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Abstract: The process of annotating relevant data in the field of digital microscopy can be
both time-consuming and especially expensive due to a hard requirement in technical skills and
personal knowledge. Resulting from this, large amounts of microscopic image data sets remain
unlabeled leaving them unused in deep learning. In contrast, large sets of inherent information
can be drawn from the data that remains unlabeled. Self-supervised learning (SSL) is a promising
key to solving this issue through feature learning under a pretext task, which is then transferred
to a downstream main task - in our case image segmentation. Regarding this task, a ResNet50
U-Net was first trained to restore images of liver progenitor organoids from augmented images
obtained by random pixel drop, blurring, and sobel filtering. Using a Structural Similarity Index
Metric (SSIM) loss as well as the SSIM combined with Mean Absolute Error (L1) loss, both
encoder and decoder were trained in tandem. The weights were transferred to another U-Net
designed for segmentation with frozen encoder weights, where they were trained with the Binary
Cross Entropy, Dice, and Jaccard loss. Paired with this, we also used the same U-Net to train
two supervised models, one utilizing the ResNet50 encoder, and the other a simple CNN. Results
showed that SSL models using a 25% pixel drop or image blurring augmentation performed better
in comparison to the other augmentation techniques paired with the Jaccard loss. When trained
on 114 images for the main task, the SSL approach outperforms the supervised method achieving
an F1-score of 0.85 with higher stability, in contrast to the 0.78 scored by the supervised method.
Furthermore, when trained with larger data sets (1.000 images), SSL is still able to outperform
the supervised achieving an F1-score 0.92, contrasting to the score of 0.85 for the supervised
method.

1 Introduction

With the advances in high throughput imaging
technology, it is currently possible to produce a
large number of microscopic images in a short
period of time (Haja and Schomaker, 2021).
Comprehensive analyses of biological images
are required for medical diagnosis and illness
comprehension (Zhang et al., 2020). Detecting
diseases through manually analyzing the rich
biological information in microscopic images is
challenging since it is time-consuming, demands
domain knowledge in the field, is biased to the
individual human experts and thus not entirely
accurate, and is an exhausting task that can lead
to fatigue (Adhikari et al., 2021) (Zhu et al.,
2021). Accordingly, research in the biological field
can be a slow and arduous endeavour. Methods

from the field of deep learning can be used to
automatically extract relevant information from
biological images.

Deep learning has recently found major success
in the automation of data processing, manipula-
tion, and understanding of data (Dargan et al.,
2020). In regards to biomedical image processing,
deep networks have been able to demonstrate
exceptional performance in tasks such as classifica-
tion (Mai et al., 2022), detection, and segmentation
(Vu et al., 2019) through supervised learning.
Their performance and success rely heavily on
the use of labelled or annotated data (Sharma
et al., 2021). The process of annotating relevant
data in this context still involves manual labour,
leaving researchers with a similar issue where large
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amounts of biomedical image datasets remain
unlabeled, keeping them nearly useless for their
intended tasks. In contrast, large sets of inherent
information can be drawn from the data that
remains unlabeled (Jaiswal et al., 2020). Self-
supervised learning (SSL) is a promising key
for processing and extracting relevant information
from datasets consisting of a higher proportion of
unlabeled images than annotated images (Chen
et al., 2019) (Azizi et al., 2021). Deep learning
models using the SSL paradigm allow for models
to familiarize themselves with the data of interest,
where the knowledge is transferred to a supervised
approach that would only need very little training
afterwards.

The intention of this work is to employ the SSL
paradigm for biomedical imaging, specifically on
organoid culture images. In essence, organoids
are self-organizing three-dimensional structures
grown from in vitro stem cells, with the ability of
mimicking its in vivo tissue counterpart (de Souza,
2018). This ability can be used as a powerful tool.
For instance, it can be used to indicate different
diseases based on changes in their morphology
(shape and structure) (Kretzschmar, 2021). Precise
measurements of organoids’ morphology can be
achieved by segmenting organoid objects in the
image dataset.

With this aim in mind, this paper explores
the ability to use the SSL technique to segment
organoid culture images, as well as to compare
the supervised with the SSL approach in order to
observe the amount of sufficient data required to
develop a robust model.

This work is organized into 6 sections, with the
following structure: Section 2 presents a review of
the related works providing a deeper insight into
the organoids research, semantic segmentation, su-
pervised learning, and self-supervised learning. Sec-
tion 3 describes the method of the investigation
where the organoids data, loss functions, and the
supervised and SSL frameworks are discussed. Sec-
tion 4 is reserved for the experimental design, de-
scribing the data distribution and the implementa-
tion details. Section 5 presents a discussion of the
results and lastly, section 6 the conclusion and fu-
ture work.

2 Related Works and defini-
tion

2.1 Organoids Research

Studies conducted on both animals and humans
regarding organs or in vivo tissues can be slowed
down or limited due to a range of expensive costs,
limited resources, and ethical issues (Rossi et al.,
2018). This led to the further development of in
vitro stem cell research, allowing researchers in
this field to overcome the previously mentioned
concerns (Graudejus et al., 2018). One of the in
vitro stem cells is the organoid. Organoids are
self-organizing three-dimensional structures grown
from in vitro cells, having the ability to mimic its
in vivo organ counterpart (Tuveson and Clevers,
2019), (de Souza, 2018), (Kratochvil et al., 2019),
(Corrò et al., 2020). This ability to mimic in vivo
organ tissues is incredibly powerful, leading to
a large range of applications of organoids in, for
example, modelling organ development and disease
(Rossi et al., 2018), cancer research (Drost and
Clevers, 2018), regenerative medicine (Marchini
and Gelain, 2022), or personalized medicine and
drug discovery (Wang and Hummon, 2021). An
important aspect of research in drug development
using organoids is the ability to measure their
morphological changes when responding to the
introduction of external treatments (Karolak et al.,
2019). It is then crucial to get these measurements
accurate, as a drug’s effectiveness depends on
the morphological change (Karolak et al., 2019).
However, manually measuring the volume of each
organoid can be a time-consuming operation that
may act as a bottleneck to the whole research
process. Hence, models from the deep learning
field are introduced to resolve this issue.

2.2 Semantic Segmentation

Semantic segmentation is a deep learning tech-
nique in which each pixel of an image is associated
with its representative class label (Ramesh et al.,
2021). This is especially useful in measuring both
the morphological characteristics and changes
of objects in an image, as groups of pixels that
have been identified to be in the same class
will represent the same object. Essentially, this
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technique allows for the ability to automatically
highlight useful contextual information in an
image. The deep learning model, built for semantic
segmentation, would take an input image, and
return an output image with the exact dimensions
but where the pixel values are sized to be between
0 and the number of class labels. In the case of
organoid semantic segmentation, this would be
either 0 and 1, denoting the background or the
organoid itself, respectively.

