gives us our first estimate for ∇θJ(θ) calculated using the action-value
function Qπ(a, s). Recall from Section (2.1.2) that the advantage value-function
Aπ(a, s) is defined as

Aπ(a, s) = Qπ(a, s)− V π(s) . (75)

It turns out that you can also use the advantage value-function Aπ(a, s) to
estimate ∇θJ(θ) :

∇θJ(θ) ≈
1

N

N∑
i=0

T∑
t=0

∇θ log πθ (ai,t, si,t) Âπ(at, st) (76)

and this estimate turns out to be even better than using Qπ(a, s).
A convenient trick we can use at this stage is to rewrite both Aπ and Qπ in

terms of V π:

Qπ (at, st) = rt +

T∑
t′=t+1

Eπθ

[
γt

′−trt′ | st′ , at′
]

(77)

≈ rt + V π (st+1) (78)

and subbing this into Equation (75) gives us a corresponding approximation for
Aπ(a, s)

Aπ (at, st) ≈ r (st, at) + V π (st+1)− V π (st) . (79)

It follows from this that in order to use any of the value-functions to approximate
∇θJ(θ) all we need is just an estimation of V π and we can use Equation (78)
and Equation (79) to calculate the other value-functions.

There are multiple ways of finding good estimates of V π, however, most
modern algorithms use a neural network. This neural network takes the state
s and outputs the corresponding V π(s). To train this neural network we can
collect estimates during rollout of the current policy as

V π(st) ≈
1

N

N∑
i=1

T∑
t′=t

γt
′−trt′ (80)

then use these estimates as labels for the neural network. Thus we have the
training data: {si,t,

∑T
t′=t γ

t′−tri,t′}. We can then use the loss function

L(ψ) = 1

2

∑
i

∥∥∥∥∥V̂ πψ (si)−
T∑
t′=t

γt
′−tri,t′

∥∥∥∥∥
2

(81)

where ψ represent the weights of the network. Through many cycles of the
data set, this neural network can learn to very accurately approximate V π(s).
Furthermore, this method offers a stronger robustness to predicting the value of
states unseen in the training data, in this way the neural network has a better
generalisation ability. For more details on neural networks, please see Deep
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Learning by Goodfellow and LeCun [20].
Once V π has been estimated with the neural network, either Aπ or Qπ can

be found soon after as we have discussed. Figure (8) below shows the four main
steps of an Actor-Critic algorithm.

Figure 8: Illustration of the Actor-Critic methodology of solving Reinforcement
Learning Tasks. The policy πθ is improved via gradient ascent, where the gra-
dient of the evaluation metric J(θ) is calculated using an estimate of one of the
value-functions.

We can summarise the Policy Gradient and Actor-Critic methods we have dis-
cussed so far by their estimation of ∇θJ(θ):

∇θJ(θ) = Eπθ
[∇θ log πθ(τ) · r(τ)] REINFORCE

= Eπθ
[∇θ log πθ(τ) ·Qπ(a, s)] Q Actor-Critic

= Eπθ
[∇θ log πθ(τ) ·Aπ(a, s)] Advantage Actor-Critic (A2C)

Now that we have discussed the classical methods of Reinforcement Learning, we
will turn our attention to Deep Reinforcement Learning algorithms, which have
been shown to be highly effective in many advanced applications and contexts.

2.3 Deep Reinforcement Learning

Classical Reinforcement Learning algorithms have achieved impressive perfor-
mance in many applications since its conception in the 1950s, however, they
have been mostly limited to applications with relatively small state spaces [21].
These classical methods have been considerably improved since the development
of other advances in Artificial Intelligence, such as Deep Learning. In this sec-
tion we will discuss two state of the art Reinforcement Learning methods that
have considerably impacted the field: Deep Q-Networks (DQN) and Proximal
Policy Optimisation (PPO).
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2.3.1 Deep Q-Networks

Deep Q-Networks (DQNs) were introduced by Mnih et al. in 2013 in their paper
Playing atari with deep reinforcement learning [10]. DQNs are an adaptation of
Q-learning where instead of storing a Q-table with every possible combination
of Qπ(a, s), we use a neural-network which directly estimates Qπ(a, s) using a
and s as inputs. Storing a table of Q-values can even become impossible for
large state spaces. For example, imagine we wanted to train an agent where
the state space is the screen of a video game with (160× 192) grey-scale pixels
with values in {0, . . . , 255}. Regardless of the number of actions in the action
space, the total number of possible states alone that we would need to store in
a Q-table is

256160×192 = 2245760 ≈ 1081920 . (82)

This means we would need 1081920 rows in our Q-table, which is more than the
number of atoms in the observable universe. Therefore, Q-learning is simply
not a feasible method in this case. On the other hand, neural networks with as
many as (160 × 192) input variables are commonly applied in our modern era
[22].

First, we design a neural network called the prediction network to take the
current state and action (a, s) as input, and outputs the action-value function
Q(a, s; θ) where we now include the θ parameter to represent the parameters of
the neural network. The neural network architecture can chosen based on the
nature of the state-space, as long as it can effectively transform the input (a, s)
into a lower-dimensional representation. For images, the CNN architecture has
proved very effective at this task[21]. The first step in training the prediction
network is collecting information from the environment in the form of samples
(s, a, s′, r). Similarly to Q-learning, we can use the ϵ-greedy strategy to collect
these samples. Then using these samples we can compute target values for our
prediction network as

yi = ri + γmax
a′i

Q (s′i, a
′
i; θ) . (83)

We can then use gradient descent equipped with the following loss function:

Li (θi) = E
[
(yi −Q (a, s; θi))

2
]

(84)

with derivative

∇θiLi (θi) = E [(yi −Q (s, a; θi))∇θiQ (s, a; θi)] (85)

to update our network.
Unfortunately, this simple setup has been shown to be unstable when a

nonlinear model such as a neural network is used to represent the action-value
function Q(a, s; θ). There are two main causes for this instability:

1) Statistical independence of data points
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An underlying assumption of many statistical models is independence
of data points within the data set. Neural networks are no exception.
When we collect the samples (st, at, st+1, rt) during exploration of the
environment, any two subsequent samples are highly dependent on one
another. In particular, the ending state at time t is the same as the
starting state at time t + 1. Therefore the statistical independence
assumption does not hold in the current setup.

2) Moving target during training

During training the prediction network, for each (a, s) collected in the
environment we compute the target values as yi = ri+γmaxa′i Q (s′i, a

′
i; θ).

However, as the prediction network trains, the parameters θ change,
and thus the target values also change as a result. Therefore after each
update of the prediction network, the targets of the network is also
updated. This causes instability because regression is not perfectly
well-defined on target values that consistently change in distribution
each iteration.

The researchers in Google’s DeepMind team who developed the Deep Q-Network
identified these two aforementioned issues and designed two additional features
to combat these issues [10].

The first feature is called experience replay and aims to mitigate the lack
of statistical independence between subsequent samples in the environment.
The idea is to collect a large number of samples from the environment into a
data set called a replay buffer. Then at each iteration of training the neural
network, instead of taking the last collected data points from the environment,
you randomly sample them the replay buffer. If the replay buffer is large enough
then the probability of collecting two highly dependent data points can be made
arbitrarily small.

The second feature is the use of a target network. Every N updates of
the prediction network, the target network is constructed by taking the exact
architecture as the prediction network and freezing its parameters. Therefore,
at the moment the target network is updated it is identical to the prediction
network, but then for the next N − 1 iterations of the prediction network the
target network remains unchanged. With the addition of the target network,
we now compute our target values as

yi = ri + γmax
a′i

Q
(
s′i, a

′
i; θ

−) . (86)

where θ− represents the parameters of the target network. This ensures that
the target values do not change for N steps of the prediction network, therefore
mitigating the moving target issue.

Using the same loss function but with our new target values, we can begin
to train our Deep Q-network using the update rule

θk+1 = θk − α∇θiLi (θi) . (87)
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With the target network and replay buffer implemented, have all the key ingre-
dients of a successful DQN. An illustration with all of the important features
we have discussed in this section can be seen in Figure (9), including the data
collection in the environment, and the training of the neural network.

Figure 9: Illustration of the Deep Q-Network methodology, from data collection
in the environment to computation of the loss function and training of the
prediction neural network.

2.3.2 PPO & TRPO

Proximal Policy Optimisation (PPO) was designed in 2017 by OpenAI and
aimed to solve Reinforcement Learning problems with greater stability and re-
liability than previous state of the art algorithms [12]. PPO falls under the
same category as Policy Gradient and Actor-Critic methods discussed in Sec-
tion (2.2.2), however it has multiple important modifications which massively
improves performance in practice.

As discussed previously, some commonly used Policy Gradient loss functions
are

J(θ) = Eπθ
[log πθ(τ) · r(τ)] REINFORCE

= Eπθ
[log πθ(τ) ·Qπ(a, s)] Q Actor-Critic

= Eπθ
[log πθ(τ) ·Aπ(a, s)] Advantage Actor-Critic (A2C)
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where the A2C loss function has seen particular success. However, it has been
shown that these loss functions lead to destructively large policy updates. In
these destructive policy updates a huge amount of training progress can be lost,
this is also referred to as catastrophic forgetting, and plagued many early Re-
inforcement Learning practitioners. PPO begins to solve the problem of policy
updates that are too large by using the idea of trust regions. Trust regions were
first introduced by Schulman et al. in 2015 when the Trust Region Policy Op-
timization (TRPO) algorithm was proposed [11]. The idea behind trust regions
is to dynamically constrain the size of policy updates during training so that
the probability of large policy updates is significantly reduced. In particular,
Kullback–Leibler divergence (KL divergence) is used to measure the distance
between two probability distributions, and then if the KL divergence between
the old policy πθold and the current policy πθ is greater than a certain threshold
δ, then we reject the policy update.

