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Abstract: Object detection networks have progressed at a rapid pace in recent years. However,
detectors still suffer from many issues, such as a lack of network transparency and overcon-
fidence in their predictions. Putting too much trust into unreliable predictions can have fatal
consequences in safety-critical applications such as pedestrian detection for autonomous vehicles.
A measure of network uncertainty can be implemented in order to give insight into the reliability
of the detector. This study investigates how Monte Carlo Dropout, a method of uncertainty
quantification, can be utilized to improve the performance of a Single-Shot Detector (SSD) net-
work trained to detect pedestrians. We find that, based on the test dataset mAP scores of the
detectors, the MC-Dropout model is able to improve its precision by about 7.47% compared to
the baseline when it predictions with high uncertainty are suppressed.

1 Introduction

1.1 Background

Object detection has been the topic of much re-
search in recent years. Developments such as YOLO
[Redmon et al., 2015], Faster R-CNN [Ren et al.,
2015], SSD [Liu et al., 2016] and RetinaNet [Lin
et al., 2017] have been plentiful, rapidly advanc-
ing the discipline to new heights. The task of ac-
curately detecting pedestrians in a real-world con-
text is one application of object detection. Pedes-
trian detection is considered to be one of the “most
crucial yet difficult issues” when it comes to de-
veloping intelligent vehicles, such as those capable
of autonomous driving [Baek et al., 2014]. How-
ever, these networks still suffer from shortcomings.
A study by Zhang et al. [2016] investigated the per-
formance and limitations of the AlexNet and VGG
object detectors on the Caltech Pedestrian Dataset.
They found multiple sources of error, such as a
failure to detect pedestrians that occupy a small
number of pixels. This can have undesirable effects
in safety-critical applications such as autonomous
driving, where one false negative could have fatal
consequences.

While most research aims to increase overall de-
tector performance by designing precise models and
effective training routines, it is also important to be
able to accurately determine the “reliability” of in-
dividual predictions. Doing so would allow us to
design trustworthy pedestrian detectors that can
be safely deployed in real-world environments.

Uncertainty quantification (UQ) methods can be
utilized in order to calculate predictive uncertainty,
thereby allowing us to quantify prediction relia-
bility. Recent studies have demonstrated the ef-
fectiveness of uncertainty quantification. One such
study by Le et al. [2018] implemented two differ-
ent aleatoric uncertainty estimation methods ap-
plied to a Single-Shot Detector (SSD). The results
showed that both methods were able to successfully
assign higher uncertainty values to false positives
than to true positives. Furthermore, research by He
et al. [2018] has found that their novel method of
learning uncertainty quantification resulted in a 6%
in Average Precision for the MS-COCO dataset.

Quantifying pedestrian detector uncertainty is
essential for the purpose of “careful” models that
are not overconfident in their own predictions. This
would allow safer and more informed decision-
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making in potential real-world applications such as
autonomous driving.

1.2 Research question

This leads to the main question of this study: How
can uncertainty quantification techniques be used
to improve the precision of pedestrian detection
models? To answer this question, we use two SSDs:
one “baseline” SSD that does not employ UQ, and
one “dropout” SSD that utilizes MC-Dropout in or-
der to measure predictive uncertainty in the form of
the following values: bounding box mean and stan-
dard deviation, and classification score means. We
believe that this will result in the following out-
comes:

1. The dropout SSD is able to reliably assign
higher standard deviation values to false de-
tections compared to correct detections,

2. Filtering the dropout SSD detections based on
bounding box uncertainty leads to a higher
mean Average Precision (mAP) score com-
pared to the baseline counterpart.

1.3 Contributions

The contributions of this study are as follows:

1. We provide an implementation of the SSD300
object detector that utilizes MC-Dropout,
trained on a pedestrian dataset,

2. We analyse how implementing uncertainty
quantification affects the performance of an
SSD trained to detect pedestrians, provide in-
sight into how utilizing uncertainty quantifica-
tion for pedestrian detection can improve ex-
isting models.

