
Chaos Control: Controlling Heart
Arrhythmia Using an Echo State Network

Controller

Student: Viktor Veselý, s3970043, v.vesely@student.rug.nl
Supervisor: Prof. Dr. H. Jaeger
Co-Supervisor: Dr. J. P. Borst

A bachelor thesis presented for the degree of
Artificial intelligence

Faculty of Science and Engineering
University of Groningen

The Netherlands
July 2022

Abstract: The regular propagation of the action potential on heart tissues is crucial for the optimal
heart muscle contractions. Obstacles to the heart tissues such as scars can cause the propagation
to become chaotic - small differences amplify over time and can become fatal for the diseased
person. I used an echo state network (ESN) controller to investigate the effectiveness of the method
on controlling a simulated heart arrhythmia, which can be modelled as chaotic action potential
propagation. ESNs have been previously showed to predict a chaotic time series with unprecedented
precision. I altered an existing computational heart model to exhibit such a chaotic dynamics.
Whilst the validation error of the controller remained reasonably low, it was unable to control the
arrhythmia. The controller performed significantly better on a simpler chaos control task (with 2
dimensions instead of 2560), suggesting that the original control task was too complex and unfeasible
with our computational resources.

Contents

1 Introduction 2
1.1 Existing solutions . 3

1.1.1 Implantable Cardioverter Defibrillators . 3
1.1.2 Pharmacological Treatment . 3
1.1.3 Artificial pacemakers . 3
1.1.4 Machine learning approach . 3

1.2 Chaos control . 4
1.3 Echo state networks . 4
1.4 Research objective . 5

2 Theoretical Background 5
2.1 Cardiomyocytes . 5
2.2 Heart model . 6
2.3 Van der Pol oscillator . 9
2.4 Echo state network as controller . 10

2.4.1 Dynamics . 10
2.4.2 Training . 11

3 Methodology 12
3.1 Dataset creation . 12

3.1.1 Action selection . 13
3.2 Controller designs . 14

3.2.1 Full-state design . 14
3.2.2 Local design . 17
3.2.3 Principal component analysis design . 18
3.2.4 Common modifiers . 20

3.3 Van der Pol design . 21

4 Results 21
4.1 Hyper-parameters . 24

5 Discussion 24
5.1 Potential problems and improvements . 24

5.1.1 Dataset variety . 24
5.1.2 Injector points placement . 25
5.1.3 Under-utilization of parallel processing . 25
5.1.4 Spectral radius of 0 . 27

5.2 Conclusion . 27

A Appendix 30
A.1 Cell equations . 30

A.1.1 Units . 30
A.1.2 State variables . 30
A.1.3 Inward currents . 31
A.1.4 Outward currents . 32

A.2 Derivation of the control equation . 32
A.3 ESN controller parameters . 33

1

1 Introduction

The heart is a vital organ in our bodies that ensures a proper flow of oxygenated blood. The function of our
brain, muscles, and organs is highly dependent on the energy and oxygen delivered by the blood. It is thus
essential that the heart executes its function flawlessly.

The heart is a complex non-linear dynamical system that pumps the blood around our cardiovascular
system. In order to do so, the heart is surrounded by a layer of cardiac muscles that pump the blood around
the body (this thesis has been done by a student of an Artificial Intelligence programme, consequently,
a lot of anatomical/biological complexities has been simplified. This thesis should be taken as a proof of
concept of the machine learning technology in medical use rather than a medical description of the heart).
The heart is divided into 4 chambers - 2 upper ones called right/left atria and 2 lower ones called right/left
ventricles (Figure 1.1 provides a visual explanation). Each chamber contracts and pumps the blood to the
next chamber. The deoxygenated blood comes from the body to the right atrium, going to the right ventricle.
The right ventricle pumps the blood to the lungs where it gets oxygenated. The oxygenated blood follows
to the left atrium which pushes it to the left ventricle, and finally, the left ventricle distributes it to the rest
of the body (Hall et al., 2021).

The cardiac muscles are synchronised by the action potential propagation (Hall et al., 2021). The neural
signal begins in a SA node (which is located in the right upper corner of the right atrium) and travels to
the left atrium, resulting in the contraction of the upper chambers. The neural signal then travels to the
right & left ventricles which cause both of the lower chambers to contract. The process then repeats again
- ensuring an optimal blood flow.

RA LA

RV LV

LungsBody

Figure 1.1: Functional diagram of the heart blood flow. RA stands for right atrium, LA for the left
atrium, RV for right ventricle, and LV for the left ventricle. The blue sectors signify deoxygenated
blood and the red sectors the oxygenated blood

Disruption of this propagation pattern can lead to an arrhythmia. The U.S. National Heart Blood and
Lungs Institute recognises numerous types of arrhythmias (NHLBI, 2018). However, this thesis focuses
mostly on reentry arrhythmia (Goyal et al., 2021) and ventricular tachyarrhythmia due to the simplicity
of modelling and their chaotic behaviour. Irregular heartbeats/arrhythmias lead to an under oxygenated
brain, organs, and muscles which significantly decrease the quality of the subject’s life or in many cases
even causes death. It is thus essential to develop technologies that prevent or minimize the risk of such an
arrhythmia.

For the reader’s & author’s convenience, this thesis will shorten the phrase “reentry arrhythmia and
ventricular tachyarrhythmia” to RAVF. RAVF causes are fully described in Goyal et al. (2021) & Garner
and Miller (2013) but this thesis will mainly focus on RAVF caused by heart-tissue heterogeneities, namely,
anatomical obstacles and functional heterogeneities. Once such heterogeneity is present in the heart, it is
possible for the neural signal to loop back around the obstacle and initiate a reentry arrhythmia - forming
an independent circuit (independent from the SA node). Figure 1.2 shows such a situation. The circuit can
block the action potential generated by the SA node and the heart rate is then dictated solely by the reentry
circuit. Depending on the circuit length, the heart can start beating dangerously fast without any way of
slowing down (Goyal et al., 2021).

Schöll and Schuster (2008) describes the ventricular tachyarrhythmia as a possible consequence of reen-
try circuits. If the “head” of the action potential wave catches up with the “tail” the wave can break into
multiple smaller waves which then travel around the ventricles and atria causing atrial/ventricular fibrilla-
tion. Fibrillation is a chaotic contraction and relaxation of heart muscle tissue, leading to a highly-irregular
heartbeat and almost certainly to death of the patient.

2

Heart tissue

Action potential
wave

Obstacle

Figure 1.2: A reentry circuit formed due to an anatomical obstacle (functional heterogeneity). The
circuit sends signals chaotically around the heart - overriding the target heart-rate

1.1 Existing solutions

Three prevalent solutions are used to treat arrhythmias in medicine: implantable cardioverter defibrillators
(ICD), pharmacological treatment, and artificial pacemakers.

1.1.1 Implantable Cardioverter Defibrillators

ICD is a compact defibrillator with a microprocessor that gets attached to a patient’s heart by surgery.
The main idea is for the microprocessor to scan the heart’s neural signals and look for arrhythmia. Once it
detects an irregularity it administers an electrical shock with the aim to reset the heart. The shock forces
all the neurons to enter their refractory period - a period where the neuron is unable to produce an action
potential, thus, ending any reentry circuits and/or any irregularities.

Even though ICD is mostly used to treat serious arrhythmias it also comes with its drawbacks. The
detection part of the device is not flawless. Most ICDs are single/dual chambers (attached only to one
or two heart chambers), consequently, the detection algorithm always works with a limited amount of
information (Francia et al., 2009). When the heart irregularities manifest outside of the detectable range,
the microprocessor will not be able to administer the shock in critical scenarios.

Vice versa a regular heartbeat can be misinterpreted by the detection algorithm as an arrhythmia -
leading to a painful electrical shock. False positives can make up one-third of all the shocks administered to
the patient (Schöll and Schuster, 2008).

1.1.2 Pharmacological Treatment

Antiarrhythmic drugs prolong or shorten the refractory period in order to eliminate any re-entry circuit
and/or heartbeat irregularities (Fogoros, 2008). Even though the drugs can help regulate certain types of
arrhythmia (Fogoros, 2008) they are generally used as a second option due to the possibility of worsening
the arrhythmia (Fogoros, 2008) or in some cases even killing the patient (Ruskin, 1989).

1.1.3 Artificial pacemakers

Similarly to ICDs, pacemakers are implantable devices that track the activation of the heart tissue. Instead
of delivering a big shock when the irregular heart rhythm is detected, pacemakers inject a small local shock
that usually kickstarts an action potential cascade. Traditionally, pacemakers counter bradycardia (slower
than normal heartbeat). However, in recent years their usage has extended to other types of arrhythmias as
well (Alasti et al., 2018). The challenge of finding the correct placement and volume of the shock remains
due to the heart being a complex non-linear chaotic system (Ferreira et al., 2011).

1.1.4 Machine learning approach

There is a rich history of machine learning techniques being used in the treatment of arrhythmias. Commonly,
machine learning helps with:

3

1. Assistance of ECG analysis (Nagarajan et al., 2021; Isin and Ozdalili, 2017; Perez et al., 2009). ECG
is a full heart screening that is performed by a cardiologist. The aforementioned studies show how
artificial intelligence can be used to produce more accurate interpretations and more detailed analyses
of ECG.

2. Detection/prediction of arrhythmias with ICDs and artificial pacemakers (Alonso-Atienza et al., 2013;
Li et al., 2013). However, these techniques do not determine the amount or the time of the administered
shocks, therefore, an additional analysis is always needed that calculates the time and the volume of
the shock.

3. Control of arrhythmias using fractional-order PID controllers (Momani et al., 2019; Bajpai et al., 2017)
or chaos controllers (Ferreira et al., 2011) that act as an artificial pacemakers. Both of the methods
require a model of the heart in order to function, however, the former method (FOPID controllers)
only performs well on linear systems and, thus, it needs an oversimplified model of the heart.

The reader can find numerous articles connected to topics 1) and 2). Consequently, this thesis will try
to expand on the 3rd point - heart control, namely, cardiac chaos control using an echo state network.

1.2 Chaos control

Control tasks are associated with generating an action such that if the action is applied to a system,
the system behaves according to our instructions. Dynamical systems in nature are constantly, vibrating,
evolving, and changing according to laws of physics and biology. The task of a control engineer is to design an
controller which directs the system to a specific trajectory. It is important to understand chaotic dynamics
in order to grasp chaos control.

Chaotic systems can be described best by the sensitivity to the small changes in initial conditions. Two
chaotic systems initialized almost identically with only very small differences will, exponentially diverge as
time progresses. This is called the “butterfly effect” - where small changes are amplified over time. Chaotic
systems are therefore sensitive to perturbations. A small impulse sends a chaotic system to a completely
different path. The task of a controller is to monitor the system and constantly nudge it to a preferred
trajectory.

