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Summary 

 

Obesity is currently the most prevalent disease according to the WHO and has been considered an 

epidemic for decades. To combat the increasing prevalence of excessive weight, health professionals 

frequently implement treatment plans such as lifestyle interventions and pharmacotherapy. However, 

patients are often nonresponsive, and these treatments often do not get the job done in the more 

extreme cases. For this group, there is the invasive treatment of bariatric surgery, which has shown 

incredible weight reduction and remission of related comorbidities, all much more durable than any 

other type of intervention. These effects seem not to only result from weight loss alone, and numerous 

beneficial effects are not explained by the primary malabsorption of macronutrients resulting from 

bariatric surgery. Numerous gut hormones have been investigated concerning their role in establishing 

these effects. However, not all effects can yet be explained, and it remains a goal to understand the 

hormonal and metabolic mechanisms behind bariatric surgery and if this can provide therapeutic 

targets.  

The bile acid sensing farnesoid X receptor (FXR) is of much interest in this regard as it is still lesser known 

than other regulators in the gastrointestinal tract but has shown to have great metabolic regulating 

potentials such as lipid metabolism, bile acid, and glucose homeostasis. In this thesis, the known 

functions of FXR with bile acids as its primary ligand and FGF19 as one of its main effectors will be 

reviewed in the context of bariatric surgery. The roles FXR play in the metabolic changes observed post-

bariatric surgery will be elucidated, and hypotheses will be summarized.  

In conclusion, FXR seems to be an essential regulator in the context of bariatric surgery and can account 

for many of the beneficial effects observed. However, there are still some contradicting effects observed 

after stimulating this signaling pathway, and thus the window to target it as a therapeutic target is 

narrow. Furthermore, there are also some ill-researched correlations between major bariatric surgery 

complications like dumping syndrome/late hypoglycemic syndrome and possibly weight regain in the 

context of intestinal hyperplasia.  
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Introduction 
 

Obesity is becoming more and more prevalent. In most of the westernized world, obesity is now 

considered an epidemic. Already in 1998, the WHO first classified obesity as an epidemic (World Health 

Organization, 2000) Unfortunately, the trend has not reversed, with currently more than 2 billion people 

being considered overweight or obese worldwide. Together with this, the prevalence of associated 

comorbidities of obesity like type 2 diabetes (T2D), cardiovascular disease, various cancers, and 

numerous inflammatory associated diseases like chronic kidney disease has increased dramatically. 

Especially in those with a BMI ≥ 30. (Ferrannini et al., 1997; GBD 2015 Obesity Collaborators, 2017; Owei 

et al., 2017; Soverini et al., 2010). The WHO stated that the prevalence of obesity in the adult European 

population, categorized by having a BMI exceeding 30 kg/m2, has gone from 9.9 % in 1975 to 23.3% in 

2016, which is an increase of 135% (WHO, 2017).   

Because of the immense impact obesity has on general health, it has become a vital spearpoint for 

health authorities to lower the prevalence of obesity. Obese patients are advised to take on a different 

lifestyle by promoting healthier nutrition and more exercise. These lifestyle interventions, however, 

show limited effects. In the Look AHEAD study, a large multicenter study examining the long-term 

impact of an intensive lifestyle intervention, better results were booked than in previous lifestyle 

interventions. However, it only remains to result in a mean 6.15% weight reduction, which is due to 

many patients not being able to adhere to the program resulting in no decreased weight or weight 

regain after adherence decreases (Wing et al., 2010). Pharmacotherapy is also becoming more effective 

and feasible. For example, the glucagon-like peptide-1 (GLP1) inhibitor semaglutide resulted in a weight 

decrease of 14.9% after 68 weeks (Wilding et al., 2021). However, not all patients respond to 

pharmacotherapy, and medication is not always effective enough to induce enough weight loss for the 

severely obese. Specifically in this group, bariatric surgery is an option to lower the patient’s weight 

substantially. Following the most recent European clinical practice guideline, bariatric surgery is 

indicated in patients with a BMI ≥ 40, a BMI ≥ 35 with comorbidities, and in patients with a BMI ≥ 30 

with refractory diabetes or poorly controlled hypertension (di Lorenzo et al., 2020). 

Bariatric surgery has proven to be much more durable in causing weight loss than medical weight loss 

programs (Heymsfield et al., 2017; Lee & Shin, 2017). All the main types of bariatric surgery performed 

show superior effects on weight loss and associated comorbidities compared to other intervention types 

(Colquitt et al., 2014). A Systematic Review and Meta-analysis of long-term outcomes after bariatric 

surgery showed that all commonly used bariatric surgery techniques have an effect size three to four 

times that of optimal non-surgical therapy (O’Brien et al., 2019). The four most common types of 

surgery performed are Laparoscopic adjustable gastric banding (LAGB), Roux-en-Y gastric bypass (RYGB), 
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sleeve gastrectomy (SG), Biliopancreatic diversion with a duodenal switch (BPD-DS) as can be seen in 

figure 1. 

 

 
Figure 1: a schematic of common bariatric surgery techniques. (a) Adjustable gastric banding. (b) Roux-en-Y gastric bypass. (c) 
Sleeve gastrectomy. (d) Biliopancreatic diversion with a duodenal switch. Figure adapted from (Ruban et al., 2019). 