Instead of the loss functions we have already seen, TRPO aims to maximise

Et

[
πθ (at, st)

πθold (at, st)
Ât

]
. (88)

Recall that the advantage value function Â(at, st) indicates the advantage gained
by taking action at in state st compared to the average. Therefore, ifAπ(at, st) >
0 then taking the action at is better than average and if Aπ(at, st) < 0 then

taking the action at is worse than average. Let us denote rt(θ) :=
πθ(at,st)

πθold
(at,st)

,

so r(θold) = 1. Given a sequence of sampled actions and states, rt(θ) will be
greater than 1 if the action at is more probable for the current policy πθ than it
is for the old policy πθold . Additionally, rt(θ) will be less than 1 when the action
at is less probable for our current policy than the old policy. Therefore, Equa-
tion (88) is greater in value when favourable actions (indicated by Aπ(at, st))
become more likely in the subsequent policy update (indicated by rt(θ)), and
equally Equation (88) is lesser in value when favourable actions (indicated by
Aπ(at, st)) become less likely in the subsequent policy update (indicated by
rt(θ)). Now, by also including the trust region constraint we have the TRPO
objective function:

maximize
θ

Et

[
πθ (at, st)

πθold (at, st)
Ât

]
(89)

subject to Et [KL [πθold (· | st) , πθ (· | st)]] ≤ δ . (90)

Proximal Policy Optimization attempts to simplify the optimization process
whilst retaining the advantages of TRPO [12]. The objective function of TRPO
without the trust region constraint can also be written as

LCPI(θ) = Et

[
πθ (at, st)

πθold (at, st)
Ât

]
= Et

[
rt(θ)Ât

]
(91)

where the CPI refers to ‘conservative policy iteration’, originally proposed by
Kakade in 2002 [23]. The PPO objective function is very similar to LCPI(θ),
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however, there is a clipping function that removes the incentive for the agent to
make larger updates to the policy during training. This massively improves the
stability of training. The objective function used is:

LCLIP (θ) = Et

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(92)

where ϵ is a hyper-parameter to adjust the size of the trust regions. Taking
the minimum between the clipped and unclipped objective makes it so the final
objective is a lower bound (i.e. a pessimistic bound) on the unclipped objective.
It has been shown that ϵ = 0.2 is a sensible first choice in practice [12]. The
clipping function is defined as

clip(x, a, b) =


a if x > a

x if x ∈ [a, b]

b if x < b

.

This objective function retains the same advantages as TRPO but it also avoids
the high computational cost and implementation complexity [24]. An illustra-
tion of the effect of the clipping on this objective function can be seen in Figure
(10).

Figure 10: Plots showing one term (a single time step) of the objective function
LCLIP as a function of rt(θ), for Ât < 0 (left) and Ât > 0 (right). The values of
rt(θ) in which the value of LCLIP is clipped is highlighted in red. This clipping
removes the incentive for the agent to make an even larger update to the policy
during training.

It can be seen in Figure (10) that once the policy update reaches a certain
size (indicated by how far rt(θ) is from 1), there is no longer an increase in the
objective function LCLIP (θ). Therefore, it is clear that once the policy update
gets clipped there is no incentive for the algorithm to make greater changes to
the policy in the current update step. With this new objective function, PPO
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can train using the same methodology as other Actor-Critic algorithms. This
can be seen in Figure (11).

Figure 11: Illustration of the Actor-Critic methodology of solving Reinforce-
ment Learning tasks where the objective function is from PPO. The policy πθ
is improved via gradient ascent, where the gradient of the evaluation metric
LCLIP (θ) is calculated using an estimate of the advantage value function Aπ.

Furthermore, in order to concretely display the algorithm in full, example
pseudo-code of PPO can also been seen below in Algorithm (5). It should be
noted here that the pseudo-code provided is just one version of PPO; for exam-
ple, other gradient ascent algorithms (e.g. RMSProp, Adam, AdaGrad) can be
used to update the policy network and value function neural network. Despite
this, the pseudo-code in Algorithm (5) gives a clear overview of how PPO can
be implemented.

Proximal Policy Optimisation is one of the most influential Reinforcement
Learning algorithms that has been designed in recent years, and has shown
countless potential in solving Reinforcement Learning tasks. As a result of the
reliability and ease of use of PPO, it shall be the main Reinforcement Learn-
ing algorithm used in Section (4), where we shall test different Reinforcement
Learning algorithms on a self-driving car application. Before this, we shall first
discuss the paradigm of Imitation Learning, and the use of guide policies.
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Algorithm 5 PPO Algorithm

Initialise policy πθ randomly
Initialise V π neural network weights ψ randomly
For k = 0, 1, 2, . . . :

Collect set of trajectories Dk = {τi} using πθk
Compute Ât ≈ r (st, at) + V̂ (st+1)− V̂ (st)
Estimate PPO objective function using collected trajectories:

LCLIP (θk) ≈
1

|Dk|T
∑
τ∈Dk

T∑
t=0

min
(
rt(θk)Ât, clip (rt(θk), 1− ϵ, 1 + ϵ) Ât

)
Update policy : θk+1 ← θk + α∇θLCLIP (θk)
Estimate mean square error of V π using collected trajectories:

L(ψk) ≈
1

|Dk|

|Dk|∑
i=1

∥∥∥∥∥V̂ πψk
(si)−

T∑
t′=t

γt
′−tri,t′

∥∥∥∥∥
2

Update V π neural network weights: ψk+1 ← ψk + β∇ψL(ψk)

2.4 Imitation Learning & Guide Policies

Imitation Learning is a technique of solving Reinforcement Learning problems
where instead of training an agent using the rewards collected through explo-
ration of an environment, an expert guide policy provides the learning agent
with a set of ‘demonstrations’ of the form (s , πguide(s)) where πguide(s) is the
action the guide policy takes in state s. The agent then tries to learn the op-
timal policy by imitating the expert’s decisions. In general, Imitation Learning
is a powerful technique when one has access to an expert guide policy to show
the desired behaviour in the environment.

2.4.1 Offline Imitation Learning

Offline Imitation Learning (OIL) aims to mimic the expert guide policies be-
havior from only its demonstration without further any interaction with the
environment. An example of OIL is Behavioural Cloning (BC), which focuses
on learning the expert’s policy using supervised learning. The first major usage
of BC is ALVINN, a car equipped with sensors which used a neural network to
map the sensor inputs into steering angles and drive autonomously [25]. The
steps of BC are quite straightforward; the pseudo-code for BC can be seen below
in Algorithm (6).

In stark contrast to Reinforcement learning methods, Offline Imitation Learn-
ing does not require any reward function information whatsoever in order to
work. There are two significant limitations with OIL. Firstly, as explained in
Section (2.3.1), an underlying assumption of many statistical models is indepen-
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Algorithm 6 Behavioural Cloning Algorithm

1. Collect set of trajectories D = {τi} using πguide
2. Build dataset of state-action pairs using trajectories:{ (

si,t , πguide(si,t)
)

for i = 1, . . . , |D| and t = 1, . . . , Ti

}

where πguide(si,t) is the action the guide policy takes in state si,t and Ti
is the length of trajectory τi.

3. Use supervised learning to train a model on this dataset, which can then
be used to predict the guide policy actions in future states.

dence of data points within the data set. When we collect the state-action pairs
from the expert guide policy, any two subsequent samples are highly dependent
on one another. In particular, the ending state at time t is the same as the
starting state at time t+ 1. Therefore the statistical independence assumption
does not hold. The second limitation is that if the dataset is sparse with re-
gards to the state space S then the supervised learning model will struggle to
generalise to unseen states.

It is clear from these two limitations that the quality of the dataset used
to train the supervised learning model is very important for successful Offline
Imitation Imitation Learning. Fortunately, there is a clever method of curating
better datasets: DAgger.

2.4.2 DAgger

Dataset Aggregation (DAgger) is a method of Imitation learning which aims
to generate more sophisticated datasets for the supervised learning methods to
more accurately model the expert guide policy. Before we move onto the details
of how this goal is achieved we shall first explain why it is necessary in the
first place. In OIL, only the trajectories from the guide policy are used to train
the model and this can cause significant sparsity in the training dataset. A
common consequence of this dataset sparsity is that a negative feedback loop
can be created where the more the learning agent deviates from the guide policy
in its trajectory in the environment, the more unreliable the supervised learning
model becomes due to poor generalisation ability. Following this, the slightly
less reliable model causes the agent to further deviate in its trajectory, and thus
a vicious cycle is instantiated. This is illustrated in Figure (12).

This effect is a direct result of the training dataset containing examples from
only the guide policy trajectories. DAgger was designed specifically to remedy
this unfortunate occurrence. Instead of only running the guide policy in order
to collect policies, in DAgger, the learning agent is allowed to create its own
trajectories in the environment, collecting a list of visited states st in the process.
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Figure 12: Illustration of the negative feedback loop that can occur when using
Offline Imitation Learning/Behavioural Cloning. Poor generalisation ability
leads to degradation of the supervised learning model which only leads to further
deviation from the trajectories seen in the training dataset.

Then, the expert guide policy labels each of these states st with what action it
would have taken in that same state, which we shall denote πguide(st). Finally,
with this labelled dataset we can retrain the supervised learning model with the
addition of these new data points, hence the name Dataset Aggregation. With
this retrained model, the process starts again and the learning agent explores
the environment collecting more data points to use in further training. This
results in a training dataset that contains a much wider variety of states within
the state space than in Offline Imitation Learning, leading to a more robust
final policy. The DAgger algorithm is illustrated in Figure (13).

Additionally, the pseudo-code for the DAgger algorithm can be seen in Al-
gorithm (7).

Algorithm 7 DAgger Algorithm

1. Initialise policy πθ
2. Collect dataset of state-action pairs D using guide policy πguide
3. For k = 1, 2, . . . :

3a. Use supervised learning to train πθ using D
3b. Rollout πθ and collect states {s1, . . . , sT }
3c. Create Dπθ

by labeling the states with the guide policy:

Dπθ
=

{ (
st , πguide(st)

)
for t = 1, . . . , T

}

where πguide(st) is the action the guide policy takes in state st.