Chaos control is a popular task required in numerous fields: performing an orbital transfer by steering a
spacecraft (Macau and Grebogi, 2006), deciding on an investing strategy in a competitive market (Holyst
et al., 1996), or controlling heart dynamics (Ferreira et al., 2011). In the literature, two methods dominate for
controlling chaos: 1) the Ott, Grebogi, and Yorke method (Ott et al., 1990) stabilizes the system on a desired
orbit by waiting for the system trajectory to approach the wanted region. However, it requires mathematical
analysis, some manual hand-tuning, and it relies on the system to approach the desired point/orbit - making
it unpredictably slow; 2) The time delay feedback controller (later just TDF) (Ferreira et al., 2011) defines
the control equation as a non-linear system where the input is a current state and sequence of the previous
states of the system. TDF stabilizes the trajectory by nudging it based on the error. Similarly to a PID
controller, TDF is very simple. It requires only a few parameters to design the controller - which is a double-
edged sword. It can be very quick to set up for simple chaotic tasks but it might not scale well for more
complex problems (such as heart control).

1.3 Echo state networks

Echo state networks (ESNs) belong to a reservoir computing paradigm in which the recurrent part of the
neural network (simply called a reservoir) is generated randomly and only a single output layer is trained
(Lukoševičius and Jaeger, 2009). Training RNNs using backpropagation-trough-time is computationally
expensive. ESNs avoid this issue by training only the output weights (sometimes also called the readout
weights) using linear regression. Consequently, the readout weights are trained analytically and the loss
reaches the global minumum instantly (something that is not possible at all with the gradient methods).
The predictions still maintain the benefit of non-linearity, due to the non-linear dynamics of the reservoir.

Similarly to support vector machines, ESNs hope that the input becomes more linearly processable in
the reservoir, which is usually higher-dimensional than the input by order of magnitudes. Additionally,
due to recurrent connections in the reservoir the current state is dependent on the previous state which is
also dependent on the previous-previous state etc. - providing a temporal context (memory) for the output
calculation. ESNs belong to a family of the time delay feedback controller, where the ESN receives as input
a current state and a previous state which reverberates reservoir and the reservoir is used to compute an
action which nudges the system to the desired trajectory.

4

It is already known that RNNs can approximate any dynamical system (Funahashi and Nakamura, 1993).
They can also be used as a controller for linear problems (Salmen and Plöger, 2005). However, there are
not many applications of ESNs being used to control chaotic systems. Jaeger and Haas (2004) showed the
superiority of an ESN’s ability to predict chaotic time series compared to previously used techniques. The
ESN improved the error by four orders of magnitude. The research of Jaeger and Haas (2004) gave strong
empirical evidence for the ESNs to be useful in chaotic systems. This thesis wants to contribute another
empirical proof by training an ESN controller that treats the heart arrhythmia.

1.4 Research objective

As mentioned before, the research objective is to use an ESN as a controller and treat heart arrhythmias in
two simplified computational models of a heart (which are described in the Theoretical Background section
2). More concretely, a healthy heartbeat will be recorded and used as a desired trajectory for the controller.
The controller task will be to stabilize the arrhythmic chaotic trajectory on a stable healthy pre-recorded
orbit. The controller will be evaluated based on normalised root mean squared error (NRMSE) between the
desired trajectory and the actual trajectory taken by the computational heart model.

2 Theoretical Background

This section explains the theoretical background of single heart cell (cardiomyocyte) dynamics, heart dynam-
ics, a simplified 2d chaotic heart model using a modified Van der Pol oscillator, and simple ESN controller
architecture.

2.1 Cardiomyocytes

Cardiomyocytes are cardiac cells responsible for neural signal propagation and cardiac muscle contraction/re-
laxation. This thesis uses a modified version of the ventricular cell model as described in Luo and Rudy
(1991) which builds on the famous Hodgkin and Huxley (1952) model. The model describes a formation of
an action potential as a movement of ions inside the cell. Figure 2.1 shows the action potential as described
in Luo and Rudy (1991). This thesis assumes that the entire heart is covered with ventricular cells, which
in practice are different from atrial cells (Goette et al., 2016). However, looking at Figure 6 from the Goette
et al. (2016), which shows the difference between the atrial and ventricular cell action potential, one can see
that this assumption is not a gross oversimplification.

Figure 2.1: An action potential of cardiac cell. The figure represents the change of the membrane
voltage (V) over time and under stimulation. Figure adapted from Wikipedia (2021)

A refractory period (RP) is a window of time under which the neuron does not produce another action
potential even when stimulated. Multiple factors can influence the length of the RP, namely AV/SA nodes’
frequency (Ferrier and Dresel, 1974) or pharmacological injection (Morady et al., 1988). Due to computa-
tional reasons, I modified the cell model’s RP to be around 40ms (the new parameters can be found in Table
2.1). Shorter RP periods, even though not biologically plausible, allow for a smaller model (described more
in-depth in the next section), and thus, a shorter computational time. In theory, it is completely possible to
reproduce the results found here with the original parameters’ values, however, it requires one to simulate
more cardiac cells (in fact as many so the action potential wave, as it loops back, does not catch-up with
the cardiac cells which are in the refractory period).

5

Parameter Original value Modified value Remarks

ḠSI 0.09mS 0.018mS
Lowers the conductance
of the silicon channel

αX(V) αX(V) 5 · αX(V)
Shortens the time
constant of the X gate

βX(V) βX(V) 5 · βX(V)
Shortens the time
constant of the X gate

[K]o 5.4 variable
Varies the extracellular
potassium concentration

Table 2.1: Parameters that were modified in order to shorten the refractory period of the cardiac
cells

The complete set of equations guiding the cell can be found in Appendix section A.1. Here I will describe
only the most important dynamics of the cell. The action potential is guided by three differential equations
and eight state variables. The membrane potential V is defined by

dV

dt
= − 1

C
(Iions − Istim). (2.1)

Iions is the sum of all ionic currents

Istim =
∑
ion

Iion, (2.2)

where ion ∈ {Na, Si,K,K1,Kp, b}. Istim is the stimulation current.
The amount of current going through each ionic channel depends on the state of the gates located inside

of the channel. Gates can be either closed or open. If all gates are open, the ions rush in/out of the cell -
creating a current. Let y be a probability of an ionic channel being open, αy probability of the gate to close
when being open, and βy the probability of the gate to open when being closed. The rate of change of y can
be thought of as a difference in the current value of y and the so called ”steady state“ of y written as y∞.

dy

dt
=

y∞ − y

τy
(2.3)

For every voltage V , the probability y converges towards y∞. The speed of convergence is determined by
the time constant of the gate τy. Both τy and y∞ can be expressed in terms of αy and βy

y∞(V) =
αy(V)

αy(V) + βy(V)
, and

τy(V) =
1

αy(V) + βy(V)
.

(2.4)

There are six distinct gates, y ∈ {m,h, j, d, f, x}. A detailed definition of each of the gates can be found in
Appendix A.1.

Lastly, under short stimulation of the cell, the intracellular/extracellular ionic concentrations (denoted
by [Ion]{i,o}) do not change significantly, except the intracellular concentration of calcium [Ca]i - making
it the eighth state variable

d[Ca]i
dt

= −10−4 · ISi + 0.07 · (10−4 − [Ca]i). (2.5)

2.2 Heart model

The model used for this thesis is an adapted version of the model described in Blanc et al. (2001) which is
based on a reaction-diffusion equation. Reaction-diffusion equations are usually used to model a spread of
chemical/fluid/heat across some spatial dimension. Blanc et al. (2001) modified it to represent the propaga-
tion (a.k.a spread) of the action potential on the heart tissue. The model is guided by the following partial
differential equation:

1

Sv
∇V · (ρ∇V) = Cm · ∂V

∂t
+ Iion − Istim, (2.6)

6

(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4 (e) Frame 5

Figure 2.2: Showcase of the action potential wave propagating around the healthy heart tissue. Black
cells correspond to the cardiomyocytes that have a resting membrane voltage and purple cells signify
an occurring action potential

where Sv is the surface to volume ratio, V the membrane potential, ρ the resistivity matrix, Cm the membrane
capacitance, Iion the sum of the ionic currents calculated from the cell model described in the previous sub-
section, Istim the external current used for heart-beat initiation and the pacemaker current injection, and
∇V is a 2-dimensional gradient of the membrane potential.

I used the forward Euler method to solve the Equation 2.6 with dt = 0.015ms and dx = dy = 200·10−4 =
0.02cm. Discretizing Equation 2.6 yields:

1

Sv∆y2
(
V n
i−1,j − V n

i,j

ρi−1,i
+

V n
i+1,j − V n

i,j

ρi+1,i
) +

1

Sv∆x2
(
V n
i,j−1 − V n

i,j

ρj−1,j
+

V n
i,j+1 − V n

i,j

ρj+1,j
)

= Cm ·
V n+1
i,j − V n

i,j

∆t
+ Ini,j ,

(2.7)

where Ini,j is the difference of Iion and Istim, ρi−1,i is the resistance between neurons at position (i, j) and

(i− 1, j), and analogously ρj−1,j is the resistance between neurons at position (i, j) and (i, j − 1). Equation
2.7 was used to solve the final system.

It is important to say that a unidirectional boundary condition was used for the x2 axis. Consequently, the
system can be described topologically not as a torus but as an open cylinder. The unidirectional conduction
boundaries are biologically plausible (Schöll and Schuster (2008), subsection Reentry). To illustrate, the
action potential can travel from Vgy,j to V1,j (where gy is the number of simulated cells in x2 dimension)
but not vice versa. Mathematically speaking, the partial derivative term in Equation 2.7 transforms for the
i = 1 coordinate likewise:

V n+1
1,j = · · ·+ 1

Sv∆y2
(
V n
gy,j

− V n
1,j

ρgy,j
+

V n
2,j − V n

i,j

ρ2,j
) · · · ,

∀j where i = 1.

(2.8)

As mentioned beforehand, a smaller proof-of-concept version of the model was used. I simulated a small 2D
rectangle of the cardiac cells with dimensions:

w = dx · gx
= 0.02 · 8 = 0.16cm = 16mm, and

h = dy · gy
= 0.02 · 40 = 0.8cm = 80mm

(2.9)

Where w stands for width, h for height, d{x,y} for spatial discretization, and g{x,y} for number of cell
simulated in the respective dimensions.

For visually-oriented readers notice Figure 2.2. The figure shows how the action potential wave propa-
gates around the healthy heart model. Sub-figure 2.2a shows the initiation of the heartbeat in a cell with
coordinates (1, 1) (the most top left cell). Sub-figures 2.2a-2.2d display the propagation of the action po-
tential from atria (upper-part of the model) to ventricles (lower-part of the model). Due to the minification
of the heart, it takes the action potential wave only ≈ 117ms to travel from the top to the bottom. Lastly,
the sub-figure 2.2e illustrates how the uni-directional boundary condition works. The action potential wave
loops from the bottom back to the top.

7

In order to introduce some heterogeneity to the model, a special resistivity mask ρ was implemented
(notice sub-figure 2.4e for visualization of the resistivity mask). The resistivity mask determines the speed
and strength of the propagation of the action potential. Higher resistivity results in a slower action potential
propagation and vice versa. The resistivity mask represents scarred heart tissue, which can be one of the
causes of arrhythmia.