While being very effective, also this invasive obesity treatment has its limitations. A systematic review 

carried out in 2019 found that 17.6% of patients that underwent either SG or RYGB experienced weight 

regain (WR), defined as regaining ≥ 10% of weight after successful weight loss following the surgery 

(Cooper et al., 2015). Furthermore, malabsorption of nutrients and drugs (primarily seen in RYGB and 

BPD-DS) and metabolic disorders are significant complications observed post-bariatric surgeries (Parrott 

et al., 2017). It has been argued that the alteration in absorption location and possibly altered 

composition of the absorbed nutrient disrupts normal gut hormone signaling, which gives rise to 

metabolic alterations or even malnourishment, as is visualized for RYGB in figure 2  



 

3 
 

Multiple studies have now also been conducted investigating the roles of various gut hormones like 

leptin, ghrelin, and PYY play in bariatric surgery, next to the weight loss induced by malabsorption of 

macronutrients. Further investigation was necessary as not all positive effects observed after bariatric 

surgery can be related to weight loss alone (Dimitriadis et al., 2017). These studies have deepened our 

understanding of bariatric surgery’s hormone-mediated effects on obese patients. However, not all 

observed effects and metabolic changes can be explained by these factors alone, and other factors may 

be involved (Steinert et al., 2017). Thus, more recently, researchers started investigating the effects that 

the bile acid (BA) sensing farnesoid X receptor (FXR) plays in metabolic regulation in the context of 

bariatric surgery. This proves to be an interesting subject as FXR is known to have extensive metabolic 

effects, and it is known that BA levels and composition are altered after bariatric surgery (Fang et al., 

2015a; Kemper, 2011; Myronovych et al., 2014a; Patti et al., 2009; Zhang et al., 2006).  With this 

metabolic regulation in mind and the possible altered hormonal signaling due to bariatric surgery, this 

thesis will investigate how FXR and its associated pathways mediate desired metabolic effects of 

bariatric surgery and which role it plays concerning complications of bariatric surgery.   

Figure 2: Sites of (micro)nutrients absorption and hormone production after RYGB. Figure adapted 
from (Mohapatra et al., 2020) 
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Hormonal mediators in bariatric surgery 
 

The surgical intervention in obesity has shown substantial and long-term weight loss in clinical practice. 

More recently, bariatric weight loss surgery is now also becoming known as metabolic surgery due to 

the substantive metabolic changes observed post bariatric surgery beyond body weight loss alone 

(Dimitriadis et al., 2017). Previous research into peripheral signals and hormones surrounding bariatric 

surgery has shown numerous hormonal effects of bariatric surgery on the patient’s metabolism. These 

are mediated through hormones released by different parts of the gastrointestinal tract, which is in line 

with the gastrointestinal tract being regarded as the largest endocrine organ of the human body, with 

now more than thirty described peptides that are being secreted from enteroendocrine cells in response 

to food intake (Neary & Batterham, 2009).  

It has been shown that bariatric surgery is very effective in targeting multiple aspects of T2D and other 

comorbidities commonly seen in obese patients. Remission of T2D has even been observed in 95-100% 

of adolescent diabetic patients undergoing bariatric surgery, with RYGB and SG mainly showing excellent 

results (Stefater & Inge, 2017). Some of the alleviations of comorbidities commonly observed in obese 

patients can be attributed to substantial weight loss; however, increasingly more evidence points 

towards underlying mechanisms of weight-independent factors. Such factors include the improved 

secretion of incretin, a recovering function of pancreatic islets, and restoring peripheral insulin 

sensitivity to regulate glucose homeostasis, which can contribute to more likelihood of insulin 

independence (Argyropoulos, 2015; Buchwald & Buchwald, 2019; Cerit, 2017; Guerrero-Pérez et al., 

2020; Hankir et al., 2019; Ji et al., 2021a; Tangalakis et al., 2020; Torquati et al., 2019). Due to the 

metabolic nature of these changes, one study has indicated that even complications associated with 

type 1 diabetes, which is not weight-associated, can potentially be curbed by bariatric surgery, but the 

evidence is still limited (Samczuk et al., 2018). 

Cardiovascular and cerebrovascular diseases are associated with obesity and T2D, so one would expect 

that bariatric surgery also may be able to attenuate this. Here again, numerous weight-independent 

effects related to vascular diseases are found, such as significantly lower blood triglyceride and glucose 

levels after bariatric surgery, and significant increases have been found in levels of postprandial 

adiponectin, glucagon-like peptide-1 (GLP-1), insulin, and serum insulin-like growth factor 1 (IGF-1) 

(Umeda et al., 2013). These effects combined facilitate a reduced incidence of sudden large vascular 

diseases and have a protective effect on the heart and vasculatures (Aminian et al., 2019; Domenech-

Ximenos et al., 2020; Doumouras et al., 2021; D. P. Fisher et al., 2018; Osto et al., 2015; Umeda et al., 

2013). 

Next to this, nonalcoholic fatty liver disease (NAFLD) has been observed to significantly improve after 

bariatric surgery as well as the more advanced stages of nonalcoholic steatohepatitis (NASH) and liver 

fibrosis (Karcz et al., 2011; Mattar et al., 2005; Moretto et al., 2012; Mottin et al., 2005). Potential 

biomarkers that play a role here include Peptide YY (PYY), Fibroblast growth factors 19 and 21 (FGF19, 

FGF21), BAs, and GLP-1, which are all influenced by bariatric surgery (Arab et al., 2017; Armstrong et al., 

2016; Chandarana et al., 2011; Chow et al., 2017; Crujeiras et al., 2017; Gómez-Ambrosi et al., 2017a; 

Harris et al., 2017a; Hutch & Sandoval, 2017; Ji et al., 2021b; Jiménez et al., 2013, 2014; Jørgensen et al., 

2012; Kullman et al., 2016; Magouliotis et al., 2017; Manning et al., 2015; Martinez de la Escalera et al., 

2017a; Nemati et al., 2018; Steinert et al., 2017; Zarei et al., 2018). 
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Finally, like every invasive treatment, certain complications may arise. As mentioned before, the 

malabsorptive effect of the surgery may lead to certain nutrient deficiencies and malnourishment. 