3d. Aggregate data : D = D ∪Dπθ

DAgger is a very useful tool in the case that the expert guide policy is avail-
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Figure 13: Illustration of the DAgger algorithm. There are three main steps to
the algorithm. The first step is to simulate the current learning agent policy in
the environment and collect a set of visited states st for t = 1, . . . , T . The second
step is to use the expert guide policy to label each state in the dataset with the
action it would have taken given it was in that state. Lastly, the supervised
learning model used to imitate the guide policy is retrained using the additional
data collected in step 1. This process can continue until convergence or until a
pre-determined number of iterations is met.

able for labelling data points during training. However, in many applications
humans are the only available experts to label the training data. This means
that each iteration of the algorithm requires a human to label data manually,
which can massively slow down the speed and practicality of the learning pro-
cess. Fortunately, there are other Imitation Learning methods we can use in
this case. To finish off our discussion on Imitation Learning, we shall now dis-
cuss an entirely different method where we use the reward function as a tool for
integrating guide policy decisions.

2.4.3 Reward Function Coupling

In contrast to Offline Imitation Learning and DAgger, Reward Function Cou-
pling (RFC) uses the reward function in order to incentivise behaviour similar to
the expert guide policy. Let the reward function of the environment be denoted
by R. The core idea is to modify the reward function to include an additional
term which penalises deviation from the actions of the guide policy. At each
timestep t the action of the learning agent at and the action of the guide policy
πguide(st) are compared and a negative reward is given to the agent proportional
to the difference of these two actions. The modified reward can then be written
as

R̃ = R− β · ∥at − πguide(st)∥ (93)

where β > 0 is a hyper-parameter which determines how much priority the
learning agent should place on imitating the actions of the guide policy. The
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norm ∥·∥ can be chosen on a case by case basis. With this modified reward
function we can now train the agent using any of the Reinforcement Learning
techniques that we have discussed in Section (2.2) and Section (2.3). An ad-
vantage of RFC is that if there are certain states in the environment where the
guide policy makes non-optimal decisions, then the agent can ‘reject’ the ac-
tions of the guide policy in order to seek more lucrative trajectories with higher
expected future reward. However, as long as β > 0, the agent might learn to
choose non-optimal actions with respect to the original reward R in order to
maximise the modified reward R̃. Therefore, in RFC the guide policy and learn-
ing policy are always coupled to some extent. This can be an issue in the case
that the guide policy is not in fact an expert at the task. This would incentivise
the agent to favor non-optimal actions with respect to the unmodified reward
R. Therefore, for a successful use of this method, the guide policy is assumed
to be an expert.

A guide policy is said to be present if it is available whilst the learning agent
is exploring he environment. RFC requires that the guide policy is present as
πguide(st) must be computed at each time step in order to calculate the modified
reward function. This is a significant limitation as in many cases researchers
don’t have access to present guide policies, and in extreme cases they may only
have a single dataset of trajectories of a no longer existent guide policy. In this
situation OIL or DAgger must be used as they do not require a present guide
policy.

To summarise some important characteristics of the three Imitation Learn-
ing methods we have described in this section, Table (2) is provided below.

Method
Interaction with
environment

Present guide
policy

Guide policy assumed
an expert

OIL No No Yes

DAgger Yes No Yes

RFC Yes Yes Yes

Table 2: Table of three Imitation Learning methods and three important binary
characteristics. In all cases the guide policy is assumed to be an expert at the
Reinforcement Learning task. Only in Reward Function Coupling (RFC) is the
guide policy required to be present. Only in Offline Imitation Learning (OIL)
is it not necessary to have interaction with the environment.

In the next section we will present a novel technique of utilising guide policies
that no longer requires the guide policy to be an expert.
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3 Contextual Online Imitation Learning

Now that we have discussed some classical and modern techniques of utilising
guide policies for Reinforcement Learning and Imitation Learning, we will now
introduce a novel method: Contextual Online Imitation Learning (COIL). First,
we will discuss the motivation behind the method and the high-level ideas that
accompany it. Second, we will construct a mathematical basis for the novel
method and discuss a few properties of the method. Lastly, we will extend the
approach to a potentially more powerful technique: Dynamic COIL.

3.1 Motivation

Recall that the standard Reinforcement Learning method works by a continuous
exchange of actions, states, and rewards between the agent and its environment.
This can be seen below in Figure (14).

Figure 14: The standard setup for Reinforcement Learning given an agent and
environment. In each time step t ∈ [0, T ], the agent is provided with information
from the current state st, and then takes an action at within its environment.
The reward for that time step is then calculated via the reward function Rt =
R(st, at).

Now suppose that you have access to a guide policy πguide that is able to achieve
good performance at a task you would like to train an agent to perform. We shall
denote the action that the guide policy would perform in state s as πguide(s).

In contrast to the methods of utilising guide policies that we have seen in
the previous section, we will give the agent complete access to the actions of the
guide policy during training. In particular, at each time step t during training
of the agent, πguide(s) will be provided as an additional observation to the agent
(along with the regular observations that are given by the environment). The
term observation is related to the fact that not in all cases will the agent have
access to all of the necessary information to fully represent the underlying state
of the environment. In real life, in order to fully represent an environment in all
of its detail, it would require the information of every single particle involved
in the system. As this is clearly not practical, it is more appropriate to call
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the inputs to the agent observations and not the state, as the state is not fully
knowable in practice.

By providing the action of the guide policy as an observation to the agent,
we arrive at Figure (15).

Figure 15: Illustration of Contextual Online Imitation Learning (COIL). In
comparison to regular Reinforcement Learning, in COIL the action of some
guide policy πguide is provided to the agent as an observation at each time point
t.

Additionally, if we have a set of guide policies πguide1 , . . . , πguiden , then we
can generalise this framework to include the actions of all guide policies at time
step t as observations to the learning agent. This can be seen in Figure (16).

Figure 16: Illustration of Contextual Online Imitation Learning (COIL) with
multiple guide policies.

Now that the agent is able to ‘see’ what the guide policy would do given the
current context of the environment, it is able to learn through exploration how
best to use this information in order to maximise its expected future reward.
In other words, the agent is able to learn for itself in which contexts within
the environment it should ‘listen’ to the guide policy’s suggestion, and in which
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contexts within the environment it should ‘ignore’ the guide policy’s suggestion.
This methodology is therefore a form of contextual imitation learning, as the
agent is not encouraged to follow the actions of the guide policy regardless of
the current state. Furthermore, this method is online as it is trained using
continuous interaction with the environment. Therefore, this method is aptly
named Contextual Online Imitation Learning.

It is important to note that COIL makes no explicit assumption about the
type of Reinforcement Learning algorithm equipped with this new observation
to the agent. COIL can be used equally well with Q-learning as with Policy-
gradient methods. Future research on COIL could include a comparison between
the different types of Reinforcement Learning algorithms when using COIL.

A major advantage of COIL in comparison to other methods of utilising
guide policies is that there is no requirement for the guide policy to be an ex-
pert at the desired task. Even if the guide policy is only able to exhibit success
in some subset of the total states within the environment, the agent in theory
would be able to learn this fact through enough exploration of the environment,
and then appropriately use this information to its advantage. Additionally, if
the guide policy exhibits only moderate success across all states in the environ-
ment, the agent could also learn to fine-tune the actions of the guide policy in
order to maximise reward. For example, if we had a guide policy able to walk
a bi-pedal robot safely but also in an unnatural manner, with COIL, the Rein-
forcement Learning agent could theoretically adjust the suggested actions of the
guide policy in order to make the bi-pedal robot a more natural and smoother
walker. This would of course require a reward function that incentivises the
Reinforcement Learning agent to walk in such a natural way.

This method can therefore be seen from two perspectives. The first is that
COIL allows us to take a non-optimal hand-crafted guide policy, and use Rein-
forcement Learning methods to encode additional desired behaviours into the
policy via the reward function (i.e. helping a non-optimal bi-pedal robot walk
more naturally). The other perspective is that this method allows us to utilise
existing guide policies to aid the agent during training, and in the process the
agent can learn to use the suggested actions of the guide policy in whatever way
maximises the total expected reward in the environment. If the agent decides
that guide policy is useful in only one particular state in the environment, then
it can learn to ignore the guide policy in all other states. This is in strong con-
trast to classical Imitation Learning methods, which focus on minimising the
difference between the guide policy and the agents policy. In COIL, there is no
explicit penalty in deviating from the guide policy, this gives the Reinforcement
Learning agent complete flexibility to use the guide policy in complex and sit-
uational ways.

It is an open question whether this novel method can be combined with
other forms of Imitation Learning. Implementing Reward Function Coupling in
conjunction to COIL in particular remains an interesting avenue for future re-
search. We can now add COIL to Table (3) below in order to see the important
differences between the different Imitation Learning methods.
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Method
Interaction with
environment

Present guide
policy

Guide policy assumed
an expert

OIL No No Yes

DAgger Yes No Yes

RFC Yes Yes Yes

COIL Yes Yes No

Table 3: Table of four Imitation Learning methods and three important binary
characteristics. COIL is the only Imitation Learning method where the guide
policy is not assumed to be an expert at the Reinforcement Learning task. Both
in COIL and Reward Function Coupling (RFC) is the guide policy required to
be present. Only in Offline Imitation Learning (OIL) is it not necessary to have
interaction with the environment.

3.2 Formalisation

In many tasks in Reinforcement Learning there are multiple competing objec-
tives that determine the overall success of a given policy. Let Ω1, . . . ,Ωn be the
set of objectives that that we want the agent to learn during training, where n
is the total number of objectives.

Examples of Reinforcement Learning tasks with multiple competing objectives
include:

Air traffic control system :

• Ω1 : No aircraft crashes

• Ω2 : Minimise aircraft waiting time

• Ω3 : Maximise fuel efficiency of aircraft

Nuclear assembly design :

• Ω1 : No nuclear meltdown

• Ω2 : Minimise cost (e)

• Ω3 : Minimise assembly time

Then let ΩI be the set of objectives that the guide policy is capable of achieving
near-optimal performance. This guide policy could be hand-crafted by engineers
or extracted from data via imitation learning. We have that I ⊂ {1, . . . , n}.

Now, we shall denote the part of the reward function associated with the
objective Ωi at time step t as rΩi

(st, at). Then, the overall reward function
taking into account each objective is defined as:

r(st, at) =
∑
i

Ci · rΩi(st, at) (94)
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and additionally the reward function that the guide policy achieves near-optimal
performance is given by

rΩI
(st, at) =

∑
i∈I

Ci · rΩi
(st, at) (95)

where Ci is the coefficient determining how much the agent should prioritise
objective Ωi. It is clear from the above examples that some objectives are
more important than others, therefore these coefficients are very important for
encoding the desired behavior for the agent to learn.