10 20 30 40 50 60 70 80
Time (s)

6

5

4

3

2

1

0

1

2

Lo
g

of
 m

em
br

an
e

po
te

nt
ia

l (
m

V)

ln(|Vn Vd|)

Figure 2.3: Log difference between two heart state trajectories, where the starting conditions differed
only by 10−4mV

The introduction of the resistivity mask made the heart chaotic. This was tested by simulating two heart
models with two different starting conditions Vn and Vd. Notice that

Vd = Vn + ϵ, (2.10)

where ϵ is a vector with magnitude ||ϵ|| = 10−4mV . Figure 2.3 shows the log difference between the two
heart’s state trajectories after simulating both of them for 80 seconds. The two trajectories separate. This
gives an intuitive suggestion that the scarred heart model has chaotic dynamics.

The precise mask together with the simulation code is available on my Github repository (Veselý, 2021).

(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4 (e) Resistivity mask

Figure 2.4: Showcase of the action potential wave propagating around the scarred heart tissue. Black
cells correspond to the cardiomyocytes that have a resting membrane voltage and purple cells signify
an occurring action potential. Last sub-figure shows the resistivity mask ρ (more red colours signifies
stronger resistance)

8

2.3 Van der Pol oscillator

Since the previously mentioned reaction-diffusion heart model has 2560 dimensions, a 2-dimensional Van der
Pol oscillator (VPO) was also used to model the heart. The simplified VPO model provides an additional
check whether the echo state network controller works or not.

VPO was used to model a limit cycle in electrical circuits but their domain extends beyond electrical
engineering. VPO has been used to model two tectonic plates in a geological fault, left & right vocal cords,
and the action potential of a neuron. VPO is modelled using a second-order differential equation with
non-linear damping:

d2x

dt2
− µ(1− x2)

dx

dt
+ x = F (t) (2.11)

The unforced VPO is a special case when F (t) = 0. I will use the VPO to model the SA node of the heart.
The SA node is a special bottleneck neuron which has the ability to spark an action potential independently
- acting as a pacemaker (Klabunde, 2021). The pacemaker ability of the SA node could be interpreted as
an external force F (t) acting on the neuron. Consequently, a forced VPO was used with F (t) = β · cos(ω · t)
as it is widely used in the literature (Marios, 2006; Cooper et al., 2017).

2 1 0 1 2
x

8

6

4

2

0

2

4

6

y

chaotic
healthy

0 20 40 60 80 100
t

2

1

0

1

2
x

chaotic
healthy

Figure 2.5: Comparison between a “healthy” (µ = 5, β = 5, ω = 1) VPO & “arrhythmic” chaotic
(µ = 5, β = 5, ω = 3.37015) VPO

Equation 2.11 can be equivalently rewritten into two-dimensional system of differential equations using
a Liénard system transformation

ẋ = y − µ

(
x3

3
− x

)
,

ẏ = −x+ F (t).

(2.12)

It needs to be said that representing the heart, an unimaginably complex organ, using Equation 2.12 is a
gross oversimplification. This thesis will try to control a chaotic VPO as mere evidence (and/or as a baby
step) that the ESN controller is working.

Most choices of the parameters µ, β, ω lead to a dynamical system with a stable orbit atractor. Figure
2.5 shows the state trajectory of the VPO as system as defined in Equation 2.12 evolved using a forward
Euler algorithm with dt = 0.02, µ = 5, β = 5, ω = 1, x0 = 0.5, y0 = 0.0. As stated in Marios (2006) setting
µ = 5, β = 5, ω = 3.37015 leads to creation of an chaotic atractor. The dynamics of chaotic VPO are also
seen in Figure 2.5.

Introducing ω = 3.37015 made the oscillator chaotic. This was tested by simulating two oscillators with
two different starting conditions sn and sd. Notice that

Vd = Vn + ϵ, (2.13)

where ϵ is a vector with magnitude ||ϵ|| = 10−5. Figure 2.6 shows the log difference between the two evolved
states and providing an intuition that the defining ω = 3.37015 indeed brings chaos to the system.

9

0 10000 20000 30000 40000 50000
t

20

15

10

5

0

lo
g(

||s
x d

sx n||
)

Figure 2.6: Log difference between two heart state trajectories, where the starting conditions differed
only by 10−5

(a) Training phase
(b) Exploiting phase

Figure 2.7: Sketch of the training and exploiting procedures. (a): the network associates how actions
a(t) will influence the transition from s(t− d) to s(t). The trainable weights are shown in red. (b): The
network is given the current heart state s(t) and desired state sref (t + d) and is expected to output
an appropriate action â(t) that will get the heart to the desired state in d steps. Figure adapted from
Jaeger and Haas (2004)

2.4 Echo state network as controller

2.4.1 Dynamics

The most simple architecture of controller ESN can be found in Figure 2.7. During the training phase, the
controller receives two states as input: the past s(t− d) state and the present state s(t), where d ∈ N is an
integer and the optimal d needs to optimized for every task. Usually, the controller receives the full model
state (all state variables), however, in my case, I tried to replicate the realistic settings of a pacemaker which
does not “see” the entire heart. Consequently, the state variable s is a proper subset of a full-state (the
precise definition of s will differ and is be explained in the Methodology section 3).

The concatenation of the input (noted as [s(t− d); s(t)]) gets projected to a reservoir using matrix Win.
The reservoir x(t) is a non-linear dynamical system where the internal weights are initialised semi-randomly.
The following equation represents the discrete update step of the reservoir:

x(t+ 1) = x(t) · (1− α) + α · tanh(Win · [s(t− d); s(t)] +W · x(t)). (2.14)

If not specified otherwise the input weights Win are created by sampling a normal distribution with param-
eters (µin, σin)

The weight matrix W is a random sparse matrix with the spectral radius (usually denoted as ρ but I will
use rs) lower or equal to 1. The spectral radius is the magnitude of the biggest eigenvector of matrix W . It

10

has been found that setting rs ≤ 1 is usually enough to grant the reservoir the echo state property (there
are other algebraic conditions that need to be satisfied and avid mathematicians can read about them in
Buehner and Young (2006)). The echo state property (ESP) ensures that the initial state of the reservoir
x(0) which is set randomly (therefore, bearing no information about the task) will be washed out.

More rigorously, two reservoir’s trajectories x1 and x2 with the same internal weight matrices W but
with different initial states driven using the same input sequence [s(t−d); s(t)] will converge arbitrarily close
to each other after some time. Mathematically speaking, there exists tw such that |x1(tw) − x2(tw)| ≤ ϵ,
where ϵ > 0. The time tw is called a washout period (since the initial differences are washed out). Figure 2.8
shows the echo state property in a computer simulation.

0 10 20 30 40 50
Update cycles

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
se

rv
oi

r a
ct

iv
at

io
ns

x1
n

x2
n

x3
n

x1
o

x2
o

x3
o

Washout period

0 10 20 30 40 50
Update cycles

0.0

0.5

1.0

1.5

2.0

2.5

3.0

||x
n

x o
||

Difference at
washout period 0.02685

Figure 2.8: Showcase of the echo state property. Two almost identical reservoirs xo and xn, were driven
with the same input sequence. The only difference was the initial conditions of the reservoirs - which
were set randomly. The left plot shows how the individual neurons converged to each other. The right
plot shows the Euclidean distance between the reservoirs. Washout period 40 is marked on both plots

The leaky mask α is a vector with the same dimension as x. It is created randomly by sampling a uniform
distribution with bounds (min,max), where 0 ≤ min ≤ max ≤ 1. A leaky mask transforms the neurons
into leaky integrator neurons. Notice in Equation 2.14 that setting the a close to 0 for xn minimizes the
influence of the input and other neurons on xn. Thus, neuron xn reacts slowly to the immediate changes
and retains information for a longer period of time. Vice verse setting a close to 0 for xn makes the neuron
more reactive to new changes. By making the leaky mask diverse the reservoir can react to both short-term
& long-term effects seen in the input sequence.

The output is calculated as a linear combinations of the reservoir state x(t), input [s(t − d); s(t)], and
bias term 1.

â(t) = Wout · [x(t); s(t− d); s(t); 1]. (2.15)

The controller learns how to output an action sequence such that if it is applied to the heart model, the heart
will transition from s(t − d) to s(t). a(t) is a vector of electrical currents (mA). The currents are applied
to the heart model via the term Istim from Equation 2.6. In order to make the task more realistic, the
controller could not control the entire Istim matrix. The controller was given 4 evenly separated “injection
points”. Figure 2.9 shows the points visually. All other parts of the Istim matrix were set to 0.

2.4.2 Training

The training procedure is shown in sub-figure 2.7a. It is done by driving the echo state network using
a pre-recorded dataset of states s and actions a. The creation process of the dataset is described in the
methodology section. During training the readout neurons (the concatenation of the input, reservoir state,
and the bias term) are saved into a collection matrix C ∈ R(2·|s|+|x|+1)×T , where T = N − washout is the

11

Figure 2.9: Showcase of the controller injection points. The cyan cells indicate where the controller
was able to stimulate the heart tissue. The plot is rotated 90◦ degrees clockwise

number of training samples minus the washout period. All the training states before the washout period are
disregarded.

Let A ∈ R|a|×T be a matrix containing the teacher variable. Notice that in Equation 2.15 the â has a
linear relation to the collection matrix C. Therefore the output weights Wout can be calculated using linear
regression which minimizes the difference between a and â as defined by the mean-squared-error function.

Wout = argmin
M∈R|a|×(2·|s|+|x|+1)

1

|a|

 |a|∑
i=1

(ai − âi)
2 + β · |Mi|2

 , (2.16)

where β · |Mi|2 is a Tikhonov regularization term. Equation 2.16 is also known as a ridge regression and can
be solved analytically with

Wout = ACT (CCT + βI)−1, (2.17)

where I is an identity matrix and β ∈ R to be found by hyperparameter optimization.
After a successful training the controller can be exploited by replacing the past state s(t−d) with current

state of the heart s(t) and second input by the reference state sref (t+d). Notice that s(t) cannot come from
a pre-recorded dataset since the controller action influence the state of the heart s(t) during the exploitation.
The reference sequence is an arbitrary sequence of states which the model should follow. Since I want to
treat the arrhythmic heart I used a recording of the non-scarred healthy heart as the reference sequence
(look at Figure 2.2 as a reminder of the healthy heart). Ideally, the controller produces a sequence of actions
â such that if they are applied to the heart model the heart follows the reference sequence/trajectory.