2 Background

2.1 Caltech Pedestrian Dataset

The models are trained on the Caltech Pedestrian
Dataset [Dollar et al., 2009]. The dataset contains
around 10 hours of 30Hz video footage (approxi-
mately 250,000 individual frames) of urban traffic.
Each frame is 640x480 pixels large. Each frame is

Figure 2.1: Annotated images from the Cal-
tech Pedestrian Dataset. Green bounding boxes
cover the pedestrian’s whole body, while yel-
low annotations cover the part of the pedestrian
that is visible. Image source: Dollar et al. [2009]

annotated with bounding boxes for pedestrians, in-
cluding pedestrians whose full bodies are occluded.
There are four classes of pedestrians: one for single
pedestrians, one for groups of pedestrians, one for
possible pedestrians, and one for pedestrians that
are far away.

2.2 Single-Shot Detector

The Single Shot Detector (SSD) [Liu et al., 2016] is
a one-stage object detector that predicts bounding
boxes directly from feature maps, forgoing the need
for a region proposal network. This allows the SSD
to be more efficient and easier to train than two-
stage counterparts. The network’s output consists
of 8732 bounding box proposals per class that are
then filtered via non-maximum suppression (NMS).
This results in up to 200 bounding boxes per class,
each of which has a confidence score higher than a
given threshold.

L(x, c, l, g) =
1

N
(Lconf (x, c)+αLloc(x, l, g)) (2.1)

For its loss function, the SSD utilizes Equation
2.1, where N is the number of bounding boxes that
have been matched to ground truths. This is a
sum of the confidence loss Lconf (x, c) and local-
ization loss Lloc, which is weighted by the number
of matched default boxes N . The confidence loss
Lconf (x, c) is a softmax loss over c categories. The
localization loss Lloc(c, l, g) is a Smooth L1 loss be-
tween the predicted box l and the ground truth box

2



Figure 2.2: Architecture diagram of a Single-Shot Detector. The input is in the form of a 300x300
pixel image. The image is passed through multiple blocks in order to produce region proposals
and classification scores. The output contains 8732 bounding box proposals and the associated
classification scores per class. Image source: Liu et al. [2016]

g. The localization loss is multiplied by the balanc-
ing term α in order to ensure that the model does
not focus too much on one task.

2.3 Bayesian Neural Networks

Bayesian Neural Networks (BNNs) are a group of
neural networks that adopt a Bayesian learning ap-
proach [Gawlikowski et al., 2021]. Given a set of
inputs X = {x0, x1, ..., xn} and corresponding out-
puts Y = {y0, y1, ..., yn}, we want to learn a predic-
tive posterior distribution (PPD) of weights over
data p(θ|X,Y ) that likely generated the observa-
tions X and Y :

p(θ|X,Y ) =
p(Y |X, θ)p(θ)

p(Y |X)
∝ p(y|x, θ)p(θ) (2.2)

Equation 2.2 displays the Bayes rule in the con-
text of machine learning. This would also involve
calculating the likelihood p(Y |X, θ) and evidence
p(Y |X). Given the PPD p(θ|X,Y ), the output y∗

for a novel input x∗ can be estimated:

p(y∗|x∗, X, Y ) =

∫
p(x∗|y∗, θ)p(θ|X,Y )dθ (2.3)

This method of prediction allows BNNs to en-
code uncertainty in their predictions. However,
p(y∗|x∗, X, Y ) and p(θ|X,Y ) are generally compu-
tationally intractable due to the intractability of
the evidence term P (Y |X), therefore we instead
learn an approximate PPD q(θ|X,Y ):

q(θ|X,Y ) ∼ p(θ|X,Y ) (2.4)

