
MASTER’S THESIS

Target Driven Object Grasping in Highly
Cluttered Scenarios through Domain

Randomization and Active Segmentation

Author:
Ivar MAK

First Supervisor:
Dr. Hamidreza KASAEI

Second Supervisor:
Prof. Dr. Raffaella CARLONI

Artificial Intelligence
Computational Intelligence and Robotics

August 10, 2022

ii

Abstract
Robots nowadays are demanded to perform tasks that divert from controlled envi-
ronments. With regards to robotic grasping systems, dynamic situations pose prob-
lems in multiple ways. Grasping a target object from a pile might be impeded by
other objects that obscure the robot’s view, or restrict the grasping motion. In this
work, a deep learning approach is presented that is capable of flexible object ma-
nipulation in highly cluttered environments. Using a Neural Network (NN) for ob-
ject detection and -segmentation, and a second NN for grasp synthesis, a system is
built that handles robust object grasping in human-centric domains. These consist
of household objects located on a table, which are manipulated by a robotic arm
with a two-fingered grasping hand in order to single out a target object. To evaluate
the performance of the proposed approach, four sets of experiments are performed,
with the objects being in isolated, packed, piled, and cluttered scenarios. An experi-
ment is considered a success when the target object is placed in its corresponding
tray, located next to the table. Experimental results show accuracy scores of 94% for
isolated, 89% for packed, 85% for piled, and 80% for cluttered environments.

iii

Contents

Abstract ii

1 Introduction 1
1.1 Research Questions . 3
1.2 Contributions . 3
1.3 Thesis Outline . 3

2 Related Work 4
2.1 Object Detection . 4
2.2 Grasping . 5
2.3 Cluttered Environments and Active Segmentation 6
2.4 Domain Randomization . 7

3 Methodology 9
3.1 Mask-RCNN . 9

3.1.1 Background . 9
3.1.2 Training . 10

Domain Randomization . 11
Data Augmentation . 11

3.2 GR-ConvNet . 12
3.2.1 Background . 12
3.2.2 Training . 14

3.3 Active Segmentation . 14
3.4 Model . 15

4 Experiments and Results 22
4.1 Simulation . 22
4.2 Dataset . 23
4.3 Experiments . 23
4.4 Scenarios . 24

4.4.1 Isolated . 25
4.4.2 Packed . 25
4.4.3 Piled . 26
4.4.4 Cluttered . 28

4.5 Object Visibility . 29
4.6 Domain Randomization . 30
4.7 Active Segmentation . 31

5 Discussion 34
5.1 Conclusion . 35

A Appendix 37

iv

A.1 Mask-RCNN Training Parameter Configuration 37

Bibliography 40

v

List of Figures

3.1 Mask-RCNN architecture, adapted from Yu et al., 2019. 10
3.2 Examples of training data: (a) shows images of the banana object from

the standard data set, with a plain background; (b) shows images of
the banana objects from the data set constructed with domain ran-
domization, with texturized backgrounds. 12

3.3 Augmented training images with one example for each augmentation. 13
3.4 GR-ConvNet architecture, adapted from Kumra, Joshi, and Sahin, 2020. 13
3.5 The main components of the implemented segmentation step in this

approach. 15
3.6 Overview of the segmentation process, with the TennisBall as target

object, its bounding box obtained from the Mask-RCNN in depicted
in green, and the grasp predicted by the GR-ConvNet depicted in blue. 16

3.7 Overview of the model architecture: the object recognition module
initiates the pipeline, where the Mask-RCNN determines whether an
object is recognized in the detection area. If no object is recognized,
the model will move an object to the recognition area and if no ob-
ject is detected again, decrease its detection threshold. If one or more
objects are detected, the targeted graping phase is entered. The GR-
ConvNet will detect possible grasp configurations, and move the ob-
ject to its corresponding location. If no grasps are detected-, or the
execution of the grasp has failed, a segmentation move is performed
and the model sequence is restarted. 17

4.1 Environmental setup in the PyBullet simulated environment, with la-
beled components. 22

4.2 Example setup of each scenario. 24
4.3 Example of an isolated scenario setup. 25
4.4 Results of the isolated scenario experiments. 26
4.5 Failure reasons of the isolated scenario experiments. 26
4.6 Example of a packed scenario setup. 27
4.7 Results of the packed scenario experiments. 27
4.8 Failure reasons of the packed scenario experiments. 28
4.9 Example of a piled scenario setup. 28
4.10 Results of the piled scenario experiments 29
4.11 Failure reasons of the piled scenario experiments. 29
4.12 Example of a cluttered scenario setup. 30
4.13 Cluttered scenario experiment results and failure reasons. 31
4.14 Piled scenario experiment success rate compared to target object vis-

ibility percentage. The green bars indicate the performance of the
model, the blue bars report the number of experiments performed in
that percentile range. Total number of performed experiments: 150. . . 32

vi

4.15 Cluttered scenario experiment success rate compared to target object
visibility percentage. The green bars indicate the performance of the
model, the blue bars report the number of experiments performed in
that percentile range. Total number of performed experiments: 30. . . 33

A.1 Cluttered scenario experiment results and failure reasons. 37
A.2 Graphs of training stage Mask-RCNN, depicting loss and validation

loss. 39

vii

List of Tables

3.1 Implemented data augmentations, with detailed information, and prob-
ability of execution. 11

3.2 Overview of possible model states. 17

4.1 Overview of YCB-objectst that are used. 23
4.2 Reasons for a failed experiment, including numerical values if appli-

cable. 23
4.3 Summary of the experimental results per scenario. 25
4.4 Results of tests performed on Mask-RCNN weights trained with- and

without Domain Randomization. 31
4.5 For each applicable scenario, an analysis of the influence of segmen-

tation moves on the success rate of an experiment. 32

1

Chapter 1

Introduction

With our society’s present-day technical advances, automated jobs and tasks are a
burgeoning part of our lives. The functionality of ’smart’ electronical systems is
becoming prevalent in day-to-day acts, but with their expanding rate of deployment
come challenges that need conquering.

Robots have been widely utilized for industrial purposes over the past decades.
With the advancing of industrialization, and their increasing competence and effec-
tiveness with regards to object manipulation, intelligent robots play an increasingly
important role in intelligent manufacturing, intelligent transportation systems, the
Internet of things, and intelligent services (Hu et al., 2019; Wang, Tao, and Liu, 2018).

Furthermore, the desire to deploy robots has grown in other sectors. An assistant
robot could alleviate the workload of medical staff, help out with domestic tasks, or
be of service in the hospitality sector (Robinson, MacDonald, and Broadbent, 2014;
Wilson et al., 2019; Bowen and Morosan, 2018). We are striving towards robotic ap-
plications that are capable of performing increasingly complex tasks. These tasks in-
clude circumstances that divert from controlled environments in which solely repet-
itive and preprogammed operations are to be performed. With this transition arises
the need for dynamic and adaptive systems.

In order to deploy robots in human-centric environments, systems need to account
for unstructured settings. When imagining a service robot performing household
tasks or a factory robot working a production line, these settings may consist of
packed items or piles of objects. In these, motion planning is a challenging task due
to the high demand of real-time and accurate responses for a vast number of ob-
jects. Also, these objects come with a wide variety of shapes and sizes under various
clutter and occlusion conditions (Kasaei and Kasaei, 2022). Furthermore, realistic
environments pose high uncertainty with regard to properly grasping objects, either
through sensory occlusion or the actuator being prohibited of reaching the object
(Kiatos et al., 2022).

Grasping is in many cases the most effective way of moving an object from one
place to another. It comprises of gripping and moving actions, in which the basic
elements are localization of the object and its environment. This requires visual ac-
curacy, robust sensing, and fine control. Performing a successful grasp consists of
three stages: the inital grasp, carrying or manipulation, and finally the release or
placement. Grasping can be performed in a target-agnostic manner, coming with a
higher level objective, for example bin picking or cleaning a dinner table. When a
specific target is to be localized and manipulated, we refer to it as a target-oriented
problem. Besides that, a crucial part of grasping is acquiring perception, which is

2 Chapter 1. Introduction

called the precondition of grasping (Marwan, Chua, and Kwek, 2021). This is partic-
ularly important for a robot facing a complex environment with multiple objects.

Vision is the main channel in which humans receive all types of information. In order
to acquire robotic applications capable of complex manipulation tasks, we need to
equip them with vision systems that have high accuracy and robustness, similar to
human beings. Vision sensors are mostly applied in robotics using cameras, which
provide input data for the system component responsible for object detection. This
component will apply image processing in order to analyze the input and make
inferences about the situation. Accurate and fast object recognition based on vision
is a basic element of robot applications in both industry and real-life scenarios (Bai
et al., 2020).

In many situations, objects do not appear in isolation. Realistic environments are
often highly cluttered, which leads to challenging tasks with regard to grasping. In
cluttered environments, grasping a target object might not be feasible as a result of
occlusion caused by other objects. Furthermore, the cluttered presence might impair
the detection accuracy of an object recognition system as well. When performing
targeted grasping on objects in cluttered environments, the key challenges are object
detection and finding appropriate grasp poses (Jo and Song, 2020).

When a robotic object manipulation system operates, an accurate object detection
module aids in constructing a segmented representation of the scenario at hand.
Since cluttered environments might impair an accurate execution of the manipula-
tion step, this might not be sufficient for reliable performance. Pre-grasp manipula-
tion policies can substantially increase the grasp success rates in complex environ-
ments (Kiatos et al., 2022). Grasping requires a certain amount of free space around
an object, which means in dealing with clutter the robot might need active segmen-
tation steps in order to achieve a stable grasp opportunity. When a collision-free
grasp does not exist, pushing operations can singulate objects in clutter, enabling
future grasping of these isolated objects (Tang et al., 2021).

Before the object detection and grasping components of a robotic manipulation sys-
tem can be employed, they need to be familiarized with the objects that need manip-
ulation. In most deep learning approaches, this demands training on labeled data
until a point of convergence is reached, and the task can be performed accurately.
Training on real life scenarios might not be desired, it could take a lot of time, or
random exploration might be employed, which can be dangerous on physical hard-
ware. Performing robotic learning in a simulator could accelerate the process, make
it more scalable, and lower the cost of data collection (Tobin et al., 2017). When this
trained system is then applied to a real life scenario, we talk about a transfer of do-
mains. This comes with its challenges, since the discrepancies between a simulation
and real life scenario can be large, even if the task at hand is the same. This where
domain randomization comes into play. It is a popular technique for improving do-
main transfer. By randomizing parameters in the training phase that might vary in
the target environment, the hope is that the agent will view the target domain as just
another variation (Mehta et al., 2020).

1.1. Research Questions 3

1.1 Research Questions

The main objective of this research is adding to the current state-of-the-art of ob-
ject manipulation by applying and combining a number of deep learning techniques
that have been shown to be individually successful. We continue research into ob-
ject detection and grasping synthesis by focusing on highly cluttered scenarios. We
explore the possibilities of our approach and evaluate its performance by answering
the following questions:

• Is it possible to implement a model capable of grasping a target object in a
highly cluttered scenario?