Notice that the ESN controller is a hybrid between an open & closed loop controller. During the training
procedure, the controller acts as an open loop system since the actual actions produced by the ESN â
are not fed to the model of the heart. This yields two benefits. Firstly, the simulation of the heart model
is computationally very expensive - simulating the heart for 30 minutes requires ≈ 2 days on a high-
performant computing cluster (Peregrine). Thus, an dataset of pre-recorded states (s(0), s(1), ..., s(N)) &
actions (a(0), a(1), ..., a(N)) can be used to speed up significantly the training procedure. Secondly, since
the optimal output weights Wout are initially unknown, the predicted actions (â(0), â(1), ..., â(N)) bear
almost no meaning during the training procedure. Therefore, plugging them into the heart would produce
non-interesting dynamics of the heart and ultimately lead to poor learning. The importance of the applied
actions is explained in sub-section 3.1. After the training and the update of the output weights Wout, the
controller becomes a closed-loop system, therefore, a “live” heart model is required for the exploitation
phase.

3 Methodology

3.1 Dataset creation

As mentioned before training the controller is a supervised task and since there are no available datasets I
needed to create one. The goal is to produce a sequence of action (a(0), a(1), a(2), ..., a(N)) such that if they
are applied to the heart they produce a sequence of states (s(0), s(1), s(2), ..., s(N)). Ideally, the sequences of
states s should be representative of all possible dynamics that can occur in the heart model. Consequently,
it is crucial to select a proper sequence of actions a that produce various modes of functioning of the heart
model.

Additionally, it is also necessary to select a the right sampling frequency fs that matches the natural
frequencies of the heart model. Choosing fs too high would lead to inefficient use of the reservoir in the echo

12

state network controller. Driving the reservoir with highly temporally correlated data hinders the memory
capacity of the controller since any effects of past data get minimized by re-applying Equation 2.14 with
very similar input. On contrary, setting fs too low would skip over important updates in the heart model.
Therefore the input would reassemble a random variable instead of a temporally correlated signal. Thus, 3
datasets were created with sampling frequencies being fs = {100Hz, 50Hz, 20Hz}. Avid readers will notice
that the controller frequency is significantly lower than the update frequency of the heart model (which is
≈ 67000Hz). This creates an arbitrary decision of what action to apply between the update step of the
controller. I settled on applying the last action produced that was produced by the controller. To illustrate,
let a1 be an action produced by the controller at time t1. My algorithm consistently performs action a1
at timesteps (t1, t1 + dt, t1 + 2 · dt, t1 + 3 · dt, ..., t1 + n · dt) where n can be approximated to the ratio of
the controller period Tc and the model period Tm; n ≈ Tc

Tm
≈ {666, 1333, 3333} for the respective sampling

frequencies.
Recall that each of the modelled heart neurons consist of 8 state variables (described in sub-section

2.1), however, only the membrane voltage V was fed to the controller as the input. The heart consists of
8× 40 = 320 neuron and a state is 320 dimensional vector s ∈ R320. The membrane voltages were clamped
into range (−90mV, 50mV) and the input was normalised to range (−1, 1). The actions were normalised to
range (0, 1).

3.1.1 Action selection

The algorithm for the action selection goes as follows. A 10.2-second block of white noise was created. A
high-pass filter was applied to the white noise. The cutoff frequency was selected from a uniform distribution
with bounds (2Hz, 5Hz). Then, first, 0.2 seconds were dropped from the block in order to remove the high-
pass filter artefacts. In order to allow only for negative stimulation current, the actions were clamped in
range (0,∞) (if confused why the range is not (−∞, 0) notice the negative term −Istim in Equation 2.6). A
visual example of generated actions can be found in the upper plot in Figure 3.1.

Let a(i) = [31mA, 30mA, 30mA] be an action produced at time i. Normally, the action vector a is 4-
dimensional vector but this example will use a 3-dimensional action vector for better clarity. Assume that
there are no ongoing action potentials happening right before time i. Actions a(i) will start 3 individual
action potential cascaded (at their respective injection points). The cascades tend to cancel out as they
meet each other. This behaviour was commonly seen and is unwanted. Consequently, an amplification factor
γ was introduced. The idea behind γ is to select the strongest action and amplify it whilst minimizing all
other actions and maintaining the same magnitude of the action vector. To illustrate, let γ = 3.0 and zγ the
amplification function, then

z3.0(a(i)) ≈ [48, 15, 15]. (3.1)

Function zγ(a) can be also thought of as a rotation of the vector a on a hyper-sphere towards the axis that
represents the strongest action. The precise definition of zγ is very convoluted (due to performance reasons),
thus, only certain properties of the function will be listed here. The implementation of zγ can be found on
my Github Veselý (2021) in noise.py. It holds that as γ approaches infinity the output of the function z
will be a vector fully rotated towards the axis with the highest action.

lim
γ→∞

zγ(a) = [all 0 except the highest action which is |a|]. (3.2)

On the other hand setting γ = 1 yields an identity transformation.

z1(a) = a. (3.3)

Amplification parameter γ was sampled from a uniform distribution with bounds (1, 3). Figure 3.1 shows
the effect of the amplification.

The action block was re-initialized every 10 seconds of the simulation time. The final datasets were
created by simulating the heart model for 40 hours which yielded 2 400 000 training samples containing a
tuple of the current state and the action applied at that state (s(t), a(t)). One-tenth of the dataset was used
for validation and the remaining was used for training.

For the exploitation phase, a reference state trajectory was acquired by “recording” the non-scarred heart
(with homogenous resistivity mask ρ) for 30 seconds with the respective frequencies fs = {100Hz, 50Hz, 20Hz}.
Figure 2.2 shows the healthy heart dynamics and Figure 3.2 displays an part of the reference signal.

13

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

0

5

10

15

20

25

30

35
In

je
ct

ed
 c

ur
re

nt
 (m

A)
a1
a2
a3

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

0

10

20

30

40

In
je

ct
ed

 c
ur

re
nt

 (m
A)

a1
a2
a3

Figure 3.1: Example of selected actions and demonstration of the action amplification algorithm. The
upper and lower plots show the same actions, however, the upper plot has amplification factor γ = 1
(no amplification) and the lower plot has amplification factor γ = 3

2.5 3.0 3.5 4.0 4.5 5.0
t (s)

80

60

40

20

0

20

M
em

br
an

e
po

te
nt

ia
l (

m
V)

s1
s81
s301

Figure 3.2: Example of the reference signal sref using fs = 100Hz, the recording is done based on the
healthy heart version

3.2 Controller designs

The simple version of the echo state network controller as described in sub-section 2.4 is not sufficient to
control the 2560 dimensional heart model (the Van der Pol system is an exception and is explained in sub-
section 3.3). The point of the reservoir is to reverberate, whilst driven with the input, in such a way that it
provides additional information about the heart model. Randomly created reservoir weights rely only on a
random chance of getting a useful reverberation, thus, such reservoirs need to be significantly bigger than
reservoirs with a thoughtfully crafted architecture. Three designs will be presented that try to achieve better
performance than the vanilla-flavoured reservoir: the full-state design which mimics the heart model, the
local design which introduces multiple reservoirs, and the PCA design which pre-processes the input using
a principal component analysis.

3.2.1 Full-state design

The full-state design (later just FSD) tries to compensate for the fact that the controller does not see the
entire state. The idea of FSD is to mimic closely the real-life scenario. Surgical pacemakers have access only
to a partial state of the heart (in some cases only to one or two neurons). Therefore, a state in the FSD
design can be defined as a subset of the membrane potential matrix (s ⊊ V in Equation 2.6), more precisely
a state s ∈ R8 at time t can be defined as

14

Figure 3.3: Placement of the “detection points” on the heart tissue (indicated by orange). FSD design
was only able to perceive the membrane potential (V) via these points. The plot is rotated 90◦ degrees
clockwise

s(t) =



V1,1(t)
V1,8(t)
V10,1(t)
V10,8(t)
V20,1(t)
V20,8(t)
V30,1(t)
V30,8(t).


(3.4)

Figure 3.3 shows the placement of the probes/detection points on the heart tissue. The placement was
selected such that they were covering as much area as possible whilst being as far apart from each other as
possible. There are no probes on the bottom row of the heart (a.k.a V40,j) because there is an unidirectional
boundary condition connecting neurons (40, j) and (1, j) (as described in sub-section 2.2) - making them
topologically close.

Reservoir weights
FSD introduces a new reservoir which topologically mimics the heart model. The reservoir has 2560 neurons
where each neuron tries to mirror one of the state variables of the heart model. Let Wheart ∈ R2560×2560

be the weight matrix for the heart model, xheart be the neuron activation of the heart reservoir, Vi,j be
an membrane potential at i, j, and sni,j one of the other 7 state variables. Notice in Equations 2.6 and 2.7
that only the membrane potential V has a direct influence on the neighbouring membrane potentials. Other
state variables (such as αh, βh, or [Ca]i) are isolated and interact only locally. Wheart has to capture these
interactions. I defined, arbitrarily, that the ideal xheart state should hold the following structure:

xheart(t) =



V1,1(t)
s11,1(t)
s21,1(t)
s31,1(t)
s41,1(t)
s51,1(t)
s61,1(t)
s71,1(t)
V1,2(t)
s11,2(t)
s21,2(t)
s31,2(t)

...
s640,8(t)
s740,8(t)



. (3.5)

Wheart needs to be designed in a special way in order to enforce the structure. Wheart is a sparse matrix
defined with these rules:

1. Every neuron needs to be connected to itself with a positive weight since every neuron represents a
state variable which is dependent on its previous values.

2. If neurons xi and xj represent two membrane potentials V which are neighbours in the heart model -
both need to be connected to each other with a positive weight.

15

Figure 3.4: Sketch of the heart reservoir xheart connectivity. For explanation see text

3. If neuron xi represents any last row membrane potential V40,j and neurons xj represent the first-row
membrane potential with the same column V1,j - there needs to be a positive connection going from xi

to xj but not vice versa. This rule mimics the unidirectional boundary condition in the heart model.

4. All neurons representing the 8 state variables in one position (i, j) need to be fully connected with
random weights to each other.

5. Other entries of Wheart are set to 0.

To illustrate the connections, Figure 3.4 displays the connectivity for the heart cell located at (1, 1). The
gray regions are the fully connected neurons which represents the 7 state variables (all of the state variables
except V). Every neuron from the gray area is also connected to its membrane potential neuron residing
at the same location. Neuron V1,1 is bidirectionally connected with V2,1 and V1,2. There is a unidirectional
connection from V40,1 to V1,1.

All the weights were sampled from a normal distribution which was defined differently for the positive
weights (µ+, sd+) and the general weights (µ, sd).

A parameter adjecencyTolerance the number of connections between neurons corresponding to the
membrane potential using a Manhattan distance. If adjecencyTolerance was set to 1 only topological
neighbours with Manhattan distance 1 were connected. To illustrate, setting adjecencyTolerance to 2
would result in V1,1 to be connected with (V1,2, V1,3, V2,1, V2,2, V3,1, V40,1, V40,2, V39,1) (consult the right part
of Figure 3.4 for visual aid). If wi,j would be a weight connecting two different membrane potential neurons
then the weight would be re-scaled based on the Manhattan distance likewise

wi,j :=
wi,j

l + 1
, (3.6)

where l is the Manhattan distance between the two heart neurons. Consequently, further neighbours have
less influence on each other.