2.4 MC-Dropout

Monte Carlo Dropout (MC-Dropout) is a sampling-
based method of uncertainty quantification and
Bayesian approximation. It utilizes dropout [Sri-
vastava et al., 2014], a method used to prevent
overfitting a neural network model. This is done
by putting a mask that randomly selects activa-
tions over a certain layer and sets them to zero.
Traditionally, dropout is only utilized during train-
ing time. In MC-Dropout, the Dropout layers are
also utilized during inference, resulting in stochas-
tic predictions due to random activation selection.
Gal and Ghahramani [2016] showed that sampling
such a model allows us to calculate an approximate
predictive distribution q(y∗|x∗):

q(y∗|x∗) =

∫
p(x∗|y∗, θ)q(θ)dθ (2.5)

Sampling this distribution by performing N for-
ward passes using the input x with the dropout-
enabled model f(x) allows the mean µ(x) and σ2(x)
to be estimated:

µ(x) = N−1
∑
i

fi(x) (2.6)

σ2(x) = (N − 1)−1
∑
i

(fi(x)− µ(x))2 (2.7)

where fi(x) is the model output at iteration i with
model function fi resulting from dropout. This re-
sults in an output distribution f(x) ∼ N (µ, σ2),
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which encodes model predictive uncertainty as the
variance.

3 System description

3.1 Data

We used the Caltech Pedestrian Dataset [Dollar
et al., 2009] to train our models. To prepare the
dataset for use with the PAZ SSD implementation,
the dataset was converted from its initial format,
utilizing .seq files for images and .vbb for annota-
tions, into the PASCAL VOC format, which utilizes
.jpg files for images and .txt files for annotations.
The dataset was filtered in order to keep only im-
ages that contained ground truth bounding boxes.
This resulted in a data-set of ∼ 122, 150 images.

The dataset is shuffled and split into three dif-
ferent sets: 70% of the dataset is used for training,
15% for testing, and 15% for validation. Dataset
augmentation is performed on the training set and
boxes in order to provide more “variety” to the
training set, as many images in the dataset are part
of one sequence, and therefore look very similar.
The validation and test sets do not undergo aug-
mentation.

3.2 Model implementation

The object detection model implementation used in
this study are modified versions of the SSD300 im-
plementation from the Perception for Autonomous
Systems (PAZ) library [Arriaga et al., 2020]. This
library proved to be a suitable choice for this study,
as it allowed for easy installation and facilitated re-
liable training, validation, and testing of the models
in question.

A single dropout SSD is trained in this study.
This SSD is modified to contain dropout layers af-
ter each convolutional layer in blocks 6-9 of the net-
work. These layers have a dropout rate of 0.3 and
are enabled both during training and inference. As
a result, the model produces stochastic predictions.

In order to create the baseline SSD, the trained
dropout model’s weights are copied to an SSD with
an identical architecture. The new model’s dropout
rate is set to 0.0, resulting in deterministic predic-
tions.

3.3 Detection pipeline

3.3.1 Baseline model

The baseline detection routine utilizes the PAZ
DetectSingleShot function, which handles pre-
processing, model predictions, and postprocessing.
By default, it takes an RGB image as input for
the model and outputs a set of bounding boxes for
the image. The preprocessing consists of two steps:
first, the image is converted from RGB to BGR.
Afterwards, the image mean is subtracted from the
image’s BGR representation. Once this is done, the
image is fed to the SSD as input.

predj = [xj , yj , wj , hj , c0j , c1j , ..., cn−1j ] (3.1)

out′ = [pred0, pred1, ..., pred8731] (3.2)

For each input image, the model outputs a list
of 8732 encoded (default) bounding box propos-
als in center format and their associated classifi-
cation scores. The representations of the individual
predictions and the list of predictions are shown
in Equations 3.1 and 3.2 respectively. The posi-
tion and dimensions of the box proposed by predic-
tion j are given using their center form represen-
tation, which contains the center x-coordinate xj ,
center y-coordinate yj , the bounding box width wj

and height hj . Each prediction has n classification
scores [c0j , c1j , ..., cn−1j ] for classes [0, 1, ..., n − 1]
associated to it.