Multiple types of software already exist that at-
tempt to segment organoid culture images. One ex-
ample is the software package OrganoSeg (Borten
et al., 2018), which provides an intuitive, graphi-
cal user interface for quantifying transmitted-light
images of 3D spheroid and organoid cultures. How-
ever, this software requires some manual work from
the user to define and finetune thresholds and pa-
rameters used for separating the foreground from
the background. Another example is the OrganoID
(Matthews et al., 2022), a robust image analysis
platform that automatically recognizes, labels, and
tracks single organoids, pixel-by-pixel, in bright-
field and phase-contrast microscopy experiments
using deep learning. This software employs Sobel
operators, Gaussian filter, and watershed for de-
tecting single organoid. These techniques are highly
affected by the image quality (e.g. change in bright-
ness) and cannot be generalized to all microscopic
data. Another example is the deepOrganoid model,
which is based on a deep learning technique that
can be used as a fully automatable analytical tool
for high-throughput screens that rely on organoid
cultures (Powell et al., 2022). Although researchers
in the organoid field can utilize this model by re-
training it on their dataset, the problem of pos-
sessing sufficiently large labelled data beforehand
to train the model is still an issue in this field.
All these tools cannot be generalized for various
organoid datasets with a limited amount of anno-
tation as they are trained using supervised learning.

2.3 Supervised Learning

Deep learning models based on the supervised
method are most common in the context of im-
age processing (Ramesh et al., 2021). The term
”supervised” refers to the type of training where
some form of instruction is provided to the model

throughout the training process (Sen et al., 2020).
Generally, data would consist of some form of in-
put which is paired with its target output label
where the model will train itself to approximate a
mapping function from the input to its associated
output (Cunningham et al., 2008). Such methods,
however, require large amounts of annotated data
in order to make robust approximations that work
well on data that the model has never seen (Wang
et al., 2019). Despite having demonstrated aston-
ishing prowess in tasks such as facial recognition
or object classification, medical fields struggle to
achieve similar success through such means (Raz-
zak et al., 2018). This is due to the fact that super-
vised methods require enormous amounts of data
with manual annotation by humans, which can be-
come rather expensive or time-consuming in the
medical field due to a limited amount of expertise
(Yu et al., 2016).

2.4 Self-Supervised Learning

The self-supervised learning method attempts to
address the issue of having limited annotated data
by extracting relevant features from unlabelled
data (Wang et al., 2022). The self-supervised
approach can be subdivided into two tasks: the
pretext task and the main task. Firstly, the pre-
text task, essentially allows a model to familiarize
itself with the data under the presumption that
convolutional neural networks extract various
levels of information from their layer counterpart.
The low-level features, such as the texture or
gradient of an image, are captured by the shallow
layers of the CNN, whilst the deeper layers are
responsible for capturing the high-level features;
being the semantic information (Li et al., 2017).
Utilizing this property, the pretext task defines
an image transformation problem for the CNN
to solve by predicting the properties of that
same transformation (Misra and Maaten, 2020).
Examples of this could be a context prediction
problem shown in figure 2.1 (Doersch et al., 2015),
or a rotation prediction problem as shown in figure
2.2 (Gidaris et al., 2018). Resulting from this, the
model is then able to learn the low to mid-level
features from data that remain unlabelled.

Secondly is the main task, which is responsible
for capturing the higher-level features (being the
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Figure 2.1: Pretext Task: Context prediction
problem - An image is divided into tiles and
given numeric labels. The center tile (high-
lighted in blue) is used as an anchor point, where
a surrounding random tile is selected. The CNN
has to solve for the tile label, given that an
image is compared to the anchor point. Image
source: (Doersch et al., 2015)

Figure 2.2: Pretext Task: Rotation prediction
problem - The network is provided an image
with rotation (1) 0 (2) 90 (3) 180 (4) 270 de-
grees. It must predict the degree of rotation for
each input image based on the provided the la-
bel. Image Source: (Gidaris et al., 2018)

object of interest itself) where the quality of the
features that have been learnt are evaluated. This
is done by re-purposing the learnt information from
the pretext task to a main task of interest, better
known as transfer learning (Misra and Maaten,
2020). Since the low to mid-level features have
generally been learnt in the pretext task, the model
now only needs to learn the high-level features,
which can be done by using the limited amount
of labelled data to perform supervised learning.
To summarize, the self-supervised training method
removes the full dependency on labels to a partial
dependency (Zhang et al., 2021).

To the authors’ knowledge, no work exists in the
literature that explores the detection and segmen-
tation of organoid images using the self-supervised
concept, which also shows the novelty of this work.

3 Method

Ultimately, this work aims to construct a network
with the ability to learn effective representations of
the data to accurately segment images given a lim-
ited amount of annotated training data. The self-
supervised training method was utilized as an ap-
proach to accomplish this task and is further com-
pared with two supervised approaches. The various
network architectures employed in the project will
be discussed in detail in sections 3.1 and 3.2. Sec-
tion 3.3 presents the data and introduces the dif-
ferent augmentation techniques used on the data.
Section 3.4 introduces all the loss functions that
are compared in each learning stage. Lastly, sec-
tions 3.5 and 3.6 describe the self-supervised and
supervised frameworks, respectively.

3.1 U-Net backbone

The U-Net encoder-decoder network (Ronneberger
et al., 2015) acts as the backbone of the model. It
was initially developed for biomedical image seg-
mentation and gained popularity due to its ability
to perform well with a minimal number of train-
ing samples (Liu et al., 2020). The network itself
consists of a contracting path (left half of Figure
3.1) and an expansive path (right). The contract-
ing path, termed the encoder, consists mainly of
convolutional and pooling layers and is designed
to capture the context of the images being passed
through. At each stage of the contracting path, an
unpadded 3x3 convolution is applied two times, fol-
lowed by a rectified linear unit (ReLU). The spa-
tial resolution is then reduced in half through a
2x2 max-pooling layer, which doubles the number
of features. As shown in Figure 3.1, the convolution
with relu and pooling block is repeated four times
until it reaches the next stage - the expansive path.
This component, also named the decoder, mirrors
the encoder and performs localization through de-
convolution. Up-sampling is performed on the fea-
ture maps, and a 2x2 deconvolution follows allowing
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the feature maps to be doubled again. Lastly, these
feature maps are then concatenated to their corre-
sponding input feature maps, forming the skip con-
nection (illustrated by the horizontal grey lines).

Figure 3.1: U-Net architecture. The encoding
component is illustrated by the left side of the
U shape, whilst the right characterises the de-
coder. Source: (Ronneberger et al., 2015)

3.2 Encoder

The ResNet (short for residual net) architecture
proposes a novel method to address the critical
vanishing gradient problems that affect deeper
networks in regards to the convergence of the
optimization function (He et al., 2016). This
was done by redefining the traditional sequential
convolutional layers in order to learn the residual
parameters where a residual learning block is
introduced. This learning block provides feed-
forward connections that map the identity from
the input to the output, as shown in Figure 3.2.
In this case, the 50-layer variant of the ResNet ar-
chitecture was chosen - henceforth called ResNet50.