• Does the obtained model perform well with regard to accuracy of targeted
grasping?

• What kind of scenarios pose limitations on the approach, and what are these
limitations?

• How does the visibility of the object influence the models performance in
highly cluttered scenarios?

• Does the application of domain randomization improve the performance of
the model?

1.2 Contributions

In this research, we propose to solve the problem of grasping a target object in a
highly cluttered scenario by implementing deep learning methods combined with
active segmentation. The key aspects of the approach are:

• A target-oriented model that is able to operate in a highly cluttered scenario of
15 human-centric objects, with limited visibility of the target object.

• Increased performance on object recognition in isolated and cluttered scenarios
is obtained, by incorporating a novel approach of domain randomization in the
training phase of the object detection module.

• The implementation of an algorithm applying both passive- and active seg-
mentation, which aids in the performance of the grasping module.

1.3 Thesis Outline

The thesis consists of five chapters, and is organized as follows: Chapter 2 discusses
the related work with regard to the components of this research. Chapter 3 describes
their functionality in depth and the methods utilized in the implementation of the
approach. Chapter 4 provides all details of the experiments that were performed
and presents the results. These are evaluated and discussed in Chapter 5, followed
by our conclusions and directions for future work.

4

Chapter 2

Related Work

An in-depth review is beyond the scope of this work, and has been written exten-
sively regarding intelligent robots (Wang, Tao, and Liu, 2018), grasping (Marwan,
Chua, and Kwek, 2021; Mohammed, Chung, and Chyi, 2020; Wang et al., 2020), and
object detection (Bai et al., 2020; Bharati and Pramanik, 2020). However, in order to
provide a theoretical background, in this section a few recent efforts are discussed
and summarized for each of the subjects encompassed by this research.

2.1 Object Detection

There are several possible approaches that can be used for object detection, most of
them based on deep learning methods with convolutional properties.

Liu et al., 2016 proposed the Single Shot MultiBox Detector (SSD). The method de-
tects objects in images using a single deep neural network, which means the entire
process of SSD requires only one step. It uses a multiscale feature map to a priori
detect and set a box for target detection. It is a relatively simple algorithm compared
to methods that require object proposals because it eliminates proposal generation,
and uses a single network for the computation. This makes it easy to train and
straightforward to integrate (Bai et al., 2020).

The You Only Look Once (YOLO) algorithm was proposed by Redmon et al., 2016.
By transforming the object detection problem into a regression problem, they were
also able to use a single neural network to perform object detection in one evaluation.
This is done by to spacially separating bounding boxes and associated class proba-
bilities, by using a Convolutional Neural Network (CNN) structure. High detection
accuracies and fast computation speeds can be achieved by using this method. The
SSD algorithm is much better than YOLOv1 in accuracy and speeds, and SSD di-
rectly uses the convolution layer in the last layer to extract the detection results of
different feature maps (Bai et al., 2020). Recently an improved version of the SSD
has been released by Zhai et al., 2020, showing better accuracy than the previous
version, even with a smaller input image size.

However over the years, the YOLO algorithm has been subject to multiple improve-
ments, leading to the release of newer versions. YOLOv3 which was released in 2018
integrated some advantages of similar algorithms such as the feature pyramid net-
work (FPN) and the Fast-Region-based CNN (RCNN) and runs as accurate as SSD
but three times faster (Redmon and Farhadi, 2018; Bai et al., 2020).

The Mask Region-Based Convolutional Neural Network (Mask-RCNN) proposed
by He et al., 2017 is different from the two previously mentioned algorithms in the

2.2. Grasping 5

fact that it is a two- instead of ’one-shot’ approach. This means that instead of one
single network used for the detection of bounding boxes and class probabilities, it
utilizes two different models. It is an extended version of the Faster R-CNN algo-
rithm Ren et al., 2017, which is combined with a fully connected network (FCN)
used for semantic segmentation. Region proposal networks (RPN) are used to gen-
erate candidate regions and train an RPN and Fast RCNN to share a convolutional
layer, which greatly improves the detection speed of the network. However it takes
a considerable amount of time to generate candidate regions, which also affects the
detection performance (Bai et al., 2020). Recently, an improved version of the algo-
rithm has been released by Zhang et al., 2021, which was tested on x-ray images and
showed promising results.

Although it has been shown that the YOLO algorithm is faster with regard to exe-
cution speed, previous research has also shown that the Mask-RCNN algorithm has
a higher detection accuracy (Bharati and Pramanik, 2020; Dorrer and Tolmacheva,
2020). Furthermore, Buric, Pobar, and Ivasic-Kos, 2018 found that YOLO has more
trouble with the recognition of occluded objects. Another reason for choosing the
Mask-RCNN algorithm is the fact that it is able to generate segmentation masks for
the detected objects. Based on these conclusions and the additional functionality, we
choose to implement the Mask-RCNN algorithm in this research.

2.2 Grasping

Knowing how to grasp an object is an important part in the process of manipulating
objects in an efficient and productive way. Most state-of-the-art grasping approaches
addressed four degrees-of-freedom (DoF) object grasping, where the robot is forced
to grasp objects from above based on grasp synthesis of a given top-down scene,
although methods using six DoF also exist.

Morrison, Corke, and Leitner, 2018 presented an object-independent grasp synthesis
method that can be used for closed-loop grasping. The Generative Grasping Con-
volutional Neural Network (GG-CNN) predicts the quality and pose of grasps at
every pixel, improving computation times and grasp accuracy in non-static environ-
ments. The grasp success achieved ranged from 83% to 88%, with also scoring a high
frequency of grasp pose generation at a rate of 50 Hz.

The Volumetric Grasping Network (VGN) predicts six DoF grasps from 3D scene
information (Breyer et al., 2021). The network uses a Truncated Signed Distance
Function (TSDF) as a representation of the visual input, making it suitable for feature
learning with deep neural networks. After training a FCN, the experiments show a
computationally fast grasping network that enables six DoF grasp synthesis in real-
time. Apart from that, it is able to learn collision-free grasp proposals due to the full
3D scene information that is used in the network.

Another deep learning approach to handle real-time object grasping in more human-
centric domains is MVGrasp, proposed by Kasaei and Kasaei, 2022. Multi-view
depth images are generated from a partial point cloud input, subsequently, the best
view is selected by a view function. This is then fed into a deep network to estimate
a pixel-wise grasp synthesis, which encloses grasp quality, orientation, and width
of the grasp. The evaluation is performed on highly cluttered scenarios, with the
experimental results showing that the proposed system outperforms the state-of-
the-art (amongst others, GG-CNN) in packed and piled situations.

6 Chapter 2. Related Work

Another approach is presented by Kumra, Joshi, and Sahin, 2020 in the form of a
Generative Residual Convolutional Neural Network (GR-ConvNet). It consists of
a modular solution for grasping novel objects, using n-channel input data to gen-
erate images that can be used to infer grasp rectangles for each pixel in an image.
The system obtained high accuracy grasp scores for two datasets, respectively 95.6%
and 93%. Showing the ability to predict and perform accurate grasps for previously
unseen objects, with low inference time.

The GR-ConvNet outperforms the GG-CNN with regard to grasp accuracy, and
shows good performance in different scenarios (Kumra, Joshi, and Sahin, 2020). It
needs less complex input and preprocessing compared to the VGN (Breyer et al.,
2021) and MVGrasp (Kasaei and Kasaei, 2022) algorithm, which is why in this re-
search we choose to implement an approach using GR-ConvNet. This means we
will approach the problem with a top-down grasping policy.

2.3 Cluttered Environments and Active Segmentation

In a highly cluttered scenario, both object detection and grasping might be impaired
due to objects occluding the robot’s perception, or blocking its grasping trajectory. In
these cases, an active segmentation step can be executed in order to singulate objects
from the clutter by means of pushing or other movements. This aims at improving
the situation, optimally resulting in a clear view of the object and a collision-free
grasp.

With regard to occluded objects (Yang, Liang, and Choi, 2020) propose a deep learn-
ing approach, trained by self-supervision in simulation, to find a block that is buried
in clutter. Using two policies to tackle the problem, the first is aimed at explorational
target-oriented pushing of the blocks based on a Q-learning policy. Once the target
is visible, a classifier-based policy that takes the clutteredness around the target as
an input, coordinates decision making in pushing or grasping. The deep learning
approach in a critic-policy format shows high success rates in both simulation and
real robot experiments.

Another approach based on deep reinforcement learning is discussed by Kurenkov
et al., 2020. A novel procedure combining three algorithmic strategies allows for
sample efficient and effective learning of the problem of uncovering a target object
occluded by a heap of unknown objects. A robot is tasked with uncovering a tar-
get object from occluding objects on top using pushing actions based on the images
acquired by an RGB-D sensor. By means of teacher-aided exploration, a privileged
information critic, and mid-level representations, the experiments show faster train-
ing and more efficient converging uncovering solutions compared to baselines.

Six DoF pushing and grasping policies can also be learned by making use of the Q-
learning framework Tang et al., 2021. A robot is trained to learn joint planar pushing,
and grasping motions using two separate networks with three dimensional visual
input. The system is able to deal with cluttered scenes in the form a messy dinner ta-
ble with a wide variety of objects. Using pregrasp pushing actions for declutttering,
the approach is able to outperform the state-of-the-art baseline model (Zeng et al.,
2018), in terms of action efficiency and grasp success rate.

Research done by Kiatos et al., 2022 is aimed at planning a stable grasp in densely
cluttered environments by means of employing a single push-grasping action. Based
on a visual input a function is learned that can output multiple strategies for the

2.4. Domain Randomization 7

robotic hand, such as inwards and outwards rolling movements, and multi-fingered
pushes. The policy that is proposed aims at creating enough space for the fingers
to wrap around an object using a FCN for optimal pose prediction and a CNN
for robotic hand aperture prediction. Decoupling these components yields efficient
learning, because the networks focus on individual parts of the operation. High suc-
cess rates in the simulation and a robust transfer to a real environment is achieved
for the learned policy.

The implementation in this research is different from the previously mentioned ap-
proaches, we choose to inject object segmentation into the object grasping pipeling to
get rid of unnecessary pushes. Operating on a highly cluttered scenario, it is aimed
at improving the performance of the designed model with a clear-cut single object
isolation motion. Most cluttered approaches are either: not target driven, or oper-
ated on simple objects, or not highly cluttered. The approach taken in this research
combines all these properties: resulting in a method aimed at target driven grasping
for relatively complex objects in highly cluttered scenarios.

2.4 Domain Randomization

Domain randomization (DR) is a technique mostly used to improve performance
of appliances bound for a transfer of domains. The randomization of parameters
in the training stage aims at desensitizing the system for changes in environment,
possibly making its performance more robust towards unencountered conditions.
Furthermore, DR can be convenient with regard to data generation, which is helpful
in situations with sparsely available training data.

The divide that exists between robots operating in simulated environments and ex-
periments performed on hardware is called the ’reality gap’. Bridging this gap could
accelerate robotic research (Tobin et al., 2017). This research uses randomized ren-
dering in a simulation environment with non-realistic textures to train a model, be-
fore transfering it to real images. It is focused on object localization, a main com-
ponent of robotic manipulation systems. They were able to train an object detector
solely using simulated images, that displayed accurate real-world object detection
to 1.5 cm, robust to distractors and partial occlusions.