So far, the policy of the agent π has been a function of the current state s and
action a. In practice, the state is represented by a finite dimensional vector of
data points s = {s1, . . . , sm} which gives the agent as much information about
the context of the environment as possible. Therefore, written out in full we
have

π(s, a) = π(s1, . . . , sm, a) (96)

and in COIL we also provide the action taken by the guide policy πguide in that
same state:

π(s, a) = π(s1, . . . , sm, πguide(s), a) . (97)

An important and relatively straightforward insight we can make is that policy
of the agent trained via COIL πCOIL is capable of achieving at least the same
performance as the guide policy πguide. This is because the agent is capable of
completely mimicking the actions provided by the guide policy. Many modern
policy-based Reinforcement Learning algorithms use neural networks to model
the policy of the agent. A result of the universal approximation theorem is that
neural networks are capable of approximating any continuous function given
enough units within the hidden layers [26]. It is consequently possible that a
neural network can learn a simple function that mimics only a single input:

π(s, a) = π(s1, . . . , sm, πguide(s), a) ≈ πguide(s) (98)

where this approximation can become arbitrarily accurate [26]. However, if there
are more advantageous policies to be discovered then it is very likely that the
agent will surpass the performance of the guide policy given enough exploration
of the environment. In fact, if we are using Q-learning then it is guaranteed that
the COIL agent will surpass the guide policy in expected reward if the guide
policy is not the optimal policy. This is a direct consequence of Theorem (2.3).

Following this, it is interesting to investigate whether the policy learned
via COIL can be shown to achieve better results than the policy learned via
regular Reinforcement Learning methods. In general, the success of COIL is
likely strongly dependent on the environment, the task, and the quality of the
guide policy utilised. In Section (4) we will apply COIL to various applications
and investigate the success of the resulting policies.

3.3 Dynamic COIL

So far we have introduced Contextual Online Imitation Learning where we have
a fixed, pre-existing guide policy πguide. Dynamic Contextual Online Imitation
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Learning (Dynamic COIL) is different to this in that it no longer keeps the guide
policy fixed, but it treats it as another trainable component in the system. The
first phase of Dynamic COIL is the agent training phase, where the agent is
trained as in static COIL, where we feed in the actions of the guide policy
πguide(s) to the agent at each time step. After a sufficient amount of learning
(ideally once convergence of the policy has been achieved), the current policy of
the agent is fixed and we begin to train the guide policy instead. This is called
the guide policy fine-tuning phase. It should be noted here that we do not want
to radically change the guide policy once the agent’s policy is fixed, because this
could lead to rapid instability of the agents policy, instead of this, we want to
fine-tune the guide policy in order improve its ability to maximise the expected
reward of the agent in the environment. In order to reduce the amount the
guide policy changes during this phase, a smaller learning rate can be selected.
After the guide policy has been fine-tuned, it once again becomes fixed, and
we return to the agent training phase, with the agents policy activated again
for further training, however this time with a smaller learning rate than before
to ensure stable convergence. Through repeated exchange between training the
agent and fine-tuning the guide-policy, it is possible that the agent’s resulting
policy is very good at effectively using the information provided by the guide
policy. In Figure (17), an illustration of Dynamic COIL can be seen.

Figure 17: Illustration of Dynamic Contextual Online Imitation Learning (Dy-
namic COIL). In the agent training phase, we have the regular COIL method,
where the agent is being fed the actions of the guide policy at each time step
t, and the agent is improving its policy through repeated interaction with the
environment. In the guide policy fine-tuning phase, the agent’s policy is fixed,
and the learning algorithm now operates only on the parameters of the guide
policy. In this way the guide policy can be fine-tuned in order to offer the most
beneficial action to the agent. Dynamic COIL works by iteratively switching
between these two phases.

Dynamic COIL can also be used with multiple guide policies. This poses the
question of how and when to train the individual guide policies. We shall now
introduce two Dynamic COIL training schedules: stochastic and sequential.
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In the stochastic training schedule, during the guide policy fine-tuning phase
a random guide policy is selected to be trained for the entire phase. Fine-tuning
one policy at a time ensures that the inputs to the agents policy don’t change
too quickly. In the sequential training schedule, during the i-th guide policy fine-
tuning phase, the (i mod n)-th guide policy is chosen to be trained, where n is
the number of guide policies. This ensures that each guide policy undergoes the
same amount of fine-tuning in the long run. A comparison of these two training
schedules would be a good avenue for future research on this topic.

A particularly interesting application of Dynamic COIL is the setting where
we want an agent to be able to solve multiple tasks. In order to leverage Dynamic
COIL, we could provide a set of guide policies where each guide policy is capable
of solving a desired task in the environment. For example, if researchers had
access to a bi-pedal robot that can be trained to perform many different tasks
such as walking, running, jumping, opening doors, etc. The researches could
train the robot on each individual task first to build the set of guide policies
that achieve good performance in each task. Following this, they could train
the entire system as a whole by feeding the actions of the guide policies as
observations to the learning agent. This robot would then be able to discover
through exploration of the environment which guide policy to ‘listen’ to in which
contexts. In this way the agent can be seen almost like a master puppeteer,
able to make use of the ‘running policy’ when running offers the most expected
reward, and use the ‘jumping policy’ when jumping is most optimal. Then,
by using Dynamic COIL, the transitions between certain tasks could be fine-
tuned, such as the transition between running and jumping for our bi-pedal
robot. Dynamic COIL is therefore a potentially very powerful framework for
multi-task Reinforcement Learning tasks. Additionally, by allowing training of
the guide policies, it offers researchers the ability to begin with guide policies
with only moderate success in its given task, and then through training it can be
improved to a more powerful guide policy. As the guide policies are no longer
fixed as in static COIL, Dynamic COIL is a more flexible methodology. An
illustration of a potential Dynamic COIL network architecture can be seen in
Figure (18).

As a final note to this section, we shall discuss a particular ‘trick’ in the case
that the researcher has access to guide policies but they are not parameterised,
and therefore cant be directly trained.

In this case, the researchers could use Offline Imitation Learning where they
train a neural network with inputs s1, . . . , sm and output πguide(s). The training
dataset could be extracted through use of the guide policy in the environment. If
training is successful, the researchers would now have a parameterised version of
the guide policy. They could then use this parameterised version as a proxy for
the original guide policy. This would allow the researchers to still use Dynamic
COIL even in the case where they don’t have a parameterised guide policy.
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Figure 18: Illustration of the Dynamic COIL architecture in the case that neu-
ral networks are used to parameterize both the agent network and the guide
policies. This illustration also assumes a discrete action space A. Each guide
policy provides its suggested action as an input to the agent, and the agent
learns through repeated exposure with the environment how best to use these
guide policies. In Dynamic COIL, the guide policies are also fine-tuned during
training. This illustration shows how the guide policies and the form one greater
network which can be trained via back-propagation[1].
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4 Results & Applications

In this section, we will first test COIL on a simulation of a self-driving car.
Following this we will test the robustness of COIL on a real-life self-driving
robot. We will begin by discussing the agents simulated environment and task
we have designed for our agent, as well as how we reward the agent. Following
this, we will compare four self-driving policies: COIL, regular Reinforcement
Learning (PPO), a guide policy, and Offline Imitation Learning of the guide
policy.

4.1 Simulation

4.1.1 Setup

The self driving car simulation was designed in Python3 using the package
Pygame. The Python code can be found on Github at : https://github.

com/alex21347/Self_Driving_Car. In the simulation, the car is able to drive
around on a 2D plane where its movement is governed by a dynamic model
usually called a bicycle model, as we are taking into account the length of the
car and not assuming the car is simply point in space [27]. Within the simulation
there are also left cones and right cones which specify the sides of a track for the
car to drive through. An example of such a track can be seen in Figure (19).

Figure 19: Image of a self-driving car simulation programmed in Python. The
simulated car can be seen driving from left to right. The left cones (yellow) and
right cones (blue) can also be seen guiding the car down a track. The red dots
represent the middle of the track and are used for visual purposes. Cones that
are detected by the car have a dashed line drawn between the car and the cone.
Furthermore, the grey dotted line on either side of the track represent a cubic
spline estimate of the boundary of the track.

In order to turn this simulation into a Reinforcement Learning problem, we need
to decide what our action space A will be, what our observation space O will be,
and what our reward function R will be. As a side note, we now consider the
observation space instead of the state space because the state space is assumed
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to contain all the necessary information in the underlying state, which is not
possible in practice. For the remainder of this section we shall first discuss the
observation space, the action space, and the reward function of our self-driving
car agent, before moving onto a discussion on how COIL and Offline Imitation
Learning can also be applied.

Firstly, the car has a fixed field of view of 60 degrees in either direction from
the direction it is facing. Additionally, the simulated sensors on the car have a
fixed range for of 7m. If either a left cone or right cone falls within the correct
angle and range of the car, it is considered as ‘visible’ to the car and can thus be
used to form an observation for the Reinforcement Learning agent. The design
of an informative observation to provide to the agent is a non-trivial task. The
observation provided to the agent must have the same number of dimensions
throughout the entire exploration of the environment. However, at each time
step t the car will have detected some unknown number of cones in front of
it. Therefore, an observation must be designed so that it is not effected by the
variation in the number of visible cones from one time step to another.

One solution to this problem is the use of cubic splines. For both the left
side of the track and right side of the track, we fit a cubic spline using the
coordinates of the cones in the simulation. This cubic spline acts as a boundary
estimation for each side of the track. This cubic spline boundary estimation can
be seen in Figure (19) as grey dotted lines between detected cones. For more
information on cubic splines the reader is directed to Appendix (A.2).