The original U-Net architecture with a simple
convolutional neural network (simple CNN) as en-
coder, as described in section 3.1, is compared to a
complex U-Net architecture having a ResNet50 as
its encoder. Here, the necessity of the ResNet50 ar-
chitecture is evaluated for the SSL and supervised
cases.

Figure 3.2: The ResNet residual learning block:
skip connection with input x, transformation
F (x), and output F (x) + x representing the con-
catenated information. Source: (He et al., 2016)

3.3 Data & Augmentation

The data used in this study consists of liver
progenitor organoids, provided by the University
Medical Center Groningen (UMCG), the Nether-
lands. The organoid images were captured by a
special microscope across five different time points
- ranging from 0 up to 96 hours with 24-hour
intervals. Furthermore, the organoids were left in
two growing conditions - (1) the liver progenitor
organoids are grown in a complete medium, (2)
the organoids were grown in a medium where
all amino acids have been removed (essential for
their growth). Resulting from this, a total of 10
CZI images were captured. CZI refers to a 3D
image consisting of 2D image slices captured at
different depths from the organoid culture (Figure
3.4). In this case, each CZI file has 14 2D slices,
where each slice has an image size of 3828x2870
pixels. An average of 4 middle slices were used
because the upper and lower slices contained
little relevant information. Semantic segmentation
was then performed on all the selected images
using the OrganelX∗ service. A manual correction
also took place to confirm that most organoids
have been correctly segmented. The initial image
sizes have a high resolution (3828x2870), which
is incredibly large for any DL network to process
efficiently. As a result, smaller images, called
crops, were created by a sliding window technique
as explained in Figure 3.5. Crops of a window
size 636x636 pixels were created with a window

∗https://organelx.hpc.rug.nl/organoid/
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Figure 3.3: Three augmentation techniques. From left to right: Ground truth image, 25% pixel
drop, 50% pixel drop, 75% pixel drop, Gaussian Blurring and Sobel Filtering.

Figure 3.4: An example of a CZI: A 3D image
made up of 2D slices at different depths of the
organoid culture.

increment of 60 pixels per step. These images
were later resized to be 320x320 pixels to reduce
the model training time. Images with less than
5% relevant information (presence of organoids)
were also removed. Lastly, image rotation was also
used as an augmentation technique to increase
the number of total images, resulting in around
100.000 cropped and augmented images being used.

To perform the pretext task, explained in sec-
tions 2.4 and 3.5, three augmentation techniques
were performed on the images: (1) Pixel drop: ran-
dom noise is added to an image by randomly drop-
ping pixels from the image, (2) Gaussian blurring:
image resolution is cut in half by performing a gaus-
sian blur function, (3) Sobel filtering: a Sobel oper-
ation is applied on the image resulting in an empha-
sis on object edges. Figure 3.3 displays a randomly
selected image from the dataset with all augmen-
tation techniques applied.

Figure 3.5: Sliding Window Crop: A crop-
ping technique where a window is selected and
cropped, as shown by the blue square. The win-
dow is then moved by N amount of pixels, and a
new crop is made, shown by the red square. As
a result, the window is moved across the entire
image, where all parts of the image have been
cropped.

3.4 Loss Functions

In the context of DL, the loss function is a method
of evaluating how suitable a model is at predicting
values given an input. Typically, a loss function
would calculate the distance between the target
output and the predicted output. The distance is
then used to update the model’s weights. These
weights will continuously update until the distance
(the loss) between the target and predicted output
converges.

Sections 3.4.1 and 3.4.2 describe loss functions
used for the pretext task, whilst sections 3.4.3,
3.4.4, and 3.4.5 describe loss functions used in the
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main task.

3.4.1 SSIM

The Structural Similarity Index Metric (SSIM),
proposed by Wang et al. (2004), measures the sim-
ilarity between two given images. An image is di-
vided into various windows, where x and y indi-
cate their respective window of the two images with
shared sizesN×N . The score is calculated as shown
in equation 3.1.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3.1)

With: µx the average of x; µy the average of y;
σ2
x the variance of x; σ2

y the variance of y; σxy the
covariance of x and y; c1 and c2 as constants to
stabilise cases with weak denominators (i.e. zero).
The SSIM value can then be used to compute the
SSIM loss as shown in equation 3.2.

LSSIM (x, y) = 1− SSIM(x, y) (3.2)

3.4.2 SSIM-L1

In some cases, the SSIM loss suffers from sensitiv-
ity biases. Resulting from this, when images are re-
stored, changes in colour or brightness can be ob-
served (Zhao et al., 2015). In contrast, the mean
absolute error, also known as the L1 loss (shown in
eq. 3.3), suppresses this factor more heavily. Here n
indicates the number of pixels, Y the target output,
and Ŷ the model’s predicted output.

LMAE = 1− 1

n

n∑
i=1

|Yi − Ŷi| (3.3)

In principle, to get clearer image restorations, the
L1 loss is combined with the SSIM loss function in
a symmetrical manner, and is shown in eq. 3.4.

LSSIM−L1 =
1

2
LMAE +

1

2
LSSIM (3.4)

3.4.3 Binary Cross Entropy

Binary cross entropy (BCE) (Jadon, 2020) com-
pares the probability of the model’s predicted out-
put class Ŷ to the actual class label Y within a

range of 0 and 1, as shown in equation 3.5. Due
to this nature, it can then be used for the task
of binary pixel-wise classification necessary for the
segmentation task, as mentioned in section 2.2. In
this case, n refers to the number of pixels present
in the image.

LBCE(Y, Ŷ ) = − 1

n

n∑
i=1

(Yi·logŶi+(1−Yi)·log(1−Ŷi))

(3.5)
Generally, with cross-entropy functions, the gra-

dients with respect to the logits produce smoother
loss values allowing for better stability in training
when compared to other loss functions in the same
domain (Jadon, 2020).

3.4.4 Dice

Dice loss is a commonly used loss function in the
context of semantic segmentation (Yeung et al.,
2022). The similarity between the output image Ŷ
and target output Y is computed as shown in equa-
tion 3.6. Here, ϵ denotes a constant value for cases
with a weak denominator, known as a smoothing
factor (Li et al., 2019).

Ldice(Y, Ŷ ) = 1− 2 ·
∑

Y · Ŷ∑
Y 2 +

∑
Ŷ 2 + ϵ

(3.6)

In contrast to cross-entropy functions, the dice
metric can cause gradients to blow up to large num-
bers, often resulting in unstable training (Eelbode
et al., 2020). However, dice losses are more robust
when presented with imbalanced datasets, which is
relatively common in semantic segmentation; typ-
ically, the background accounts for a more signifi-
cant portion of the pixels than the object of inter-
est. This is also the case for organoid images.