Dumping syndrome is also a frequent complication that can be categorized as either early or late 

dumping syndrome. Various symptoms within the first hour mainly characterize early dumping 

syndrome after a meal. Often observed are vasomotor symptoms such as fatigue, perspiration, flushing, 

palpitations, hypotension, and gastrointestinal symptoms such as abdominal pain, nausea, and diarrhea 

(Scarpellini et al., 2020; Tack et al., 2009; Tack & Deloose, 2014). Late dumping syndrome is mainly 

characterized by hypoglycemia, and symptoms usually can be seen between 1 and 3 hours after a meal 

(Scarpellini et al., 2020). It is generally accepted that dumping syndrome is caused by the increased 

amount and speed of undigested solid food being delivered to the small intestine resulting from the 

reduced gastric volume capacity (Mainly in early dumping syndrome). The effects are mediated by rapid 

fluid shifts from the plasma compartment to the intestinal lumen, but are also associated with various 

gastrointestinal hormones such as neurotensin, vasoactive intestinal peptide, GLP1, PYY, gastric 

inhibitory polypeptide, insulin, and glucagon (Adrian et al., 1985; Blackburn et al., 1980; Bloom et al., 

1972; Ito et al., 1981; Lawaetz et al., 1983; Sagor et al., 1981; Scarpellini et al., 2020; Sirinek et al., 1985; 

Tack et al., 2009; van Beek et al., 2017). It has now also been observed that the FXR-related hormone 

FGF19 is upregulated in patients with post-bariatric hypoglycemia/late dumping syndrome together with 

an increase in postprandial BA levels and might be a potential contributor to insulin-independent 

pathways causing late dumping syndrome post bariatric surgery (Mulla et al., 2019). While all these 

hormones are essential components of the metabolic changes surrounding bariatric surgery, the 

remainder of this thesis will focus on FXR with its associated hormones and pathways.   
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FXR, bile acids, and FGF: mechanisms and pathways 
 

FXR is a bile acid-activated receptor (BAR) and is a major regulator of BA synthesis, lipid metabolism, and 

glucose homeostasis (Fu et al., 2019; Kemper, 2011). The receptor was first discovered in 1995 as a 

nuclear receptor activated by farnesol metabolites, hence the name farnesoid X receptor (Forman et al., 

1995). The FXR is translated from the FXRα gene, which encodes four isoforms expressed in a tissue-

dependent manner (Boesjes et al., 2014; Zhang et al., 2003). In the gastrointestinal tract, all four 

isoforms can be found. FXR resides mainly in the ileum, where FXRα1 and FXRα2 are expressed 

moderately, and FXRα3 and FXRα4 are found to be abundantly expressed here. Furthermore, FXRα1 and 

FXRα2 are also expressed moderately in the adrenal glands, and FXRα3 and FXRα4 are moderately 

expressed in the kidney (Zhang et al., 2003). This tissue-dependent isoform expression may contribute 

to the vast array of metabolic effects observed and the fine-tuning of the signaling (van Zutphen et al., 

2019). 

To understand the FXR signaling, it is also important to know how its endogenous ligand functions. BAs 

are essential for the absorption of dietary fat as they are potent detergents stored in the gallbladder and 

secreted into bile. They are released into the proximal duodenum through the common bile duct in 

response to fatty food ingestion due to contraction of the gallbladder (Bozadjieva et al., 2018b). Only a 

tiny amount of the BA is excreted, 5 % via the stool, and 95% of BA is reabsorbed into the portal 

circulation using specific transport proteins (Fig. 3). BAs are categorized as atypical steroids, and in 

humans, we consider two main families. First, the primary BAs, cholic acid (CA) and chenodeoxycholic 

acid (CDCA), are synthesized in the liver from cholesterol. Next to those, there are the secondary BAs 

which are generated by bacteria in the gut from CA and CDCA and are named lithocholic acid (LCA) and 

deoxycholic acid (DCA), respectively (Fiorucci et al., 2020). Besides the role in fat uptake, it seems that 

BAs are self-regulating by functioning as the signaling molecules for their own synthesis. Furthermore, it 

has been shown that BA signaling is involved in diverse biological and pathophysiological processes, such 

as liver regeneration and proinflammatory and proapoptotic actions (Chiang, 2013; van Zutphen et al., 

2019). The discovery of FXR as a BAR and later the discovery of other bile sensing receptors has led to 

BAs being now regarded as hormones and not only a factor in lipid absorption anymore. 

Through an SHP-dependent mechanism, FXR also inhibits sodium taurocholate co-transporting 

polypeptide (NTCP). NTCP is responsible for the uptake of conjugated bile acids, and inhibiting this 

receptor will decrease BA uptake by the liver, which in turn will further affect BA homeostasis (Hoeke et 

al., 2009). Furthermore, FXR upregulates the gene expression of other BA transporters like the bile salt 

export pump (BSEP), the multidrug resistance protein-3 (MDR3), and the organic solute transporter 

alpha/beta (OSTα/β). The upregulation of these transporters increases the BA efflux from the liver to the 

canalicular lumen and portal vein, respectively (Ananthanarayanan et al., 2001; Dash et al., 2017; 