Generalization of robotic grasping models is a challenge, due to the amount of train-
ing data that is necessary. Tobin et al., 2018 explore a novel data generation approach
used for training a deep neural network. The network is used for grasp planning,
and DR is applied to object synthesis. This is done by generating millions of un-
realistic objects used for training the network to perform grasp planning. Despite
having only been trained on random objects, a high grasp success rate is achieved at
unseen realistic objects in simlated and real-world tests.

Dehban et al., 2019 showed that by training on a dataset constructed with DR, ob-
ject detection methods can show substantial improvements in accuracy. Models that
were pretrained on standard datasets and fine-tuned with domain-relevant images
are compared to models that were trained using synthetic datasets. The conclusions
are that the latter, while the images not being photo-realistic, can be a better alter-
native with regard to mean average prediction scores than fine-tuning a pre-trained
model.

Research done by Mao et al., 2021 also shows that object detection can be improved
by using DR, in this case applied to the automatic detection of birds. Due to lack of

8 Chapter 2. Related Work

training data and difficulties in extracting fine-grained features used to differentiate
bird species, the accuracy of existing ornithological analysis models is limited. By
using DR in the training phase, the accuracy of the deep learning model is improved.
This is done by training on virtual birds with variations in different environments,
leading to a model that tends to focus more on the fine-grained features of a bird,
achieving higher accuracy scores.

As in the two studies lastly mentioned, in this research domain randomization is
employed in order to improve the performance of the object detection algorithm. By
randomizing parameters in the training data used for the Mask-RCNN, the aim is
to improve detection accuracy on the objects that are to be segmented and grasped
respectively.

9

Chapter 3

Methodology

In this section the three main components of this research are described in detail.
Multiple varieties of these components can be used, which is why we focused on a
modular approach. This means each of these elements can be interchanged with a
counterpart with comparable functionality.

3.1 Mask-RCNN

3.1.1 Background

The Mask-RCNN framework proposed by He et al., 2017 is capable of accurate object
detection as well as generating a segmentation mask for each instance, and is an
extension of Faster R-CNN (Ren et al., 2017). Faster R-CNN is an algorithm that is
able to classify objects in an image, but unable to locate the pixels associated to the
specific object. The latter functionality is called instance segmentation. The Faster
R-CNN algorithm has two outputs for each candidate object, a class label and a
bounding box. Instance segmentation in Mask-RCNN is performed at pixel level
by adding a separate branch in the architecture which operates in parallel with the
Faster R-CNN classifier. The Mask-RCNN algorithm is a procedure composed of
two stages, of which the architecture is depicted in Figure 3.1.

The first stage consists of a feature extractor with ResNet-101 (He et al., 2016) and a
Feature Pyramid Network (FPN) (Lin et al., 2017) as a backbone. The latter utilizes
a top-down architecture with lateral connections to build high-level semantic fea-
ture maps at all scales. These feature maps are able to detect objects with different
sizes. The backbone is connected to a Region Proposal Network (RPN) as described
by Ren et al., 2017. The RPN generates a batch of the region of interests (RoIs) ac-
cording to the anchors provided by the FPN. Subsequently, features of these RoIs are
extracted by using the RoIAlign layer. This is an improved version of the RoI pooling
layer, used in Faster R-CNN. The improvement is necessary because pixel level seg-
mentation needs much more fine-grained alignment than bounding box generation.
Bilinear interpolation is used for avoiding misalignment of location due to coarse
spatial quantization. This quantization-free layer is called RoIAlign, and faithfully
preserves exact spatial locations (He et al., 2017; Bharati and Pramanik, 2020). This
results in a set of bounding box proposals for the candidate objects.

The second stage consists of a Faster R-CNN classifier and a binary mask predic-
tion branch. The detected features are fed into the classifier, which performs object
detection and classification. It produces softmax probability estimations-, and uses

10 Chapter 3. Methodology

bounding box regression to output bounding box coordinates for each of the de-
tected objects. In parallel to this, the RoIs are fed into the mask prediction branch
for semantic segmentation. The segmentation masks are predicted by using a Fully
Connected Network (FCN) made up of four convolution layers and one deconvolu-
tion layer. By applying the FCN to each RoI, segmentation masks are predicted in a
pixel-to-pixel manner (He et al., 2017), resulting in a binary mask for each candidate
box.

FIGURE 3.1: Mask-RCNN architecture, adapted from Yu et al., 2019.

According to He et al., 2017, the decoupling of mask and class prediction was es-
sential with regard to accurate performance of the approach. The binary mask is
predicted for each class independently, without competition among classes, and the
classification branch uses the RoIs to predict the category. This in contrast to the the
per-pixel multi-class categorization usually performed by FCNs, coupling segmen-
tation and classification. This works poorly for instance segmentation according to
experiments performed by He et al., 2017.

The Mask-RCNN used in this research is based on the implementation1 by Matter-
port (Abdulla, 2017). It is build in Python using a TensorFlow2 and Keras3 frame-
work as backend.

3.1.2 Training

The Mask-RCNN has been specifically trained on the custom data used in this re-
search. The custom data used is part of the YCB dataset (Calli et al., 2017), which
contains simulated objects and is described in more detail in Chapter 4. Training
is performed using the GPU hardware accelerated runtime that is made available
by Google4. Since the used backbone is the ResNet-101 network, the training stage
consists of retraining the network heads on the custom data in order to finetune the
network.

This training data consists of 100 images for each of the 16 objects, adding up to a
total of 1600 training images. These images have been obtained by collecting RGB
data from the simulated objects, separately spawned in positions that are initiated
randomly, resulting in a set of images in which the object is captured from multiple
angles. The images are saved with metadata containing the class label, and binary
mask values. The exact training parameter configuration is disclosed in Appendix
A.1.

1https://github.com/matterport/Mask_RCNN
2https://www.tensorflow.org/
3https://keras.io/
4https://colab.research.google.com/

https://github.com/matterport/Mask_RCNN
https://www.tensorflow.org/
https://keras.io/
https://colab.research.google.com/

3.1. Mask-RCNN 11

Two different variations of training data have been used for training the network:
one using standard data, and one using data that has been subject to a form of Do-
main Randomization. The former consists of an object with a plain background,
whereas the latter consists of an object on a custom background. Examples of the
images used as training data are depicted in Figure 3.2. Apart from being subject to
pre-training Domain Randomization, Data Augmentation is performed on the im-
ages over the course of the training phase.

Domain Randomization

In an attempt to improve the object detection performance of the Mask R-CNN al-
gorithm, a form of Domain Randomization is implemented and executed on the
training data. The objects images are enriched by adding a custom background.
This underlay is randomly selected from a set of 252 textures during the data gen-
eration phase. The set of reference textures is courtesy of The Vision and Modeling
Group of the Massachusetts Institute of Technology Media Laboratory and belongs
to the VisTex database5. By randomizing the background in the training data used
for the Mask-RCNN, the aim is to improve detection accuracy on the objects that are
to be segmented and grasped respectively. Examples of these training images are
depicted in Figure 3.2b.

Data Augmentation

Deep convolutional neural networks can perform very well on computer vision
tasks. However, they are heavily reliant on large amounts of data to prevent over-
fitting behaviour. Overfitting occurs when a network learns a function with very
high variance, perfectly modelling the training data. This is at the expense of the
accuracy of the model on test data, which is novel to the network and therefore the
main interest with regard to performance. Generalizability refers to the difference in
performance of a model evaluated on training data versus testing data. A means of
improving generalizability and decreasing the chance of overfitting is data augmen-
tation (Shorten and Khoshgoftaar, 2019).

Augmentation Details Probability
Horizontal Flip - 0.5
Rotation One of (90°, 180°, 270°) 1
Scale X Between (-20, +20 %) 1
Scale Y Between (-20, +20 %) 1
Random Crop Between (0, 20 %) 1
Brightness Shift Between (-20, +50 %) 1
Contrast Shift Between (-25, +50 %) 1
Gaussian Noise Between (0, 5 %) Pixelwise
Gaussian Blur Between (0, 0.25) 0.5

TABLE 3.1: Implemented data augmentations, with detailed informa-
tion, and probability of execution.

The augmentation algorithm6 we use is courtesy of Jung et al., 2020. It is is applied
during the training phase, and converts a set of input images to a new, larger set
of slightly altered images. The augmentation is also applied to the binary mask.
In the case of this research we chose for a nine augmentations which are applied

5https://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
6https://github.com/aleju/imgaug

https://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
https://github.com/aleju/imgaug

12 Chapter 3. Methodology

(a) Standard

(b) With Domain Randomization

FIGURE 3.2: Examples of training data: (a) shows images of the ba-
nana object from the standard data set, with a plain background; (b)
shows images of the banana objects from the data set constructed

with domain randomization, with texturized backgrounds.

sequentially in a random order. For each training image, the probability of the aug-
mentation sequence being applied is 2

3 . Furthermore, within this sequence each aug-
mentation has its own probability of application, and parameters that describe the
intensity of the transformation. The augmentations and their details are described
in Table 3.1, and an example for each of them is depicted in Figure 3.3.

3.2 GR-ConvNet

3.2.1 Background

The GR-ConvNet is a generative residual convolutional neural network architecture
that is able to predict suitable antipodal grasp configurations for objects within the
field of view of a fixed camera (Kumra, Joshi, and Sahin, 2020). Antipodal points
are a pair of points on an object whose normal vectors are collinear and in opposite
direction, effectively meaning grasps with two-fingered actuators.

It uses an n-channel input image provided by the camera, and generates pixel-wise
grasps in the form of three images. Subsequently the algorithm is able to convert
these from image space to robot space, and instruce a robot to execute a predicted

3.2. GR-ConvNet 13

FIGURE 3.3: Augmented training images with one example for each
augmentation.

grasp. The latter is done by applying transformations to convert the image coor-
dinates to robot’s frame of reference. The camera used in this research is able to
provide both an RGB- as a Depth image, which are inpainted to obtain a depth rep-
resentation as described by Xue, Zhang, and Cai, 2017. This input image is 224x224
pixels and is fed into the network.

FIGURE 3.4: GR-ConvNet architecture, adapted from Kumra, Joshi,
and Sahin, 2020.

The inference module consists of three parts. The first is a pre-processing compo-
nent which is used for resizing and cropping if necessary, and normalizing of the
input. The second part is an encoder-decoder architecture that uses convolution,
deconvolution, and batch normalization for feature extraction and generating three
output images as grasp angle, grasp width, and grasp quality score. The achitecture
is depicted in Figure 3.4, and starts with three layers of convolutions, followed by
five residual layers, and concluded with three layers of deconvolutions, forming an
autoencoder network.