Finally, to turn the boundary estimates into a fixed-size observation for the
agent, we can take 5 equidistant sample points along each side of the track.
Therefore, we end up with 10 sample points in total, each of which is comprised
of two pieces of information; the distance to the car r, and the relative angle of
the sample point with respect to the car axis, θ. These 20 values are what we
shall use as our observation space, thus we have

O = {r1, θ1, . . . , r10, θ10}

where the first five (r, θ) pairs represent the boundary sample points on the left
side of the track, and the last five (r, θ) pairs represent the boundary sample
points on the right side of the track.

For the action space A we simply allow the car to decide which steering
angle it would like to take in the interval [−80, 80]. Thus

A = [−80, 80] .

Now we shall discuss the reward function for our Reinforcement Learning
problem. The self-driving car in our simulation has three main objectives:

• Ω1 : Survival (how safe the passengers are)

• Ω2 : Speed (how fast the car can drive)

• Ω3 : Smoothness (how smooth the journey is)
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Therefore, a possible way of encoding these objectives within our reward func-
tion is:

i) A positive reward for successfully progressing along the track (Ω1)

ii) A negative reward for crashing (Ω1)

iii) A positive reward for driving fast (Ω2)

iv) A negative reward for driving in an unstable manner (Ω3)

Using these four motivations, our reward function to impose these objectives
can be:

• rΩ1
= 70·1{Car finishes track}−100·1{Car crashes}+2.5·1{Cone detected}

• rΩ2
= −0.8T · 1{Car finishes track}

• rΩ3
= − ∥ θ − θ̃ ∥

where 1 is the indicator function, T is the time taken for the car to finish the
track, θ is the direction the car is facing, and θ̃ is a exponentially weighted
moving average of previous car directions. Our final reward function for the
entire task is then defined as

r =

3∑
i=1

rΩi
.

Following this, in order to use COIL with this simulation, we need a guide pol-
icy πguide. Consequently, it is necessary to design a suitable guide policy. A
suitable choice is to create a guide policy that aims to keep the car as ‘safe’ as
possible at all times. The guide policy first calculates an estimate for the centre
path that goes through the middle of the track, and then takes the steering
angle best suited to follow this path. For the details on how exactly the guide
policy executes these two steps, please see Appendix (A.1). We can call this
guide policy the ‘safety policy’ as it encodes our safety objective Ω1. Figure
(20) shows the COIL methodology applied to our self-driving car simulation.
Now we must decide exactly which Reinforcement Learning algorithm to use
for our agent. Through experimentation, it became clear that Proximal Policy
Optimisation (PPO) offered the strongest and most stable training runs, and
therefore we will use PPO as our Reinforcement Learning algorithm for our
self-driving car agent, and also when applying the COIL methodology. Future
research could include a full comparison of COIL applied to different Reinforce-
ment Learning algorithms.

As a final method to use for comparison, Offline Imitation Learning (OIL)
will be applied to mimic the behavior of the guide policy discussed previously.
For this paper, OIL will be the only Imitation Learning method we will use in
our comparison. As the guide policy is not an expert in our case, it is not neces-
sary to implement multiple Imitation Learning methods as they are unlikely to
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Figure 20: The COIL methodology applied to the application of a self-driving
car simulation. The guide policy in this case is called a ‘safety policy’ because
the guide policy in this case is designed entirely to make sure the car does not
crash and nothing else. For more details see Appendix (A.1).

be highly competitive with Reinforcement Learning and COIL. This is because
mimicking a non-expert policy is likely to produce a another non-expert policy.
Further research could compare COIL to other state of the art Imitation Learn-
ing algorithms, such as Jump-start Reinforcement Learning [28] and DAgger
[29].

As discussed in Section (2.4), Offline Imitation Learning is a form of Super-
vised Learning. At each time step t, the boundary estimate samples (r1, θ1, . . . , r10, θ10)
will be fed into a Machine Learning model, and asked to predict the action of
the guide policy πguide(s). In order to train the Machine Learning model, a
dataset {

(r1(t), θ1(t), . . . , r10(t), θ10(t)) , πguide(st) for i = 1, . . . , T

}

is required, where T is large enough for the Machine Learning model to learn
to accurately predict the actions of the guide policy given the current state of
the environment.

To collect this dataset, the guide policy was simulated to drive around each
of the training tracks, and at each time step t the sample{

(r1(t), θ1(t), . . . , r10(t), θ10(t)) , πguide(st)

}

was stored. In total, this generated a dataset with 16510 data points to train
the Machine Learning model with. The Machine Learning model that was used
to predict πguide(st) was a Random Forest Regression model. This was chosen
as it offered the best Mean Square Error (0.01489 on the ‘test’ data) for this
dataset, Linear Regression was also applied but this was not as accurate. For
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more details on Random Forests the reader should read the original 2001 paper
by Breiman [30].

Using n-fold cross validation, the hyper-parameter optimised Random Forest
Regression model achieved a Mean Square Error of 0.01489. The optimal hyper-
parameters included a maximum tree depth of 20, and a total of 200 decision
trees.

Now that we have set up COIL, RL, a guide policy, and OIL, we can train our
COIL and RL agents and then compare all of the policies together afterwards.

4.1.2 Training

To train the RL and COIL agents, 10 tracks were created in the simulation. For
training, 7 of the tracks were provided to the agent randomly during each episode
of the simulation, this was to ensure the agent would not just learn memorise
a single track. The remaining 3 tracks were reserved for testing generalisation.
In Figure (21) below, 4 of the training tracks can be seen.

(a) Track 1 (b) Track 2

(c) Track 3 (d) Track 4

Figure 21: Four of the seven tracks used to train the Reinforcement Learning
agent to drive autonomously. All tracks were designed in Python using the
package Pygame. The yellow circles represent left cones, and the blue circles
represent right cones.

The COIL and RL agents were trained using Proximal Policy Optimisation over
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5 runs, and the maximum reward achieved during training was recorded for each
run. The average maximum reward for COIL and RL can be seen in Table (4)
below.

Method Average Max Reward

COIL 477.6
RL 414.2

Table 4: Table of training results for standard Reinforcement Learning (RL)
and Contextual Online Imitation Learning (COIL). Over 5 training runs the
highest achieved average reward was recorded and the average result can be
seen in this table. It can be seen that COIL is the better training algorithm in
this case, giving a 15.3% increase in the average max reward.

It can be seen in Table (4) that COIL achieves much stronger results during
training, giving a 15.3% increase in the average max reward.

An additional trait that was noticed during training was that COIL trained
‘quicker’ in the sense that after a given number of time steps t, COIL generally
had a larger increase in mean reward than the regular Reinforcement learning
agent. This can be seen clearly in Figure (22) below.

Figure 22: The training runs of 3 agents trained by COIL and 3 agents trained
by regular RL. COIL can be seen to achieve a higher mean reward at every
point along the x-axis. These training runs were computed using the University
of Groningen’s high performance computer cluster Peregrine.

Therefore, we have found evidence that by providing the actions of the guide
policy to the agent during training in COIL, we achieve both quicker training
and with a higher maximum reward. Before we can make conclusions, we shall
also test our different algorithms on 3 unseen test tracks and compare results.
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4.1.3 Generalisation

Firstly, it should be noted that comparing the average reward of the training
tracks and the test tracks is not appropriate because all of the tracks are unique,
and the length of the track strongly affects the total reward that can be attained
on the track. Thus it is only meaningful to make comparisons between the
policies on these test tracks.

To evaluate the success of the policies, we will analyse the lap times of the
agents, the smoothness of their driving, the total reward they achieve, and lastly
how often they crash. The smoothness is calculated by taking the average of
the magnitude of all of the rΩ3

values generated during the tests. To recap, we
have that

rΩ3 = − ∥ θ − θ̃ ∥

where θ is the direction the car is facing, and θ̃ is a exponentially weighted
moving average of previous car directions. Therefore, the larger the average
magnitude of rΩ3

, the less smooth the journey is.
Table (5) below contains all the results for the different policies. It should

be noted that for COIL and RL, the policies that was chosen for testing were
the policies that achieved the highest average reward during training.

Method Mean Lap Time Mean Smoothness Mean Reward

Guide Policy 48.81s 0.121 609.4
OIL 48.82s 0.061 620.8
RL 48.58s 0.557 614.5

COIL 48.48s 0.606 632.9

Table 5: Table of results for four self-driving car algorithms tested in a Python
simulation; a guide policy, Offline Imitation Learning (OIL), Reinforcement
Learning (RL), and Contextual Online Imitation Learning (COIL). The algo-
rithms are judged on speed, smoothness, and safety, where these three objectives
are encapsulated by the reward. It can be seen that COIL offers the highest
average reward. Each policy did not crash once during testing so this was left
out of the table.

Table (5) shows that COIL achieved the highest mean reward of all four meth-
ods when tested on three test tracks. This provides evidence that COIL has
strong generalisation ability, as its performance is highly competitive both on
the training tracks and the test tracks. All four methods did not crash once
during the tests, and was therefore left out of the table for brevity. COIL is
also the fastest of the policies, achieving the lowest average lap time of the four
methods. However, COIL is unexpectedly also the least smooth of the policies.
This might be because the agent has learned to prioritise speed over smoothness
in order to achieve the higher rewards. As we have seen, Reinforcement Learn-
ing algorithms are designed to always maximise the expected reward, therefore,
the fact that COIL and RL have a higher average smoothness than the guide
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policy and OIL is indicative that the reward function places less emphasis on the
smoothness objective, and more emphasis on the safety and speed objectives.

To complete our analysis on COIL, we will now apply our four policies to a
real-life robot car, and analyse how the four methods hold up in a more com-
plex situation and a significant change in incoming sensor data. The following
section will aim to answer the following questions:

i) Does COIL still work effectively with a robot car with real sensors?

ii) How robust are the algorithms with regards to transfer learning?

4.2 Robot

In this section, four self-driving car algorithms will be compared on a real-life
robot car; Contextual Online Imitation Learning (COIL), standard Reinforce-
ment Learning (RL), a guide policy, and Offline Imitation Learning of this guide
policy. The robot was provided by the Robotics Lab in the Bernoulli Institute
for Mathematics, Computer Science and Artificial Intelligence at the University
of Groningen. This robot can be seen in Figure (23) below. On top of the robot
there is a single Lidar detector (RPLidar A1M8) which will be the only sensor
available for autonomous driving.