The other reservoir x fulfilled a more general purpose and was initialised independently from the heart
reservoir. Let W be a sparse weight matrix for the reservoir x. The parameter connectivity determined
the portion of non-zero elements and the non zero-elements were sampled from a uniform distribution
with bounds (−σ, σ). The heart reservoir was densely connected to the general reservoir but there were no
connections going the other way since they would destroy the dynamics of the heart reservoir.

16

Both weight matrices Wheart and W were re-scaled such that their spectral radii were below 1; rs < 1.
The precise definition of the parameters can be found in Section 4.

Leaky mask
Let α be the leaky mask for the general purpose reservoir x and αheart for the heart reservoir xheart, then
α was sampled from a uniform distribution with bounds (αmin, αmax). The mask α needs to be diverse in
order to be able to react to long-term changes as well as short-term changes.

On the other hand, αheart was split into two parts. Elements in αheart which corresponded to the
membrane potential neurons V were set homogeneously to a constant αV

heart since the heart model should
function on the same timescale. A small exception to this rule is the heterogeneous resistivity mask ρ.
The idea is that the resistivity mask heterogeneity is already captured by the variations of different weight
strengths inWheart. It is obvious that the semi-random initialization ofWheart will never match the resistivity
mask ρ. This was done on purpose in order to mimic a real-life scenario where the pacemaker does not possess
information about the ρ. After all, the heart reservoir needs to be only an approximation of the heart model.

Elements in αheart corresponding to the other 7 state variables were sampled from uniform distribution
with bounds (αmin

heart, α
max
heart). All of the state variables work on haste time scales, thus, the bounds are much

less diverse and closer to 1 than in the general leaky mask.

Input weight matrix
The input weights matrix Win connects only the past state (s(t − d) during the training period and s(t)
during the exploitation period) to the heart reservoir. Win respects the topology of the input state and the
topology of the heart reservoir, meaning that sz representing membrane potential Vi,j would get correctly
relayed to a reservoir neuron xo which represents the same membrane potential Vi,j . All the input weights
connecting the state to the heart reservoir were strictly positive (so that the physical meaning of the input
is not lost) and were sampled from a normal distribution (µin

heart, sd
in
heart).

Both the future state s(t) and the past state s(t−d) were connected fully to the general reservoir. Those
input weights were sampled from a normal distribution (µin, sdin).

Figure 3.5 shows a summary of the connectivity of the FSD controller during the training period.

Figure 3.5: Overview the full state design controller during the training period

3.2.2 Local design

The local design follows the state of the approach to processing a spatial-chaotic system by exploiting the fact
that these systems have similar (sometimes completely the same) dynamics across the spatial dimensions.
The idea is to have numerous medium size reservoirs each being responsible only for a small spatial region.

17

The architectures found in Vlachas et al. (2020) and Pathak et al. (2018) were modified. Their echo state
networks were responsible for predicting the next evolution of a spatiotemporal chaotic model. Their ESNs
receive as input a last state of the system and were asked to output the next state. They dedicated a new
reservoir to each “discretized pixel” and the reservoir was responsible to output a new pixel at the same
spatial location. Notice that they could only do that because the input had the same structure as the output
- this is not the case with the ESN described in this paper.

The general idea of those designs still holds. I dedicated one reservoir for each predicted action an and
the reservoir was responsible for processing the states which were spatially close to the “injection point”
for the given action. Due to having 4 “injection points”, 4 reservoirs were created. Sceptical readers can be
curious whether having 4 reservoirs instead of 1 could help. The local design has two major benefits. Firstly,
the 4 reservoirs are always faster than 1 reservoir with the same number of neurons due to the quadratic
scaling of the internal weight matrix W and, thus, the time complexity of the operations that include the
weight matrix W . Secondly, the reservoirs are independent of each other and can be therefore trained in
parallel.

The local design is more lenient of what is possible in the real world, as a consequence of that, the state
s ∈ R320 included the entire membrane potential matrix s(t) = V (t), whilst the controller was still oblivious
to the other 7 state variables.

Reservoir(s) weights
I will be referring to each of the reservoirs as x and their weight matrices as W since all of the reservoirs are
created according to the same rules. W is a fully connected matrix where the elements come from a normal
distribution (µW , sdW). A sparse matrix is usually the most popular choice since it creates localized groups
of neurons where each of the groups is only slightly dependent on the others. These localized groups should
ideally process different parts of the input - providing the reservoir with diverse information. Since the local
design already subdivides the input the importance of the sparse matrix is minimized.

The internal weights are scaled such that their spectral radius is below 1; rs < 1.

Leaky mask(s)
The dynamic of the heart is similar but not the same across the heart tissue due to the heterogeneity of the
resistivity mask ρ. Leaky masks were therefore created randomly by sampling an uniform distribution with
bounds (αmin, αmax).

Input weights
Figure 3.6 shows the input wiring. A parameter adjecencyInput controls how many neurons are processed
by one reservoir. It defines the maximal Manhattan distance from the injection point of the given reservoir
to the membrane potential Vi,j which is still processed by the reservoir. Figure 3.6 shows the connections
using adjecencyInput = 1. For demonstration purposes, setting adjecencyInput to 0 makes the reservoir
process only the Vi,j corresponding to the same location as the “injection point”. Setting adjecencyInput

to 50 will cause an overlap of the input to the different reservoirs (the reservoirs still remain independent
from each other).

A small penalty was introduced if the input Vi,j was too far away from the injection point. Let win
k be

the weight responsible for connecting the input Vi,j to a reservoir then the penalty was applied following

win
k :=

win
k

(l + 1) · 0.4
, (3.7)

where l is the Manhattan distance between the Vi,j and the injection point corresponding to the given
reservoir.

Each of the reservoir was responsible for both the future state s(t) and the past state s(t− d). As figure
3.6 shows, both inputs were from the same topological location.

Lastly, as always the weights were sampled from a normal distribution.

3.2.3 Principal component analysis design

As mentioned before driving the reservoir with strongly correlated values can lead to less diverse signals in the
reservoir and therefore lower the quality of the prediction. The state s, which is still equal to the membrane
voltage matrix (s(t) = V (t)), has numerous correlations within itself. The principal component analysis
design (later just PCAD) circumvents that by reducing the input dimension using PCA. However, the full
membrane voltage matrix was still available for the action â computation. This was done by extending the
collection matrix C (described in sub-section 2.4.2) with V (t) without feeding it into the reservoir. Figure
3.8 shows the training period of the PCAD controller.

18

Figure 3.6: Local architecture design showcase. The architecture is demonstrated during the exploit
period. The figure is only an approximation of the architecture, read to text for more information

The PCA transformation matrix was calculated on the training part of the data (8/9 of the entire dataset).
It is usually not recommended to use PCA as a part of pre-processing since the axes of the maximal variance
can change for different data (for example for the validation dataset). To avoid such an issue, I compared the
difference between three PCA transformation matrices M1,M2,M3. Let M1 be the PCA transformation
matrix that was calculated based on the training data, M2 based on the entire dataset, and M3 using 5000
states that were recorded during the testing scenario (exploitation period). Figure 3.7 shows the difference
between the matrices. The difference between two matrices was calculated as an average of the euclidean
distance between their column vectors

d(Mn,Mk) =
1

dim

dim∑
j=1

||Mn
∗,j −Mk

∗,j ||, (3.8)

where dim is the reduced number of dimensions. As seen from Figure 3.7, the biggest difference is ≈ 0.0035
meaning that the maximal axes of variance are only very slightly different, therefore, PCA can be safely
used in this case as a pre-processing operation for the input.

Reservoir weights
The reservoir designs mentioned in the previous subsections cannot be used here since the PCA destroys the
spatial property and the semantics of the input states s. A simple sparse reservoir was used with sparsity
defined by the connectivity parameter and the weights were sampled from a normal distribution. The
internal weights were scaled such that their spectral radius is below 1; rs < 1.

Leaky mask
A diverse leaky mask was used that was sampled from a uniform distribution with bounds (αmin, αmax).

Input weights
Fully connected input weights Win were created by sampling a normal distribution. A penalty was intro-
duced, which controlled for the fact that not all of the PCA axes are equally important. Let var(PCAn) be
the variance of the data spanning in the n axis. If one wants to reduce the dimensionality of the input to 30
using PCA the 30 most important axes need to be selected. If var(PCAj) > var(PCAi) then the i-axis is

19

M1 M2 M3

M1

M2

M3

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Figure 3.7: Difference between the PCA transformation matrices. M1 was generated using training
data, M2 using both training and validation dataset, and M3 using states that were seen in during
testing

less “important” than the j-axis. Let m be the axis with the maximum variance and wo be the input weight
vector corresponding to the o-axis, then the input weight vector was penalized accordingly

wo := wo ·
2 · var(PCAo)

var(PCAm)
. (3.9)

3.2.4 Common modifiers

Two other techniques of enriching the reservoir signals were used which are not bound to any single design.

Squared reservoir
As described in Pathak et al. (2018) each network can be extended by another reservoir xs which is a squared
version of the original one; xs(t) = x2(t), where the squaring procedure is an elementwise operation. The
xs reservoir does not get updated by Equation 2.14 but it always follows the original reservoir x. Squaring
the reservoir introduces another non-linear transformation (second after the tanh) making it easier for the
linear output layer to predict the action a. Secondly, it introduces ||x|| new trainable weights. The squared
reservoir is implemented by extending the collection matrix C (described in sub-section 2.4.2).

State difference
Equation 2.6 can be used to derive the optimal control equation - meaning the equation for the action matrix
Istim (this section will refer to it with a capital ‘A’). Firstly, assuming A = Istim and

↔n=
V n
i−1,j − V n

i,j

ρi−1,i
+

V n
i+1,j − V n

i,j

ρi+1,i
, (3.10)

↕n=
V n
i,j−1 − V n

i,j

ρj−1,j
+

V n
i,j+1 − V n

i,j

ρj+1,j
. (3.11)

Equation 2.6 can be rewritten into(
1

Sv∆x2
(↔n + ↕n)− Ionn

i,j +An
i,j

)
∆t

C
+ V n

i,j = V n+1
i,j . (3.12)

20

Figure 3.8: The architecture of the PCA controller, for an explanation, see the text

Expressing Equation 2.6 for the next time step (a.k.a. for V n+1 and V n+2), then substituting it back to
Equation 3.12, repeating the process until n+d timestep is reached, the optimal action An can be expressed
as

An
i,j =

1

N

[
C ·

V n+N
i,j − V n

i,j

∆t
+

N−1∑
k=0

Ionn+k
i,j − 1

Sv∆x2

N−1∑
k=0

(↔n+k + ↕n+k)

]
. (3.13)

The full derivation can be found in Appendix A.2. Equation 3.13 is only solvable iteratively (in combination
with a forward Euler method). The ESN controller does not have access to the entire matrix A (Istim),
thus, it should only be an approximation of Equation 3.13. Notice that Equation 3.13 uses the difference
between the current state and a reference state; V n+N

i,j −V n
i,j which is an error term frequently used in control

theory. Therefore, a boolean subState parameter was introduced. If set to true the input to the reservoir
was extended by the error term V n+N

i,j − V n
i,j . The error term was also directly used for the calculation of

the output â (as described in Equation 2.15). The error term should in theory help the controller predict
the action a by pre-computing an important value for the controller (the error term).