Ijssennagger et al., 2016). Finally, FXR also regulates key enzymes involved in BA conjugation and 

detoxification (Ijssennagger et al., 2016). An overview of this is presented in figure 4.  
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Figure 3: general overview of BA and FXR signaling. Food ingestion causes BA stored in the gallbladder to be released through 
the common bile duct into the duodenum. BA aid lipids absorption in the small intestine and activates FXR. The resulting 
signaling pathways regulate BA synthesis or gallbladder filling through the repression of CYP7A1 involved in converting 
cholesterol to BAs. BA is 95% reabsorbed and recycled back into the portal circulation using specific transport proteins in the 
ileum; the remaining 5% is excreted through the stool. Figure adapted from (Bozadjieva et al., 2018b) 

FXR can regulate gene expression by binding DNA as a monomer or as a heterodimer with RXR (Claudel 

et al., 2002; Zhan et al., 2014). When FXR binds heterodimerically with RXR, it induces the expression of 

many genes, including the small heterodimer partner (SHP) gene. SHP causes transcriptional repression 

of the rate-limiting enzymes cholesterol 7α-monooxygenase (CYP7A1), sterol 12α hydroxylase (CYP8B1), 

and liver receptor homolog 1 (LRH-1), also shown in figure 4 (Chiang et al., 2000; Goodwin et al., 2000). 

SHP functions by recruiting repressive co-factors and binds to the respective genes inhibiting 

transcription (Miao et al., 2011). CYP7A1 is responsible for the de novo synthesis of primary BAs, 

meaning FXR stimulation by BA causes negative feedback to BA production (H. Wang et al., 1999). Next 

to direct signaling, intestinal BA-activated FXR can exert its effects using the hormones FGF19 (FGF15 in 

mice) and FGF21. This type of FXR signaling occurs mainly in the ileum as the ileal enterocytes of the 

small intestine specifically express FGF15/19 and release FGF 15/19 postprandially in response to bile 

acid absorption (Potthoff et al., 2011). The FGF15/19 originating from the ileum is released in the portal 

venous circulation and is transported to the liver, where it activates the fibroblast growth factor 

receptor 4 (FGFR4). FGFR4 is, as far we know, exclusively activated by FGF15/19 and is highly expressed 

in the gallbladder and liver. This signaling again represses de novo BA synthesis through suppression of 

CYP7A1 and CYP8B1 but also suppresses gluconeogenesis and lipogenesis and increases glycogen 

synthesis (Al-Aqil et al., 2018; Bozadjieva et al., 2018a; Inagaki et al., 2005; Shapiro et al., 2018). 
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Figure 3 The role of FXR in the regulation of bile acid synthesis in hepatocytes and in the enterohepatic circulation of bile acids. 
Cholesterol is converted to cholic acid (CA) and chenodeoxycholic acid (CDCA) in human liver. The classic pathway is initiated by 
cholesterol 7α-hydroxylase (CYP7A1), while the alternative pathway is initiated by sterol 27-hydroxylase (CYP27A1) followed by 
oxysterol 7α-hydroxylase (CYP7B1). Sterol 12α-hydroxylase (CYP8B1) catalyzes cholic acid (CA) synthesis. In mouse liver, CDCA is 
converted to α- and β-muricholic acids (αMCA and βMCA) by Cyp2c70 as primary bile acids. Details of bile acid synthesis 
pathway and enzymes are described in the text. Major regulatory enzymes are shown. CA and CDCA are conjugated to taurine 
(T) or glycine (G) and are secreted into bile. Bile acids are reabsorbed in the ileum. In the colon, gut bacterial bile salt hydrolase 
(BSH) de-conjugates bile acids and 7α-dehydroxylase (7α-DH) converts CA and CDCA to deoxycholic acid (DCA) and lithocholic 
acid (LCA), respectively. Bile acids activate FXR, which plays a critical role in the regulation of bile acid synthesis. Activation of 
FXR inhibits CYP7A1 and CYP8B1 through two pathways. In the liver, FXR induces short heterodimer partner (SHP) to inhibit 
CYP7A1 and CYP8B1 gene transactivation by HNF4α and LRH-1 (Pathway 1). In the intestine, FXR induces fibroblast growth 
factor 19 (FGF19), which activates hepatic FGF receptor 4 (FGFR4)/β-Klotho signaling mainly via ERK1/2 to inhibit CYP7A1 gene 
transcription (Pathway 2). FXR induces bile salt export pump (BSEP) to efflux bile acids into bile. ATP binding cassette G5 and G8 
(ABCG5/G8) effluxes cholesterol and multidrug resistant protein 2/3 (MDR2/3) effluxes phospholipids into bile to form mixed 
micelles with bile acids. MDR related protein 2/3 (MRP2/3) effluxes bilirubin and glutathione-conjugated bile acids. In the 
enterocytes of the ileum, bile acids are reabsorbed via apical sodium-dependent bile acid transporter (ASBT), which is inhibited 
by bile acids and FXR. FXR induces intestine bile acid binding protein (IBABP), which binds and transports bile acids across the 
enterocyte to the sinusoidal membrane to be secreted to portal blood via the organic solute transporter α/β (OSTα/OSTβ) 
dimer, which is induced by FXR. Bile acids circulated to the liver are taken up by hepatic sodium-dependent taurocholate co-
transporting peptide (NTCP), which is inhibited by bile acids via SHP. Organic anion transporting peptides (OATPs) and MRP4 
uptake bile acids to hepatocytes independent of sodium. At the sinusoidal membrane, FXR induces OSTα/OSTβ or MRP4 
(induced in cholestasis) to efflux bile acids into systemic blood circulation. (+) indicates stimulation, (− ) indicates inhibition. 
Adapted from (Chiang & Ferrell, 2022) 
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The FXR/SHP pathway in the liver and the FXR/FGF15/19/FGFR4 pathway in the intestines are the 

primary regulators of BA synthesis (L. Jiang et al., 2021). BA’s and FGF15/19 facilitate communication 

between the liver and small intestine. FGF15/19 can resemble insulin in reducing gluconeogenesis and 

stimulating protein and glycogen synthesis (DePaoli et al., 2019). In contrast to insulin, however, 