The convolutional layers extract the features from the input image. Each convolu-
tional block consists of a two-dimensional convolutional layer with batch normal-
ization and a Rectified Linear Unit (ReLu) activation function. The output of this is
fed into the residual layers, which are used for retaining accuracy in a deep neural
network. These layers are enabling the model to better learn identity functions and
skip connections, while surpassing the problem of vanishing gradients and dimen-
sionality errors (Kumra, Joshi, and Sahin, 2020). After these layers the size of the

14 Chapter 3. Methodology

image has shrunk to 56x56 pixels due to the applied convolutions. In order to make
interpretation of the image easier, it is upsampled using three layers of transposed
convolutions, obtaining an output with the same size as the input image.

This output consists of three images of a score for the grasp quality, the required
width for the end effector, and the angle at which it is required to operate. Smoothing
is then applied to these images by means of a Gaussian function. These images
contain the grasp quality score, grasping width, and angular rotation for all pixels
in the input image. The third component of the model is then used to infer one or
multiple grasps from the obtained features. A cascaded transformation is then used
to convert the predicted grasp from image- into robot space. This is done by using
the intrinsic camera parameters to first transforming from image space into three-
dimensional camera space. Subsequently, the camera position and base position of
the robot are used to transform camera space into robot space, after which the grasp
is ready for execution.

The GR-ConvNet algorithm is implemented in Python using a PyTorch7 framework
as backend.

3.2.2 Training

For this research a GR-ConvNet model implementation is employed with pre-trained
network weights8, as was also used in research done by Santhakumar and Kasaei,
2022. It has been trained on the Cornell grasping dataset, which contains 1035 RGB-
D images of 240 objects. In this dataset, 5110 valid- and 2909 invalid grasps have
been annotated, consisting of several grasp rectangles representing grasping possi-
bilities per object. Kumra, Joshi, and Sahin, 2020 applied data augmentation in the
form of random crops, zooms, and rotations on the images, in order to increase the
amount of training data. This resulted in 51k grasp examples, of which only positive
labeled i.e. successful grasps were used for training the network.

3.3 Active Segmentation

The Mask R-CNN network is capable of applying a combination of object detection
and instance segmentation. The information about the location of a possible target
object is then transferred to the GR-ConvNet algorithm for the grasping stage, the
details of this process are described in the next section. But in a highly cluttered sce-
nario grasping might be unfeasible due to objects occluding the robot’s perception,
or blocking its grasping trajectory. In these cases the passive segmentation technique
employed is not sufficient for the model’s operational success, and the situation can
be improved by executing an active segmentation protocol, aimed at singulating an
object from the clutter.

We have devised a hand crafted policy capable of isolating an object with an ex-
act movement trajectory. Many datadriven mehtods can generalize the dynamics of
pushing, but they require explicit object modeling and are highly sensitive to param-
eters. Furthermore, complex pushing procedures can be complicated to perform in
a highly cluttered workspace, which is why we chose a more elementary implemen-
tation. The trajectory that is to be taken, is based on the output of the Mask-RCNN,
with one specific object targeted for singulation. First off, the two fingered gripper

7https://pytorch.org/
8https://github.com/skumra/robotic-grasping

https://pytorch.org/
https://github.com/skumra/robotic-grasping

3.4. Model 15

(a) The orientation of the gripper, the fingers are
closed.

(b) The motion executed with
regard to the object targeted

for segmentation.

FIGURE 3.5: The main components of the implemented segmentation
step in this approach.

is closed, as depicted in Figure 3.5a making the actuator more agile, and its coordi-
nated movements more precise. Subsequently, the coordinates of of the bounding
box are passed to the segmentation module. The bounding box provided by the
Mask-RCNN is often close-fitting around the object, which is why a buffer is ini-
tiated. This is done by padding the bounding box on all sides with 17 pixels in
grasping space, aimed at decreasing the chance of hitting the targeted object. The
gripper is then moved to the bottom right corner of the bounding box, and follows
the contours of all four sides of the box, resulting in a rectangular movement which
is depicted in Figure 3.5b. Optimally, performing the segmentation step results in a
clear view of the object and a collision-free grasp. An overview of the full process
of the implemented segmentation step, including the events leading up to it, and a
resulting succesful targeted grasp and drop are depicted in Figure 3.6. The relatively
uncomplicated segmentation step aims at trying to achieve an approach that utilizes
synergistic behaviour between the grasping- and segmentation module.

3.4 Model

This section describes an overview of the model, the implementation of which is
available on GitHub 9. It is comprised of the three components that were described
in the previous sections, which can be regarded as separate modules. A overview
of the model architecture is depicted in Figure 3.7. The method we take is a State
Machine approach (Schneider, 1990) in which during execution, decisions are made
depending on the current state of the machine. These states are altered, depending
on multiple factors regarding succeeded or failed (sub)tasks, and the condition of
the environment. An overview of the possible states is reported in Table 3.2.

The principal architecture of the algorithm is described in Algorithm 1, it takes a
list of target objects, runs the requested number of experiments for each object, and
saves the result in a dataframe. The model is put together by a main loop that con-
nects the three modules described in the previous sections. This is the inner while
loop described in Algorithm 1, within this loop, the model operates and information
is exchanged.

9https://github.com/ivarmak/clutter-grasping

https://github.com/ivarmak/clutter-grasping

16 Chapter 3. Methodology

FIGURE 3.6: Overview of the segmentation process, with the Tennis-
Ball as target object, its bounding box obtained from the Mask-RCNN
in depicted in green, and the grasp predicted by the GR-ConvNet de-

picted in blue.

The main loop consists of three phases: the Recognition phase, the Grasping phase,
and the Analysis phase. The Recognition phase, described in detail in Algorithm 2,
is where the object detection module resides. The Mask-RCNN algorithm is ran on
RGB data of the workspace provided by the camera, and the output of the network
determines the model state. The State is determined by whether the target object T
has been detected, and forthcoming actions are dependent on its value.

Depending on the output of the Mask-RCNN there are two options, either the al-
gorithm has detected one or more objects, or it has not detected any objects. In the
case of the former, the grasping phase will be commenced aimed at a specific object.
In the latter situation, the grasping phase will have the freedom to grasp any object
possible. In both cases there is a specific drop-off destination, one of the trays located
on the side of the workspace, or the recognition area which is located in the center
of the workspace directly below the camera. If the algorithm has had an iteration

3.4. Model 17

State
Idle

TargetFound
NonTargetFound

NothingFound
TargetGrasp

NonTargetGrasp
MovedToRecogArea

TABLE 3.2: Overview of possible model states.

FIGURE 3.7: Overview of the model architecture: the object recogni-
tion module initiates the pipeline, where the Mask-RCNN determines
whether an object is recognized in the detection area. If no object is
recognized, the model will move an object to the recognition area and
if no object is detected again, decrease its detection threshold. If one
or more objects are detected, the targeted graping phase is entered.
The GR-ConvNet will detect possible grasp configurations, and move
the object to its corresponding location. If no grasps are detected-, or
the execution of the grasp has failed, a segmentation move is per-

formed and the model sequence is restarted.

where no object was found, an object was placed in the recognition area, and it was
again unable to detect any objects, the Mask-RCNN’s detection threshold is lowered
with 0.1.

The Grasping phase is described in Algorithm 3, and it contains the grasping module
as well as a link to the segmentation module. First off, the GR-ConvNet algorithm
is ran on the RGB and Depth data combined with parameters that were transferred
from the recognition phase. In the case of a grasped aimed at an object, the grasping
region GR, in which the algorithm is able to detect grasps, has been dictated by the
detected mask and bounding box of this object. In the case of a free grasp, the GR
contents include the complete workspace. Running grasping algorithm will gener-
ate a set of possible grasps, of which the grasping index Gidx determines which will
be performed. The results with regard to success or failure of the grasp and of the
placement at the destination are stored. When no grasps are detected the algorithm
will increment a counter which will eventually determine a model halt when too

18 Chapter 3. Methodology

Algorithm 1: Main Loop
Input: Set of target objects ObjectList, Number of experiments to be performed

per object NumberO f Experiments
Output: Experimental results saved in dataframe
Initialize RGB-D camera;
for T in ObjectList do

for exp in NumberOfExperiments do
Gidx ← 0;
FailFindGrC ← 0;
SegStepC ← 0 Thr ← 0.85;
while Experiment Success is False AND Experiment Fail is False do

Run Recognition: Algorithm 2;
Run Grasping: Algorithm 3;
Run Analysis: Algorithm 4;
TargetOutsideDetectionArea← Check if T is outside boundaries of
workspace;

if TargetOutsideDetectionArea is True then
ExperimentFail ← True;
Break;

end
else if SegStepC > 10 then

ExperimentFail ← True;
Break;

end
end
Save results;

end
end

high. Furthermore, in the case of an aimed grasp, it will commence a segmentation
step with the aim of singulating the object. Afterwards the model is returned to the
Recognition phase.

After a detected and performed grasp, the Analysis phase is entered, which is de-
scribed in Algorithm 4. In this phase, the results of the grasping move are analyzed,
and decisions are made accordingly. If an aimed grasp was unsuccessful, the model
will determine whether the next grasp in the set collides with another object. In
that case, a segmentation step is commenced. If not, or in the case of a free grasp-
ing procedure, the grasp index Gidx is incremented leading to another grasp to be
performed in the next iteration of the algorithm. In the case of a successful grasp, a
number of checks take place with regards to the drop-off destination. These checks
will determine whether the model needs to halt, or can continue to a new recognition
phase.

3.4. Model 19

Algorithm 2: Recognition Phase
Input: Camera data RGB, Targeted object T, Mask-RCNN detection threshold

Thr
Output: Machine state State, Grasping region GR, Destination D, Set of object

masks Masks, Bounding box B
State, ObjectsIn f o ← run Mask-RCNN algorithm with image RGB, threshold

Thr, and target T;
Masks← from ObjectsIn f o take detected object masks;
if State is TargetFound then

State← TargetGrasp;
D ← coordinates of TargetTray;
B← from ObjectsIn f o take coordinates of TargetBox;
M← from Masks take binary mask TargetMask;
GR← binary operation M, B to achieve grasping region of Target;

end
else if State is NonTargetFound then

State← NonTargetGrasp;
D ← coordinates of NonTargetTray;
B← from ObjectsIn f o take coordinates of NonTargetBox;
M← from Masks take binary mask NonTargetMask;
GR← binary operation M, B to achieve grasping region of NonTarget;

end
else if State is MovedToRecogArea then

; /* No object found, state remained from previous iteration */
Thr ← (Thr− 0.1);
if Thr < 0.45 then

ExperimentFailed← True;
Break;

end
end
else

State← NothingFound;
GR← Complete workspace;
D ← coordinates of RecognitionArea;

end
Go to Algorithm 3;

20 Chapter 3. Methodology

Algorithm 3: Grasping Phase
Input: Camera data RGB and Depth, Machine state State, Grasping Region GR,

Destination D, Bounding Box B, Index for choosing from grasp
alternatives Gidx, Counter for number of times no grasp has been
detected FailFindGrC, Counter for number of times segmentation step
has been performed SegStepC

Output: Machine state State, Set of detected grasps Grasps, Booleans
SuccesGrasp and SuccessDestination, Counter for number of times no
grasp has been detected FailFindGrC, Counter for number of times
segmentation step has been performed SegStepC