3.3 Van der Pol design

Controlling the chaotic Van der Pol oscillator requires significantly less computing abilities than controlling
the full 2560 dimensional heart model. Consequently, a simple reservoir design, as described in sub-section
2.4, was used. Where the reservoir weight matrix is a sparse matrix, inputs are fully connected to the
reservoir and the leaky mask is diverse. There is, however, one difference that deviates from the previously
described designs.

The current state s(t) and the reference state sref (t), are not only time-shifted versions of the other. The
current state s(t) got extended with the information about the external driving force F (t) = β · cos(ω · t)
because that is also needed to fully describe the system.

s(t) =

 x(t)
y(t)

β · cos(ω · t)

 , and sref (t) =

[
x(t)
y(t)

]
. (3.14)

4 Results

The normalized root mean squared error (NRMSE) was used to evaluate the controllers:

NRMSE(x, x̂) =
1

F

F∑
f=1

√√√√ 1

var(xf) · T

T∑
n=1

(xf (n)− x̂f (n))2. (4.1)

The NRMSE normalizes the root mean squared error by dividing it by the variance of the teacher variable.
Two errors were used: 1) The validation error which is the difference between the predicted action and the
actual action on unseen data; NRMSE(a, â). 2) The testing error which the difference between the reference

21

state trajectory sref (recorded from the healthy heart model) and the actual state trajectory s taken by the
heart model whilst being controlled by the ESN; NRMSE(sref , s).

Table 4.1 shows the result for each of the designs. The Van der Pol controller performed the best with
validation NRMSE being 0.019 and testing NRMSE 0.090. The local design was the best for the full 2560
dimensional heart model with the validation error being 0.1378 - as shown in Figure 4.1. None of the
controllers was able to actually control the full heart model, as seen by the poor testing errors. Figure
4.2 shows the inability of the controller to follow the state trajectory. On the other hand, the Van der Pol
design was successfully able to to predict the teacher variable a (Figure 4.3) and control the chaotic oscillator
(Figure 4.4).

Validation error Testing error

No modifiers Squared reservoir State difference No modifiers

Full-state 0.5781 0.5343 0.5469 1.2576

Local 0.1378 X 0.1323 1.4283

PCA 0.2034 0.1910 0.2047 1.3632

Van der Pol 0.0190 X X 0.090

Table 4.1: Validation & Testing errors (NRMSE) for the different architectures designs, where ”X”
indicates missing data. Dataset with sampling frequency fs = 20hz was used to train the controller

40 41 42 43 44 45
Time (s)

0.0

0.2

0.4

0.6

0.8

St
im

ul
at

io
n

cu
rre

nt
 (m

A)

a1(t)
a1(t)

Figure 4.1: Validation error of 0.1378. The plot shows the difference between the predicted action â
by the local design controller and the teacher variable a

22

5 6 7 8 9 10
Time (s)

80

60

40

20

0

20

M
em

br
an

e
po

te
nt

ia
l (

m
V)

$
s1

ref(t)
s1(t)

Figure 4.2: Testing error of 1.3632. The plot shows the difference between the reference state trajec-
tory sref and the actual trajectory s taken by the heart whilst being controlled with the PCA design
controller

10 12 14 16 18 20
Time

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Ac
tio

n

a1(t)
a1(t)

Figure 4.3: Validation error of 0.0190 in the Van der Pol task. The plot shows the similarity of the
predicted action â by the Van der Pol design controller and the teacher variable a.

23

0 5 10 15 20
Time

8

6

4

2

0

2

4

6

St
at

e

sx

sy

sx
ref

sy
ref

Figure 4.4: Testing error of 0.09 in the Van der Pol task. The plot shows the difference between the
reference state trajectory sref and the actual trajectory s taken by the Van der Poll chaotic oscillator
whilst being controlled with the ESN controller

4.1 Hyper-parameters

The hyper-parameters were optimized manually together with a grid search algorithm. The best performing
models were trained on the dataset with sampling frequency fs = 20Hz, thus, only those hyper-parameters
will be mentioned in this thesis. There were no remarkable differences between the best hyper-parameters
found for each of the datasets (fs = {20Hz, 50Hz, 100Hz}), except for the delay parameter d (which is to
be expected). The precises values for the hyper-parameters for the full-state, local, PCA, and Van der Pol
designs can be found in Appendix section A.3.

5 Discussion

As said before, none of the reaction-diffusion controller designs was able to control the heart arrhythmia
and restore a regular heartbeat. This section will describe the potential problems and causes behind the
unsuccessful task. The Van der Pol task was successful and there will not be any analysis of that controller.

5.1 Potential problems and improvements

5.1.1 Dataset variety

One of the major issues that were found at the end of this bachelor thesis was the fact that 90% of the dataset
was redundant. I generated my datasets by simulating 10 hearts simultaneously for 30 simulation minutes
(yielding 5 hours of simulated heartbeat). Recall that the actions were generated by firstly producing white
noise. I used the numpy.random.random function to sample the uniform distribution. It generates pseudo-
random numbers based on a given seed. If the seed is not given the numpy package generates a random seed
based on your hardware fingerprints and the current time to ensure that the random numbers are different
each time you run the program.

For some unexplained reasons if I ran the simulation on multiple cores using Python’s multiprocessing
library, each of the cores shared the same seed used for generating the random actions. Consequently, the
same actions were generated which lead to the same heart states, and thus, 90% of the dataset is a copy
of the remaining 10%. After I noticed the issue, I generated a new validation dataset so that the validation
errors provided here are based on actual unseen data (obviously the hyper-parameters were re-optimized too

24

for the unseen data). The new validation errors were suspiciously close to the old validation errors (which
were training errors), leading me to believe that either the network is very resilient to overfitting or that
the 80% of the dataset did not have any significant impact on the training quality.

There are two reasons why I did not notice such a major issue. Firstly, the issue happens exclusively
on the high-performance computing cluster that I used to generate the dataset. I tested the dataset gen-
eration algorithm numerous times, however, only on the data generated by my local computing machine
where the error is not present and the seed gets initialized differently for each of the cores. Secondly, even
though each core outputs a byte-perfect copy of the other cores (meaning there are not even small numerical
differences), the PCA transformation matrices computed individually on each of the core’s datasets differ
slightly (as seen by Figure 3.7). This gave me the impression that the datasets had to be different. After
more testing, I realized that the library sklearn.decomposition I used to compute the PCA transforma-
tion matrix was not deterministic, it produces a different matrix each time it ran. Investigating why the
sklearn.decomposition.PCA algorithm is not deterministic is beyond my pay grade. I implemented the
algorithm myself using purely numpy and it yielded the same transformation matrix each time it re-ran.

Lastly, it was too late to re-generate the full dataset correctly due to the time constraint of this thesis.
The model I have chosen to control is too bulky to work with and the dataset generation alone takes 2 full
days on the Peregrine cluster.

5.1.2 Injector points placement

The injector points location (as seen in Figure 2.9) was done more or less arbitrarily and was not experi-
mented with at all. I speculate that using more injector points and positioning them in tailored locations
would give the controller a higher chance to treat the arrhythmia.

Firstly, 2 out of 4 injector points are placed directly in the high resistivity area. Looking at Sub-figure
5.1 one can see the resistivity mask ρ indicated by red cells (cells with brighter red colour are more resistant)
and the placement of the injector points indicated by cyan colour. Going from the top of the Sub-figure
5.1 the second and the fourth injector point is surrounded by high resistivity cells. The issue arises when I
inspected how those injection points’ areas react to the actions a(t) used for the dataset generation. Figure
5.1 shows the failure of initiation of the action potential cascade despite the individual action potential
being triggered successfully. Sub-figures 5.1b-5.1d display the heart model between t = 690ms & t = 740ms.
Sub-figure 5.1e presents the action that was applied to the heart during that time period. As indicated in
Sub-figure 5.1e in the shaded region, this analysis will focus on the action that corresponds to the second
most top injector point. Sub-figure 5.1b shows that the action spiked an individual action potential. The
action potential then propagated to 2 neighbouring cells (Sub-figure 5.1c), after which it swiftly died out
(Sub-figure 5.1d).

On the other hand, the green-coloured action that came right after the aforementioned orange-coloured
action (Sub-figure 5.1e) triggered an action potential cascade (Sub-figures 5.1c & 5.1d) despite the green
action being weaker than the orange action. It is not impossible to initiate an action potential cascade
in the high-resistivity areas but the action applied to those areas needs to have large amplitude (around
≈ 40mA) and it needs to be applied for a longer period of time (tperiod ≈ 150ms). These types of action
were under-represented in the training and validation dataset. Consequently, granting the controller only 2
effective injector points - which is simply too little to control the 2560 dimensional system.

Later research will be more successful if they place more injectors, especially on the scarred tissue (as
indicated by the slightly red-ish region in Sub-figure 5.1a on the right since that is the region of the heart
model which is responsible for the arrhythmia and needs fixing.

5.1.3 Under-utilization of parallel processing

The local design, with the best scoring validation error, can be trained in parallel. Despite that, due to
the time constraints of this thesis, I trained the reservoirs in series - greatly increasing the training time of
the controller. To make the situation even worse I used only one internal weight matrix W and reservoir
x which was set up in a way so it perfectly mimics the design described in Sub-section 3.2.2. However, it
did not have the performance & the memory boost as the true parallel design. Therefore, I needed to use
significantly less reservoir neurons than Pathak et al. (2018); Vlachas et al. (2020).

I am fully aware that the argument “add more neurons” can be seen as a lazy analysis but the local
design was indeed under-utilized. The validation error decreased linearly as more neurons were added to
the local design whilst, as an illustration, adding more neurons to the PCA design had an exponentially
decreasing effect on the validation error. Figure 5.2 shows the effect on the validation error whilst adding
more neurons to the two aforementioned designs.

25

(a) Injection points & ρ (b) t = 690ms (c) t = 715ms (d) t = 740ms

500 550 600 650 700 750 800
Time (ms)

0

5

10

15

20

25

30

In
je

ct
io

n
cu

rre
nt

 (m
A)

a1

a2

a3

a4

(e) Actions applied to the heart

Figure 5.1: Showcase of a failed attempt to initiate an action potential cascade due to the strong
resistivity mask surrounding the injection point. For full explanation see the text

26

I could not continue adding more neurons to the local design due to the quadratic scaling of the internal
weight matrix W and the memory/performance limitation of my local machine. Future researchers/bachelor
students should implement the parallel training of the reservoirs which would allow them to train much
bigger networks even on their laptops.