FGF15/19 can decrease hepatic triglycerides, which makes FGF19 an attractive therapeutic target as it 

can mimic or support the actions of insulin while avoiding some of the pitfalls (Bozadjieva et al., 2018b; 

Harrison et al., 2018). FGF15/19 can target the membrane-bound FGF receptor FGFR4. However, there 

are more FGF receptors with varying expression and activation by FGF15/19 between tissues. There are 

four FGF receptors, and for FGFR1, there are two known splice variants (FGFR1b and FGFR1c) (Kohli et 

al., 2010a; le Roux & Bueter, 2014; Myronovych et al., 2014b; Schauer et al., 2017). FGFR1 is highly 

expressed in the brain and adipose tissue but is generally expressed in most tissues (Lan et al., 2017a).  

Both FGF21 and FGF15/19 can target FGFR1c, and this has led researchers to explore the tissue-specific 

mechanism of FGF19 and FGF21 in reducing body weight, blood glucose, insulin, and hepatic 

triglycerides. FGF21 is a key hepatokine that exerts pleiotropic metabolic actions on various organs, such 

as adipose tissue and skeletal muscles, to antagonize obesity and diabetes (F. M. Fisher & Maratos-Flier, 

2016). The hepatic gene expression of FGF21 is transcriptionally regulated by peroxisome proliferator-

activated receptor a (PPARa), a transcription factor activated by free fatty acid mediating the fasting 

response (Lundåsen et al., 2007). FGF21 can act directly on the central nervous system, which induces 

sympathetic outflow towards white and brown adipose tissue, increasing energy expenditure (Douris et 

al., 2015; Owen et al., 2014). FGFRs also form cell surface receptor complexes together with the single-

pass transmembrane protein providing tyrosine kinase activity to the complex (Kuro-O, 2012). When β-

Klotho was explicitly ablated in hepatocytes, adipose tissue, or neurons, the researchers found that FGF 

also targets the brain. In the absence of β-Klotho in neurons, the weight-loss effects of FGF15/19 and 

FGF21 were absent. However, this was not the case in adipose or liver tissue (Lan et al., 2017b) This is 

reinforced by numerous other studies that elaborate on the effects of FGF15/19 in the central nervous 

system and discuss FGF15/19 signaling in reducing food intake and improving glucose homeostasis (Lan 

et al., 2017b; Morton et al., 2013; Perry et al., 2015; Ryan et al., 2013). However, some of the more 

acute FGF15/19 effects may also partly depend on the increased insulin sensitivity mediated by adipose 

tissue and altered whole-body glucose uptake. Recently, also muscle was identified as a target of 

FGF15/19, as it has been shown that skeletal muscle mass and strength can be increased by FGF15/19. 

Recommendations have been made to study the increase in FGF15/19 as an adaptive mechanism to 

prevent muscle loss after weight-loss surgery (Benoit et al., 2017). It is also possible that additional 

FGFRs are present and other tissues are involved in FGF15/19 signaling in glucose homeostasis and body 

weight. Furthermore, our current understanding of FGF15/19 signaling in pancreatic α- and β-cells is still 

lacking concerning insulin and glucagon levels post-bariatric surgery, and only limited data is present on 

the possible role of FGF15/19 in pancreatic islet function and cell mass (Bozadjieva et al., 2018a) In 

conclusion, our understanding of the pathways has greatly increased over the past few years, but the 

complete picture of some essential elements are still missing.   
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FXR modulation 
 

As FXR signaling proves to be extremely important surrounding metabolic disease, numerous studies 

have been conducted on possible modulators and agonistic drugs. Research into various endogenous 

and (semi)synthetic compounds has resulted in our current understanding of how FXR can be 

modulated. FXR was initially an orphan NR as the receptor was discovered before the ligand. FXR was 

named farnesoid X-activated receptor following the identification of the ligand farnesol and its related 

metabolites (Forman et al., 1995). Also, cafestol was an early discovered agonist of FXR. Cafestol has 

been known for a long time as one of the most potent cholesterol-elevating compounds, and the 

research into cafestol has led to a better understanding of FXR signaling. Several genes involved in 

cholesterol homeostasis regulated by cafestol, including CYP7A1, were shown to be FXR related, leading 

to later studies demonstrating that cafestol is an agonist of FXR in mice. It has been demonstrated that 

cafestol increases IBABP and FGF15/19 expression in the intestine. However, cafestol does not affect 

FXR target genes in the liver, which indicates that cafestol behaves as an intestine-restricted FXR agonist 

(Ricketts et al., 2007).  

The potency varies of the various endogenous BA species to activate FXR and is ranked as CDCA > DCA > 

LCA > CA, which served as a baseline for designing steroidal FXR agonists (H. Wang et al., 1999). Using 

the structures-activity relationship (SAR) analysis of the different BAs has shown that for FXR agonism, 

amino acid placement in positions 3 and 7 of the BA skeleton, as well as the side chain is crucial for its 

function (H. Wang et al., 1999). With an EC50 of 50 μM in mice and 10 μM in humans on FXR, CDCA was 

the most potent natural activator. Thus CDCA was used to generate a panel of semisynthetic derivatives, 

which was used to clarify further the SAR and made it possible to create highly potent agonists (Gioiello 

et al., 2014; Pellicciari et al., 2006). On top of the BAs themselves, a biotransformation intermediate of 

the primary BA synthesis, 22(R)-hydroxycholesterol, has also been identified as an FXR agonist (Deng et 

al., 2006). Expanding on FXR agonists, several steroidal compounds such as etiocholanolone, MFA-1, and 

androsterone have shown FXR activation next to the BA-related compounds (Soisson et al., 2008; S. 