3.4.5 Jaccard

The Jaccard loss, also referred to as the Intersection
over Union (IoU), is less commonly used than the
dice loss but is also a powerful tool for semantic
segmentation (Bertels et al., 2019). Here, the sum
of the product between the predicted output Ŷ and
target output Y is computed, then divided by its
union as shown in equation 3.7. Again, ϵ is used as
a constant to prevent a zero division.
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LIoU (Y, Ŷ ) = 1−
∑

(Y · Ŷ )∑
(Y + Ŷ )−

∑
(Y · Ŷ ) + ϵ

(3.7)
The Jaccard loss suffers from a similar problem

to the dice loss regarding blowing up gradients.
However, like the dice loss, it works well with an im-
balanced dataset with the addition of scale invari-
ance, granting relevance to smaller objects (Bertels
et al., 2019). The ability to include such smaller ob-
jects is pertinent to the organoids data set as im-
ages typically have both large and small organoids
spread across the image.

3.5 Self-Supervised Framework

The self-supervised framework consists of two
phases, as demonstrated in Figure 3.6. A pretext
task is essentially designed to push the model to
learn the semantic features of the input images; by
allowing the model to ’pre-train’ on the data, the
model is able to familiarize itself with the data. The
proposed pretext task is to perform image restora-
tion on augmented images (section 3.3). For this
task, a U-Net with a ResNet50 encoder as the back-
bone paired with the decoder are trained in tandem
to restore an augmented input image. The data is
augmented through three techniques as described
in section 3.3. The output of the U-Net is com-
pared to the ground truth image where the SSIM
and SSIM-L1 losses are computed as described in
section 3.4. The concept for this task is to train
the network to attempt to generate organoid fea-
tures, which would set up the network’s weights for
the second phase. In the second phase, the learnt
weights are transferred to perform the main task of
segmentation on the images of organoids, where the
encoder weights are frozen and only the decoder is
re-trained using the loss functions described in sec-
tions 3.4.3, 3.4.4, and 3.4.5.

3.6 Supervised Framework

The supervised framework consists of two ap-
proaches: (1) both the ResNet50 and simple CNN
encoders were used in a supervised manner. In
order to hold a fair comparison with the self-
supervised approach, the same U-Net architecture
as shown in Figure 3.6 was chosen for this, where

Figure 3.6: Self-supervised pipeline for organoid
segmentation. Top: Pretext task - The U-Net
model consists of an encoder, ResNet50, and a
decoder with a decoder with a skip connection.
The ResNet50 is trained to restore augmented
images to their original form. The restored im-
age is compared to the ground truth image, and
the SSIM or SSIM-L1 loss is computed. Bottom:
Main task - The same network as in the pretext
task, yet, with a frozen encoder. The decoder
learns to segment the ground truth images.

both encoder and decoder were trained with ran-
domly initialised weights. Approach (2) employs
the identical encoders, however, only the decoder is
trained; both encoder and decoder weights are still
randomly initialised. In other words, the encoder
weights are frozen and were not updated during
training (i.e. back-propagation).

All other parameters and settings are kept the
same for all approaches and identical to the SSL
approach for the semantic segmentation task. In
essence, the main task for the SSL approach is al-
most identical to the supervised approach, with the
exception being that in case (1) the encoder is also
trained.

8



4 Experimental Design

4.1 Data Distribution

The data set, as described in section 3.3, was
shuffled and randomly divided into three sub-
sections in an equal distribution from each CZI
file: Trainpretext, Trainmain, and Evaluation.
As shown in the top half of Figure 4.1, from
the roughly 100.000 crops, 40% was reserved for
Trainpretext, 40% was taken for Trainmain, and
the remaining 20% for Evaluation.

Figure 4.1: Visual of the distribution of the
data, with three different training scenarios. (1)
indicates the distribution only for the pretext
task. (2), (3) and (4) indicate the data for the
main task used in both SSL and supervised ap-
proaches. (T) denotes training while (V) de-
notes validation.

The data set was separated in this manner prior
to any training as to ensure that at each stage, the
model is trained on images it has never seen before;
this is done to prevent over-fitting. Additionally,
five-fold cross-validation was used to ensure stabil-
ity during the training of each architecture. Four
training scenarios, illustrated in Figure 4.1 and
Table 4.2, follow from having a supervised and
self-supervised framework: (1) the self-supervised
framework is pre-trained on the Trainpretext data
set, which was further sub-divided into another
three categories shown in table 4.1, as well as the
red illustrations in Figure 4.1. This subdivision of
the data set is done to observe the importance of
pre-training the networks prior to transferring the
knowledge and to see the performance of the mod-
els on a various number of images. In this stage,
the performance of the augmentation techniques
and loss functions will also be measured. In order
to evaluate the performance in this regard, the

model is then further trained for the main task on
114 images taken from Trainmain and evaluated
on the Evaluation set. (2) Both supervised and
self-supervised are trained on the Trainmain data
set, which again was subdivided. In this case, to
observe the self-supervised method’s ability to
accurately segment images given a small number of
labelled data, both supervised and self-supervised
are trained on 114 images. (3) To observe the
point at which the supervised and self-supervised
models have similar performances, both networks
were also trained from 200 up to 1.000 images, with
100 image increments. (4) Lastly, the supervised
model was trained on 10% up to 100% of the
Trainmain data with 10% increments to observe
performances with large data sets. It is important
to note that the same images were used for all
training scenarios to establish a fair analysis. A
short summary of these four experimental cases is
displayed in Table 4.2.

Table 4.1: The number of images used for train-
ing the pretext tasks. The first column lists the
percentage of the total images considered, out
of which the number of the images used to train
and validate the model are described in the re-
maining columns.

Percentage of data Train set Validate set
10% 3250 813
50% 16252 4063
100% 32504 8127

4.2 Implementation Details

In this subsection, model implementation and
hyper-parameter details are described. Regarding
the model, the ResNet50 encoder and decoder
architecture follow the same structure as discussed
in (Zhang et al., 2018). Figure 4.2 illustrates a
building block for the ResNet50 encoder, which is
repeated four times for the encoding component
and another four for decoding only with the
addition of an upsampling layer between each
block. Furthermore, a skip connection is formed
between the encoder and decoder between each
block. The encoder convolutional block starts
with a 320x320 input matching the cropped image
size, mentioned in section 3.3. Throughout the
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Table 4.2: A short summary of the four experi-
ment cases.

Four Experiment Cases
(1) SSL framework trained on Trainpretext,
then 114 images from Trainmain, and lastly
Evaluation to observe performance of augmen-
tation techniques, loss, and percentage of pretext
training data.
(2) SSL and Supervised frameworks are com-
pared with a minimal number (114) training im-
ages taken from Trainmain. The models are eval-
uated on Evaluation.
(3) SSL and Supervised frameworks are com-
pared by training from 200-1000 images (from
Trainmain) and evaluated on Evaluation to ob-
serve at which point the frameworks have similar
performances.
(4) Supervised framework is trained from 10%
to 100% of Trainmain with 10% increments then
evaluated on Evaluation, and compared to the
SSL to observe supervised performances on large
data sets.