5.1.4 Spectral radius of 0

Notice that the best found spectral radius rs for the PCA design is 0, meaning that all internal weights are set
to 0 and the network becomes a simple feed-forward network. A spectral radius of 0 removes any memory
capabilities of the controller. If one would choose a very low sampling frequency the sequence of states
(s(0), s(1), s(2), ..., s(N) would appear more as a stochastic variable coming from an unknown distribution
rather continuous states dependent on each other. Therefore, any information about the previous state
would be almost redundant if the sampling frequency would be too low for the prediction of the next action
a. Simply put the reservoir memory capabilities would introduce noise and removing them (by setting the
spectral radius 0) would improve the prediction.

However, I also performed numerous hyper-optimization runs with the other datasets with higher sam-
pling frequencies (fs = {50Hz, 100Hz}) and none of them was able to outperform the 20Hz dataset. It is
also important to mention that a non-zero spectral radius was found as the best parameter choice for the
other datasets - again, restoring the notion that memory is important for controlling the heart.

800 900 1000 1100 1200 1300
Total neurons

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Va
lid

at
io

n
er

ro
r

pca_design

1250 1500 1750 2000 2250 2500 2750 3000 3250
Total neurons

0.15

0.20

0.25

0.30

0.35

0.40

Va
lid

at
io

n
er

ro
r

local_design

Figure 5.2: Comparison of how adding more reservoir neurons affects the validation error. Both figures
show the total number of neurons in the controller reservoir(s) vs the validation error (NRMSE)

5.2 Conclusion

For any future bachelor/master students reading my thesis, chaos control using an echo state network is an
incredibly fun topic for a BSc thesis. It provides endless possibilities of what system to control and strikes
a perfect balance between theory & application. Numerous times I found myself spending 12 hours a day,
coding and exploring what more can be done to improve the model/controller (only to regret that one day
has just 24 hours). The only advice I want to give to you is to choose a simpler more lightweight model to
control. Spending half an hour just to test one iteration of the controller is too much for one’s sanity.

I would like to thank my supervisor professor Herbert Jaeger for mentoring me throughout this incredible
learning experience, not imposing his master mind too much, letting me choose my topic, making my errors,
and learning from them by myself. I would also like to thank my co-supervisor professor Jelmer Borst for
being patient with my late thesis submission and for reading and grading the thesis. Thank you!

27

References

Mohammad Alasti, Colin Machado, Karthikeyan Rangasamy, Logan Bittinger, Stewart Healy, Emily
Kotschet, David Adam, and Jeff Alison. Pacemaker-mediated arrhythmias. Journal of Arrhythmia,
34(5):485–492, 2018.

Felipe Alonso-Atienza, Eduardo Morgado, Lorena Fernandez-Martinez, Arcadi Garćıa-Alberola, and
José Luis Rojo-Alvarez. Detection of life-threatening arrhythmias using feature selection and support
vector machines. IEEE Transactions on Biomedical Engineering, 61(3):832–840, 2013.

Shweta Bajpai, MS Alam, and MA Ali. Intelligent heart rate controller using fractional order PID controller
tuned by genetic algorithm for pacemaker. International Journal of Engineering Research & Technology,
6(5):715–720, 2017.

Olivier Blanc, Nathalie Virag, J-M Vesin, and Lukas Kappenberger. A computer model of human atria
with reasonable computation load and realistic anatomical properties. IEEE Transactions on Biomedical
Engineering, 48(11):1229–1237, 2001.

Michael Buehner and Peter Young. A tighter bound for the echo state property. IEEE Transactions on
Neural Networks, 17(3):820–824, 2006.

Matthew Cooper, Peter Heidlauf, and Timothy Sands. Controlling chaos—forced van der pol equation.
Mathematics, 5(4):70, 2017.

Bianca Borem Ferreira, Aline Souza de Paula, and Marcelo Amorim Savi. Chaos control applied to heart
rhythm dynamics. Chaos, Solitons & Fractals, 44(8):587–599, 2011.

Gregory R Ferrier and Peter E Dresel. Relationship of the functional refractory period to conduction in the
atrioventricular node. Circulation Research, 35(2):204–214, 1974.

Richard N Fogoros. Antiarrhythmic drugs: A practical guide. John Wiley & Sons, 2008.

Pietro Francia, Cristina Balla, Arianna Uccellini, and Riccardo Cappato. Arrhythmia detection in single-and
dual-chamber implantable cardioverter defibrillators: The more leads, the better? Journal of Cardiovas-
cular Electrophysiology, 20(9):1077–1082, 2009.

Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by continuous time recur-
rent neural networks. Neural networks, 6(6):801–806, 1993.

John B Garner and John M Miller. Wide complex tachycardia–ventricular tachycardia or not ventricular
tachycardia, that remains the question. Arrhythmia & Electrophysiology Review, 2(1):23, 2013.

Andreas Goette, Jonathan M Kalman, Luis Aguinaga, Joseph Akar, Jose Angel Cabrera, Shih Ann Chen,
Sumeet S Chugh, Domenico Corradi, Andre D’Avila, Dobromir Dobrev, et al. EHRA/HRS/APHRS/SO-
LAECE expert consensus on atrial cardiomyopathies: definition, characterisation, and clinical implication.
Journal of arrhythmia, 32(4):247–278, 2016.

Amandeep Goyal, Benjamin Senst, Poonam Bhyan, and Roman Zeltser. Reentry Arrhythmia. StatPearls
Publishing, Treasure Island (FL), 2021. URL http://europepmc.org/books/NBK537089.

John Edward Hall, Arthur C. Guyton, and Michael E. Hall. Cardiac muscle; the heart as a pump and
function of the heart valves. In Guyton and Hall Textbook of Medical Physiology, chapter 1, page 113–126.
Elsevier, 2021.

Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its application
to conduction and excitation in nerve. The Journal of physiology, 117(4):500, 1952.

Janusz A Holyst, Tilo Hagel, Günter Haag, and Wolfgang Weidlich. How to control a chaotic economy?
Journal of Evolutionary Economics, 6(1):31–42, 1996.

Ali Isin and Selen Ozdalili. Cardiac arrhythmia detection using deep learning. Procedia Computer Science,
120:268–275, 2017.

Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic systems and saving energy in
wireless communication. science, 2004.

28

http://europepmc.org/books/NBK537089

Richard E. Klabunde. Sinoatrial node action potentials, Jan 2021. URL https://www.cvphysiology.com/
Arrhythmias/A004.

Qiao Li, Cadathur Rajagopalan, and Gari D Clifford. Ventricular fibrillation and tachycardia classification
using a machine learning approach. IEEE Transactions on Biomedical Engineering, 61(6):1607–1613,
2013.

Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recurrent neural network
training. Computer Science Review, 3(3):127–149, 2009.

Ching-hsing Luo and Yoram Rudy. A model of the ventricular cardiac action potential. depolarization,
repolarization, and their interaction. Circulation Research, 68(6):1501–1526, 1991.

Elbert EN Macau and Celso Grebogi. Control of chaos and its relevancy to spacecraft steering. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1846):2463–
2481, 2006.

T Marios. Theoretical and numerical study of the Van der Pol equation. PhD thesis, Aristotle University of
Thessaloniki School of Sciences . . . , 2006. URL https://arxiv.org/ftp/arxiv/papers/0803/0803.1658.pdf.

Shaher Momani, Iqbal M Batiha, and Reyad El-Khazali. Design of pi λ d δ-heart rate controllers for cardiac
pacemaker. In 2019 IEEE International Symposium on Signal Processing and Information Technology
(ISSPIT), pages 1–5. IEEE, 2019.

Fred Morady, Steven D Nelson, William H Kou, Richard Pratley, Stephen Schmaltz, Michael De Buitleir,
and Jeffrey B Halter. Electrophysiologic effects of epinephrine in humans. Journal of the American College
of Cardiology, 11(6):1235–1244, 1988.

Venkat D Nagarajan, Su-Lin Lee, Jan-Lukas Robertus, Christoph A Nienaber, Natalia A Trayanova, and
Sabine Ernst. Artificial intelligence in the diagnosis and management of arrhythmias. European Heart
Journal, 42(38):3904–3916, 2021.

NHLBI. Arrhythmia, 2018. URL https://www.nhlbi.nih.gov/health-topics/arrhythmia.

Edward Ott, Celso Grebogi, and James A Yorke. Controlling chaos. Physical Review Letters, 64(11):1196,
1990.

Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott. Model-free prediction of large
spatiotemporally chaotic systems from data: A reservoir computing approach. Physical Review Letters,
120(2):024102, 2018.

Marco V Perez, Frederick E Dewey, Swee Y Tan, Jonathan Myers, and Victor F Froelicher. Added value of a
resting ecg neural network that predicts cardiovascular mortality. Annals of Noninvasive Electrocardiology,
14(1):26–34, 2009.

Jeremy N Ruskin. The cardiac arrhythmia suppression trial (cast). New England Journal of Medicine, 321
(6):386–388, 1989.

Matthias Salmen and Paul G Plöger. Echo state networks used for motor control. In Proceedings of the
2005 IEEE international conference on robotics and automation, pages 1953–1958. IEEE, 2005.

Eckehard Schöll and Heinz Georg Schuster. Control of cardiac electrical nonlinear dynamics. In Handbook
of Chaos Control, page 683–701. Wiley Online Library, 2008.

Viktor Veselý. Chaos, Sep 2021. URL https://github.com/viktorvesely/CHAOS.

Pantelis R Vlachas, Jaideep Pathak, Brian R Hunt, Themistoklis P Sapsis, Michelle Girvan, Edward Ott, and
Petros Koumoutsakos. Backpropagation algorithms and reservoir computing in recurrent neural networks
for the forecasting of complex spatiotemporal dynamics. Neural Networks, 126:191–217, 2020.

Wikipedia. Ventricular action potential, Oct 2021. URL https://en.wikipedia.org/wiki/Ventricular action
potential.

29

https://www.cvphysiology.com/Arrhythmias/A004
https://www.cvphysiology.com/Arrhythmias/A004
https://arxiv.org/ftp/arxiv/papers/0803/0803.1658.pdf
https://www.nhlbi.nih.gov/health-topics/arrhythmia
https://github.com/viktorvesely/CHAOS
https://en.wikipedia.org/wiki/Ventricular_action_potential
https://en.wikipedia.org/wiki/Ventricular_action_potential

A Appendix

A.1 Cell equations

The equations are taken and modified from Luo and Rudy (1991). For the explanation of the modifications
and equations see Section 2.1.

A.1.1 Units

Name Notation Units Notes

Membrane voltage Vm or V mV Spatiotemporally chaotic

Cell current I µA
cm2 Flow of ions

Gating parameters α and β 1
ms

Determine the speed of
the gates

Concentration of ions [Ion]{i,o} Unitless
Intracellular (i)
Extracellular (o)

Voltage source E mV Resting potential
Time t ms No remarks

Membrane capacitance C µF
cm2 No remarks

Table A.1: Description of units

A.1.2 State variables

Membrane potential
dV

dt
= − 1

C
(Iions − Istim), (A.1)

with
V (t = 0) = −81.1014, (A.2)

where Iions is the sum of all ions defined later in this section and Istim is the stimulation current.