Wang et al., 2006). 

To test the direct effects of BAs and if they were a possible suitable drug, exogenous BA administration 

has been done in the context of clinical studies. These have shown that exogenous BA can have 

numerous metabolic effects such as improved glucose homeostasis due to increased insulin and GLP-1 

levels, decreased appetite, and increased energy expenditure and activity of brown adipose tissue 

(Adrian et al., 2012; Bray & Gallagher, 1968; Broeders et al., 2015; Wu et al., 2013). This has been 

reinforced by mice studies where total body FXR knockout mice were used, which resulted in increased 

serum triglyceride and cholesterol levels and excessive fat accumulation in the liver, as BAs were unable 

to initiate (Cariou et al., 2006; Sinal et al., 2000). These FXR-lacking mice also show signs of insulin 

resistance and have reduced glucose disposal characterized by decreased liver and adipose tissue insulin 

signaling when mice are maintained on standard chow (Cariou et al., 2006; Zhang et al., 2006). On top of 

this, FXR overexpression in db/db mice (an animal model for T2D combined with obesity) or treatment 

with the FXR agonist GW4064 (both a hepatic and intestinal FXR activator) in both db/db and ob/ob 

mice (an animal model also focused on obesity and T2D) showed positive metabolic effects. Being an 

effective treatment in both groups, FXR stimulation proves to be a potential therapeutic strategy for 

metabolic disease. A fundamental limitation of these results is that FXR knockout mice are resistant to 
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high-fat diet-induced obesity and glucose intolerance which means that successfully targeting to achieve 

the desired effect can be challenging (Prawitt et al., 2011). The main argument for the ambiguous 

results surrounding FXR is that its role in metabolic regulation differs between various tissues, which 

may be crucial for the beneficial effects of BA metabolism post-bariatric surgery. 

Next to steroidal agents, numerous FXR agonists containing isoxazoles have been published over the last 

20 years. The first selective agonist of FXR, GW4064, was a full agonist without activity on other NRs at 

concentrations up to 1 μM and was patented in 1998 and published in 2000 (Maloney et al., 2000). 

GW4064 exhibits a high affinity for FXR. However, poor bioavailability and potential hepatobiliary 

toxicity limited its clinical application, but it remained the structural template for the development of 

numerous patentable and druggable FXR agonists (Akwabi-Ameyaw et al., 2008; Bass et al., 2011). 

Modifications had to be implemented to enhance the drug properties, such as the implementation of an 

oxymethylene or amino-methylene replacing the stilbene olefin or linking the middle and the terminal 

aryl rings using a hydroxyl-bearing ring replacement (Abel et al., 2010; Kinzel et al., 2016) Next to these 

implementations, several heterocyclic analogs were synthesized as the isoxazole ring is crucial for FXR 

activation, and great agonist activity was observed with triazoles, oxazolidinones, and pyrazoles (Smalley 

et al., 2015). 

Fexaramine (Fex) is also an agonist from a different class than GW4064 and steroidal ligands. Fex is 

developed using combinatorial chemistry and has a 100 times higher affinity than CDCA. It was observed 

that co-activator SRC-1 peptide recruitment to FXR caused by Fex is functionally and biologically similar 

to that of GW4064, and Fex was able to achieve induction of target genes at a comparable 

concentration to GW4064 (Downes et al., 2003). Also, Fex behaved as an intestine-restricted FXR agonist 

with minimal effect elsewhere (Fang et al., 2015a). Furthermore, the FXR agonist GW4064 and FXR 

ligand taurochenodeoxycholic acid were tested in treating primary cultured islets. Here it was found that 

FXR stimulation resulted in increased calcium concentrations and electrical activity, leading to increased 

insulin secretion which the authors attributed to FXR-induced inhibition of KATP channel activity and not 

the regulation of insulin synthesis (Düfer et al., 2012). 

Finally, what is interesting about FXR is the diverse effects it has on metabolism varying per tissue in the 

context of stimulation or inhibition. For example, most research has ruled in favor of FXR stimulation, 

and most research has been conducted on FXR agonists. However, multiple less hydrophobic BA have 

been observed as FXR antagonists. Such BAs are, for example, Tauro-β-murocholic acid(T-β-MCA) and 

Glycine-murocholic acid (G-MCA), which have also been proved to decrease obesity and improve 

metabolic parameters in high-fat diet-induced and genetic obesity (C. Jiang, Xie, Lv, et al., 2015; F. Li et 

al., 2013). This makes the interpretation of mechanisms and the expected effects challenging to predict.   
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FXR signaling surrounding bariatric surgery 
 

When patients undergo bariatric surgery, their enterohepatic circulation is altered. These procedures 

have demonstrated changes to numerous traditional gut hormones levels, and, more importantly, 

bariatric surgery also alters both the levels and composition of BA in rodents and humans (Kohli et al., 

2010a; Myronovych et al., 2014b; Patti et al., 2009; Pournaras et al., 2012). All different procedures 

induce considerable changes in the internal environment of the gastrointestinal lumen giving rise to 

changes in nutrient intake, gastric emptying, and gastric acid production. However, specifically, in both 

VSG and RYGB, the gut microbiota is shown to be affected and, consequently, the BA composition (Aron-

Wisnewsky & Clement, 2014). Recalling from earlier, gut biota is responsible for synthesizing secondary 

BAs from primary BAs, which has been previously proven by germ-free mice having a much lower BA 

diversity than those with normal gut microbiota. Fecal transplantation from regular gut biota-containing 

mice successfully restored diversity (Sayin et al., 2013a). Concluding from this, the altered BA 

composition can be acquitted to the altered microbiota composition due to the bariatric surgery. Also, 

surgical bile diversion into the ileum creates interesting enough comparable effects as seen in RYGB and 

leads to weight loss and improved glucose tolerance in rodents without gastric restriction; however, 

when BAs were diverted more proximally in the small intestine, the effects disappeared (Albaugh et al., 

2019; Flynn et al., 2015). 