Figure 23: Photo of the robot car used for comparing autonomous driving algo-
rithms. The robot was provided by the Robotics Lab in the Bernoulli Institute
for Mathematics, Computer Science and Artificial Intelligence at the University
of Groningen. On top of the robot there is a single Lidar detector (RPLidar
A1M8) which will be the only sensor available for autonomous driving.

First we will discuss the details for setting up a robot capable of running au-
tonomous driving software, and some of the practical difficulties that arise when
transitioning from simulation to real life. Following this we will test our four
models on a designated track, and analyse the results.
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4.2.1 Setup

Recall that in the simulation, whether a cone is a left cone (indicating the left
side of the track) or a right cone (indicating the right side of the track) is auto-
matically given. In real life, it is necessary to construct a method of determining
the orientation (left/right) of the cone using only the Lidar sensor data. To do
this we can use two differently shaped cones, one thick and one thin. Figure
(24) below shows an image of the car alongside some left (thin) cones and right
(thick) cones.

Figure 24: Photo of the robot car along with some cones representing the left
and right side of the track. The left and right cones were designed to have
different characteristics (size, width, etc.) so that a classifier could be trained
using only Lidar data. The Lidar sensor can be seen on the top of the robot in
this photo.

For each 360 degree rotation of the Lidar sensor, a simple clustering algorithm
was used to detect potential cones. Two points were determined to be within
the same cluster if and only if they were less than 5cm away from one another
in 2D space. Following this, for each cluster three features were extracted using
the Lidar data; the width of the cluster, the depth of the cluster, and the girth of
the cluster. Then using these three features a Support Vector Machine (SVM)
can be trained to classify the cones between left and right cones.

To collect a training dataset, the robot was first driven manually around
a set of left cones exclusively, and each cluster identified in this time period
was automatically labeled as a left cone (as all right cones had been removed).
Following this, the robot was driven in the same way exclusively driving around
right cones, and each cluster was labeled as a right cone. Combining these two
data sets together gave us our training dataset for the SVM.

The SVM achieved 98.8% classification accuracy. Fortunately, the data dis-
tributions across the three features were sufficiently different between classes.
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This can be seen clearly in Figure (25) where Principal Component Analysis
was applied in order to visually analyse the two classes.

Figure 25: Scatter graph of detected cones from the Lidar. For each cone, 3
variables (width, depth, and girth) were extracted using the Lidar data and then
principal component analysis was performed to find the two most informative
components. In this graph, detected left cones are represented as blue, and right
cones are represented as green, with the axes representing the two principal
components.

Unfortunately, the cone classifier was unable to achieve 100 % accuracy,
therefore, it was almost certain that during the self-driving, the track would be
misinterpreted at some point (approximately once every 100 frames). Through
a careful programming workaround, this 1 in 100 event can be made insignifi-
cant to the overall success of the self-driving robot. For brevity, we will not go
into the details of this workaround here. The full explanation can be found in
Appendix (A.3).

In order to select the optimal hyperparameters for the SVM, n-fold cross-
validation was also applied, this ensured that we had the best possible Machine
Learning model to accurately classify cones. Other Machine Learning models
were also tested, in particular a Random Forest model was also trained for this
task, however, the SVM offered the strongest results and was therefore chosen
to be the cone classifier for our robot.

Once an accurate cone classifier is trained, the car is able to extract the
relevant information from its environment; a list of left cone locations and a list
of right cone locations, all relative to the location of the car. This information
can then be sent over a wireless network from the robot to a remote computer
in order to create a reconstruction of the environment. An example of such a
reconstruction can be seen in Figure (26).

Now that it is possible to effectively communicate the Lidar sensor data in

63



Figure 26: Image of the 3D robot visualiser RViz during a lap of the robot on
the test track. Red points represent sensor data from the Lidar, yellow circles
represent detected left cones, blue circles represent detected right cones, and
the white text in the middle is the RViz label given to the robot.

a format that resembles the simulation, we are able to start sending driving
instructions back to the robot. The first step is to initialise the Python simula-
tion and place left and right cones in accordance to what the robot is detecting.
Then, in order to use COIL or RL, we must construct our observation in the
same format as before:

O = {r1, θ1, . . . , r10, θ10} .

Thus, similarly to before, we must compute the cubic spline boundary estimates
for both sides of the track and then sample them at 5 equidistant points. Once
our observation is formed we can simply feed it into the agent as an input and
then it will predict the next action. This action is then sent back to the robot
for completion, and the simulation awaits it next batch of Lidar sensor data
from the robot.

There are two final important caveats worth discussing in order to set up
the robot for self-driving:

i) Difference in observation distribution.

In the simulation, cones were ‘detected’ by the car if it was no further than
7m, and it was also within 60 degrees of either side of the direction the car is
facing. In real-life, the robot was able to accurately detect cones up to a distance
of 1m. This is because of two reasons. Firstly, if two cones are perfectly aligned
with the Lidar sensor, then the closer of the two cones will cast a shadow, and
the further cone will be completely undetected. This situation is illustrated in
Figure (27). This effect also introduces the bias that right cones are harder to
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detect as they are thicker and thus cast larger shadows.

Figure 27: Illustration of the limitation of using only a Lidar for detecting cones.
It can be seen here that Cone 1 is casting a shadow for the Lidar sensor, resulting
in Cone 2 being undetected.

Secondly, the Lidar sensor has fixed angular resolution, therefore, the closer
a cone is to the sensor the more data points are within its cluster. Quite simply,
the more data points per cluster, the more reliable the cone classifier. In the
extreme case, a cluster with a single data point is impossible to accurately
classify as there is no way to extract the width, depth, or girth of the cluster.

Therefore, with these practical considerations in mind, it was required to
limit the range of the Lidar to 1m. Additionally, the Lidar is capable of 360
degree detection of cones, whereas the simulated car could only detect cones
in front of it ±60 degrees. Therefore, during training of the Reinforcement
Learning agent in the simulation, the agent was only exposed to cones within
this more restricted field of view. It general, the closer the distribution of the
observation is to the observations seen during training, the better the agent will
be able to drive. Therefore, all cones detected by the Lidar that were more than
60 degrees on either side were removed in a post-processing step.

A final step to adjust the Lidar sensor data to closer match the observations
in the simulation is a scale transformation of the cone distances. Recall that in
the simulation the car’s field of view had a radius of 7m, however, as we have
discussed the Lidar is only capable of detecting cones accurately up to 1m. To
correct for this vast difference of scale, the distance of each cone was multiplied
by 7. All of these steps combined offered considerable improvement in practice.

ii) Robot driving instructions

So far, the action that the agent takes at each time step is a steering angle
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θ. Unfortunately, the instructions that the robot accepts is instead an angular
velocity ω. Thus, for each steering angle θ, the corresponding angular velocity
ω must first be calculated before sending to the robot. First we calculate the
turning radius of the car:

r =
Car length

sin(θ)
(99)

and then we have
ω =

v

r
(100)

where v is the velocity of the car.

Finally, with the robot set up, a test track was made in order to compare
our different algorithms. A photo of the real-life test track can be seen below
in Figure (28). Due to limited space, this track was chosen in order to include
at least one left turn, one right turn, and one straight region.

Figure 28: Photo of the real-life test track designed to test and compare the
self-driving software. Due to limited space, this track was chosen in order to
include at least one left turn, one right turn, and one straight region.
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4.2.2 Results

To make a comparison between the success of the four self-driving car algo-
rithms, some evaluation metrics must be chosen. The reward function designed
for the simulation cannot be directly applied in real life because we lack the
necessary information to calculate the reward at each time step. Instead we
can record the lap time that the car achieved on the test track, whether the car
crashed into a cone or not, and by recording the steering angle of the car over
time we can determine the smoothness of the cars journey. The smoothness of
the cars journey was calculated by the same method as in the simulation, by
taking the difference between the current steering angle and the exponentially
weighted moving average of previous steering angles.

However, once the robot had been adequately set up with the necessary
modifications discussed in the previous section, all four algorithms succeeded
in driving around the track without crashing into the cones. Thus, it is not a
useful evaluation metric for comparison in this case. Therefore, the speed and
smoothness of the cars journey are the principal methods of comparing algo-
rithms for the robot.

For each self-driving car algorithm, three attempts at driving around the
track were made and the lap times and angular velocities were recorded. The
results can be seen in Table (6).

Method Mean Smoothness Mean Lap Time

Guide Policy 0.265 43.67s
OIL 0.104 43.32s
RL 0.102 40.14s

COIL 0.082 39.53s

Table 6: Table of results for four self-driving car algorithms tested by a robot;
a guide policy, Offline Imitation Learning (OIL), Reinforcement Learning/PPO
(RL), and Contextual Online Imitation Learning (COIL). The algorithms are
judged on speed, smoothness, and safety. It can be seen that COIL offers the
best overall result of the four methods.

Table (6) shows that COIL offers the fastest and smoothest journey of all
four self-driving car algorithms. This provides evidence that COIL is capable
of effectively solving more complex and difficult challenges. Despite the change
of environment, agent, and observations, COIL still achieves strong results as
a self-driving car algorithm. Furthermore, it is clear that all four algorithms
were capable of solving the task of driving autonomously, which indicates a sig-
nificant level of robustness. Before we continue with our analysis, there some
additional qualitative observations made during the tests. These observations
can be seen in Table (7).
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Method Qualitative Observations

Guide Policy All three laps were completed successfully, with the robot stay-
ing relatively close to the middle as expected. Trajectory
through the track was overly cautious. The robot struggled
to create a smooth path, swaying side to side. No evidence of
corner-cutting or competitive behavior.

OIL All three laps were completed successfully. The robot followed
smoother curves in its path than the guide policy, but it was
less able to remain central in the track. No evidence of corner-
cutting or competitive behavior.

RL All three laps were completed successfully, however, the prox-
imity to the boundary of the track was greatly reduced as the
agent attempted to achieve a faster track time. The robot
followed very smooth curves in movement, almost to its detri-
ment.

COIL All three laps were completed successfully. Very similar to
regular Reinforcement Learning, however the agent seemed to
have a better awareness of cutting corners to reduce lap time.
Although the robot did not crash, this method seemed the clos-
est to causing a crash due to the competitive edge it achieved
in lap time.