The postprocessing begins with decoding the
default box proposal coordinates and convert-
ing the boxes to corner format. In this for-
mat, the box coordinates are represented by
xmin, ymin, xmax, ymax, the box’s x-axis and y-axis
extremes.

Afterwards, NMS is used in order to suppress
boxes that overlap with an intersection-over-union
(IoU) of more than 0.5. In these situations, the box
with the higher confidence is preserved while the
other is suppressed. Up to 200 boxes with the high-
est confidence are selected per class.

Finally, the selected boxes are filtered based on
their confidence. For each class, all boxes that have
a confidence lower than the specified threshold are
removed from the selection, while the rest are saved
as a part of the final set of predictions.
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Figure 3.1: The PAZ SSD detection pipeline used by the baseline model (top) and the modified
pipeline used for the dropout model (bottom). Both pipelines have the same input and prepro-
cessing steps, however the modified pipeline instead samples the model and contains additional
postprocessing steps for calculating mean boxes and scores, as well as standard deviation boxes.
The NMS step is also modified such that NMS is performed on the mean and standard deviation
boxes based on the mean boxes. The output contains two sets of bounding boxes, one for the
mean and one for the standard deviation adjusted boxes.

3.3.2 Dropout model

The dropout model utilizes a modified version of
the PAZ DetectSingleShot function. The prepro-
cessing routine remains the same, but the input is
fed into the network multiple times, necessitating
a change in the postprocessing routine. The differ-
ence between the baseline and dropout pipelines are
visualized in Figure 3.1, which depicts both predic-
tion pipelines.

Mµ = N−1
N−1∑

i

Mi (3.3)

The same input is fed into the stochastic network
a total of N times. This results in N sets of 8732
proposals. In order to combine these sets, proposal
coordinate means and standard deviations, as well
as confidence score means, are calculated. Since the
jth proposal in one set corresponds to the jth pro-
posal in a different set, each set of proposals can be
treated as a matrix Mi of dimensions (8732, 4+n),
with n being the number of classes including the
background class. Equation 3.3 is used for calculat-
ing the means of each matrix, resulting in a set of
predictions that contains the mean coordinates and

classification scores of all N sets.

Mσ =

(∑N−1
i (Mi −Mµ)

2

N

) 1
2

(3.4)

In order to calculate the standard deviation of pro-
posals, a similar method of used where each set is
represented as a matrix Mi. However, as we are
only interested in the coordinate standard devia-
tions, the classification scores are discarded from
the matrix representation Mi. This results in Mi

having the dimensions (8732, 4). We use Equation
3.4 in order to calculate the set of coordinate stan-
dard deviations.

predµ+σ = [xµ, yµ, wµ+σ, hµ+σ, cµ0
, cµ1

, ...., cµn−1
]

(3.5)
wµ+σ = wµ + wσ + xσ (3.6)

hµ+σ = hµ + hσ + yσ (3.7)

σ-adjusted encoded predictions predµ+σ (Equation
3.5) are calculated in order to help visualize uncer-
tainty. This is done by adding the standard devi-
ations of the center x-coordinate and width to the
mean width (Equation 3.6), and the standard devi-
ations of the center y-coordinate and height to the
mean height (Equation 3.7).

Both the mean and σ-adjusted predictions are
then decoded independent of each other and the
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coordinates are converted to the corners represen-
tation, following the same procedure as the base-
line model. Afterwards, NMS is performed on the
boxes. NMS is performed based on the mean set,
meaning that if the ith proposal of the mean
set is suppressed, then so is the ith proposal of
the σ-adjusted set. Afterwards, the boxes are fil-
tered based on their confidence, as per the baseline
model.

Additionally, a method of uncertainty-based sup-
pression can be used to filter the boxes. All pre-
dictions where the IoU of the mean boxes and
corresponding σ-adjusted boxes is below a certain
threshold are removed from the dataset. This acts
as a naive form of uncertainty-based false positive
detection, where high uncertainty predictions are
considered false positives and are therefore sup-
pressed.