Next, after obese mice underwent VSG, a study reported an increase in circulating CA and additionally 

found an increase in taurine-conjugated DCA. These increases correlate to the VSG group’s maximum 

weight loss and previously observed improvements upon liver steatosis (Sayin et al., 2013b). Two other 

studies showed that VSG was more successful in improving liver lipids than calorie restrictive-related 

weight loss, underlining that bariatric surgery’s metabolic impact on the liver goes beyond its impact on 

weight loss (Kohli et al., 2015; Myronovych et al., 2014a). Similar results have also been obtained in 

humans, pigs, and rats when another study compared changes in circulating BAs after RYGB. Differences 

were observed between the three species concerning the BA composition alterations, however, they 

showed an overall BA increase after surgery. More specifically, secondary taurine-conjugated BAs were 

most increased, which suggests that bariatric surgery changes BA composition as a direct effect of 

alterations by the bariatric surgery in the microbiome (Spinelli et al., 2016).  

Next to DCA and LCA, there is a bacterial-derived T-β-MCA that has been discussed before. Interestingly, 

T-β-MCA inhibits the negative feedback on primary BA synthesis. T-β-MCA inhibits FXR and FGF15/19 

signaling resulting in an increase in primary BA synthesis and, consequently, a more diverse composition 

of BA due to the bacterial hydrolyzation of host-derived primary BAs (Sayin et al., 2013b). This increase 

in T-β-MCA mediated FXR modulation is in line with the observations of an increased primary BA 

synthesis after VSG surgery (Myronovych et al., 2014a). With the enterohepatic circulation of BAs 

altered post-bariatric surgery, it has been hypothesized that BAs mediate observed effects on weight 

and glucose homeostasis post-bariatric surgery through their associated receptors. This hypothesis has 

been reinforced by FXR-deficient mice showing diminished effects of VSG, such as diminished weight 

loss and less improved glucose tolerance, whereas TGR5-deficient mice show expected weight loss but 

have only a marginal improvement of glucose regulation in response to VSG (McGavigan et al., 2017; 

Ryan et al., 2014). TGR5 is also a BAR and is now becoming better known as a BA sensing metabolic 

regulator like FXR. It has been found, for example, that the TGR5 activation leads to a stimulatory effect 
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on GLP-1 secretion (Thomas et al., 2008). TGR5 possibly is also responsible for BA mediated effect but 

unfortunately lies beyond the scope of this thesis. 

Furthermore, resulting from the increase in BA, one would expect an increase in FXR stimulation post-

bariatric surgery. Moreover, the increased FXR stimulation can indeed be observed due to increases in 

FGF levels post-bariatric surgery, such as increased FGF15/19 levels, and several studies claim it is 

inevitable and necessary for catalyzing weight loss in obese as well as nonobese patients (Nemati et al., 

2018). Interestingly, numerous other studies indicate a surgery-specific effect on in vivo FGF levels. 

FGF15/19/21 are associated with macronutrient ingestion and fast glucose delivery rates to the liver and 

thus may be affected, but not the effector. However, FGF levels still may be helpful as a potential 

biomarker for indicating weight loss after bariatric surgery (Bozadjieva et al., 2018c; DePaoli et al., 2019; 

Gómez-Ambrosi et al., 2017b; Harris et al., 2017b; Ji et al., 2021c; Martinez de la Escalera et al., 2017b; 

Sandhu et al., 2014; Werner, 1998). In another study, plasma levels of FGF19 and FGF21 were analyzed 

in 28 patients who underwent RYGB or LAGB, and in both procedures, an increase in postprandial 

plasma FGF19 concentrations was observed (Harris et al., 2017b).  

Next to all the positive effects the increased levels and altered composition of the BA seem to have with 

the resulting FXR stimulation and FGF15/19 release, some complications can result from the same 

changes. In patients with late dumping syndrome/post-bariatric hypoglycemia, FGF19 is increased and is 

the top-ranking differentially abundant protein at 120 minutes after a mixed meal (Mulla et al., 2019). 

FGF19 levels were 2.4-fold higher in late dumping syndrome/post-bariatric hypoglycemia vs. 

asymptomatic post-RYGB, which possibly indicates that FXR/FGF signaling also inherits some unwanted 

side effects of bariatric surgery.   
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Discussion  
 

In conclusion, FXR signaling seems to contribute significantly to the metabolic changes observed post-

bariatric surgery in both weight-independent metabolic alterations and the weight loss itself. All 

bariatric surgery procedures showed FXR-mediated effects, with RYGB showing the most convincing 

results. It can be speculated that this effect is mainly seen here in the duodenum, as it is exposed to 

undiluted bile as nutrients bypass the duodenum. The delayed mixing of BA and ingested food possibly 

give rise to a more concentrated bile solution in the ileum and could also facilitate the bacterial 

conversion of primary to secondary BAs, which can alter the FXR signaling pathway. 