Figure 4.2: Building block for the ResNet50
encoder, with Xl denoting the input, BN for
batch normalization, and ReLU for rectified lin-
ear unit. Image Source: (Zhang et al. 2018)

four convolutional layers, the input size is halved.
Hence, the second layer has a size of 160x160, the
third 80x80, and the last layer has a size of 40x40
pixels. The decoder performs this in the reversed
order.

During the training phase for both the pretext
and the main task, the model was trained over 50
epochs. The Adam optimizer was used as the learn-
ing scheduler with a learning rate of 0.003. The
data was divided into a batch size of 16, and a seed
value of 26 was used to ensure reproducibility when
using random variables (i.e. shuffling the batches).
Regarding constants used in the loss functions, the
LSSIM and LSSIM−L1 functions had c1 = 0.01 and
c2 = 0.03, whilst Ldice and LIoU had ϵ = 0.0001.
Lastly, one Nvidia V100 GPU accelerator card was
used for training all models.

5 Results

As mentioned in section 4.1, both supervised and
self-supervised frameworks were evaluated on the
same set of images that both networks have pre-
viously not seen before. Due to the nature of the
pixel-wise binary classification task a confusion ma-
trix was computed for each image that has been
segmented. From this, the accuracy, precision, re-
call, F1-score, and Jaccard index was computed.
The metric that we are most interested in is the
F1-Score, in some cases called the harmonic mean.
The F1-score penalizes large differences between
precision and recall, which sets apart the desirable
image segmentations from the undesirable ones.

5.1 Self-Supervised Framework

Figure 5.2 displays the results produced by the
SSL framework first trained on Trainpretext, then
on 114 images from Trainmain, using the SSIM
and SSIM-L1 for the pretext, then BCE, Dice, and
IoU for the main task. Initially, it can be observed
that in general, as the percentage of Trainpretext

data increases, the scores across all metrics also
increase for all three main task loss functions. This
confirms that increasing the amount of pre-trained
data will have a positive influence on the main task.

Another observation that can be made is that
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out of the five augmentation types, the 25% pixel
drop and the blurring methods produce the best
results reaching an F1-score as high as 0.85, which
is considerably higher than the other three tech-
niques where an F1-score of 0.75 was the highest.
This would suggest that changing the image too
strongly will make it more difficult for the network
to restore the images, and as well as to extract
the mid to low-level features. This is especially
the case for the 75% pixel drop and Sobel filtering
augmentations which scored the lowest, at 0.25
for the SSIM loss with 10% Trainpretext and 0.4
for the SSIM-L1. In both cases, this relates to
how both these augmentation techniques cause for
the pixels to be affected the most. Despite this,
by increasing the amount of training data for the
pretext task, scores can still be made to improve
as a general trend.

Regarding loss functions, it can be observed that
the IoU loss, indicated by the green points, was
able to achieve the highest scores reaching 0.85
when trained with 100% of Trainpretext using ei-
ther SSIM or SSIM-L1 for the pretext task. Fur-
thermore, the IoU loss on average performed best
regardless of augmentation technique with only the
SSIM-L1 using the 50% pixel drop being the outlier.
This confirms that the addition of scale invariance
(section 3.4.5) is effective for the organoids data set
due to the smaller organoids being scattered across
each image.
Figures 5.3, 5.4, and 5.5 illustrate the segmenta-

tion masks generated for the various loss functions
in combination with the augmentation techniques
using the SSIM loss. The figures indicate visually
how well the 25% pixel drop and gaussian blurring
has performed when compared to the other aug-
mentation techniques. Furthermore, it can be ob-
served that as the percentage of pretext training
data increases, the generated segmentation masks
come closer to the true masks regardless of aug-
mentation technique, once again confirming its in-
fluence over the main task. The SSIM-L1 loss has
generated similar masks, which demonstrates a sim-
ilar trend and was therefore left out in this case.
Lastly, figure 5.1 demonstrates a good segmenta-
tion which is compared to a bad one where a stark
contrast between performance can be observed.

Figure 5.1: A comparison of segmentation masks
generated by the SSL framework. Starting from
the top left: Ground Truth image, True Mask,
example of a good segmentation, and example of
a bad segmentation. The good segmentation was
generated using 100% of Trainmain with SSIM-
L1 and IoU employing the blur augmentation,
while the bad one is using the 10% SSIM and
BCE with the Sobel filter.
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Figure 5.2: Evaluation of the self-supervised pretext task using F1-scores. The mean of the 5 folds
for the BCE, Dice, and IoU loss functions were computed and is indicated by the red, blue, and
green points respectively. The top row displays the scores using the SSIM loss of the pretext task,
while the bottom row displays the SSIM-L1 loss.

Figure 5.3: Segmentation masks generated by the SSL framework using 10% of Trainpretext. From
left to right is: Input (Ground Truth) Image, True Mask, 25%, 50%, 75% Pixel Drop, Gaussian
Blurring, Sobel Filtering. The top row illustrates the masks using the BCE loss, the middle row
using the Dice loss, and the bottom using the IoU loss.
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Figure 5.4: Segmentation masks generated by the SSL framework using 50% of Trainpretext. From
left to right is: Input (Ground Truth) Image, True Mask, 25%, 50%, 75% Pixel Drop, Gaussian
Blurring, Sobel Filtering. The top row illustrates the masks using the BCE loss, the middle row
using the Dice loss, and the bottom using the IoU loss.

Figure 5.5: Segmentation masks generated by the SSL framework using 100% of Trainpretext. From
left to right is: Input (Ground Truth) Image, True Mask, 25%, 50%, 75% Pixel Drop, Gaussian
Blurring, Sobel Filtering. The top row illustrates the masks using the BCE loss, the middle row
using the Dice loss, and the bottom using the IoU loss.

13



5.2 Comparing Frameworks

Tables 5.1, 5.2, and 5.3 display the best F1-scores
for both self-supervised and supervised frame-
works, trained on 114 images. Tables 5.4, 5.5, and
5.6 display the average F1-scores as well as the
deviations for both frameworks trained on the
same 114 images. The deviations can be used as an
indicator for model stability, with larger deviations
meaning lower stability and smaller deviations for
higher stability. For the self-supervised approach,
only the scores for the 25% pixel drop and blurring
augmentation are displayed, as these two tech-
niques reported the strongest results, as shown in
section 5.1.