Grasps← run GR-ConvNet algorithm with RGB, Depth images on GR;
if Grasps is not empty then

FailFindGrC ← 0;
if State is TargetGrasp or NonTargetGrasp then

SuccessGrasp, SuccessDestination← Perform grasping move
Grasps[Gidx] towards destination D;

end
else if State is NothingFound then

SuccessGrasp, SuccessDestination← Perform grasping move
Grasps[Gidx] towards destination D;

State← MovedToRecogArea;
end

end
else

; /* No grasps are detected */
if FailFindGrC > 3 then

ExperimentFail ← True;
Break;

end
if State is TargetGrap or NonTargetGrasp then

Run SegmentationStep on edges of B;
SegStepC ← SegStepC + 1;

end
FailFindGrC ← (FailFindGrC + 1);
Go to Algorithm 2;

end
Go to Algorithm 4

3.4. Model 21

Algorithm 4: Analysis Phase
Input: Machine state State, Bounding Box B, Set of object Masks Masks, Target

object T, Set of detected grasps Grasps, Index for choosing from grasp
alternatives Gidx, Booleans SuccesGrasp and SuccessDestination,
Counter for number of times segmentation step has been performed
SegStepC

Output: Index for choosing from grasp alternatives Gidx, Counter for number
of times segmentation step has been performed SegStepC

NumberO f Grasps← length(Grasps);
if SuccessGrasp is True then

Gidx ← 0
end
else if SuccessGrasp is False then

if State is TargetGRasp or nonTargetGrasp then
if Gidx < NumberOfGrasps then

Intersect← Check if next grasp Grasps[Gidx+1] intersects with other
object masks Masks;

if Intersect is True then
; /* Next grasp in set collides with other object,
isolate object aimed for. */

Run SegmentationStep on edges of B;
SegStepC ← SegStepC + 1;
Gidx ← 0

end
end

end
if Gidx < NumberOfGrasps then

; /* Another detected grasp is available, increment index */
Gidx ← (Gidx + 1)

end
end
if SuccessDestination is True then

TargetObjectGrasped← check if target object T is grasped;
if State is TargetGrasp then

if TargetObjectGrasped is True then
ExperimentSuccess← True;
Break;

end
else

; /* NonTarget in TargetTray */
ExperimentFail ← True;
Break;

end
end
else if State is NonTargetGrasp then

if TargetObjectGrasped is True then
; /* Target in NonTargetTray */
ExperimentFail ← True;
Break;

end
end

end

22

Chapter 4

Experiments and Results

The performance of the model in real-time object detection, classification, and grasp-
ing is evaluated using a simulated robot environment. In this environment multiple
objects are spawned at predetermined or semi-random locations after which the in-
tended tasks are performed. Different scenarios determine the number of objects
and their subsquent location on the workspace.

4.1 Simulation

The simulated environment used in this research is designed in Python using the
PyBullet1 engine, developed by Coumans and Bai, 2016–2021. The contents of the
simulation are adapted from work produced by Vrielink and Kasaei, 2021. Its com-
ponents are shown in Figure 4.1, consisting of: a UR5e based robotic arm with a
two-fingered gripper actuator attached, a workspace in the form of a table, one tray
on either side of the table meant for object placement, and a RGB-D camera aimed
at the workspace with a corresponding detection area.

FIGURE 4.1: Environmental setup in the PyBullet simulated environ-
ment, with labeled components.

1https://pybullet.org/wordpress/

https://pybullet.org/wordpress/

4.2. Dataset 23

4.2 Dataset

A selection of 3D objects from the YCB-library2 are used to create the dataset (Calli
et al., 2017). It comprises of 16 daily life object instances with different shapes,
sizes, textures, weight, and rigidity. They are based on physical objects, and form
a database of mesh models and high-resolution RGB-D scans that can be imported
into the simulation environment. An list of the objects that were used is provided in
Table 4.1.

Objects
Banana ChipsCan CrackerBox FoamBrick

GelatinBox Hammer MasterChefCan MediumClamp
MustardBottle Pear PottedMeatCan PowerDrill

Scissors Strawberry TennisBall TomatoSoupCan

TABLE 4.1: Overview of YCB-objectst that are used.

4.3 Experiments

The simulated robot experiments consist of using the model for combined object
detection and segmentation in order to perform target driven object grasping. The
implementation described, and proposed architecture, as described in the previous
chapter are used with as main objective: place the target object in the target tray. If
the algorithm succeeds in this objective, the experiment is finished and marked as a
success.

Experiment Failure Reason
Target in NonTargetTray
NonTarget in TargetTray

Failed To Find Grasp Point (> 3)
Detection Confidence Too Low (< 0.45)

Too Many Isolation Steps (> 10)
Target Out of Detection Area

TABLE 4.2: Reasons for a failed experiment, including numerical val-
ues if applicable.

There are six conditions that result in a failed experiment, these are described in
Table 4.2. The first two failure reasons are due to incorrect placement of an object
during an aimed grasp. Placing a Target in the NonTargetTray as well as placing a
NonTarget in the TargetTray has been decided to be considered a failed experiment.
The three succeeding failure reasons are due to situations that are encountered dur-
ing experiments that impair the model’s functionality. These are implemented as a
fail-safe, mainly to prevent the model from developing perpetual behaviour. Fail-
ing to find a grasp point more than three times-, as well as making more than ten
isolation steps are indicators of a situation from which the model can not progress.
A detection threshold of less than 0.45 results in the Mask-RCNN algorigthm func-
tioning badly, with many false positive object detections, and therefore unwanted.
The last item on the list of reasons to abort an experiment also operates as a fail-safe.

2https://www.ycbbenchmarks.com/

https://www.ycbbenchmarks.com/

24 Chapter 4. Experiments and Results

When the target object is outside of the detection area, it can no more be detected or
grasped and therefore the experiment is finished.

Four scenarios are used for testing the performance of the model, which are distin-
guished by the location and distribution of the objects: Isolated, Packed, Piled, and
Cluttered. Each of these will be initialized with a target object and specific number
of randomly sampled objects in an orientation specific to that scenario. An example
setup of each scenario can be seen in Figure 4.2. One of the objects is predetermined
to be the target object, which is the main manipulation objective for that experiment.

(a) Isolated (b) Packed (c) Piled (d) Cluttered

FIGURE 4.2: Example setup of each scenario.

The list of targeted objects varies per scenario. The Isolated and Packed scenarios
include all 16 objects in the performed experiments. The Piled scenario does not
feature experiments in which the CrackerBox is the target object. The reason is that
if this object is lying face up or down, both its width and length are wider than the
maximal width of the gripper. This means practically, in this orientation the Cracker-
Box is ungraspable and the experiment is guarenteed to fail. The random initializa-
tion of the Piled scenario can lead to this situation, which is why the CrackerBox
is disregarded as a target and the Piled scenario is tested with 15 objects. With re-
gard to the Cluttered scenario, experiments take large amounts of computation and
time to perform. These experiments have been carried out with the three objects on
which the model achieved the highest performance in the Piled scenario: FoamBrick,
MasterChefCan, and PowerDrill. With ten experiments per object, this amounts to
a total of 160 experiments for the Isolated and Packed scenario, 150 experiments for
the Piled scenario, and 30 experiments for the Cluttered scenario.

4.4 Scenarios

The performance of the experiments is assessed by calculating the success rate of
grasping and placing the target object in the correct tray. The success rate will deter-
mine the performance accuracy of the model with regard to target driven grasping.
It is calculated by summing the total number of successful experiments and dividing
by the number of experiments performed for that scenario.

Success rate =
of successes

of experiments

Note that the experiment will only count as a success when the target object is placed
inside the TargetTray. The experimental results per scenario are summarized in Table
4.3.

From Table 4.3 can be observed that the performance of the model is best in the
Isolated scenario, and decreases for each the the succeeding scenarios. This is an
expected result, considering the fact that the situation is more complex with each

4.4. Scenarios 25

Scenario Number of Experiments Success Rate
Isolated 160 94%
Packed 160 89%
Piled 150 85%
Cluttered 30 80%

TABLE 4.3: Summary of the experimental results per scenario.

subsequent scenario. The model achieves a high performance accuracy on each sce-
nario, and an accuracy of 80% on the highly cluttered scenario.

4.4.1 Isolated

The isolated scenario is initialized with the target object, and three objects chosen
randomly from the remaining set of objects, summing to a total of four. The objects
are placed at predetermined coordinate locations on the workspace. The coordinates
are selected with space in between each object, making their locations spread out
and the objects isolated from their surroundings, thus relatively easy to grasp. An
example of an isolated scenario is depicted in Figure 4.3.

FIGURE 4.3: Example of an isolated scenario setup.

The overall accuracy the model achieves while performing the isolated scenario ex-
periments is 94%. The performance of the model per object is described in Figure
4.4. The model performs poorly while targeting the TomatoSoupCan, with an accu-
racy of 50%. Figure 4.5 shows the reasons of experiment failure per object. The bad
performance is caused by objects placed in the wrong tray, meaning incorrect object
recognition. In the case of the CrackerBox, there is one failed experiment which is
due to too many isolation steps.

4.4.2 Packed

The packed scenario is initialized with the target object, and four objects chosen ran-
domly from the remaining set of objects, summing to a total of five. The objects are
placed at predetermined coordinate locations on the workspace. After placing the
objects, a procedure is started that congregates the objects into a pack. This results

26 Chapter 4. Experiments and Results

FIGURE 4.4: Results of the isolated scenario experiments.

FIGURE 4.5: Failure reasons of the isolated scenario experiments.

in a scenario were object grasping and -detection are more complicated compared to
the isolated scenario. An example of the packed scenario is depicted in 4.6.

The model performs the packed scenario experiments with an accuracy of 89%. The
performance of the model per object is shown in Figure 4.7. The model performs
poorly while targeting the TomatoSoupCan, with an accuracy of 40%. Also, the
CrackerBox and GelatinBox show performance below the average of this scenario
with an accuracy of 70% and 80% respectively. In Figure 4.8 the reasons for exper-
iment failure can be seen per object. The bad performance for the TomatoSoupCan
is entirely caused by placing the Target in the NonTargetTray. In the case of the
CrackerBox, one of the failed experiments is caused by too many isolation steps,
and another is due to the target object winding up outside the detection area.

4.4.3 Piled

Initializing the piled scenario is accomplished as follows: place the target object in
the center of the workspace, position a temporary box around the target, and place

4.4. Scenarios 27

FIGURE 4.6: Example of a packed scenario setup.

FIGURE 4.7: Results of the packed scenario experiments.

five randomly chosen objects on top of the target. This sums up to a total of six ob-
jects. The temporary box is placed to support the established pile of objects, and is
removed once the objects have stopped moving. The box- and object placement is
shown in Figure A.1 in Appendix A. This results in a pile of objects, with the target
object located at the bottom. The target object is placed first, with the aim of increas-
ing the probabilty of an obscured view, and creating a more complex situation. An
example of a piled scenario is depicted in Figure 4.9.