Furthermore, surgical bariatric interventions appear to alter the levels and composition of BAs 

significantly, and these BAs are important molecular mediators of effects on energy and glucose 

homeostasis. An important future directive is, therefore, to obtain a deeper understanding of how and 

to what extent the changes in microbiota account for the altered enterohepatic BA circulation and what 

role the gut microbiota plays in both BA composition and the general health of the host (Arora & 

Bäckhed, 2016; Fernandes et al., 2016; Peat et al., 2015). It would be interesting, for example, to 

observe the effects that the pre and postoperative diet have on the patient’s gut microbiota and how 

that affects the BA composition. 

Furthermore, it is well known that FXR signaling and its effectors are tissue-specific and can have 

opposing effects. It has been observed that mice selectively lacking intestinal expression of FXR have 

decreased insulin resistance and fatty livers in response to a high-fat diet (C. Jiang, Xie, Li, et al., 2015; C. 

Jiang, Xie, Lv, et al., 2015). They have also proven that the selective high-affinity intestinal FXR inhibitor 

G-MCA can prevent and even reverse obesity, glucose intolerance, insulin resistance, and hepatic 

steatosis in genetically and high-fat diet-induced obese mice (Fang et al., 2015b). Next, it was also found 

that in ileum biopsies from obese patients, FXR expression levels showed a positive correlation with BMI 

(C. Jiang, Xie, Lv, et al., 2015). From these results, it could be concluded that an increase in FXR signaling 

in the ileum negatively impacts body weight and glucose homeostasis. In contrast, however, treatment 

with the gut-specific FXR agonist Fex improved hepatic glucose and lipid metabolism, reduced body 

weight, improved glucose homeostasis, decreased insulin resistance, promoted adipose tissue 

browning, and increased energy expenditure (Fang et al., 2015a; Pathak et al., 2018). The hepatic FXR 

signaling has also been tested using liver-specific FXR knockout mice, which showed increased plasma 

triglycerides. Next, these mice were not protected from high-fat diet-induced obesity and insulin 

resistance (Prawitt et al., 2011). In contrast, another study on hepatic FXR using a constitutively active 

FXR resulted in lower plasma glucose levels in nondiabetic mice and reduced hyperglycemia in db/db 

mice (Zhang et al., 2006). In summary, FXR is intimately involved in the entire metabolic process of bile 

acid synthesis, transport, and reabsorption (Cao et al., 2019; Ovadia et al., 2019). However, due to the 

tissue-specific and context-dependent nature of FXR signaling, closely monitored trials are necessary for 

determining the conditions for each effect. This, in combination with the use of SBARMs, may hopefully 

lead to effective pharmacotherapeutic alternatives for surgery. 

What also may be of interest is induced intestinal hypertrophy, mainly in RYGB. The cause for the 

transformation of the intestinal lining is unclear but presumably depends on an adaptive response to 

handle the new composition of luminal content and could rely on increased BAs, changed microbiota, or 

different macronutrient composition (Bäckhed et al., 2005; Korner et al., 2009; le Roux et al., 2010a; 
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Saeidi et al., 2012). This physical change of the GI mucosa is prominent after RYGB surgery but not after 

VSG (Mumphrey et al., 2013, 2015). It has been speculated that this physical adaption of the gut may 

underpin the beneficial effects of these procedures as nutrient absorption increases again (Evers et al., 

2017) Other types of bariatric surgeries that reroute the intestine also cause hypertrophy. Duodenal 

jejunal bypass surgery in rats, a procedure where the placement of a duodenal-endoluminal sleeve 

prohibits nutrient-to-tissue interaction, causes atrophy in the bypassed limb but induces increased villus 

length throughout the small intestine and hyperplasia in the portion of jejunum exposed to nutrients 

that, under normal circumstances, are alien to these intestinal sites (Habegger et al., 2014; B. Li et al., 

2013). In an alternative surgical intervention, the interposition of a piece of ileum within the jejunum 

leads to a “jejunization” of the transposed ileal section at the level of villi length and GATA4/ILBP mRNA 

expression (Kohli et al., 2010b). Lastly, RYGB in rats is associated with increased bowel width, villus 

height, crypt depth, and cell proliferation in the alimentary and common intestinal limbs but not in the 

biliopancreatic limb (le Roux et al., 2010b; Taqi et al., 2010). This hypertrophy could be linked to FXR 

signaling as related circulating growth factors, such as IGF-1, glucagon-like peptide-2 (GLP-2), FGF, and 

epidermal growth factor (EGF), all increase in rats and mice following RYGB and play a role in intestinal 

growth and proliferation (Brubaker et al., 1997). Considering the timeline at which this hyperplasia 

occurs with increased ability for nutrient absorption, one could also argue that weight regains, as 

observed in a significant portion of post-bariatric surgery patients, is a result of this. If this is true, better 

knowledge of the exact mediators of this hyperplasia might become a therapeutic target to attenuate 

this complication and produce even better results. Furthermore, it is recommended to investigate 

further possible FXR-regulated micronutrient metabolisms. An example would be investigating vitamin D 

and bone metabolism as it is one of the downstream targets of FXR which can possibly tie into the 

widespread vitamin D deficiency seen post bariatric surgery(Massafra et al., 2018; Tack & Deloose, 

2014).  

Overall, FXR proves to be an essential mediator in mainly the positive effects of bariatric surgery but still 

might be implicated in the common complications seen with this treatment. FXR has been targeted for 

two decades, and the increasing knowledge still opens up more avenues for new therapeutic options 

and better treatment of metabolic conditions. However, as it, unfortunately, goes for all newly found 

targets, it is not the cure for all. There are still contradictions, and where some effects can be beneficial, 

some also result in unwanted side effects. The FXR remains an attractive therapeutic target, but as 

always, new targets have to keep being discovered, and mechanisms have to be further elucidated.  
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