When observing the results of the blurring
technique, shown in Table 5.2 a particular point
of interest here, is that the 10% SSIM-L1 to IoU
network, performs just as well as the 100% SSIM
to BCE and Dice, all cases having an F1-score
of 0.84. This confirms that suppressing colour
changes and brightness with the addition of the
L1 loss to the SSIM loss can be effective effective
(mentioned in section 3.4.2). The 25% pixel drop,
shown in Table 5.1, was able to achieve high
F1-scores of up to 0.85 as well. However, when
using 10% of Trainpretext, the scores range from
0.69-0.71 while the blurring technique in contrast
was able to achieve a range of 0.73-0.84 which is
substantially higher.

For the supervised approach shown in table
5.3, it is rather clear that the ResNet50 encoder
outperforms the simple CNN encoder in regards
to the F1-scores, as shown by the highest score of
0.78 for the ResNet50 encoder compared to the
0.63 for the simple CNN encoder. This implies that
the complexity of the encoder plays an important
role in optimizing improvements. In a similar
fashion to the self-supervised approach, the IoU
loss appears to perform the best in the supervised
context achieving a score of 0.78, although the
ResNet50 with frozen encoders trained on BCE
also performed strongly with a score of 0.75.
Another point of interest in regards to the simple
CNN architecture, is that BCE seems to be the
only loss function to effectively produce higher
scores of 0.63 and 0.71, compared to the 0.27 for
the Dice and IoU losses. It also appears to be the

case that scores don’t differ too strongly when
comparing the frozen and non-frozen encoders.
This could suggest that the decoder does the
majority of the work in semantic segmentation
tasks, something that is also in agreement with
(Goutam et al., 2020).

Figures 5.6, 5.7, 5.8, and 5.9 illustrate the
segmentations performed by both ResNet50 and
CNN supervised frameworks across the five folds
of the cross validation. Regarding the ResNet50
architecture, it can be observed that when the
encoder is not frozen, the generated segmentation
masks are able to fill in the organoid shape. In con-
trast, when the encoder is frozen, it is only able to
segment the edges. As for the simple CNN encoder
it is rather clear here that the model is unable to
converge in most cases, with the exception of the
BCE loss which as discussed earlier, was the only
loss function to produce meaningful results. This
could be due to the limited amount of data (114
images) that is available for training.

Lastly, when comparing the two frameworks,
it can be observed that with a small data set
(114 images), the SSL framework performs better
than either ResNet50 or simple CNN supervised
framework. For instance, the F1-score for the blur
augmentation technique (Table 5.2) was between
0.73-0.85, which was generally higher than the su-
pervised framework (Table 5.3) having scores be-
tween 0.27-0.78. Additionally, the self-supervised
approach is able to consistently perform well re-
gardless of loss function. The supervised approach
in contrast has strong inconsistencies on this as-
pect. Furthermore, when observing the deviations
in Tables 5.4, 5.5, and 5.6, a clear disparity can be
observed in stability between the SSL and the su-
pervised approach, where the SSL has at most a
deviation of 0.047 whilst the supervised has a de-
viation as high as 0.254.
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Table 5.1: Self-Supervised architecture F1-Scores with 25% pixel drop trained on 114 images. The
best score of the five folds cross validation is computed for each variation of network structure.

Best Self-Supervised (0.25 pixel drop)
Pre-Train SSIM SSIM-L1

F
1-
S
co
re BCE Dice IoU BCE Dice IoU

10% 0.69 0.66 0.71 0.58 0.71 0.70
50% 0.80 0.81 0.81 0.81 0.82 0.82
100% 0.84 0.84 0.84 0.85 0.84 0.85

Table 5.2: Self-Supervised architecture F1-Scores with blurring trained on 114 images. The best
score of the five folds cross validation is computed for each variation of network structure.

Self-Supervised (Blurring)
Pre-Train SSIM SSIM-L1

F
1-
S
co
re BCE Dice IoU BCE Dice IoU

10% 0.74 0.73 0.80 0.82 0.82 0.84
50% 0.79 0.77 0.82 0.83 0.83 0.84
100% 0.84 0.84 0.85 0.85 0.84 0.85

Table 5.3: Supervised architecture F1-Scores trained on 114 images. The best score of the five
folds cross validation is computed for each variation of network structure.

Supervised
Encoder Freeze No Freeze

F
1-
S
co
re BCE Dice IoU BCE Dice IoU

ResNet50 0.75 0.6 0.47 0.57 0.73 0.78
CNN 0.63 0.27 0.27 0.71 0.27 0.27

Table 5.4: Self-Supervised architecture F1-Scores with 25% pixel drop trained on 114 images. The
average score and the standard deviation of the five folds cross validation is computed for each
variation of network structure.

Mean Self-Supervised (0.25 pixel drop)
Pre-Train SSIM SSIM-L1

F
1-
S
co
re BCE Dice IoU BCE Dice IoU

10% 0.64 ± 0.034 0.64 ± 0.028 0.70 ± 0.005 0.54 ± 0.047 0.70 ± 0.04 0.69 ± 0.02
50% 0.80 ± 0.005 0.78 ± 0.024 0.80 ± 0.012 0.80 ± 0.012 0.81 ± 0.005 0.82 ± 0.007
100% 0.84 ± 0.005 0.82 ± 0.012 0.84 ± 0.005 0.85 ± 0.005 0.84 ± 0.004 0.85 ± 0.005

Table 5.5: Self-Supervised architecture F1-Scores with blurring trained on 114 images. The average
score and the standard deviation of the five folds cross validation is computed for each variation
of network structure.

Mean Self-Supervised (Blurring)
Pre-Train SSIM SSIM-L1

F
1-
S
co
re BCE Dice IoU BCE Dice IoU

10% 0.73 ± 0.015 0.70 ± 0.014 0.79 ± 0.014 0.81 ± 0.010 0.81 ± 0.08 0.84 ± 0.005
50% 0.77 ± 0.01 0.75 ± 0.19 0.81 ± 0.008 0.81 ± 0.008 0.82 ± 0.012 0.84 ± 0.005
100% 0.83 ± 0.005 0.84 ± 0.005 0.84 ± 0.005 0.85 ± 0.005 0.84 ± 0.005 0.85 ± 0.000
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Table 5.6: Supervised architecture F1-Scores trained on 114 images. The average score and the
standard deviation of the five folds cross validation is computed for each variation of network
structure.

Supervised
Encoder Freeze No Freeze

F
1-
S
co
re BCE Dice IoU BCE Dice IoU

ResNet50 0.46 ± 0.232 0.22 ± 0.199 0.32 ± 0.137 0.43 ± 0.118 0.49 ± 0.254 0.644 ± 0.08
CNN 0.37 ± 0.161 0.054 ± 0.108 0.262 ± 0.016 0.44 ± 0.195 0.11 ± 0.132 0.27 ± 0.000

Figure 5.6: Segmentations made with the ResNet50 encoder using supervised approach, where the
encoder weights are not frozen. On display from the left is: Input (Ground Truth) image, True
Mask, then the generated masks of the five folds in ascending order. The top row illustrates the
masks using the BCE loss, the middle row using the Dice loss, and the bottom using the IoU loss.
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Figure 5.7: Segmentations made with the ResNet50 encoder using supervised approach, where
the encoder weights are frozen. On display from the left is: Input (Ground Truth) image, True
Mask, then the generated masks of the five folds in ascending order. The top row illustrates the
masks using the BCE loss, the middle row using the Dice loss, and the bottom using the IoU loss.