The model achieves an accuracy of 85% performing the experiments in the piled
scenario. Model performance is shown per object in Figure 4.10. The FoamBrick,
MasterChefCan, and Powerdrill are achieving perfect accuracy in the piled scenario
experiments, most of the other objects are performing between 80-90%. With the
GelatinBox and Hammer as target object, the model achieves poor performance ac-
curacy. The failure reasons of the piled scenario experiments per object can be found
in Figure 4.11. For multiple targets the object culminated outside of the detection
area, twice in the case of the Hammer. In the case of the GelatinBox, most of the

28 Chapter 4. Experiments and Results

FIGURE 4.8: Failure reasons of the packed scenario experiments.

FIGURE 4.9: Example of a piled scenario setup.

experiments failures were caused by the detection confidence of the Mask-RCNN
reaching the lower bound threshold.

4.4.4 Cluttered

The cluttered scenario is the most challenging scenario for the target driven grasp-
ing model. It consists of 15 objects that are piled together in a heavy clutter. The
initialization is very similar to the piled scenario, the target object is placed first, a
temporary box is added, and subsequently the remaining 14 objects are placed on
top. Thereupon the box is removed, resulting in a large pile of objects in a heavily
cluttered arrangement. An example of this scenario is depicted in Figure 4.12. Note
that the cluttered scenario experiments are performed on three target objects, the ob-
jects that achieved the highest performance in the piled scenario experiments. The
tested objects: FoamBrick, MasterChefCan, and PowerDrill.

4.5. Object Visibility 29

FIGURE 4.10: Results of the piled scenario experiments

FIGURE 4.11: Failure reasons of the piled scenario experiments.

The model reaches a performance accuracy of 80% on the experiments in the clut-
tered scenario. This means on average, eight out of ten times it is capable of correctly
singulating-, and grasping a target object from a heavily cluttered environment, and
place it in the designated TargetTray. The experiment results and failure reasons
per object are shown in Figure 4.13. One of the failures is caused by the FoamBrick
ending up outside the detection area. The model had the most trouble with the ex-
periments featuring the PowerDrill as a target, achieving an accuracy of 70%.

4.5 Object Visibility

In order to study the influence of target visibility on the performance accuracy of
the target driven grasping model, we gathered results for both the piled and clut-
tered scenario. For each experiment, the visibility of the target object is calculated
by means of the segmentation mask pixel value. The pixel value of the target object
after scenario initialization is divided by a ground truth mask pixel value for that

30 Chapter 4. Experiments and Results

FIGURE 4.12: Example of a cluttered scenario setup.

specific object. This results in a percentage that indicates object visibility after being
placed in a pile or clutter of other objects.

Figure 4.14 shows the performance of the model compared to the visibility of the
target object in the piled scenario experiments. In the graph can be observed that
the model achieved perfect accuracy in the 0-10 and 20-30 percentile ranges, albeit
with a relatively low amount of experiments. The accuracy with 10-20% visibility is
zero, but only one experiment was performed in that range. Furthermore, the graph
shows that most experiments have been performed with a high object visibility of
90-100%. There is no obvious trend linking higher visibility to higher accuracy. The
majority of experiments have been performed with a target object visibility higher
than 50%.

Figure 4.15 depicts the performance of the model compared to the visibility of the
target object in the experiments for the cluttered scenario. Here we can see that
the majority of experiments have been performed with a target object that was be-
tween 40-60% visible after initialization. The performance of the model with an
object visibility of 60% and higher is perfect, with almost a third of the number of
experiments performed in this range. Furthermore, with a target visibility between
0-20% the model achieves 100% accuracy as well. It is the mid range visibility exper-
iments where the model performs worst, with the most experiments performed in
this range.

4.6 Domain Randomization

The influence of domain randomization on the accuracy of the object detection mod-
ule is investigated by running tests on the Mask-RCNN separately. We take model
weights that have been trained on standard data, as shown in Figure 3.2a, and model
weight that have been trained on texture data, as can be seen in Figure 3.3. The lat-
ter have been subject to domain randomization, where the object is provided with a
texturized background.

4.7. Active Segmentation 31

(a) Results of the cluttered scenario experi-
ments.

(b) Failure reasons of the cluttered scenario ex-
periments.

FIGURE 4.13: Cluttered scenario experiment results and failure rea-
sons.

We run the Mask-RCNN algorithm with both sets of weights, and compare the object
detection accuracy of the model. The model is evaluated using all 16 objects from
the dataset, with 13 randomly chosen instances for each of the objects. This adds
up to a total number of 208 object detection tests. Both models utilize a confidence
threshold of 0.8 for object detection.

Table 4.4 summarizes the test results for both sets of weights. It can be observed
that the weights trained using Domain Randomization achieve a performance of
78%. This is 18% higher than the weights trained on standard data. The amount
of wrongly predicted instances is low for both the standard-, and the DR trained
weights. Most of the bad performance is due to false negative in the form of empty
predictions, meaning undetected objects.

Data Number of Instances Wrongly Predicted Empty Prediction Performance
Standard 208 4 77 61%
With Domain Randomization 208 6 40 78%

TABLE 4.4: Results of tests performed on Mask-RCNN weights
trained with- and without Domain Randomization.

4.7 Active Segmentation

In order to quantify the influence of the active segmentation module, we investigate
the number of segmentation moves. In this comparison, the isolated scenario ex-
periments are disregarded, since segmentation moves do not add any value in this
environment. For each of the remaining three scenarios, the number of successful
experiments is compared to the total number of segmentation moves. Dividing the
latter by the number of successful experiments results in a metric that gives the av-
erage number of segmentation moves per successful experiment. Table 4.5 shows
these metrics for each scenario. Note that the total number of experiments per-
formed is much lower for the cluttered scenario. The packed and piled scenario
experiments show comparable results, with an average of around 0.3 segmentation

32 Chapter 4. Experiments and Results

FIGURE 4.14: Piled scenario experiment success rate compared to tar-
get object visibility percentage. The green bars indicate the perfor-
mance of the model, the blue bars report the number of experiments
performed in that percentile range. Total number of performed ex-

periments: 150.

steps per successful experiment. The cluttered scenario however, shows an average
of 2.6 segmentation moves per successfully performed experiment, which is more
than 8 times as high.

Scenario Total Experiments Successful Experiments Total Segmentation Moves Average per Success
Packed 160 142 38 0.3
Piled 150 128 55 0.4
Cluttered 30 24 60 2.5

TABLE 4.5: For each applicable scenario, an analysis of the influence
of segmentation moves on the success rate of an experiment.

4.7. Active Segmentation 33

FIGURE 4.15: Cluttered scenario experiment success rate compared to
target object visibility percentage. The green bars indicate the perfor-
mance of the model, the blue bars report the number of experiments
performed in that percentile range. Total number of performed ex-

periments: 30.

34

Chapter 5

Discussion

The approach taken in this research shows adequate performance in target driven
object grasping. In isolated scenarios the accuracy is very high, as expected since
this environment poses few challenges. The performance of the model decreases
for each subsequent scenario which is also expected, because with each scenario the
complexity of the situation increases. With an accuracy of 80% on the highly clut-
tered scenario we have implemented a model that is capable of target driven object
grasping in highly cluttered environments. The performance of the model could
have been better, several factors are influencing the functionality of our approach.

First of these is the presence of the CrackerBox. During the testing phase it was
noticed that the CrackerBox, when facing up- or downwards, is ungraspable by the
robotic arm, due to the limit of the gripper width. We suspect that in the failed
isolated and packed experiments caused by too many isolation steps, the CrackerBox
has fallen down and is ungraspable. This might have happened with the robot arm
passing by, and is backed up by the high number of failed grasps that have been
noted for these experiments.

A design choice with regard to the CrackerBox was made, that in hindsight could
have been done differently. The object is disregarded as a target object for the piled
and cluttered experiments, but is still spawned as one of the secondary objects, if
chosen. Considering the model might be unable to grasp the CrackerBox, the deci-
sion was made to completely ignore its existence when detected by the Mask-RCNN.
This can lead to troublesome situations, for example when the CrackerBox is block-
ing the view of the target object. It would have been better to completely remove the
CrackerBox from the dataset, retrain the Mask-RCNN, and run the model with the
remaining objects. Another approach could include pushing the CrackerBox instead
of trying to grasp it, when suspected that it is blocking the target object.

Another property influencing experimental results is the fact that objects fall from
the table, and culminate outside of the detection area of the model. This can occur
due to misfortune during scenario initialization, in the form of an object bouncing
away after hitting another object. It can also occur during the segmentation step,
when the arm pushes the object off the table. This happened at least once for a
target object in three out of four scenarios, and influences the resulting performance
accuracy. It might be solved relatively easy by adjusting the simulated table setup,
implementing borders on the edges of the table aimed at keeping the objects within
the detection area.

5.1. Conclusion 35

The biggest improvement that can be realized in order to decrease the number of
failed experiments would be a procedure that is aimed at failure recovery. Cur-
rently, when a Target object is placed in the NonTargetTray, or when a NonTarget
object is placed in the TargetTray, the experiment is terminated and finished as a
failure. Summing up all experiments in the four scenarios, these account for more
than 70% of the failed experiments. A solution could be implementing a phase that
is aimed at verification of an object that is placed in either of the trays. If the model
concludes the placed object is incorrect, responsive action can be taken, re-entering
the grasping phase in order to remove and relocate the object.

The performance of the Mask-RCNN is something that greatly impacts the model,
since its functionality is one of the fundamental parts. Although the implemen-
tation of Domain Randomization in the training phase improved performance on
object detection, the network could be trained better, resulting in higher accuracy.
The training stage of the Mask-RCNN transpired troublesome, mostly caused by the
requirement of outdated versions of software packages. The training stage was in-
terrupted due to the limited amount of time and computation memory provided by
Google. Attempting to get the algorithm running on the Peregrine computercluster,
similar results were not achieved. Training on a personal computer was infeasable to
due to the long training times. In the graph A.2 can be observed that the validation
error is still decreasing, which means a better version of the Mask-RCNN can be re-
alized. The accuracy of the Mask-RCNN is central to the performance of the model
in many ways, therefore improvements will positively affect the approach on multi-
ple levels. Accurate object detection is essential for correctly identifying both target
and non target objects, and accurate bounding box and object mask generation plays
a major role in the functionality of the grasping and segmentation module.

Considering the implementation of the segmentation step in this research is rela-
tively uncomplicated, improvements are be achievable. Although the results show
that segmenation moves play a role in successful experiments, its mechanics are
now very dependent on the output of the Mask-RCNN. If the bounding box trans-
ferred to the segmentation module is inaccurate, the resulting motion might be un-
desired. Increasing the amount-, or using different metrics for coordinating the ac-
tive object segmentation would make the approach more robust. Related research
has shown that intelligently coordinated pushing behaviours can lead to models
achieving good performance at grasping in cluttered environments (Kiatos et al.,
2022; Tang et al., 2021).

The data gathered with regard to target object visibility could be increased. Al-
though the model shows good accuracy scores with low target visibility, most of
the data resides in the middle and high ranked percentiles. Having more data in the
lower percentiles would enable stronger conclusions about the systems performance
in highly complex scenarios.