This concludes the postprocessing. The pipeline’s
final output comes in two equal-length sets of la-
belled bounding boxes with confidence scores: one
set containing mean boxes and a set of σ-adjusted
boxes corresponding to the mean boxes.

3.4 Training

A single model was trained the trained weights
were used for the baseline and dropout models.
The model’s training routine utilized an SSD multi-
box loss function with default PAZ parameters and
a balancing constant of α = 1, and the stochas-
tic gradient descent (SGD) optimizer with learning
rate α = 0.001 and momentum η = 0.6. The low
momentum was selected because higher momentum
caused loss to diverge.

The model was trained for a total of 30 epochs,
using an NVIDIA RTX 3090 GPU.

The model’s training and validation loss curves
are visible in Figure 3.2. The curve shows that the
model has converged or is close to converging. An-
other important observation is that the validation
loss is lower than training loss for the majority of
the training cycle, which is generally considered ab-
normal. This can be explained by the fact that
dropout was used during training but not valida-
tion and testing, which would increase training loss,
therefore making it higher than validation loss. To-
wards the final few epochs, validation loss increases
above training loss.
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M
od

el
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Model loss during training
Training loss
Validation loss

Figure 3.2: Training and validation loss for
model. The dropout rate was set to 0.3 during
training.

Figure 3.3 plots the curves of the individual com-
ponents of training loss. It is visible that the nega-
tive classification component was consistently the
lowest of all loss components, and positive clas-
sification was the largest. Furthermore, the total
classification is significantly larger than localization
loss during all epochs.

4 Results

4.1 Observations

Comparing the predictions (samples available in
Figure 4.1 and Figures A.1, A.2, A.3, A.4 in Ap-
pendix A) made by the two models yields various
observations. One observation is that both models
make some predictions that appear to be complete
nonsense - that is, they do not correlate to any ob-
servable features and seem to simply be results of
model underfitting. Such predictions are especially
prevalent when the input image contains a “busy”
environment with many nearby pedestrians or cars.

The dropout model tends to assign very high un-
certainty to false positives of this nature. However,
false positives that still appear to detect objects,
such as trees or mailboxes, do not always have high
uncertainty. This indicates that high uncertainty is
more indicative of false positives arising from model
error than of false positives arising from detecting
objects that are visually similar to pedestrians.
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Figure 3.3: Values of training loss components
per epoch. Total classification loss refers to the
sum of positive and negative classification losses.

4.2 Precision

Model setup person person-fa person? people mAP
Baseline 4.71% 5.11% 2.51% 13.0% 6.33%

Dropout-µ 5.50% 5.11% 2.51% 13.7% 6.71%
Dropout-filtered 13.1% 5.11% 2.51% 34.6% 13.8%

Table 4.1: The AP per class and mAP of each
model setup. An IoU of above 0.5 is con-
sidered a match. “Dropout-µ” refers to the
dropout model when assessed based on mean
boxes without uncertainty-based suppression,
and “Dropout-filtered” refers to the dropout
model when high-uncertainty predictions are
suppressed. Best per-column scores are in bold.

The precision of the models (Table 4.1) was as-
sessed by calculating their AP per class and mAP
on the test dataset. Three model setups were as-
sessed: a deterministic baseline model, a stochastic
dropout model that does not utilize uncertainty-
based suppression, and a stochastic dropout model
that utilizes uncertainty-based suppression. The
detection processes used to evaluate mAP utilized
an NMS IoU threshold of 0.45 and a confidence
threshold of 0.5. Uncertainty-based suppression for
the filtered dropout model utilizes an IoU thresh-
old of 0.75. The mAP evaluation process considered
boxes with an IoU of 0.5 or above to be matches.
Evaluation of model precision shows that the

baseline has a low precision, with an mAP of only
6.33%. The baseline model has an AP of 4.71%
for the class “person”. It performed slightly bet-

ter with faraway persons (“person-fa” label), and
slightly worse with possible persons (“person?”).
The model fares best when detecting groups of peo-
ple, with 13.0% of its predictions being correct.
This is expected, as groups of people would have
larger bounding boxes than single persons, making
it easier for the model to localize and classify them
correctly.