Figure 5.8: Segmentations made with the simple CNN encoder using supervised approach, where
the encoder weights are not frozen. On display from the left is: Input (Ground Truth) image, True
Mask, then the generated masks of the five folds in ascending order. The top row illustrates the
masks using the BCE loss, the middle row using the Dice loss, and the bottom using the IoU loss.
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Figure 5.9: Segmentations made with the simple CNN encoder using supervised approach, where
the encoder weights are frozen. On display from the left is: Input (Ground Truth) image, True
Mask, then the generated masks of the five folds in ascending order. The top row illustrates the
masks using the BCE loss, the middle row using the Dice loss, and the bottom using the IoU loss.
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Figure 5.10: F1-scores for (1) supervised trained with the IoU loss using the ResNet50 encoder,
and (2)(3)(4) self-supervised trained between 200 up to 1000 images using the SSIM-L1 and IoU
loss with 10%, 50%, and 100% of Trainpretext data. The blue dotted line indicates the best F1-score
of the self-supervised approach trained on 114 images, and is used as a baseline benchmark. Each
full line indicates an individual model in the 5 fold cross validation.
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Figure 5.11: Evaluation of supervised (SPV) using F1-Scores trained on various percentage of
Trainmain. The mean of the 5 folds was computed and is indicated by the red points, with bars
denoting the standard deviation. This is compared to the mean of the self-supervised (SSL) scores
shown by the dotted lines. The SSL network was trained with the SSIM-L1 to IoU losses with:
114, 500, and 1.000 images. The top row shows the scores when the encoder is not frozen, whilst
the bottom row shows the frozen encoder.
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5.3 Comparing Performance with
Larger Data Sets

To further observe performance differences between
the supervised and the self-supervised approach,
the F1-score was measured across networks trained
with various numbers of images. Figure 5.10
displays the F1-scores when trained between
200-1.000 images for all five CV folds. What can
be observed in graph (1), using the standard
supervised approach with a ResNet50 encoder
without frozen weights, is that it takes upwards of
1.000 training images to achieve similar results to
the best self-supervised approach that was trained
on 114 images.

Graphs (2)-(4), display the scores for the self-
supervised approach pre-trained with 10%, 50%,
and 100% of the sub-data respectively (Table 4.1).
A major point of interest here is that F1-scores
are still improving when trained with more data
on the main task, while remaining ahead of the
supervised approach. Additionally, when compar-
ing the curves of both approaches, it is clear here
that the self-supervised approach has improved
stability and reliability over the supervised one.
This is a sharp indicator for the effectiveness of
the self-supervised approach.

5.4 Supervised Framework

Figure 5.11 displays the F1-scores for the su-
pervised (SPV) framework trained between 10%-
100% of Trainmain which is compared to the self-
supervised (SSL) framework trained with: 114, 500,
and 1.000 images. As a first observation here, the
SPV scores outperform the SSL-114 scores when
trained with 30% of Trainmain or more, but not the
SSL-500 and SSl-1000. When comparing the frozen
and non-frozen encoders, there appears to be lit-
tle difference in scores which again, is in agreement
with (Goutam et al., 2020) regarding the difference
in effectiveness between the encoder and decoder.
Lastly, the deviation bars indicate the stability of
training across the 5 fold cross validation, where
we can see that BCE appears to have the highest
stability.

6 Conclusions

6.1 Discussion

This work evaluates the potential of using the SSL
paradigm to perform semantic segmentation on
images of organoids, specifically by employing the
U-Net architecture through image restoration as
a pretext task. The use of SSL methods in the
context of medical has the potential to greatly im-
prove research in the field by automating processes
that otherwise require manual labour from experts.

Regarding the proposed pretext task, a total
of 5 augmentations (25%, 50%, 75% pixel drops,
Gaussian blurring, and Sobel filtering) paired with
2 loss functions (SSIM and SSIM-L1), trained
across 10%, 50% and 100% of data taken from
Trainpretext were compared. The gained knowl-
edge from the pretext task was then transferred to
the main task where the BCE, Dice, and IoU losses
were compared afterwards, being trained on 114
images taken from Trainmain. Here, it was dis-
covered that the Guassian blurring augmentation
paired with the SSIM-L1 and IoU losses achieved
the best results across the range of Trainpretext

data, with F1-scores of 0.84-0.85, with the 25%
pixel drop (with the same losses) coming in close
second with a range of 0.70-0.85. Furthermore, it
can be concluded that across all metrics in this
context, the IoU loss performed the best.

When comparing the SSL and supervised
frameworks, it is abundantly clear here that
the self-supervised approach is able to achieve
better scores than the supervised with smaller
labelled data sets. When trained on 114 images
from Trainmain, the SSL framework was able to
achieve an F1-score of 0.85, whilst the supervised
framework scored at most 0.78. It is also important
to emphasise the importance of using a complex
encoder such as the ResNet50 compared to a
CNN, as shown by the comparison between the
two supervised frameworks. With larger data sets,
a similar conclusion can be drawn that the SSL
approach still outperforms the supervised one.

An inherent deficiency in the SSL approach how-
ever, is that it will always take longer to train. In
the case that labelled data is already available, it
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would be more efficient and time effective to take
the supervised approach. As mentioned previously
however, this in general is not the case with medi-
cal imaging. Regardless, it can safely be concluded
here that the SSL paradigm can be used effectively
to produce robust models when labelled data is not
available.

6.2 Future Works

A potential for further investigation regarding the
topic of semantic segmentation of organoids could
be the use of a different encoder architectures
such as the VGG16 (Simonyan and Zisserman,
2014) or the MobileNet (Howard et al., 2017)
architectures which have been proven to perform
strongly in computer vision tasks. Considering
that the encoder plays a significant role in the
task of segmentation, it would be beneficial to
study the potential of other encoders in this
context. Another point of interest could be the use
of a different pretext task in the self-supervised
method, as this also plays an important role in
improving the overall performance. On the topic of
pretext task, it would also be interesting to observe
the performance of the image reconstruction task
on other data sets such as the COCO (Lin et al.,
2014) set.
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Li, Sergiu P Paşca, Calvin J Kuo, and Sarah C
Heilshorn. Engineered materials for organoid sys-
tems. Nature Reviews Materials, 4(9):606–622,
2019.

Kai Kretzschmar. Cancer research using organoid
technology. Journal of Molecular Medicine, 99
(4):501–515, 2021.