5.1 Conclusion

In this research we proposed an approach using deep learning methods for target
driven object grasping in highly cluttered scenarios. By combining the functional-
ity of an object detection network Mask-RCNN, and a network aimed at grasping
GR-ConvNet, a model is realized. The approach allows a robot to interact with the

36 Chapter 5. Discussion

environments in four different scenarios, isolated, packed, piled, and highly clut-
tered. By the implementation of a segmentation step, the model is capable of apply-
ing active segmentation. This improves the functionality of the method in scenar-
ios where object detection and -grasping are impaired, by being able to singulate a
specific object with robotic locomotion. A form of domain randomization has been
applied to the training data of the Mask-RCNN, improving its performance on de-
tecting unseen objects. Extensive sets of experiments have been performed in four
everyday scenarios: isolated, packed objects, pile of objects, and highly cluttered
scenes. Experimental results showed that the proposed method worked very well in
all four scenarios. In the continuation of this work, it would be interesting to test the
approach in real world scenarios, possibly in combination with the domain random-
ization approach taken in Tobin et al., 2017 to improve the transfer to a real world
robot. Furthermore, the system can be testing more vigorously, focusing on differ-
ent datasets of objects, or gathering results on target objects with low visibility. An
interesting property this research possesses, is the fact that both the segmentation-,
as well as the object detection-, and the grasping module are easily interchangeable
with equivalent counterparts, making it a highly versatile approach. Using different
networks for object detection and grasping could lead to interesting research. For
instance implementing VGN (Breyer et al., 2021) for grasp synthesis generation in
six DoF. Object detection might be improved by using both RGB as Depth images as
input for the Mask-RCNN, and implementing the improved version of the algorithm
proposed by Zhang et al., 2021. Implementing a different segmentation module is
an option, using learning algorithms leading to different moves for specific objects
can improve its functionality. This might solve the problem of pushing objects of the
workspace.

37

Appendix A

Appendix

(a) Placement of temporary box around tar-
get object. (b) Placement of five objects on top, to create

pile.

FIGURE A.1: Cluttered scenario experiment results and failure rea-
sons.

A.1 Mask-RCNN Training Parameter Configuration

Configurations:
BACKBONE resnet101
BACKBONE_STRIDES [4, 8, 16, 32, 64]
BATCH_SIZE 4
BBOX_STD_DEV [0.1 0.1 0.2 0.2]
COMPUTE_BACKBONE_SHAPE None
DETECTION_MAX_INSTANCES 100
DETECTION_MIN_CONFIDENCE 0.9
DETECTION_NMS_THRESHOLD 0.3
FPN_CLASSIF_FC_LAYERS_SIZE 1024
GPU_COUNT 1
GRADIENT_CLIP_NORM 5.0
IMAGES_PER_GPU 4
IMAGE_CHANNEL_COUNT 3
IMAGE_MAX_DIM 448

38 Appendix A. Appendix

IMAGE_META_SIZE 29
IMAGE_MIN_DIM 448
IMAGE_MIN_SCALE 0
IMAGE_RESIZE_MODE square
IMAGE_SHAPE [448 448 3]
LEARNING_MOMENTUM 0.9
LEARNING_RATE 0.001
LOSS_WEIGHTS {’rpn_class_loss’: 1.0, ’rpn_bbox_loss’: 1.0,
’mrcnn_class_loss’: 1.0, ’mrcnn_bbox_loss’: 1.0, ’mrcnn_mask_loss’: 1.0}
MASK_POOL_SIZE 14
MASK_SHAPE [28, 28]
MAX_GT_INSTANCES 1
MEAN_PIXEL [123.7 116.8 103.9]
MINI_MASK_SHAPE (56, 56)
NAME object
NUM_CLASSES 17
POOL_SIZE 7
POST_NMS_ROIS_INFERENCE 1000
POST_NMS_ROIS_TRAINING 2000
PRE_NMS_LIMIT 6000
ROI_POSITIVE_RATIO 0.33
RPN_ANCHOR_RATIOS [0.5, 1, 2]
RPN_ANCHOR_SCALES (32, 64, 128, 256, 512)
RPN_ANCHOR_STRIDE 1
RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2]
RPN_NMS_THRESHOLD 0.7
RPN_TRAIN_ANCHORS_PER_IMAGE 256
STEPS_PER_EPOCH 1600
TOP_DOWN_PYRAMID_SIZE 256
TRAIN_BN False
TRAIN_ROIS_PER_IMAGE 200
USE_MINI_MASK True
USE_RPN_ROIS True
VALIDATION_STEPS 100
WEIGHT_DECAY 0.0001

A.1. Mask-RCNN Training Parameter Configuration 39

FIGURE A.2: Graphs of training stage Mask-RCNN, depicting loss
and validation loss.

40

Bibliography

Abdulla, Waleed (2017). Mask R-CNN for object detection and instance segmentation on
Keras and TensorFlow. https://github.com/matterport/Mask_RCNN.

Bai, Qiang et al. (2020). “Object Detection Recognition and Robot Grasping Based on
Machine Learning: A Survey”. In: IEEE Access 8, 181855–181879. ISSN: 2169-3536.
DOI: 10.1109/ACCESS.2020.3028740.

Bharati, Puja and Ankita Pramanik (2020). “Deep Learning Techniques—R-CNN to
Mask R-CNN: A Survey”. en. In: Computational Intelligence in Pattern Recognition.
Ed. by Asit Kumar Das et al. Vol. 999. Advances in Intelligent Systems and Com-
puting. Singapore: Springer Singapore, 657–668. ISBN: 9789811390418. DOI: 10.
1007/978-981-13-9042-5_56. URL: http://link.springer.com/10.1007/978-
981-13-9042-5_56.

Bowen, John and Cristian Morosan (2018). “Beware hospitality industry: the robots
are coming”. In: Worldwide Hospitality and Tourism Themes 10, pp. 726–733. DOI:
10.1108/WHATT-07-2018-0045.

Breyer, Michel et al. (2021). “Volumetric Grasping Network: Real-time 6 DOF Grasp
Detection in Clutter”. en. In: arXiv:2101.01132 [cs]. arXiv: 2101.01132. URL: http:
//arxiv.org/abs/2101.01132.

Buric, Matija, Miran Pobar, and Marina Ivasic-Kos (2018). “Ball Detection Using
Yolo and Mask R-CNN”. en. In: 2018 International Conference on Computational Sci-
ence and Computational Intelligence (CSCI). Las Vegas, NV, USA: IEEE, 319–323.
ISBN: 978-1-72811-360-9. DOI: 10.1109/CSCI46756.2018.00068. URL: https://
ieeexplore.ieee.org/document/8947818/.

Calli, Berk et al. (2017). “Yale-CMU-Berkeley dataset for robotic manipulation re-
search”. en. In: The International Journal of Robotics Research 36.3, 261–268. ISSN:
0278-3649, 1741-3176. DOI: 10.1177/0278364917700714.

Coumans, Erwin and Yunfei Bai (2016–2021). PyBullet, a Python module for physics
simulation for games, robotics and machine learning. http://pybullet.org.

Dehban, Atabak et al. (2019). “The Impact of Domain Randomization on Object De-
tection: A Case Study on Parametric Shapes and Synthetic Textures”. en. In: 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau,
China: IEEE, 2593–2600. ISBN: 978-1-72814-004-9. DOI: 10.1109/IROS40897.2019.
8968139. URL: https://ieeexplore.ieee.org/document/8968139/.

Dorrer, M G and A E Tolmacheva (2020). “Comparison of the YOLOv3 and Mask
R-CNN architectures’ efficiency in the smart refrigerator’s computer vision”. en.
In: Journal of Physics: Conference Series 1679.4, p. 042022. ISSN: 1742-6588, 1742-6596.
DOI: 10.1088/1742-6596/1679/4/042022.

He, Kaiming et al. (2016). “Deep Residual Learning for Image Recognition”. en. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas,
NV, USA: IEEE, 770–778. ISBN: 978-1-4673-8851-1. DOI: 10.1109/CVPR.2016.90.
URL: http://ieeexplore.ieee.org/document/7780459/.

He, Kaiming et al. (2017). “Mask R-CNN”. In: Proceedings of the IEEE international
conference on computer vision, pp. 2961–2969. DOI: 10.1109/ICCV.2017.322.

https://github.com/matterport/Mask_RCNN
https://doi.org/10.1109/ACCESS.2020.3028740
https://doi.org/10.1007/978-981-13-9042-5_56
https://doi.org/10.1007/978-981-13-9042-5_56
http://link.springer.com/10.1007/978-981-13-9042-5_56
http://link.springer.com/10.1007/978-981-13-9042-5_56
https://doi.org/10.1108/WHATT-07-2018-0045
http://arxiv.org/abs/2101.01132
http://arxiv.org/abs/2101.01132
https://doi.org/10.1109/CSCI46756.2018.00068
https://ieeexplore.ieee.org/document/8947818/
https://ieeexplore.ieee.org/document/8947818/
https://doi.org/10.1177/0278364917700714
http://pybullet.org
https://doi.org/10.1109/IROS40897.2019.8968139
https://doi.org/10.1109/IROS40897.2019.8968139
https://ieeexplore.ieee.org/document/8968139/
https://doi.org/10.1088/1742-6596/1679/4/042022
https://doi.org/10.1109/CVPR.2016.90
http://ieeexplore.ieee.org/document/7780459/
https://doi.org/10.1109/ICCV.2017.322

Bibliography 41

Hu, Long et al. (2019). “iRobot-Factory: An Intelligent Robot Factory Based on Cog-
nitive Manufacturing and Edge Computing”. en. In: Future Generation Computer
Systems 90, 569–577. ISSN: 0167739X. DOI: 10.1016/j.future.2018.08.006.

Jo, HyunJun and Jae-Bok Song (2020). “Object-Independent Grasping in Heavy Clut-
ter”. en. In: Applied Sciences 10.3, p. 804. ISSN: 2076-3417. DOI: 10.3390/app10030804.

Jung, Alexander B. et al. (2020). imgaug. https://github.com/aleju/imgaug. On-
line; accessed 01-Feb-2020.

Kasaei, Hamidreza and Mohammadreza Kasaei (2022). “MVGrasp: Real-Time Multi-
View 3D Object Grasping in Highly Cluttered Environments”. en. In: URL: http:
//arxiv.org/abs/2103.10997.

Kiatos, Marios et al. (2022). “Learning Push-Grasping in Dense Clutter”. en. In: IEEE
Robotics and Automation Letters, 1–8. ISSN: 2377-3766, 2377-3774. DOI: 10.1109/LRA.
2022.3188437.

Kumra, Sulabh, Shirin Joshi, and Ferat Sahin (2020). “Antipodal Robotic Grasping
using Generative Residual Convolutional Neural Network”. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 9626–9633. DOI:
10.1109/IROS45743.2020.9340777.

Kurenkov, Andrey et al. (2020). “Visuomotor Mechanical Search: Learning to Re-
trieve Target Objects in Clutter”. en. In: arXiv:2008.06073. arXiv:2008.06073 [cs].
URL: http://arxiv.org/abs/2008.06073.