Table 7: Table of qualitative observations for the testing of four self-driving
algorithms on a robot: Guide Policy, Offline Imitation Learning (OIL), Rein-
forcement Learning (RL), and Contextual Online Imitation Learning (COIL).

It must be noted that the success of the self-driving car software on the
robot is highly dependent on how realistic the simulation is during training.
Aligning the dynamics of a simulation to reality is very important when testing
algorithms. The accuracy and complexity of the simulation was limited by the
resources at hand and scope of the project, and thus the results for the real-life
robot have additional components to consider. By switching from simulation to
reality, we are introducing a significant shift between the training data (from the
simulation) and the test data (from the Lidar sensor), therefore these results
allow us to examine the affect of transfer learning on our algorithms. Given
this additional difficultly in the task, the results in this section are indicative
that each algorithm exhibits robustness to transfer learning. Given more re-
sources and time, the alignment between reality and simulation can be further
improved, and the results will be more suitable for direct comparison.

These results show that COIL offers a method of effectively utilising guide
policies even when the guide policy is both non-expert, and when faced with
transfer learning. In this case, not only is the task much more difficult be-
cause of the transfer learning, but COIL is faced with the additional difficulty
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that the actions from the guide-policy that it is using is also effected by the
transfer learning. Despite the degradation of the guide policy, COIL remains
the strongest algorithm at the task, which demonstrates that COIL is not only
capable of utilising regular non-expert guide policies, but it can also withstand
the effect of transfer learning too. There is consequently strong evidence that
COIL is a robust and highly flexible method of effectively incorporating guide
policies into Reinforcement Learning problems.

5 Critical Discussion

In this section we will discuss the potential shortcomings of Contextual Online
Imitation Learning. Firstly, the computational cost of running the COIL agent
in the environment is greater than regular Reinforcement Learning because it
is necessary to compute the action of the guide policy at each time step (on
top of the other computations in the Reinforcement Learning algorithm). This
is the only additional computational cost of COIL as every other part of Re-
inforcement Learning algorithms remains the same when using COIL; only the
interaction of the environment has any computational difference. In practice,
the computational cost of computing the guide policies action is minimal and
thus using COIL is only marginally more computationally expensive than reg-
ular Reinforcement Learning methods and consequently this is not a cause of
concern for most researchers. However, in cases where calculation of the guide
policies action is computationally heavy, the available computing power should
be taken into account when using COIL. In this case, it might be more feasi-
ble for researchers to apply Imitation Learning techniques in order to achieve a
more lightweight approximation of the guide policy.

Additionally, a potential shortcoming of COIL is the requirement of a present
guide policy. If the guide policy cannot be queried during the exploration of the
environment then it is not possible to use it in COIL. However, there is a suit-
able alternative given a guide policy that is not present. What the researchers
can do is apply Imitation Learning techniques in order to generate a present
guide policy as an approximation of the original non-present guide policy. In
theory, any Offline Imitation Learning algorithm could be used for this purpose.
Therefore, the requirement of a present guide policy is certainly a limitation
of the proposed COIL method, however, there are certain workarounds to this
limitation given the successful implementation of Imitation Learning. Further-
more, as COIL does not require an expert guide policy, it is still able to be
used even if the Offline Imitation Learning is limited in capacity. It can now
be seen that theoretically, even a non-present and non-expert guide policy can
still be utilised with COIL, which further reinforces the notion that COIL is a
highly-flexible technique.

Finally, in some tasks it may be that using any Reinforcement Learning al-
gorithm or Online Imitation Learning algorithm is not possible due to the task
being too complex or the environment too unpredictable and dynamic. This
could mean that only Offline Imitation Learning methods such as Behavioural
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Cloning applied to an expert guide policy are suitable for the task. As COIL
is an online method, it requires interaction with the environment and therefore
it might also be unsuitable in this scenario. Future research could analyse the
capability of COIL to operate in such complex and unpredictable environments,
even more so than the robot environment discussed in Section (4.2).

6 Conclusion

Reinforcement Learning is a vast and important sub-field of Artificial Intelli-
gence capable of huge potential for future applications in our modern society,
especially with self-driving car technology on our doorsteps. The methods of
combining guide policies to Reinforcement Learning algorithms remains an ac-
tive area of research with no one method shining above the rest.

This paper began by presenting the key theories and concepts in the field of
Reinforcement Learning. Starting with the Markov Decision Process, this pa-
per described the important mathematical constructs such as value functions,
optimal policies, and Bellman equations, which paved the way for algorithms
such as value iteration and policy iteration to be later developed. Following
this, the most influential Reinforcement Learning algorithms were analysed in
depth, such as Q-learning, Policy Gradient methods such as REINFORCE, and
Actor-Critic methods such as A2C. After this, the most important Deep Rein-
forcement Learning and Imitation Learning methods were discussed and com-
pared at length.

The goal of the Theory & Methods section was to provide a clear foundation
for the mathematical material necessary to explore the new results introduced
later in the paper. In order to give a coherent and relevant overview of this ma-
terial, a necessary process of collecting and refining a selection of literature was
conducted, and a consistent system of notation was made to bring the different
concepts together into one clear format. Almost all of the theory in this section
has re-written theorems, proofs, and algorithms in order to make the necessary
clarifications and piece it all together. Furthermore, all diagrams, figures, and
pseudo-code in this section were designed specifically for this paper. Therefore,
a significant contribution to the Theory & Methods section was the rewriting
of literature from different authors and piecing it all together with the same
notation, style, and format.

Following the Theory & Methods section, a new technique of utilising guide
policies in Reinforcement Learning tasks was introduced. In particular, Con-
textual Online Imitation Learning (COIL) offers researchers a powerful tech-
nique of incorporating guide policies into the learning process of Reinforcement
Learning algorithms with a simple modification of the observation space. Fur-
thermore, Dynamic COIL has significant potential to solve complex multi-task
Reinforcement Learning problems. In this paper, COIL has been demonstrated
to provide significant improvement over traditional Imitation Learning, Deep
Reinforcement Learning, and the also the guide policy itself. In both the self-
driving car simulation and the real-life robot this was the case. Additionally, the
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results from the robot experiment demonstrated that COIL has strong ability
to withstand the effect of transfer learning.

Future research on COIL could focus on three main topics not treated in
this paper. Firstly, more research could be conducted to analyse the effect of
using multiple guide policies with COIL. In particular, it would be interesting
to analyse the deviation between the agents actions and the guide policies ac-
tions during exploration of the environment to see which of the guide policies
are being ‘listened to’ in which states. Secondly, future research on COIL could
incorporate Reward Function Coupling into the algorithm, where on top of pro-
viding the actions of the guide policy as an observation, the agent is rewarded
proportionally to how similar its actions are to the guide policies. It remains an
open question into how effective this might be. Finally, future research could
focus on implementing and testing dynamic COIL in a multi-task setting.

A potential limitation of COIL is that access to a guide policy is required,
however, this is also true for all Imitation Learning methods. In fact, COIL
is more flexible than traditional Imitation Learning methods because a greater
range of guide policies can be effectively utilised. As discussed in Section (3),
even if the guide policy acts optimally only in a subset of states in the state
space, the agent can learn to ‘listen’ to the suggestions of the guide policy only
in this subset of states. This is a significant advantage over classical Imita-
tion Learning methods. Consequently, COIL has great potential for solving
Reinforcement Learning tasks in practice as it gives researchers and engineers
a method of utilising their guide policies even if they are not experts in all
states or all objectives. Furthermore, the results in Section (4) demonstrated
that COIL offers very strong results in practice and also performs well under
transfer learning.
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Joséphine Simon, Matthew Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao,
et al. Jump-start reinforcement learning. arXiv preprint arXiv:2204.02372,
2022.
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A Appendix

A.1 Guide Policy

The first step for the guide policy (autonomous path planning system) is gener-
ating a path for the agent to follow, where the path consists of a set of ’targets’
denoted by τ := {Target1, . . .Targetk} for the car to pass through one by one.
The second step is simply to calculate which target is closest and drive towards
it in some manner.

To autonomously drive towards this nearest target the car must steer so that
it is perfectly ’lined up’ to hit the target. Mathematically, this implies that the
car needs to iteratively alter the direction it’s facing so that it matches with the
straight line drawn between the car and the target. We can denote the required
change in angle by α. Additionally, we denote the distance between the car
and the cone by d. Figure (29) below depicts this situation. The car angle
is measured starting from the positive x-axis with the anti-clockwise direction
representing a positive angle.

Figure 29: Depiction of the dynamic co-ordinate system fixed to the car (dashed
lines), used to calculate the required turning angle α to steer the car towards
the nearest target. d represents the distance between the car and the target and
the car angle is the direction the car is facing measured from the x-axis.

To calculate α we first make a co-ordinate change so that the origin becomes
the position of the car and the new x-axis is the direction that the car is facing.
This can easily be done by subtracting the cars position from any given co-
ordinates and then multiplying the result by a general rotation matrix with
angle equal to the car angle. This new co-ordinate system can be seen in Figure
(29) as the dashed lines. Let the original co-ordinates of the target be denoted
by (x, y) and the co-ordinates of the target in the new co-ordinate system by

75



(x̃, ỹ). We can now calculate α as:

α = arctan

(
ỹ

x̃

)
. (101)

This new co-ordinate system also helps us calculate d:

d =
√
x̃2 + ỹ2 . (102)

Now that the desired turning angle α has been calculated we need to calculate
a steering angle for the car. The steering angle, denoted by β, determines the
change in car angle from one iteration of the simulation to the next. It is not
enough to set the steering angle equal to α as this would cause a very sudden
direction change for the car, and there is also the possibility that α is very large
and cannot be achieved by the car immediately (e.g. if the target is behind the
car!). Using α and the distance between the car and the nearest target d, a
function f(α, d) to generate the steering angle β can be derived.

There are 3 properties we desire for this function f :

i) β ∈ [ − MaxSteering, MaxSteering] ∀α, d where MaxSteering is the maximum
possible steering angle.

ii) As α increases, the steering angle β also increases.

iii) As d increases, the more gradual the car’s steering can be, and thus β
decreases.