Wenqi Li, Guotai Wang, Lucas Fidon, Sebastien
Ourselin, M Jorge Cardoso, and Tom Ver-
cauteren. On the compactness, efficiency, and
representation of 3d convolutional networks:
brain parcellation as a pretext task. In Inter-
national conference on information processing in
medical imaging, pages 348–360. Springer, 2017.

Xiaoya Li, Xiaofei Sun, Yuxian Meng, Junjun
Liang, Fei Wu, and Jiwei Li. Dice loss for
data-imbalanced nlp tasks. arXiv preprint
arXiv:1911.02855, 2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie,
James Hays, Pietro Perona, Deva Ramanan, Pi-
otr Dollár, and C Lawrence Zitnick. Microsoft
coco: Common objects in context. In European
conference on computer vision, pages 740–755.
Springer, 2014.

Liangliang Liu, Jianhong Cheng, Quan Quan,
Fang-Xiang Wu, Yu-Ping Wang, and Jianxin
Wang. A survey on u-shaped networks in med-
ical image segmentations. Neurocomputing, 409:
244–258, 2020.

Zheda Mai, Ruiwen Li, Jihwan Jeong, David
Quispe, Hyunwoo Kim, and Scott Sanner. Online
continual learning in image classification: An em-
pirical survey. Neurocomputing, 469:28–51, 2022.

Amanda Marchini and Fabrizio Gelain. Synthetic
scaffolds for 3d cell cultures and organoids: appli-
cations in regenerative medicine. Critical reviews
in biotechnology, 42(3):468–486, 2022.

Jonathan M Matthews, Brooke Schuster, Sara Sa-
heb Kashaf, Ping Liu, Mustafa Bilgic, Andrey
Rzhetsky, and Savas Tay. Organoid: a versatile

23



deep learning platform for organoid image anal-
ysis. bioRxiv, 2022.

Ishan Misra and Laurens van der Maaten. Self-
supervised learning of pretext-invariant represen-
tations. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recog-
nition, pages 6707–6717, 2020.

Reid T Powell, Micheline J Moussalli, Lei
Guo, Goeun Bae, Pankaj Singh, Clifford
Stephan, Imad Shureiqi, and Peter J Davies.
deeporganoid: A brightfield cell viability model
for screening matrix-embedded organoids. SLAS
Discovery, 27(3):175–184, 2022.

KKD Ramesh, G Kiran Kumar, K Swapna, De-
babrata Datta, and S Suman Rajest. A review
of medical image segmentation algorithms. EAI
Endorsed Transactions on Pervasive Health and
Technology, 7(27):e6–e6, 2021.

Muhammad Imran Razzak, Saeeda Naz, and Ah-
mad Zaib. Deep learning for medical image
processing: Overview, challenges and the future.
Classification in BioApps, pages 323–350, 2018.

Olaf Ronneberger, Philipp Fischer, and Thomas
Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In International
Conference on Medical image computing and
computer-assisted intervention, pages 234–241.
Springer, 2015.

Giuliana Rossi, Andrea Manfrin, and Matthias P
Lutolf. Progress and potential in organoid re-
search. Nature Reviews Genetics, 19(11):671–
687, 2018.

Pratap Chandra Sen, Mahimarnab Hajra, and Mi-
tadru Ghosh. Supervised classification algo-
rithms in machine learning: A survey and review.
In Emerging technology in modelling and graph-
ics, pages 99–111. Springer, 2020.

Samriti Sharma, Gurvinder Singh, and Manik
Sharma. A comprehensive review and analysis
of supervised-learning and soft computing tech-
niques for stress diagnosis in humans. Computers
in Biology and Medicine, 134:104450, 2021.

Karen Simonyan and Andrew Zisserman. Very
deep convolutional networks for large-scale im-
age recognition. arXiv preprint arXiv:1409.1556,
2014.

David Tuveson and Hans Clevers. Cancer modeling
meets human organoid technology. Science, 364
(6444):952–955, 2019.

Quoc Dang Vu, Simon Graham, Tahsin Kurc,
Minh Nguyen Nhat To, Muhammad Shaban,
Talha Qaiser, Navid Alemi Koohbanani, Syed Ali
Khurram, Jayashree Kalpathy-Cramer, Tianhao
Zhao, et al. Methods for segmentation and clas-
sification of digital microscopy tissue images.
Frontiers in bioengineering and biotechnology,
page 53, 2019.

Fei Wang, Lawrence Peter Casalino, and Dhruv
Khullar. Deep learning in medicine—promise,
progress, and challenges. JAMA internal
medicine, 179(3):293–294, 2019.

Huan Wang, Zhiliang Liu, Yipei Ge, and Dandan
Peng. Self-supervised signal representation learn-
ing for machinery fault diagnosis under limited
annotation data. Knowledge-Based Systems, 239:
107978, 2022.

Yijia Wang and Amanda B Hummon. Ms imaging
of multicellular tumor spheroids and organoids as
an emerging tool for personalized medicine and
drug discovery. Journal of Biological Chemistry,
297(4), 2021.

Zhou Wang, Alan C Bovik, Hamid R Sheikh,
and Eero P Simoncelli. Image quality assess-
ment: from error visibility to structural similar-
ity. IEEE transactions on image processing, 13
(4):600–612, 2004.

Michael Yeung, Evis Sala, Carola-Bibiane
Schönlieb, and Leonardo Rundo. Unified
focal loss: Generalising dice and cross entropy-
based losses to handle class imbalanced medical
image segmentation. Computerized Medical
Imaging and Graphics, 95:102026, 2022.

Shuang Yu, Di Xiao, and Yogesan Kanagasingam.
Automatic detection of neovascularization on op-
tic disk region with feature extraction and sup-
port vector machine. In 2016 38th Annual In-
ternational Conference of the IEEE Engineering

24



in Medicine and Biology Society (EMBC), pages
1324–1327. IEEE, 2016.

Pingyue Zhang, Mengyue Wu, Heinrich Dinkel, and
Kai Yu. Depa: Self-supervised audio embedding
for depression detection. In Proceedings of the
29th ACM International Conference on Multime-
dia, pages 135–143, 2021.

Zheng Zhang, Qi Zhu, Guo-Sen Xie, Yi Chen,
Zhengming Li, and Shuihua Wang. Discrimina-
tive margin-sensitive autoencoder for collective
multi-view disease analysis. Neural Networks,
123:94–107, 2020.

Zhengxin Zhang, Qingjie Liu, and Yunhong Wang.
Road extraction by deep residual u-net. IEEE
Geoscience and Remote Sensing Letters, 15(5):
749–753, 2018.

Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan
Kautz. Loss functions for neural networks for im-
age processing. arXiv preprint arXiv:1511.08861,
2015.

Chuang Zhu, Wenkai Chen, Ting Peng, Ying Wang,
and Mulan Jin. Hard sample aware noise robust
learning for histopathology image classification.
IEEE Transactions on Medical Imaging, 41(4):
881–894, 2021.

25