Lin, Tsung-Yi et al. (2017). “Feature Pyramid Networks for Object Detection”. en. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu,
HI: IEEE, 936–944. ISBN: 978-1-5386-0457-1. DOI: 10.1109/CVPR.2017.106. URL:
http://ieeexplore.ieee.org/document/8099589/.

Liu, Wei et al. (2016). “SSD: Single Shot MultiBox Detector”. en. In: Computer Vision
– ECCV 2016. Ed. by Bastian Leibe et al. Vol. 9905. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 21–37. ISBN: 978-3-319-46447-3.
DOI: 10.1007/978-3-319-46448-0_2. URL: http://link.springer.com/10.
1007/978-3-319-46448-0_2.

Mao, Xin et al. (2021). “Domain randomization-enhanced deep learning models for
bird detection”. en. In: Scientific Reports 11.1, p. 639. ISSN: 2045-2322. DOI: 10.1038/
s41598-020-80101-x.

Marwan, Qaid Mohammed, Shing Chyi Chua, and Lee Chung Kwek (2021). “Com-
prehensive Review on Reaching and Grasping of Objects in Robotics”. en. In:
Robotica 39.10, 1849–1882. ISSN: 0263-5747, 1469-8668. DOI: 10.1017/S0263574721000023.

Mehta, Bhairav et al. (2020). “Active Domain Randomization”. In: Proceedings of the
Conference on Robot Learning. Ed. by Leslie Pack Kaelbling, Danica Kragic, and
Komei Sugiura. Vol. 100. Proceedings of Machine Learning Research. PMLR, pp. 1162–
1176. URL: https://proceedings.mlr.press/v100/mehta20a.html.

Mohammed, Marwan Qaid, Kwek Lee Chung, and Chua Shing Chyi (2020). “Re-
view of Deep Reinforcement Learning-Based Object Grasping: Techniques, Open
Challenges, and Recommendations”. en. In: IEEE Access 8, 178450–178481. ISSN:
2169-3536. DOI: 10.1109/ACCESS.2020.3027923.

Morrison, Douglas, Peter Corke, and Jürgen Leitner (2018). “Closing the Loop for
Robotic Grasping: A Real-time, Generative Grasp Synthesis Approach”. en. In:
arXiv:1804.05172 [cs]. arXiv: 1804.05172. URL: http : / / arxiv . org / abs / 1804 .
05172.

Redmon, Joseph and Ali Farhadi (2018). “YOLOv3: An Incremental Improvement”.
en. In: arXiv:1804.02767. arXiv:1804.02767 [cs]. URL: http://arxiv.org/abs/
1804.02767.

https://doi.org/10.1016/j.future.2018.08.006
https://doi.org/10.3390/app10030804
https://github.com/aleju/imgaug
http://arxiv.org/abs/2103.10997
http://arxiv.org/abs/2103.10997
https://doi.org/10.1109/LRA.2022.3188437
https://doi.org/10.1109/LRA.2022.3188437
https://doi.org/10.1109/IROS45743.2020.9340777
http://arxiv.org/abs/2008.06073
https://doi.org/10.1109/CVPR.2017.106
http://ieeexplore.ieee.org/document/8099589/
https://doi.org/10.1007/978-3-319-46448-0_2
http://link.springer.com/10.1007/978-3-319-46448-0_2
http://link.springer.com/10.1007/978-3-319-46448-0_2
https://doi.org/10.1038/s41598-020-80101-x
https://doi.org/10.1038/s41598-020-80101-x
https://doi.org/10.1017/S0263574721000023
https://proceedings.mlr.press/v100/mehta20a.html
https://doi.org/10.1109/ACCESS.2020.3027923
http://arxiv.org/abs/1804.05172
http://arxiv.org/abs/1804.05172
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767

42 Bibliography

Redmon, Joseph et al. (2016). “You Only Look Once: Unified, Real-Time Object De-
tection”. en. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Las Vegas, NV, USA: IEEE, 779–788. ISBN: 978-1-4673-8851-1. DOI: 10.
1109/CVPR.2016.91. URL: http://ieeexplore.ieee.org/document/7780460/.

Ren, Shaoqing et al. (2017). “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”. en. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 39.6, 1137–1149. ISSN: 0162-8828, 2160-9292. DOI: 10.1109/
TPAMI.2016.2577031.

Robinson, Hayley, Bruce MacDonald, and Elizabeth Broadbent (2014). “The Role
of Healthcare Robots for Older People at Home: A Review”. en. In: International
Journal of Social Robotics 6.4, 575–591. ISSN: 1875-4791, 1875-4805. DOI: 10.1007/
s12369-014-0242-2.

Santhakumar, Krishnakumar and Hamidreza Kasaei (2022). “Lifelong 3D object recog-
nition and grasp synthesis using dual memory recurrent self-organization net-
works”. en. In: Neural Networks 150, 167–180. ISSN: 08936080. DOI: 10.1016/j.
neunet.2022.02.027.

Schneider, Fred B (1990). “Implementing Fault-Tolerant Services Using the State Ma-
chine Approach: a Tutorial”. In: ACM Computing Surveys (CSUR) 22.4, pp. 299–319.

Shorten, Connor and Taghi M. Khoshgoftaar (2019). “A survey on Image Data Aug-
mentation for Deep Learning”. en. In: Journal of Big Data 6.1, p. 60. ISSN: 2196-1115.
DOI: 10.1186/s40537-019-0197-0.

Tang, Bingjie et al. (2021). “Learning Collaborative Pushing and Grasping Policies
in Dense Clutter”. en. In: 2021 IEEE International Conference on Robotics and Au-
tomation (ICRA). Xi’an, China: IEEE, 6177–6184. ISBN: 978-1-72819-077-8. DOI: 10.
1109/ICRA48506.2021.9561828. URL: https://ieeexplore.ieee.org/document/
9561828/.

Tobin, Josh et al. (2017). “Domain Randomization for Transferring Deep Neural Net-
works from Simulation to the Real World”. en. In: arXiv:1703.06907. arXiv:1703.06907
[cs]. URL: http://arxiv.org/abs/1703.06907.

Tobin, Joshua et al. (2018). “Domain Randomization and Generative Models for
Robotic Grasping”. en. In: arXiv:1710.06425. arXiv:1710.06425 [cs]. URL: http://
arxiv.org/abs/1710.06425.

Vrielink, Jeroen Oude and Dr Hamidreza Kasaei (2021). “Learning to grasp objects
in highly cluttered environments using Deep Convolutional Neural Networks”.
en. In: p. 13.

Wang, Chao et al. (2020). “Feature Sensing and Robotic Grasping of Objects with
Uncertain Information: A Review”. en. In: Sensors 20.1313, p. 3707. DOI: 10.3390/
s20133707.

Wang, Tian-Miao, Yong Tao, and Hui Liu (2018). “Current Researches and Future
Development Trend of Intelligent Robot: A Review”. en. In: International Journal
of Automation and Computing 15.5, 525–546. ISSN: 1476-8186, 1751-8520. DOI: 10.
1007/s11633-018-1115-1.

Wilson, Garrett et al. (2019). “Robot-enabled support of daily activities in smart
home environments”. en. In: Cognitive Systems Research 54, 258–272. ISSN: 13890417.
DOI: 10.1016/j.cogsys.2018.10.032.

Xue, Hongyang, Shengming Zhang, and Deng Cai (2017). “Depth Image Inpaint-
ing: Improving Low Rank Matrix Completion with Low Gradient Regularization”.
en. In: IEEE Transactions on Image Processing 26.9. arXiv:1604.05817 [cs], 4311–4320.
ISSN: 1057-7149, 1941-0042. DOI: 10.1109/TIP.2017.2718183.

https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
http://ieeexplore.ieee.org/document/7780460/
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1007/s12369-014-0242-2
https://doi.org/10.1007/s12369-014-0242-2
https://doi.org/10.1016/j.neunet.2022.02.027
https://doi.org/10.1016/j.neunet.2022.02.027
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/ICRA48506.2021.9561828
https://doi.org/10.1109/ICRA48506.2021.9561828
https://ieeexplore.ieee.org/document/9561828/
https://ieeexplore.ieee.org/document/9561828/
http://arxiv.org/abs/1703.06907
http://arxiv.org/abs/1710.06425
http://arxiv.org/abs/1710.06425
https://doi.org/10.3390/s20133707
https://doi.org/10.3390/s20133707
https://doi.org/10.1007/s11633-018-1115-1
https://doi.org/10.1007/s11633-018-1115-1
https://doi.org/10.1016/j.cogsys.2018.10.032
https://doi.org/10.1109/TIP.2017.2718183

Bibliography 43

Yang, Yang, Hengyue Liang, and Changhyun Choi (2020). “A Deep Learning Ap-
proach to Grasping the Invisible”. en. In: arXiv:1909.04840. arXiv:1909.04840 [cs].
URL: http://arxiv.org/abs/1909.04840.

Yu, Yang et al. (2019). “Fruit detection for strawberry harvesting robot in non-structural
environment based on Mask-RCNN”. en. In: Computers and Electronics in Agricul-
ture 163, p. 104846. ISSN: 01681699. DOI: 10.1016/j.compag.2019.06.001.

Zeng, Andy et al. (2018). “Learning Synergies Between Pushing and Grasping with
Self-Supervised Deep Reinforcement Learning”. en. In: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 4238–4245. ISBN:
978-1-5386-8094-0. DOI: 10.1109/IROS.2018.8593986. URL: https://ieeexplore.
ieee.org/document/8593986/.

Zhai, Sheping et al. (2020). “DF-SSD: An Improved SSD Object Detection Algorithm
Based on DenseNet and Feature Fusion”. In: IEEE Access 8, 24344–24357. ISSN:
2169-3536. DOI: 10.1109/ACCESS.2020.2971026.

Zhang, Jicun et al. (2021). “X-Ray Image Recognition Based on Improved Mask R-
CNN Algorithm”. en. In: Mathematical Problems in Engineering 2021. Ed. by Shanglei
Jiang, 1–14. ISSN: 1563-5147, 1024-123X. DOI: 10.1155/2021/6544325.

http://arxiv.org/abs/1909.04840
https://doi.org/10.1016/j.compag.2019.06.001
https://doi.org/10.1109/IROS.2018.8593986
https://ieeexplore.ieee.org/document/8593986/
https://ieeexplore.ieee.org/document/8593986/
https://doi.org/10.1109/ACCESS.2020.2971026
https://doi.org/10.1155/2021/6544325

	Abstract
	Introduction
	Research Questions
	Contributions
	Thesis Outline

	Related Work
	Object Detection
	Grasping
	Cluttered Environments and Active Segmentation
	Domain Randomization

	Methodology
	Mask-RCNN
	Background
	Training
	Domain Randomization
	Data Augmentation

	GR-ConvNet
	Background
	Training

	Active Segmentation
	Model

	Experiments and Results
	Simulation
	Dataset
	Experiments
	Scenarios
	Isolated
	Packed
	Piled
	Cluttered

	Object Visibility
	Domain Randomization
	Active Segmentation

	Discussion
	Conclusion

	Appendix
	Mask-RCNN Training Parameter Configuration

	Bibliography