With these properties in mind we arrive at the function

β = f(α, d) =
2 ·MaxSteering

π
· arctan

(α
d

)
. (103)

Figure (30) below displays the shape of f for MaxSteering = 90 and d = 10.

Figure 30: The shape of the function f which takes the required turning angle
α (x-axis) and the distance to the nearest cone d and returns the steering angle
β (y-axis) the car must take in order to eventually arrive at the target.
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With the full calculation of β now set in place, the agent can now drive through
a sequence of targets one at a time. The next step in the path-planning system
is to find out which sequence of targets to follow, which is when cubic splines
become essential. An explanation of cubic splines can be seen in Appendix
(A.2).

The path planning system generates the path of targets by first collecting
the list of visible cones, and then constructing a list of midpoints between left
cones and right cones (corresponding to the left and right sides of the track). In
general, this set of midpoints will form a point cloud in the middle of the track.
The agent can now compute a cubic smoothing spline through this point cloud
of midpoints. This spline can now be evaluated at equidistant points along the
curve to generate a set of ’targets’ for the car to follow, a process referred to as
discretization. This three step method of using cone information to generate a
set of targets can be seen in Figure (31) below.

Figure 31: The process of using visible cone locations to compute a set of
targets using cubic splines. Firstly (left), the midpoints between each pair of left
cones (red) and right cones (green) are calculated. Secondly (middle), a cubic
smoothing spline is generated using the midpoints as input. Lastly (right), this
cubic spline is discretized into a finite set of targets for the autonomous car to
follow.

Finally, to turn this into an online system we need to recompute this cubic
spline every time a new cone is detected, giving the agent more information
about the upcoming track. An overview of this online system can also be seen
below in pseudo-code.
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Algorithm 8 Path planning

τ ← ∅
Autonomous driving ← True

while Autonomous Driving = True do

if τ ̸= ∅ then
Drive through targets in τ

if New cone detected then

midpoints list← {midpoints of all left/right cones}
New spline← Compute Spline (midpoints list , λ)

τ ← Discretization (New spline)

There are a few subtleties in the path planning system not included in the
above pseudo-code for the sake of clarity and brevity (for example the mech-
anism that governs which targets have been reached by the agent and thus
need to be removed from the target list), however, all of the key elements
are addressed. Additionally, to estimate the boundaries of the track, cubic
splines can also be used to interpolate the cones themselves, as can be seen
in the final simulations. To see a live simulation of the path planning system
in action, the reader is strongly encouraged to visit the github repository :
https://github.com/alex21347/Cubic_Spline_Path_Planning.

A.2 Cubic Splines

Splines first and foremost offer a powerful method of modelling relations of the
form

yi = f(xi) + ϵi , (104)

where the ϵi are independent random variables with mean 0 and variance σ2

representing the noise in the data.
Splines are particularly effective at modelling relationships with vastly differ-

ent behavior across different regions of the domain of the explanatory variable.
In essence, splines are piecewise polynomials joined together smoothly at knots.
What we consider to be smooth in this context depends upon the order of the
spline.

Definition A.1. Let a < ξ1 < · · · < ξk < b be fixed points called knots. Let
ξ0 = a and ξk+1 = b. Then a spline of order d is a real-valued function on
[a, b], f(x), such that

(i) f is a piecewise polynomial of order d on [ξi, ξi+1) for i = 0, 1, . . . , k

(ii) f has d− 2 continuous derivatives
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From this definition one can see that splines are simply piece-wise polyno-
mials with some additional constraints to preserve smoothness of the resulting
function. When d = 3 we arrive at the cubic spline.

A spline of odd degree d = 2r−1 is called a natural spline if it is a polynomial
of degree r− 1 outside the range of the knots. Therefore, a natural cubic spline
is a cubic spline which is linear outside the range of the data. Natural cubic
spines are usually a robust choice of model if one wants to make predictions
outside the range of the training data.

The method we now use to fit the piece-wise polynomials to the data will now
determine what type of spline we create. A regression spline is the piece-wise
polynomial f(x) which minimises the residual sum of squares (RSS)

RSS =
1

n

n∑
i=1

(yi − f (xi))2 (105)

subject to the constraints in Def. (A.1).
The regression spline can now be shown to be just a particular case of the

more general smoothing spline. The relationship between regression splines and
smoothing splines is analogous to the relationship between linear regression and
ridge regression. Just as ridge regression introduces a penalty term on the norms
of the model parameters with the goals of regularisation and improved general-
isation, smoothing splines add a penalty term on the norms of the derivatives
of the piece-wise polynomial, with the exact same goals in mind.

Thus, the smoothing spline of order d is the piece-wise polynomial f(x)
which minimises the penalised residual sum of squares (PRSS)

PRSS =
1

n

n∑
i=1

(yi − f (xi))2 + λ

∫ b

a

(
f (d−1)

)2
dx (106)

where λ is the smoothing parameter.
The smoothing parameter has a significant qualitative effect on the resulting

smoothing spline. As λ→ 0 we impose no smoothness penalty and end up with
a very close fit to the data, however the resulting curve could be very noisy
as it follows every detail in the data. As λ → ∞ the smoothness penalty
dominates and the solution converges to the ordinary least squares line, which
is as smooth as you can get (with second derivative always 0), but may be
severely underfitting. The cubic smoothing spline is for when d = 3

Surprisingly, it can be shown that minimizing the PRSS for a fixed λ over
the space of all continuous differentiable functions leads to a unique solution.
We will now turn our attention to how we can compute this unique solution for
a cubic smoothing spline of fixed λ.

The penalty may be written as a quadratic form∫ b

a

(f ′′(x))
2
dx = µ′Kµ

where µ = f (xi) is the fit, K is an n× n matrix given by K = ∆′W−1∆,∆ is
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an (n− 2)× n matrix of second differences, with elements

∆ii =
1

hi
,∆i,i+1 = − 1

hi
− 1

hi+1
,∆i,i+2 =

1

hi+1

W is a symmetric tridiagonal matrix of order n− 2 with elements

Wi−1,i =Wi,i−1 =
hi
6
, wii =

hi + hi+1

3

and hi = ξi+1 − ξi, the distance between successive knots. This implies that we
can compute a smoothing spline as

f̂(x) = (I + λK)−1y

Proof. : Write the penalized residual sum of squares as

PRSS = (y − µ)′(y − µ) + λµ′Kµ

Taking derivatives
∂PRSS

∂µ
= −2(y − µ) + 2λKµ

Setting this to zero gives

y = µ̂+ λKµ̂ = (I + λK)µ̂

and pre-multiplying both sides by (I + λK)−1 completes the proof.

This computation using matrices K, ∆ andW allows for efficient implemen-
tations of computing the smoothing splines. For implementation of smoothing
splines in Python the library SciPy was used, which has many well designed
functions for creating smoothing splines. Similarly, in R, one can use the in-
built function smooth.spline() to fit smoothing splines to data.

Finally, with the cubic smoothing spline properly introduced we may now
define the self-evolving cubic spline.

Definition A.2. Let S be an online system where new data points (xi, yi) are
’discovered’ at times ti with 0 ≤ t0 ≤ . . . ≤ tn ≤ t. Then the self-evolving cubic
spline is a cubic smoothing spline, which upon the discovery of a new data point
(xi, yi) at time ti, re-computes the entirety of the cubic smoothing spline in light
of the new information.

The self-evolving cubic spline can be used in any online system that contin-
uously gathers information.
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A.3 Robot Implementation Details

In this section we will discuss some additional robot implementation details en-
countered in this paper.

Firstly, we shall discuss the communication scheme between the robot and
the computer. Robot Operating System (ROS) was used to communicate be-
tween the computer and the robot. Here, the robot would send Lidar data to
the computer, and the computer would send back the instructions for the next
moment in time. The computer used here was using the Linux (Ubuntu 18.04)
operating system. Ideally, the Python scripts used to compute the agents ac-
tions would run on this computer, however, the Python scripts required Python
version 3.8.5, and this was not possible to get on the current version of Linux on
the computer. The workaround that was used was to run the Python scripts on
a nearby laptop with the correct Python version, and send the desired actions
back to the computer using User Datagram Protocol (UDP), which refers to a
protocol used for network communication over the internet. This communica-
tion system was all designed by hand in Python and can be found on Github at
: https://github.com/alex21347/Self_Driving_Car. This communication
system is illustrated below in Figure (32).

Figure 32: Illustration of the communication scheme used to receive Lidar data
from the robot, and send instructions back from the computer. Due to incom-
patible operating systems and Python versions, a third computer (laptop) was
used to process the actions of the Reinforcement Learning agent.

In the end, this system required 13 Python programs running in parallel
over 3 different computers and 3 Python versions. Given the constraints of the
operating systems and Python versions, this became the best solution at hand.
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The second important detail we shall discuss is regarding the construction
of the observation for the Reinforcement Learning agent. Recall from Section
(4.1.1) that the observation to the agent is a cubic-spline interpolation of the
boundaries of the track. In the simulation, the cubic splines were always made
with no issues, however, when the same script was used on the robot, some er-
rors became apparent. This is because of two reasons. Firstly, the cone classifier
was not 100% accurate, which meant that sometimes the boundary of the track
was misinterpreted and this caused errors within the cubic-spline Python code.
Secondly, the cubic-spline interpolation required that at least two left cones and
two right cones could be seen by the agent at any one point in the environment.
This held true in the simulation but not in real life. This caused the Python
script to through an error and crash.

To fix this, a buffer was created where the simulation would store the last
known valid observation to the agent. An observation was deemed valid if there
were at least two left cones and two right cones, and if the values of the obser-
vation were within a suitable and realistic range (If the boundary of the track
is calculated to be over 1km away, it is safe to say that the cubic-spline script
failed due to one of the aforementioned difficulties). Following this, if the cur-
rent observation is deemed invalid, then the observation stored in the buffer
would be fed to the agent, and the agent would send back the same action as
before. Therefore, to get the robot working it was necessary to ignore some
of the agents actions when the track was massively misinterpreted. This could
have been avoided if more sensors were used than just a Lidar.
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