The dropout model performs marginally better
than the baseline, scoring 5.50% in the “person”
class and 13.7% in the “people” class. Its AP for
the other two classes is exactly the same as the
baseline. This results in an mAP of 6.71%, only
0.38% above than the baseline.

The best precision comes from the dropout model
with uncertainty-based suppression enabled. This
model setup has an mAP of 13.8%, approximately
7.47% above the baseline. The model is most pre-
cise in the “person” and “people” classes, scoring
13.1% and 34.6% above the baseline respectively.
The AP of the other two classes is the same as the
baseline model.

The models having exactly the same AP for the
“person” and “person-fa” classes is unsurprising, as
both of these classes had very few samples in the
dataset compared to the better-scoring classes.

5 Discussion

5.1 Hypothesis

The results of the mAP evaluation supports the
hypothesis that UQ can be used to improve de-
tector precision. While the performance difference
between the baseline and unfiltered dropout mod-
els is trivial, filtering dropout results based on
measured uncertainty causes a remarkable increase
in model precision. Therefore, the results support
the hypothesis outlined in Section 1.2: high uncer-
tainty is indicative of false positives, and suppress-
ing high-uncertainty predictions increases model
performance in the context of pedestrian detection.

Alternatively, it is possible that the model’s low
precision is simply being compensated for by UQ,
implying that higher-precision models would see di-
minishing returns from uncertainty-based suppres-
sion. This is supported by observations from test set
predictions, where both the baseline and dropout
models tend to detect multiple clearly false boxes
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Figure 4.1: Pairs of predictions made by the baseline and dropout models on the same image. The
dropout model’s predictions contain two boxes: one thick-edged box to represent the mean, and
one thin-edged box to visualize the model’s localization uncertainty.

that do adequately localize any specific features.
Currently, filtering predictions by removing high
uncertainty boxes results in the eliminations of such
boxes, causing a remarkable increase in precision.
Assuming such predictions could be mostly elimi-
nated via proper model and training routine design,
we expect to see less drastic increases in precision
due to uncertainty-based prediction filtering.
In order to accept or reject this explanation, the

model setup and training routine would need to be
revised and expanded in order to substantially im-
prove the baseline detectors’ performance and re-
move clear anomalies such as the “nonsense” false
positives. The results would support the alternate
explanation if they indicate that uncertainty-based
filtering has a diminished effect on the precision
when compared to the findings of this study.

5.2 Models

The models that we presented leave much room
for improvement. Currently, most hyperparame-
ters, are mainly selected based on the default values
of the utilized implementations. Aside from that,
certain hyperparameters were selected arbitrarily
or based on available hardware. Furthermore, prior
boxes utilized by the model were not tuned for this

specific task at all. Therefore, tuning model hyper-
parameters would likely have a significant impact
on the models and their performance.

The models are uncalibrated. This means that
the confidence scores that the models provide with
the boxes do not necessarily reflect the actual accu-
racy of the boxes. Since boxes are filtered based on
confidence, this could lead to high accuracy boxes
being suppressed or low accuracy boxes staying in
the output.

Finally, the placement of dropout layers, and
the selection of dropout probability, was selected
mostly arbitrarily, with network structure and
hardware taken being taken into consideration.
Experimenting with dropout layer placement and
probability could lead to improvements in perfor-
mance for both models.

5.3 Training routine

While the training routine succeeded in delivering
results, there is still much room for improvement.
One issue is the presence of false positives that do
not seem to be correlated to an actual object, which
is likely because the loss function favors learning
object classification over object localization. This
is supported by Figure 3.3, which shows how local-
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ization loss is significantly lower than classification
loss throughout training. This would explain why
there are more nonsense bounding boxes in busy
environments - the model detects object features,
but fails to localize them properly. If this is the
case, then the issue can be mitigated by adjusting
the balancing constant α in order to give more pri-
ority to learning object localization.