Gates
Let y be any gate in the cell, then

dy

dt
=

y∞ − y

τy
,

y∞(V) =
αy(V)

αy(V) + βy(V)
,

τy(V) =
1

αy(V) + βy(V)
,

(A.3)

with
y(t = 0) = y∞(V (t = 0)). (A.4)

Cell calcium uptake
d[Ca]i
dt

= −10−4 · Isi + 0.07 · (10−4 − [Ca]i), (A.5)

with
[Ca]i(t = 0) = 2 · 10−4. (A.6)

30

A.1.3 Inward currents

Fast time-dependent sodium current

For all V

INa(t) = ĜNa ·m3(t) · h(t) · j(t) · (V (t)− ENa),

ĜNa = 23 · 1.3,
ENa = 54.4,

αm(V) =
0.32 · (V + 47.13)

1− e−0.1·(V+47.13)
,

βm(V) = 0.08 · e−
V
11 .

For V larger or equal to -40 mV

αh(V) = αj(V) = 0,

βh(V) =
1

0.13

(
1 + e

V + 10.66
−11.1

) ,

βj(V) =
0.3 · e−2.535·10−7V

1 + e−0.1·(V+32)
.

For V less than -40 mV

αh(V) = 0.135 · e
80 + V
−6.8 ,

αj(V) =
(
−1.2714 · 105 · e0.2444·V − 3.474 · 10−5 · e−0.04391·V) · V + 37.78

1 + e0.311·(V+79.23)
,

βh(V) = 3.56 · e0.079·V + 3.1 · 105 · e0.35·V ,

βj(V) =
0.1212 · e−0.01052V

1 + e−0.1378·(V+40.14)
.

(A.7)

Slow time-dependent silicon current

Isi(t) = 0.2 · Ḡsi · d(t) · f(t) · (V (t)− Esi),

Ḡsi = 0.09,

Esi = 7.7− 13.0287ln([Ca]i),

αd(V) =
0.095 · e−0.01·(V−5)

1 + e−0.072·(V−5)
,

βd(V) =
0.07 · e−0.017·(V+44)

1 + e0.05·(V+44)
,

αf (V) =
0.012 · e−0.008·(V+28)

1 + e0.15·(V+28)
,

βf (V) =
0.0065 · e−0.02·(V+30)

1 + e−0.2·(V+30)
.

(A.8)

31

A.1.4 Outward currents

Time-dependent potassium current

IK(t) = ḠK ·X(t) ·Xi · (V (t)− EK),

ḠK = 0.282 ·
√

[K]o
5.4

,

[K]o = 5.4,

EK = −77,

Xi(V) =

2.837 · e0.04·(V+77) − 1
(V + 77) · e0.04(V+35) for V > −100mV

1 otherwise
,

αx(V) =
0.0005 · 5 · e0.083·(V+50)

1 + e0.057·(V+50)
,

βx(V) =
0.0013 · 5 · e−0.06·(V+20)

1 + e−0.04·(V+20)
.

(A.9)

Time-independent potassium current

IK1(V) = ḠK1 ·K1∞ · (V (t)− EK1),

ḠK1 = 0.6047 ·
√

[K]o
5.4

,

[K]o = 5.4,

EK1 = −84,

αK1(V) =
1.02

1 + e0.2385·(V−EK1−59.215)
,

βK1 =
0.49124 · e0.08032·(V−EK1+5.476) + e0.06175·(V−EK1−594.31)

1 + e−0.5143·(V−EK1+4.753)
.

(A.10)

Time-independent plateau potassium current

IKp(V) = ḠKp ·Kp · (V (t)− EKp),

ḠKp = 0.0183,

EKp = EK1 = −84,

Kp(V) =
1

1 + e
7.488− V

5.98
)

.

(A.11)

Time-independent background current

IKp(V) = Ḡb · (V (t)− Eb),

Ḡb = 0.03921,

Eb = −59.87.

(A.12)

A.2 Derivation of the control equation

This sections derives the optimal control equation from the heart model equation 2.6. Firstly, discretizing
Equation 2.6 yields

1

Sv∆x2
(
V n
i−1,j − V n

i,j

ρi−1,i
+
V n
i+1,j − V n

i,j

ρi+1,i
)+

1

Sv∆y2
(
V n
i,j−1 − V n

i,j

ρj−1,j
+
V n
i,j+1 − V n

i,j

ρj+1,j
) = C ·

V n+1
i,j − V n

i,j

∆t
+Ionn

i,j−An
i,j .

(A.13)
Assuming ∆x = ∆y (which is true in the model) and

↔n=
V n
i−1,j − V n

i,j

ρi−1,i
+

V n
i+1,j − V n

i,j

ρi+1,i
, (A.14)

↕n=
V n
i,j−1 − V n

i,j

ρj−1,j
+

V n
i,j+1 − V n

i,j

ρj+1,j
. (A.15)

32

The equation can be then rewritten into a more readable form

1

Sv∆x2
(↔n + ↕n) = C ·

V n+1
i,j − V n

i,j

∆t
+ Ionn

i,j −An
i,j . (A.16)

The echo state network controller works on a different time-scale than the heart model (different update
frequency), therefore, let N be the number of update steps of the heart model needed for the controller to
update. N can be calculated as the ratio of the controller period Tc and the model period Tm; N = Tc

Tm
.

Given V n, what is the optimal action Istim such that the heart model will transition to V n+N .
Firstly, re-range for the future state V n+1(

1

Sv∆x2
(↔n + ↕n)− Ionn

i,j +An
i,j

)
∆t

C
+ V n

i,j = V n+1
i,j . (A.17)

Then express the Equation A.16 for n+ 1

1

Sv∆x2
(↔n+1 + ↕n+1) = C ·

V n+2
i,j − V n+1

i,j

∆t
+ Ionn+1

i,j −An+1
i,j . (A.18)

Substitute V n+1
i,j from Equation A.17 and re-arrange

1

Sv∆x2
[(↔n + ↕n) + (↔n+1 + ↕n+1)] = C ·

V n+2
i,j − V n

i,j

∆t
+ Ionn+1

i,j + Ionn
i,j −An+1

i,j −An+1
i,j . (A.19)

It is important to realize that by the definition of my controller An = An+k until the controller makes a
new decision. Thus, the equation can simplified

1

Sv∆x2
[(↔n + ↕n) + (↔n+1 + ↕n+1)] = C ·

V n+2
i,j − V n

i,j

∆t
+ Ionn+1

i,j + Ionn
i,j − 2 ·An

i,j . (A.20)

The formula can be generalized for any number of steps (by substitution)

1

Sv∆x2

N−1∑
k=0

(↔n+k + ↕n+k) = C ·
V n+N
i,j − V n

i,j

∆t
+

N−1∑
k=0

Ionn+k
i,j −N ·An

i,j . (A.21)

Rearranging for An

An
i,j =

1

N

[
C ·

V n+N
i,j − V n

i,j

∆t
+

N−1∑
k=0

Ionn+k
i,j − 1

Sv∆x2

N−1∑
k=0

(↔n+k + ↕n+k)

]
. (A.22)

Since the controller has less degrees of freedom

An
i,j =

{
0 when there is no injection point

An
i,j where there is an injection point

.

Due to the last limitation, the optimal solution may not exists.

A.3 ESN controller parameters

In this section the best parameters are presented for each of the controller’s design using the dataset with
sampling frequency equal to 20Hz (except the Van der Poll design which had only one dataset). Table A.2
shows the best hyper-parameters for the full-state design, Table A.3 for the local design, Table A.4 for the
PCA design, and Table A.5.

33

Parameter Value Remark

β 0.000001 Regularization
d 1 Delay

washout 50 Washout period
rs 0.5 Spectral radius

(wmin, wmax) (−0.8, 0.8)
General reservoir weights
(uniform distribution)

||x|| 700 General reservoir size
connectivity 0.2 Of the general reservoir

(µ+, sd+) (1, 0.5)
Membrane potential weights

(normal distribution)

(µ, sd) (0, 0.8)
Other state variable weights

(normal distribution)

(αmin, αmax) (0.01, 0.8)
Leaky mask for the
general reservoir

αV
heart 0.87

Leaky mask for the
membrane potential

(αmin
heart, α

max
heart) (0.7, 0.9)

Leaky mask for the
other state variable

(µin, sdin) (0, 0.2)
Input weights for the

general reservoir

(µin
heart, sd

in
heart) (0.2, 0.05)

Input weights for the
heart reservoir

adjecencyTolerance 15 See methods section

Table A.2: The best parameters found for the full-state design

Parameter Value Remark

β 0.000001 Regularization
d 1 Delay

washout 50 Washout period
rs 0.3 Spectral radius

(wmin, wmax) (−0.8, 0.8)
Reservoir weights

(uniform distribution)

||x|| 800
Size of the one reservoir

out of four
connectivity 0.85 Of each reservoir

(µin, sdin) (0, 0.5)
Input weights

(normal distribution)
adjecencyInput 18 See methods section

(αmin, αmax) (0.1, 0.9)
Leaky mask for the
general reservoir

Table A.3: The best parameters found for the local design

34

Parameter Value Remark

β 0.000001 Regularization
d 1 Delay

washout 50 Washout period
rs 0.0 Spectral radius

(wmin, wmax) (−0.8, 0.8)
Reservoir weights

(uniform distribution)
||x|| 1200 Size of the reservoir

connectivity 0.4 Density of the weights

(µin, sdin) (0, 0.08)
Input weights

(normal distribution)

(αmin, αmax) (0.1, 0.9)
Leaky mask for the
general reservoir

Table A.4: The best parameters found for the PCA design

Parameter Value Remark

β 0.000001 Regularization
d 3 Delay

washout 100 Washout period
rs 0.95 Spectral radius

(wmin, wmax) (−1, 1)
Reservoir weights

(uniform distribution)
||x|| 800 Size of the reservoir

connectivity 0.45 Density of the weights

(wmin
in , wmax

in) (-0.09, 0.09)
Input weights

(normal distribution)

(αmin, αmax) (0.4, 0.7)
Leaky mask for the
general reservoir

Table A.5: The best parameters found for the Van der Pol design

35

	Introduction
	Existing solutions
	Implantable Cardioverter Defibrillators
	Pharmacological Treatment
	Artificial pacemakers
	Machine learning approach

	Chaos control
	Echo state networks
	Research objective

	Theoretical Background
	Cardiomyocytes
	Heart model
	Van der Pol oscillator
	Echo state network as controller
	Dynamics
	Training

	Methodology
	Dataset creation
	Action selection

	Controller designs
	Full-state design
	Local design
	Principal component analysis design
	Common modifiers

	Van der Pol design

	Results
	Hyper-parameters

	Discussion
	Potential problems and improvements
	Dataset variety
	Injector points placement
	Under-utilization of parallel processing
	Spectral radius of 0

	Conclusion

	Appendix
	Cell equations
	Units
	State variables
	Inward currents
	Outward currents

	Derivation of the control equation
	ESN controller parameters