In general, the hyperparameters for the loss func-
tion and optimizer were arbitrarily selected. Not
only was α uncalibrated, but the learning rate and
momentum of the SGD optimizer were intention-
ally set to lower values, as higher values caused the
model to diverge to infinity. While the balancing
constant can be tuned by trying different values to
see what works best, the issue of diverging loss is
less solvable, though it can once again be overcome
by utilizing more powerful hardware that compen-
sates for low learning rate by simply computing
faster.

5.4 Dataset

The dataset was not ideally processed. One issue
is that the dataset was created by shuffling and
splitting the data rather than using the designated
data splits that were outlined by Dollar et al.. This
resulted in similar images appearing in the training
and testing datasets, which could have impacted
precision. However, training data was augmented
before use, therefore this is unlikely.

Another issue is that the data used lacked any
“negative” bounding boxes (bounding boxes la-
belled as background) or images with no non-
background bounding boxes, but the loss function
used indicated that they are present. This could
have impacted model performance, as the train-
ing objective would be trying to minimize negative
classification loss even though there are no negative
examples present.

The aforementioned issues can easily be fixed
by following the recommended data splits and in-
cluding negative boxes in the training data and/or
changing loss function parameters in order to ac-
curately reflect the quantity of negative bounding
boxes in the data.

6 Conclusion

In this paper, we proposed that UQ can be utilized
to improve object detector in the context of pedes-
trian detection. In order to test this, we utilized
two models, one deterministic SSD and one stochas-
tic SSD that uses MC-Dropout to quantify uncer-
tainty, both of which were trained on the Caltech
Pedestrian Dataset. We found that, based on the
test dataset mAP scores of the detectors, the MC-
Dropout model improves its mAP by about 7.47%
by suppressing high uncertainty prediction. The
biggest observed improvement in AP was about
21.6% when detecting groups of people. Our find-
ings indicate that UQ methods can be utilized in
order to suppress false positives in pedestrian de-
tectors based on measured uncertainty, thereby im-
proving model precision.

We expect that this work will bring more atten-
tion to uncertainty quantification and its potential
to detect false positives. We also expect that future
studies will build upon our work by further investi-
gating the potential applications of UQ methods in
pedestrian detection and object detection in gen-
eral, thus revealing new ways in which pedestrian
detectors can made to be more precise, safer, and
more reliable.

We hope our findings inspire others to investi-
gate the extent to which UQ is effective in increas-
ing pedestrian detection, as well as the situations
in which uncertainty-based suppression is most ef-
fective. We additionally hope that future studies
validate and generalize our findings by investigat-
ing the effectiveness of UQ methods in increasing
model performance for different contexts, datasets
and object detectors.
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A Appendix

Figure A.1: Sample predictions on the same im-
age per model setup. From left to right per
row: baseline model predictions, dropout model
predictions, dropout model predictions filtered
based on uncertainty.
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Figure A.2: Sample predictions on the same image per model setup. From left to right per row:
baseline model predictions, dropout model predictions, dropout model predictions filtered based
on uncertainty.
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Figure A.3: Sample predictions on the same image per model setup. From left to right per row:
baseline model predictions, dropout model predictions, dropout model predictions filtered based
on uncertainty.
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Figure A.4: Sample predictions on the same image per model setup. From left to right per row:
baseline model predictions, dropout model predictions, dropout model predictions filtered based
on uncertainty.

14


	Introduction
	Background
	Research question
	Contributions

	Background
	Caltech Pedestrian Dataset
	Single-Shot Detector
	Bayesian Neural Networks
	MC-Dropout

	System description
	Data
	Model implementation
	Detection pipeline
	Baseline model
	Dropout model

	Training

	Results
	Observations
	Precision

	Discussion
	Hypothesis
	Models
	Training routine
	Dataset

	Conclusion
	Appendix

